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TECHNIQUES FOR DETERMINING RENAL PATHOPHYSIOLOGIES

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit to U.S. Provisional Application No. 63/195,818, filed

June 2, 2021, the entire contents of which are incorporated herein by reference in their entirety.

BACKGROUND

[0002] Patients with chronic kidney and/or end-stage renal diseases (CKD/ESRD) are subject to
increased health and morbidity risks than the general population. For example, cardiovascular
disease (CVD), accelerated by cardiometabolic risks, is a leading cause of mortality in patients
with CKD/ESRD. CKD/ESRD patients are at a higher risk of mortality about two to ten times
that of the general population. This risk is not entirely accounted for by traditional risk factors
such as hypertension, diabetes, and hyperlipidemia alone; non-traditional risk factors related to
CKD metabolic bone disorder (CKD-MBD) and vascular calcification have provided additional
missing links. Despite all of these risk factors, cardiovascular disease in CKD/ESRD patients
remains underdiagnosed and undertreated. A primary reason is that standard clinical
interventions used in the general population for managing cardiovascular disease are ineffective
in reducing mortality risk in CKD/ESRD patients, due to interactions between interlinked
pathophysiological mechanisms with nonlinear cascading effects. A similar situation exists for
other disorders and health conditions, such as anemia, bone mineral metabolism, acid-base
disorders, and/or the like.

[0003] It is with respect to these and other considerations that the present improvements may be

useful.

SUMMARY

[0004] This Summary is provided to introduce a selection of concepts in a simplified form that
are further described below in the Detailed Description. This Summary is not intended to
necessarily identify key features or essential features of the claimed subject matter, nor is it
intended as an aid in determining the scope of the claimed subject matter.

[0005] In one embodiment, an apparatus may include at least one processor and a memory

coupled to the at least one processor. The memory may include instructions that, when executed
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by the at least one processor, cause the at least one processor to perform a chronic kidney and/or
end-stage renal diseases (CKD/ESRD) condition analysis process to determine a CKD/ESRD
condition model configured to model a CKD/ESRD condition, the vascular calcification analysis
process to: receive input data associated with at least one patient, perform a dynamical system
learner process to build a collection of dynamical system models, determine a model rank for at
least a portion of the collection of dynamical system models, and determine an optimal
dynamical system model for modeling the CKD/ESRD condition for the at least one patient.
[0006] In some embodiments of the apparatus, the instructions, when executed by the at least
one processor, may cause the at least one processor to pre-process the input data to impute
missing values. In various embodiments of the apparatus, the instructions, when executed by the
at least one processor, may cause the at least one processor to perform a causal analysis of the
input data to generate causal information. In some embodiments of the apparatus, the causal
information may include a causal diagram. In various embodiments of the apparatus, the model
rank may be configured to indicate model performance for dynamical relationships between
variables in the input data.

[0007] In exemplary embodiments of the apparatus, the collection of dynamical system models
may model one or more of the following variables: pre-treatment pulse pressure (P),
Neutrophils-Lymphocytes ratio (py,), Serum calcium concentration (Cc,), Intact Parathyroid
Hormone (Cpry ), Serum albumin concentration (g/dL) (Cxp), Serum phosphorus concentration
(Cp), or Alkaline Phosphatase (Cpp).

[0008] In various embodiments of the apparatus, the instructions, when executed by the at least
one processor, may cause the at least one processor to: receive patient information for a patient;
analyze the patient information using one of the collections of dynamical models to predict a
CKD/ESRD condition process for the patient based on modeled variables.

[0009] In various embodiments of the apparatus, the input data may include a time series of
system observables and a library of functions configured as an operator on the input data. In
some embodiments of the apparatus, the dynamical system models may include differential
equations that describe a time evolution of at least one variable of the input data.

[0010] In one embodiment, a computer-implemented method may be configured to perform a

chronic kidney and/or end-stage renal diseases (CKD/ESRD) condition analysis process to
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determine a CKD/ESRD condition model configured to model a CKD/ESRD condition. The
method may include receiving input data associated with at least one patient, performing a
dynamical system learner process to build a collection of dynamical system models, determining
a model rank for at least a portion of the collection of dynamical system models, and determining
an optimal dynamical system model for modeling the CKD/ESRD condition for the at least one
patient.

[0011] In some embodiments of the method, the method may include pre-processing the input
data to impute missing values. In various embodiments of the method, the method may include
performing a causal analysis of the input data to generate causal information. In some
embodiments of the method, the causal information may include a causal diagram. In various
embodiments of the method, the model rank may be configured to indicate model performance
for dynamical relationships between variables in the input data.

[0012] In exemplary embodiments of the method, the collection of dynamical system models
may model one or more of the following variables: pre-treatment pulse pressure (P),
Neutrophils-Lymphocytes ratio (py,), Serum calcium concentration (Cc,), Intact Parathyroid
Hormone (Cpry ), Serum albumin concentration (g/dL) (Cxp), Serum phosphorus concentration
(Cp), or Alkaline Phosphatase (Cpp).

[0013] In one embodiment, a computer-implemented method of vascular calcification analysis
may include, via a processor of a computing device: determining a vascular calcification model
configured to model vascular calcification of a virtual patient to determine a causal relationship
between at least one patient characteristic and a vascular calcification indicator; and generate a
causal relationship structure configured to visualize a causal relationship between the at least one
patient characteristic and the vascular calcification indicator.

[0014] In some embodiments of the method, the vascular calcification indicator may include one
of pulse pressure (PP) or pulse wave velocity. In some embodiments of the method, the at least
one patient characteristic may include at least one of parathyroid hormones (PTH), calcium (Ca),
phosphate (PO4), calcium-phosphate product (CaPO4), neutrophil-lymphocyte ratio (NLR), and
albumin (Alb). In some embodiments of the method, the causal relationship structure may

include at least one of a causality fingerprint or a causality pathway map. In some embodiments
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of the method, the method may include administering a treatment regimen based on the causal

relationship structure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] By way of example, specific embodiments of the disclosed machine will now be
described, with reference to the accompanying drawings, in which:

[0016] FIG. 1 illustrates a first exemplary operating environment in accordance with the present
disclosure;

[0017] FIG. 2 illustrates the processes and conditions of vascular calcification;

[0018] FIG. 3 depicts an illustrative and non-limiting vascular calcification analysis process in
accordance with the present disclosure;

[0019] FIGS. 4A and 4B depict illustrative and non-limiting examples of modeling approaches
in accordance with the present disclosure;

[0020] FIGS. 5A and 5B depict illustrative and non-limiting examples of causation output of a
vascular calcification model in accordance with the present disclosure;

[0021] FIG. 6 depicts illustrative clinical data used to determine the output shown in FIGS. 5A
and 5B in accordance with the present disclosure;

[0022] FIG. 7 depicts a schematic representation of data in accordance with the present
disclosure;

[0023] FIG. 8 illustrates an illustrative vascular calcification analysis processes according to a
dynamical system learner process in accordance with the present disclosure;

[0024] FIG. 9 illustrates exemplary causal diagrams according to the present disclosure;

[0025] FIG. 10 illustrates exemplary pre-processing according to the present disclosure;

[0026] FIG. 11 depicts illustrative Gaussian processes in accordance with the present disclosure;
[0027] FIG. 12A illustrates an example of a causality analysis in accordance with the present
disclosure;

[0028] FIG. 12B illustrates an example of a causality matrix in accordance with the present
disclosure;

[0029] FIG. 13 illustrates an exemplary dynamical system learner in accordance with the present

disclosure;
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[0030] FIG. 14 illustrates an example of a dynamical system model process in accordance with
the present disclosure

[0031] FIG. 15 illustrates an exemplary model ranking process according to the present
disclosure;

[0032] FIG. 16 illustrates an exemplary vascular calcification analysis processes according to a
second embodiment in accordance with the present disclosure;

[0033] FIG. 17 depicts a first model discovery example using processes in accordance with the
present disclosure;

[0034] FIGS. 18A and 18B depict a second model discovery example using processes in
accordance with the present disclosure;

[0035] FIGS. 19A and 19B depict a third model discovery example using processes in
accordance with the present disclosure;

[0036] FIG. 20 depicts graphical representations of different model performances in accordance
with the present disclosure;

[0037] FIGS. 21-36 depict experimental results for a dynamical system learner process in
accordance with the present disclosure;

[0038] FIG. 37 provides a listing of symbol definitions used in various processes according to
the present disclosure; and

[0039] FIG. 38 illustrates an embodiment of computing architecture in accordance with the

present disclosure.

DETAILED DESCRIPTION

[0040] The present embodiments will now be described more fully hereinafter with reference to
the accompanying drawings, in which several exemplary embodiments are shown. The subject
matter of the present disclosure, however, may be embodied in many different forms and should
not be construed as limited to the embodiments set forth herein. Rather, these embodiments are
provided so that this disclosure will be thorough and complete, and will fully convey the scope
of the subject matter to those skilled in the art. In the drawings, like numbers refer to like
elements throughout.

[0041] The described technology is generally directed to processes, systems, and methods for the

analysis of conditions of chronic kidney and/or end-stage renal diseases (CKD/ESRD) patients.
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A non-limiting example of CKD/ESRD conditions may include vascular calcification. In
accordance with various aspects of the described embodiments, a method of CKD/ESRD
conditions analysis may include a model generation process operative to provide a physiology-
based model configured to model the CKD/ESRD conditions of a patient. The models may be
generated, determined, or otherwise processed using a dynamical system modeler process or a
dynamical system learner process.

[0042] In various embodiments, the model generation process may operate using an application
that infers a model representation of a dynamical system from noisy time series data with
missing values. Such a dynamical system may be represented by a set of ordinary or partial
differential equations with or without time delays. From this model representation, important
properties about the dynamical evolution of the system may be extracted or otherwise
determined, such as causal relationships between the variables. Also, the processes, algorithms,
equations, graphs, and/or the like obtained via the model generation process may be used to
make predictions about a (real or virtual) biological system based on the present values of the
state variables.

[0043] In one embodiment, the model generation process may operate to, given a set of noisy
time-dependent data on multiple relevant variables, sampled from different realizations and at
different times, construct a dynamical system model that best represents the observed data and
that allows the determination of causal relations between the variables.

[0044] Conventional techniques have proven inadequate for the diagnosis and treatment of
CKD/ESRD conditions. Non-limiting examples of CKD/ESRD conditions may include vascular
calcification, anemia, bone mineral metabolism disorders, acid-base disorders, and/or the like.
For instance, with respect to vascular calcification, CKD/ESRD patients experience up to 30-fold
higher cardiovascular disease mortality than the general population. The risks include traditional
factors such as age, diabetes mellitus, dyslipidemia, and inflammation, as well as CKD-specific
risk factors such as bone mineral metabolism (BMM) disturbances and associated therapies.
Increased cardiovascular risk is multifactorial and is due partly to pathophysiological processes
specific to CKD, making prevention of cardiovascular disease (CVD) by standard interventions
directed at single traditional risks difficult. Currently, there is no broad applicable clinical
strategy available to ameliorate the development or progression of vascular calcification and

many of the therapeutic clinical studies have shown poor results.
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[0045] In some embodiments, for example, a vascular calcification model may be provided that
is operative to disentangle the prevalent underlying physiological mechanisms that accelerate the
risk of cardiovascular events associated with CKD-metabolic bone disorder (CKD-MBD) using
mathematical models. A vascular calcification model may operate to, inter alia, validate patient-
specific optimized therapy in order to achieve desired cardiometabolic homeostasis, provide a
cost-effective process for identification of vascular calcification and cardiovascular disease
progression, and develop individualized interventions to slow the progression of vascular
calcification in CKD/ESRD patients. Additionally, causality-based analysis modeling is
developed to identify individual patient-specific drivers of vascular calcification. The causality
analysis may include a physiology-based model of vascular calcification, the creation of a virtual
patient population, and a generic virtual clinical trial environment for this and/or other renal
pathophysiology.

[0046] In some embodiments, a vascular calcification model may be or may include a causal
pathway-based physiological model that utilizes clinical data to identify patients and/or risk
levels (e.g., high-risk patients) of progression of vascular calcification (VC) and cardiometabolic
diseases to provide multifactorial intervention strategies targeting the risk factors. The vascular
calcification models may use information including, without limitation, pulse pressure (PP, a
proxy for pulse wave velocity) to parathyroid hormones (PTH), calcium (Ca), phosphate (POa),
calcium-phosphate product (CaPQOs), neutrophil-lymphocyte ratio (NLR), and/or albumin (Alb).
Pulse pressure may account for both cardiac and vascular conditions (e.g., atrial fibrillation,
aortic insufficiency, arterial stiffness or arteriovenous malformation, aortic valve stenosis,
cardiac insufficiency, or cardiac tamponade).

[0047] CKD/ESRD models, such as vascular calcification models, according to some
embodiments may demonstrate the causal pathway of PTH, Ca, PO4, NLR, and/or Alb on PP,
and may demonstrate that there are likely paths from PTH, Ca, POs, CaPOs4, NLR to PP, where
the strength of the relationships varies from patient to patient. Using these pathways, a dynamic
model describing these interactions may be used to determine the impact of the dynamics on the
progression of vascular calcification, and/or other conditions, and provide treatment
recommendations and strategies to patients.

[0048] CKD/ESRD models and methods of using CKD/ESRD models may provide multiple

technological advantages over conventional techniques, including advances in computing
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technology. In one non-limiting example of technological advantage, CKD/ESRD models may
operate to accurately and efficiently model CKD/ESRD conditions in a manner not available
using existing processes. In another non-limiting technological advantage, CKD/ESRD models
may provide a causality analysis to identify patient-specific causes of CKD/ESRD conditions in
patients and/or patient populations. CKD/ESRD condition risk, such as CVD risk, is
multifactorial and interventions directed to a single risk factor are not effective. Accordingly, in
one non-limiting technological advantage, CKD/ESRD condition analysis processes may
determine multifactorial causes and interventions to CKD/ESRD conditions, such as CVD. A
further non-limiting technological advantage may include providing a CKD/ESRD model
configured to demonstrate a causal pathway of various conditions including, without limitation,
PTH, Ca, POs, NLR, and/or Alb on PP, and determine paths from PTH, Ca, PO4, CaPO4, NLR,
and/or Alb to PP.

[0049] Current computing systems, including machine learning approaches, are not able to
provide causal and pathophysiological insights that are required for prescriptive analysis. In
addition, the process of many CKD/ESRD conditions, such as vascular calcification, is not well
understood, making the development of a mechanistic model (for instance, an “avatar” approach)
impractical, if not impossible. Furthermore, differential temporal resolutions of clinical data
may result in poor performance. Accordingly, another non-limiting technological advantage
may include providing improved computing technology capable of computer-based
determinations of CKD/ESRD conditions, such as vascular calcification, causation of
CKD/ESRD conditions, and/or treatment recommendations for CKD/ESRD conditions (for
instance, based on determined causation) that are efficient, accurate, and not currently available
using conventional computer systems.

[0050] A person of skill in the art would recognize additional technological advantages based on
the teachings of the present disclosure. Embodiments are not limited in this context.

[0051] Processes, techniques, methods, systems, and/or the like described in the present
disclosure may be integrated into various practical applications. For example, CKD/ESRD
condition analysis using processes and computational models according to some embodiments
may determine one or more causal factors for CKD/ESRD conditions, such as vascular
calcification, of a patient and/or patient population. In an additional example, CKD/ESRD

condition analysis processes according to some embodiments may be integrated into the practical
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application of diagnosing a patient. In a further example, CKD/ESRD condition analysis
processes according to some embodiments may be integrated into the practical application of
administering treatment to a patient, such as providing treatment options, recommendations,
prescriptions, and/or the like based on the patient information and a CKD/ESRD condition
diagnosis and causation determination. For example, administration of a treatment may include
determining a dosage of a drug, administering the dosage of a drug, determining a testing
regimen, administering the testing regimen, determining a treatment regimen (such as a dialysis
treatment regimen, parameters (for instance, ultrafiltration rate), or prescription), administering
the treatment regimen, and/or the like. Embodiments are not limited in this context.

[0052] Additional technological advantages and integrations of embodiments into practical
applications are described in, and would be known to those of skill in the art in view of, the
present disclosure.

[0053] FIG. 1 illustrates an example of an operating environment 100 that may be representative
of some embodiments. As shown in FIG. 1, operating environment 100 may include a
CKD/ESRD condition analysis system 105. In various embodiments, CKD/ESRD condition
analysis system 105 may include a computing device 110 communicatively coupled to network
170 via a transceiver 160. In some embodiments, computing device 110 may be a server
computer or other type of computing device.

[0054] Computing device 110 may be configured to manage, among other things, operational
aspects of a CKD/ESRD condition analysis process, such as a vascular calcification analysis
process, according to some embodiments. Although only one computing device 110 is depicted
in FIG. 1, embodiments are not so limited. In various embodiments, the functions, operations,
configurations, data storage functions, applications, logic, and/or the like described with respect
to computing device 110 may be performed by and/or stored in one or more other computing
devices (not shown), for example, coupled to computing device 110 via network 170 (for
instance, one or more of client devices 174a-n). A single computing device 110 is depicted for
illustrative purposes only to simplify the figure. Embodiments are not limited in this context.
[0055] Computing device 110 may include a processor circuitry that may include and/or may
access various logics for performing processes according to some embodiments. For instance,

processor circuitry 120 may include and/or may access a CKD/ESRD analysis logic 122. In
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some embodiments, CKD/ESRD condition analysis logic 122 may operate to perform vascular
calcification analysis processes according to some embodiments.

[0056] Processing circuitry 120, CKD/ESRD analysis logic 122, and/or portions thereof may be
implemented in hardware, software, or a combination thereof. In some embodiments,
CKD/ESRD analysis logic 122 may include and/or implement a dynamical system modeler

process and/or a dynamical system learner process according to various embodiments. As used

2% 2% 29 CC

in this application, the terms “logic,” “component,” “layer,” “system,” “circuitry,” “decoder,”

2%

“encoder,” “control loop,” and/or “module” are intended to refer to a computer-related entity,
either hardware, a combination of hardware and software, software, or software in execution,
examples of which are provided by the exemplary computing architecture 1500. For example, a
logic, circuitry, or a module may be and/or may include but are not limited to, a process running
on a processor, a processor, a hard disk drive, multiple storage drives (of optical and/or magnetic
storage medium), an object, an executable, a thread of execution, a program, a computer,
hardware circuitry, integrated circuits, application-specific integrated circuits (ASIC),
programmable logic devices (PLD), digital signal processors (DSP), field-programmable gate
array (FPGA), a system-on-a-chip (SoC), memory units, logic gates, registers, semiconductor
device, chips, microchips, chip sets, software components, programs, applications, firmware,
software modules, computer code, a control loop, a computational model or application, an Al
model or application, an ML model or application, a proportional-integral-derivative (PID)
controller, variations thereof, combinations of any of the foregoing, and/or the like. In one non-
limiting example, CKD/ESRD condition analysis logic 122 may include instructions loaded into
processor circuitry (for instance, instructions or code associated with CKD/ESRD condition
analysis application 150).

[0057] Although CKD/ESRD condition analysis logic 122 is depicted in FIG. 1 as being within
processor circuitry 120, embodiments are not so limited. For example, CKD/ESRD condition
analysis logic 122 and/or any component thereof may be located within an accelerator, a
processor core, an interface, an individual processor die, implemented entirely as a software
application (for instance, a CKD/ESRD condition analysis application 150) and/or the like.
[0058] Memory unit 130 may include various types of computer-readable storage media and/or
systems in the form of one or more higher speed memory units, such as read-only memory

(ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM
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(DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM
(PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM
(EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic
memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS)
memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent
Disks (RAID) drives, solid-state memory devices (e.g., USB memory, solid-state drives (SSD)
and any other type of storage media suitable for storing information. In addition, memory unit
130 may include various types of computer-readable storage media in the form of one or more
lower speed memory units, including an internal (or external) hard disk drive (HDD), a magnetic
floppy disk drive (FDD), and an optical disk drive to read from or write to a removable optical
disk (e.g., a CD-ROM or DVD), a solid-state drive (SSD), and/or the like.

[0059] Memory unit 130 may store various types of information and/or applications for a
vascular calcification analysis process according to some embodiments. For example, memory
unit 130 may store patient information 132, computational models 134, CKD/ESRD information
136, treatment information 138, and/or a CKD/ESRD condition analysis application 150. In
some embodiments, some or all of patient information 132, computational models 134,
CKD/ESRD information 136, treatment information 138, and/or a CKD/ESRD condition
analysis application 150 may be stored in one or more data stores 172a-n accessible to
computing device 110 via network 170. For example, one or more of data stores 172a-n may be
or may include a HIS, an EMR system, a dialysis information system (DIS), an image archiving
and communication system (PACS), a Centers for Medicare and Medicaid Services (CMS)
database, U.S. Renal Data System (USRDS), a proprietary database, and/or the like.

[0060] Patient information 132 may include characteristics of a patient and/or a patient
population that may be relevant to determining a CKD/ESRD condition, such as vascular
calcification. In some embodiments, computational models 134 may be or may include one or
more artificial intelligence (AI) models, machine learning (ML) models, deep learning (DL)
models, neural networks (NN), Dynamical Systems (DS), combinations thereof, and/or the like.
[0061] In some embodiments, CKD/ESRD condition analysis application 150 may use one or
more computational models 134 to analyze patient information 132 to determine vascular
calcification information 140 and/or treatment information 142. In general, calcification

information 140 is information generated by a computational model 134 according to some
11
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embodiments to derive a vascular calcification diagnosis (for a particular patient and/or patient
population, including causation, as described in the present disclosure. In some embodiments,
CKD/ESRD condition analysis application 150 may include and/or implement a dynamical
system modeler process and/or a dynamical system learner process according to various
embodiments. In some embodiments, computational models 134 may include a dynamical
system model generated via at least one of a dynamical system learner process (see, for example,
FIG. 8) or a dynamical system modeler process (see, for example, FIG. 16).

[0062] As demonstrated in FIG. 2, the processes and conditions of vascular calcification are
complex and multifaceted (see Epomedicine. Complications of Long Term Dialysis [Internet].
Epomedicine; 2016 Apr 19; available from: https://epomedicine.com/medical-
students/complications-of-long-term-dialysis/). These conditions are complicated by CKD and
other conditions. For example, CKD facilitates a pro-calcific environment to accelerate vascular
calcification by reducing anti-calcific inhibitors (e.g., fetuin-A, Matrix Gla protein (MGP), and
pyrophosphate (pyroPO4)) and uremic toxins. Vascular calcification is an active process that
also involves osteo/chondrogenic trans-differentiation of vascular smooth muscle cells (VSMC)
into osteoblast-like cells involving various interwoven signaling pathways.

[0063] Accordingly, some embodiments may provide a physiology-based model operative to,
among other things, validate patient-specific optimized therapy to achieve desired
cardiometabolic homeostasis, develop and validate a cost-effective algorithm for identification of
vascular calcification and cardiovascular disease progression, and/or develop individualized
interventions to slow the progression of vascular calcification in CKD/ESRD patients.

[0064] Although vascular calcification is used in examples, embodiments are not so limited. In
particular, the analysis solutions according to some embodiments may be applied to CKD/ESRD
conditions and/or pathophysiologies, for example, to develop a causality-based analysis model to
identify individual patient-specific drivers of a condition. Non-limiting examples of CKD/ESRD
conditions that may be modeled according to some embodiments may include anemia, bone
mineral metabolism disorders, acid-base disorders, and/or the like.

[0065] CKD/ESRD condition analysis processes according to some embodiments may provide a
causality analysis including, without limitation: a physiology-based model of a CKD/ESRD
condition, such as vascular calcification; creation of a virtual patient population; generic virtual

clinical (VC) trial environment (for instance, via software development and implementation);
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validation of CKD/ESRD condition models, such as vascular calcification models, for example,
using data from ongoing clinical studies and/or using data from other collaborators.

[0066] FIG. 3 depicts an illustrative and non-limiting CKD/ESRD condition analysis process
according to some embodiments. Process 300 may include a dynamical system modeler process,
such as process 304, (for instance, see FIG. 16). As shown in FIG. 3, a vascular calcification
analysis process 300 may include pre-processing raw data to obtain a usable data set for analysis
301, computation of one or more causal pathways at an individual and/or population level 302,
derivation of plausible models based on the physiological causal pathways 303, and/or
determining a final set of physiology-based mechanistic dynamic equations describing the
interactions between the data 304. FIGS. 4A and 4B depict illustrative and non-limiting
examples of modeling approaches according to some embodiments.

[0067] FIGS. 5A and 5B depict illustrative and non-limiting examples of causation output of a
CKD/ESRD condition model according to some embodiments. FIG. 6 depicts illustrative
clinical data used to determine the output shown in FIGS. 5A and 5B. As shown in FIG. 5A, a
CKD/ESRD condition analysis process may generate a causality map or fingerprint 505 visually
demonstrating potential causality. In general, the darker the color in a region (or square), the
more likely a causal/directional link. As shown in FIG. 5B, a vascular calcification analysis
process may generate a causality map or pathway map 510 visually demonstrating potential
causality pathways for one or more CKD/ESRD condition indicators, for example, PP and/or
pulse wave velocity for vascular calcification. A causality map or pathway map is a graphical
representation of a possible causal relationship between two variables. A causal relationship is
said to exist from variable X to variable Y if changes in the value of X lead to changes in the
value of Y, from a dynamical system representation of the system that relationship is represented
by a functional dependency of the time derivative of Y on X. Alternative definitions of causality
can be stated in terms of time series modeling and forecasting, if a causal relationship exists from
X to Y, then it is expected that the inclusion of past values of X in a forecast model of Y should
improve the quality of the forecast.

[0068] There are various possible ways of extracting causal information from the collection a
models determined according to some embodiment. Non-limiting examples of extraction

methods may include probability-based causal analysis and ensemble causal analysis. Both
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methods rely on the same analysis on an individual level: y is said to cause x if the time
derivative of x is an explicit function of y, i.e., x = f(y).

[0069] For the probability-baseds approach, to determine a single causal diagram for a
population of patients or a collection of models consists of determining the probability that each
individual term of the function library (A) is present in any arbitrary model in the collection. In
other words, a probability model is constructed where for each element of the function library
there is assigned the probability that the associated term is found in any model in the collection.
A final model may be obtained by eliminating the terms in A with probabilities smaller than a
given threshold. The causal diagram may then constructed by analyzing the surviving terms in
this thresholded model.

[0070] For the ensemble causal approach, the ensemble causal diagram is built from the causal
diagrams of each individual model added to the collection, i.e., for each new model added to the
collection of models, a causal diagram is constructed. From the set of all causal diagrams in the
collection a probability of occurrence may be assigned to each one of all the possible causal links
between the different variables in the model (or for each element in the adjacency matrix).
Finally, each link may be thresholded given its probability of occurrence in the whole collection
of models.

[0071] A probability-based causal diagram may take into consideration each different term
separately, when thresholding the terms in the final step it may select the highest probable model
according to this approach, and extracts a causal diagram from this selected model. It is more
sensitive to the heterogeneity of the models included in the collection and, as a consequence, the
probability thresholds that need to be used are usually smaller. The thresholds may be
configured according to various value systems, such as a range of 0 to 1 (or any other range). In
some embodiments, the thresholds may include probability thresholds (for example, ranging
between 0 to 1, 0% to 100%, and/or the like). Embodiments are not limited in this context.
[0072] An ensemble causal diagram extracts the causal diagram from each model in the
collection and thresholds over the probability of each causal link. In that sense it is not sensitive
to which particular terms were selected in each model, but only whether a given functional
relationship between two variables existed. Therefore, it is expected that the causal relations
obtained may be more robust, which is confirmed by the larger thresholds used when selecting

the final causal diagram.
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[0073] A vascular analysis process according to some embodiments may use the causation
output to determine patients that are likely to have vascular calcification ansd/or causes of
vascular calcification. Accordingly, vascular analysis processes may determine treatment
recommendations based on the causation output that may be administered to target specific
causes or potential causes of vascular calcification.

[0074] Some embodiments may use dynamical system representation of biological systems. A
dynamical system may be understood as a system that changes in time and can be prescribed
deterministically, i.e., there is a well-determined rule for its temporal evolution, in such a way
that by knowing only this rule and the system’s initial condition, it is possible to predict the
system future states.

[0075] For example, some embodiments may operate to, given a set of noisy time-de data on
multiple relevant variables, sampled from different realizations and on different times, construct
a dynamical system model that represents the observed data and that allows the extraction of
causal relations between the variables.

[0076] A large class of dynamical systems can be represented by a set of N differential equations
in N variables represented by the state vector x = (xy, ..., xy), with temporal evolution given by:
x=f(x8),
where ¢ is a vector of constant parameters and x is a vector of the state variables. Once a set of

initial conditions is specified, i.e., x(t = 0) = x; then the state of the system is known at any
given future time t. For any given application, the state vector is composed of all the relevant
variables to the description of the system, e.g., in the vascular calcification context its
components can be pulse pressure, the concentration of calcium and phosphate in circulation, etc.
The function f encodes all the information of the relationship between the different variables in
the system, and its mathematical structure reveals how the different system elements interact and
influence each other. In some embodiments, the dynamical system model may be represented by
a set of ordinary differential equations with or without time delay, and/or partial differential
equations in 1, 2 or 3 spatial dimensions, or dependent of any other independent variable of
relevance.

[0077] In some embodiments, a model may be defined by the vector function f(x,&). An

objective may be to find a function that represents all the multiple realizations of the system,
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differing only by the value of the parameters ¢ between different realization; or to find different
functions for different realizations but that allow forecasting the future value of the system state
variables x based on its present value.
[0078] For many complicated and realistic applications, it is difficult, if not impossible, to
determine the mathematical structure of f from first principles. On the other hand, there has
been an increase in the availability of data in many scientifical fields and major developments in
machine learning tools designed to handle and analyze relevant data. For instance, there are
data-oriented approaches to solve the problem of finding a mathematical representation of f for
complicated systems to which there are large data sets available.
[0079] In general, computational models according to some embodiments may operate to, given
a set of noisy time-dependent data on multiple relevant variables, for example, sampled from
different realizations and at different times, construct a dynamical system model that best
represents the observed data and that allows the extraction of causal relations between the
variables.
[0080] For noisy time-dependent data, the data may be represented by a set of observed variables
y;, where i = 1, ..., M and M is the number of state variables, the relationship to the observables
y and the actual state variables x is given by:

yi(®) = g(x:() + N(0,0),
where the second term represents a normally distributed noise with zero mean and standard
deviation g;; and g(+) can be any function leading x(t) to y(t) (even the identity function, in
which case the observable and the state variable are the same, except for the observational
noise). In some embodiments, each variable x; has a different degree of observational noise,
represented by a different standard deviation ;. A schematic representation of the data is
provided in FIG. 7, in which the points represent the observed data of two state variables x; and
X,, the lines represent the true underlying dynamics without noise.
[0081] In some embodiments, realization may provide that the data set available is supposed to
represent the system in different realizations, i.e., there are data available of the system in
different experimental or observational conditions. For observational studies that can mean data
on different patients with similar conditions; for experimental studies different repetitions of the

same experiments that generates the data. The underlying assumption is that every realization of
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the system can be described by the same model, represented by the function f that provides the
dynamical evolution of the system. Different realizations are not expected to share the same set
of parameters ¢.

[0082] Some embodiments may perform time sampling, e.g., in which the observables of the
system are not expected to be sampled at the same times, i.e., for each observable and each state
variable there is a different time grid (¢4, ty, ..., tp, ..., ty), where N is the total number of
observations for a given observable and it might be different in different realizations of the
system. Also, the time step for a given realization of the system does not need to be uniform,
le,tipg =t #F g —tifori #j.

[0083] Accordingly, in some embodiments, from the extracted model, it is possible to establish
causal relationships between the state variables of the system, for instance, by looking at the
arguments of a given component of the function f. In this context causality should be interpreted
as: if X'is said to cause ¥, then it is expected that a change in the value of X leads to a change in
the value of 7, in the dynamical system representation of the system that reads Y = f(X, ).
[0084] FIG. 8 illustrates an illustrative CKD/ESRD condition analysis processes according to a
first embodiment in accordance with the present disclosure. For example, FIG. 8 depicts a
dynamical system learner process for determining and ranking models according to some
embodiments. As shown in FIG. 8, a dynamical system learner process 800 may include pre-
processing 801. In some embodiments, pre-processing 801 may include transforming input data
811 into one or more formats, for example, a format appropriate to code, data structures, and/or
the like.

[0085] In various embodiments, causal analysis 802 may correspond to extracting causal
information from input data 811, which may be outputted in various forms, such as the format of
a causal diagram 812.

[0086] Important insight may be obtained from data by analyzing how much information is
exchanged between different variables, such analysis can help establish cause-effect
relationships for the state variables of the system. A traditional approach is based on the Granger
causality, a linear method that states that Y “Granger causes” X if the inclusion of Y in a

predictive model for X increases the accuracy of such a model (see, for example, Granger, C. W.
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J., ‘Investigating Causal Relations by Econometric Models and Cross-Spectral Methods’, Essays
in Econometrics vol I1: Collected Papers of Clive W. J. Granger, 37(3), pp. 31-47 (2008)).
Although useful in many contexts, Granger causality assumes linearity and stationarity, both
assumptions cannot be assured in medical and biological applications. For that reason, several
generalizations of the Granger procedure have been proposed, in particular, a kernel-based
version of it was developed specifically to deal with nonlinear systems (see, for example,
Marinazzo et al., ‘Kernel-Granger causality and the analysis of dynamical networks’, Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(5), pp. 1-9 (2008)).

[0087] An advantage of employing such causality methods based on time series forecasting lies
on their relative simplicity and low computational cost, allowing fast results that can help
understand complex relationships between variables. Such methods may require the time series
to be sampled in time with enough precision so that the underlying models have sufficient
predictive power. If that condition is not satistied, imputation and modeling of the time series
may be used to provide enough precision. The result, in the form of a causal diagram, is
dependent on the imputation used; however, it may still provide meaningful information about
the topological structure of the causal diagram of the system.

[0088] FIG. 9 illustrates exemplary causal diagrams according to the present disclosure. More
specifically, FIG. 9 depicts two causal diagrams obtained by the kernel Granger algorithm when
applied to the time-series generated from data by two different imputation methods: Average
over GP and KNN 901 and GP only 902. Although providing different results, there are some
topological similarities (if causal directionality is ignored) between diagrams 901 and 902,
suggesting at least that some of the observed causal relationships (or their absence) might be
meaningful. Also, these diagrams should not be analyzed independently of the current biological
understanding of the mechanisms leading to vascular calcification.

[0089] In some embodiments, a dynamical system learner step 803 may operate to build a
symbolic dynamical system model. In various embodiments, dynamical system learner step 803
may receive causal information 817 as input. From running one or more of previous steps 801-
803 in a set of data from multiple patients, it may be possible to extract a collection of models in
a model collection 804 step. By analyzing the frequency of occurrence of specific terms in such
collection, embodiments may build a probabilistic representation for the system of equations

813, from the dependencies of the different models extracted it is possible to build a causal
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diagram 814 and/or probabilistic model 815, for example, for a patient or an entire population of
patients.

[0090] In some embodiments, a model ranking 805 step may operate to calculate a model rank,
for example, determining one or more optimal models 816, for instance, indicating which
model(s) performs better when explaining the dynamical relationships between the variables in
the input data.

[0091] In various embodiments, input data to a CKD/ESRD condition analysis processes, such
as dynamical system learner process 800, may be or may include a set of noisy time series with
missing values. In general, a time series may correspond to measurements of a variable of
interest from patient physiology made at different moments in time. Assume y is such variable
(e.g., pulse pressure or concentration of calcium in the patient blood stream), a time series for y
corresponds to a set of N measurements of y made at the times ¢;, t,, ..., ty, and is denoted:

O} =vy2 - -

[0092] Each observable measured at time t is described by its value y(t); however, to measure
the true value of the underlying state variable x directly and precisely is impossible.
Consequently, the measurement provides a value y(t) called an observation of x(t), which

relates to the actual value of x through the following equation:

y() = g(x(®)) + N (0,0).

For example, it may be assumed that each value of y is a function of the corresponding value of
x (g(+)) can be the identity function, in which case y corresponds to the state variable x, except
for the noise), and an additive Gaussian noise with zero mean and standard deviation ¢. The
added noise may have a different distribution other than Gaussian, the distribution can be for
example, but not limited to, student-t distributed noise, or lognormal noise, or exponentially
distributed noise.

[0093] The presence of missing values, which may be represented by NA, means that at any
particular time t the corresponding value y(t) was not measured and is therefore missing. For a
set of noisy time series with missing values, since more than one observable are measured

simultaneously, there is not one but M different variables. Each time series may be denoted {y};

where j =1, ..., M.
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[0094] Representing all this information together, the input can be written as a matrix where
each column corresponds to the time series of a different observable, and each row corresponds

to a different measurement in time. Therefore, the full input ¥ can be represented as:

Y11 Y12 0 Yim
NA -
Yy = y2:,1 : ; YZ:,M ’
NA yn2 = Ynm

where the missing values are placed randomly for illustrative purposes. Not all the variables
have the same missing value rate, i1.e., some variables have more missing values than others and
at different times. The same is valid for the amplitude of the noise, some variables have higher
noise to signal ratio than others, in other words, the standard deviation g; of the additive noise
may not be the same for all {y};.

[0095] In some embodiments, input causal information (such as causal information 817) may be
in a form based on one of the following definitions of causality:

1. The variable y; is said to cause y;, if changes in the value of y; lead to
direct changes in the value of y;. In other words, the time derivative of y; is an explicit
function of y;, i.e., y; = f(;) (“direct causality”);

2. The variable y; is said to cause y;, if including y; in an explanatory model
for y; improves the accuracy of such model, i.e., by including information on the past
values of y; we improve our ability to predict values of y;. Mathematically, this can be
represented as: y;(t) = h(y;(t — 7)) where h(-) is the appropriate modelling function
and 7 is a time delay (“explanatory model causality”).

In some embodiments, causal information obtained from expert knowledge on the subject being
studied can be used as input to the process. Such information can be represented in the form of a
binary matrix of T and F': if the element of i-th row and j-th column is T, then y; is allowed to
cause y;; opposed to the situation in which such element is F, in which case it is known that y;
does not cause y;. For example, if it is known, from physiological reasons, that y; does not
cause y;, then the corresponding element should be marked F. If we know nothing about their

relationship, then the corresponding element should be marked T.
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[0096] Some embodiments may perform time series pre-processing. For example, a first
approach to handle the missing values may be to impute them, following some established
criteria. In most applications, standard imputation schemes usually involve replacing the missing
values by some measure of the variable distribution, usually by the mean or median, be it from
the entire time series or from the first neighbors of the missing point.

[0097] However, if the missing values outnumber the observations for a given variable, these
standard imputation schemes will lead to a biased result, in which case more robust techniques
would need to be employed. In such a scenario, the imputation acquires a modeling
characteristic, in which the missing values are replaced by a function that satisfies few conditions
imposed by the researcher (such as continuity) and that are consistent with the observed data.
The advantage of such approach is the possibility of applying time-series analysis to the imputed
data, such as Granger-based causality measures and their various potential modifications.

[0098] As shown in FIG. 8, pre-processing 801 may be a first step in the CKD/ESRD condition
analysis processes 800. A goal of pre-processing may be to read the raw data and transform it
into a format that can be dealt with by the subsequent steps. In some embodiments, pre-
processing aims to (7) minimize the effect of the noise in the time series; and (7i) impute the
missing values of the raw data as to transform the data into an uniform time series representation.
[0099] FIG. 10 illustrates exemplary pre-processing according to the present disclosure. Graph
1001 depicts the raw or original data points 1010 and graph 1002 depicts the original data points
with a line 1005 that corresponds to the pre-processing. In general, line 1005 is smoother than
points 1010, meaning it was able to capture the underlying dynamics reducing the effect of noise.
Also, at the section in which there are missing values in the original data, the pre-processing
imputed meaningful values (as depicted by segment 1015 in graph 1002).

[0100] In some embodiments, pre-processing may operate to perform one or more of: transform input
data into a uniform representation for all variables; smoothen the data and reduce the importance of noise,
trying to extract the relevant dynamical evolution of the variables; impute missing values with significant
values that approximate the underlying true value of the variable; and increase the number of points
available to feed the code, in order to improve performance.

[0101] Various processes, methods, algorithms, and/or the like may be used for pre-processing according
to some embodiments. Non-limiting examples of methods may include spline, smoothing spline, and/or

Gaussian processes.
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[0102] In general, the Gaussian Process (GP) may operate to generalize the concept of a Gaussian
probability distribution for random numbers for the case of stochastic processes. Each value f(x) of the
process is taken from a Gaussian distribution with statistical properties given by a covariance matrix K,
that determines how the point x covaries with previous observations x;. The covariance matrix is
calculated on a function of the distance between the points x and x;, called the kernel. The obtained
result is dependent of the choice of the kernel function. A general kernel function (which is appropriate
when not much is known about the underlying process generating the observed data) is the Radial Basis

Function kernel (or RBF) which, given two observations x and x’, may be defined as:

, llx — x'II?
K(x, ) = exp| ————— ).

207
This kernel is infinitely differentiable which leads to a smooth Gaussian process over the
observed data, making it suitable to impute missing data in observations from natural processes.
On the downside, for extremely under sampled observations, in which case the distance between
successive points is too large, so that K(x, x") ~ 0, Gaussian processes may fail to appropriately
estimate the underlying dynamics of the system. Gaussian processes also effectively handle
noisy data by adding a constant value « to the diagonal of the covariance matrix.

[0103] Another suitable kernel is the Matérn covariance function K, (f, f’), given by:

K,(61) = il(:)/( Zew)v]"( zew)’

where £ is a typical length scale, I'(+) is the Gamma function, J,,(-) is the modified Bessel

function of the second kind, r = |t — t'| is the distance between the two arguments of the kernel
and v is a positive parameter, such that the process n(x) is k-times mean-square differentiable if
and only if v > k. A common value is v = 3/2, so only once differentiability is required for the
noisy data. Any other kernel function of the distance between two points in the time series can be
used in Gaussian Process pre-processing, and it should not be limited to the previous two
examples.

[0104] FIG. 11 depicts illustrative Gaussian processes according to some embodiments. In graph
A, the pulse pressure is modeled by a noisy Gaussian process, in this way the data is smoothed
and it is possible to capture the trend of the variable over time, instead of its local noisy
fluctuation. In graph B, the data for Alkaline Phosphatase (AP) is displayed, the full line

represents the Gaussian process. In this case, the GP is exact over the data points and it imputes
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the intermediate values with a smooth function.

[010S] To assume a dynamical system representation implies, among other things, that the state variables
of the system are connected through a mathematical representation of their temporal evolution. Because
of that, similar states are expected to generate similar outcomes. It is possible to use this reasoning in
order to impute the missing values of the data using the nearest neighbor algorithm.

[0106] In one example, the state of the system may be characterized as a vector y(t) with
missing values which is sampled at times t;, t,, ..., t;. If the value of the i-th component of the

state vector at time ¢; is missing, i.e., yi(tj) = NA, then its value is replaced by:

yi(tj) = (k nearest neighbors i-th component),

where the angled bracket represents the average, and the “k nearest neighbors” (k-NN or KNN)
are the k different points y(t,) with t,, # t; closest to ﬁ(tj), where distances are calculated only

with the components of ¥ that form the orthogonal complement of the missing value.

[0107] Because only the missing values are imputed, the obtained time series is discontinuous. A
Savitzky-Golay filter may be applied to smoothen the result, or any other smoothing filter
technique. In graph C of FIG. 11, the KNN imputation is represented for the same data as in
graph B. Because the final signal is smoothed, it does not have the exact value at the data points;
instead, it only captures an overall trend of fluctuations of the time series under the assumption
that all state variables are connected and that similar states lead to similar dynamics.

[0108] The two imputation methods presented so far can capture different features of the underlying
dynamical system: Gaussian processes favor precision at the data points; and KNN favors similarity of
recurrent states. In order to leverage both advantages, it is possible to calculate an average of them, if
cach point and method is carefully weighted, the resulting signal can be smooth and representative of the
dynamics.

[0109] The resulting averaged time series Ximp (t) may be calculated as:

Np
Ximp (£) = %Z Wi (D)0,

where w;(t) is the contribution at time t of each of the Np points in the data set, and o(t) =

Z?’fl w;(t) is a normalization factor. The weight of each data point may be given by:

_=t)?  p
wi(t) =le 2t +—|,
10 [ NP]
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where 0 < p < 1is aregularization factor and 7 is a typical time scale. The contribution at time

t of each data point to the average may be given by:

xi(£) = G—it)z e i (DX (D),

where the Greek index iterates over the different imputation methods; w,(t) are the weights of

each method and may be given by:

Wei (1) = [pea dP (O,

N N LG EEAY
X <t>—j<7> +<T '

where At = max(t;) — min(¢;) and Ax = max(x;) — min(x;) for all i. And 6;(t) = Xq g (t)

with the following:

is the normalization factor. In other words, the weights were carefully chosen to favor the
imputation that is closer to the data points.

[0110] In FIG. 11, graph D represents the weighted average of the signals of graphs B and C.
The resulting time series successfully represents the available time series and captures local
fluctuations from the nearest neighbors’ imputation.

[0111] In some embodiments, imputation methods may use machine learning (ML), artificial
intelligence (AI), and/or deep learning (DL) techniques. Non-limiting examples of ML may
include recursive neural networks (RNN), cognitive neural network (CNN), and generative
adversarial networks (GAN), or a combination and/or adaptation of both. The RNN architecture
is suitable for time series analysis as it includes information about previous values when training
the network; as for the GAN’s, this architecture is very efficient in generating fake data due to its
use of two competing networks: one attempts to model a mapping from noise to the true data,
and the other one reads the data and assigns to it a probability of it being true. The combined
iteration of these two adversarial networks eventually converge to a good quality of the
generated fake data.

[0112] In some embodiments, a causal analysis may be or may correspond with causal analysis
802 of process 800 of FIG. 8. A causal analysis may operate to infer underlying and robust
causal relationships between the variables. In some embodiments, a causal analysis may involve

“explanatory model causality,” for example: The variable y; is said to cause y;, if including y;
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in an explanatory model for y; improves the accuracy of such model, i.e., by including
information on the past values of y; we improve our ability to predict values of y;.
Mathematically, this can be represented as: y;(t) = h(y;(t — 7)) where h(-) is the appropriate

modelling function and 7 is a time delay.

[0113] Causal analysis may operate to provide insight about the possible mechanistic relationship
between the observables of the system and the underlying state variables. In addition, causal
analysis may operate to provide a causal diagram that may be used as input to a dynamical
system learner (e.g., dynamical system learner 803 of FIG. 8), reducing the necessary terms in
the library of functions, which reduces the time of calculation.

[0114] FIG. 12A illustrates an example of a causality analysis in accordance with the present
disclosure. As shown in FIG. 12A, as input 1205, the system may receive a set with the time
series of the observables. Although input 1205 is depicted as a set of graphs, input 1205 may
have various other forms, such as raw data, matrix, table, csv data, text file, and/or the like. The
output 1210 of the system may be causality information. In some embodiments, the causality
information may be or may include a causality diagram or graph, which is a graph where each
node represents one of the input observables, and the nodes may be connected by directional
links or arrows demonstrating causality. For example, if there is an arrow connecting the node y;
to the node y;, then y; is said to cause y;.

[0115] The causality diagram may have other forms, such as a matrix form, called an adjacency
matrix. This is a binary matrix where if the element in the i-th rom and j-th column is 1 (or True)
it means that y; causes y;. FIG. 12B illustrates an example of a causality matrix in accordance
with the present disclosure. As shown in FIG. 12B, matrix 1220 is a 3-dimensional adjacency
matrix for causal diagram 1215. The first row of adjacency matrix 1220 has three ones, meaning
that y; causes y;, ¥, and y3, which can be confirmed at causal diagram 1215 by the arrows
leaving y;. As no arrow leaves y,, y, does not cause any other variable, then the second row of
adjacency matrix 1220 is zero. As for y;, it only causes y, and y,, but not itself, therefore the
third row of adjacency matrix 1220 has non-zero elements only in the first two columns.

[0116] FIG. 13 illustrates an exemplary dynamical system leamer in accordance with the present
disclosure. As shown in FIG. 13, a dynamical system learner (or “DynSysLearner” and/or

“DynSysLearnerND”) may receive various inputs. Non-limiting examples of inputs may include a time
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series 1305 for the pre-processed system observables: y;(t), y,(t), ..., vy (¢), a library of functions A
1320, and/or causality information 1310, such as a causal diagram, a causality adjacency matrix, and/or
the like. In various embodiments, DynSysLearner 1301 may generate output 1315, including a system of
ordinary differential equations that describe the time evolution of the input variables y; (t). For example,
DynSysLearner 1301 may find a symbolic representation of the functions f; (t), f2(t), ..., fu(t), such
as:

vi = fi(3,0) i=1,..,M.

[0117] A dynamic system learner, such as dynamic system learner 1301, may perform various
technical functions, including, without limitation: from time series data, infer a set of ordinary
differential equations, or partial differential equations, or time delay differential equations, that
better explain the time evolution of the observed variables; obtain a different model, with either
different equations or only different parameters, for each one of the different realizations of the
data; an obtained set of equations may be able to be used to make forecasts about the system
state; an obtained set of equations may be used to model the effect of treatments for the patient.
[0118] In various embodiments, a dynamic system learner may include and/or use various
processes, functions, algorithms, and/or the like. For example, an algorithm may be configured
to extract dynamical system models from data. The algorithm may be configured to find the set

of M functions f;, such as:

. > N(y,bt) .
w=ﬁmﬂ=mw) i=1,..,M,

which can be rewritten as:
Dy, t)y; —N(y,t) =0.

A method to solve this problem may include writing this expression as a product between a

matrix (@) built from a library of functions (A;), and the input data (Y and Y), and a vector of

S
coefficients ¢;., such as:

Dy, )y — Ny, t) = 0(A,Y,Y;)& =0,

where the preprocessed time series Y is given by:

D ) m) e )
Y = (3’1 y, e J’M) — 3’1(:52) 3’2(:52) yMth) and
- ! yiltw)  y2(tw) - ym(ty)
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where M is the number of dimensions of the input data, and N is the number of times in which it

was sampled.

[0119] In some embodiments, a library of functions, A; = {h;(¥), ..., h; (7))} may include a set
of functions of the input y. By applying the library of functions to the input data:

I I I
A;(Y) = (hl(Y) ho(Y) - hL(Y)),
I I I

In which the algorithm finds M sparse sets of coefficients i- = {&, ...,&,}, such as:

2

0(A,Y,7)E = (A(Y) oZ—A(Y)>§i —0 i=1...M

where o is a row-wise multiplication:

M1y Ayr o Aun
Aoy = /121:3’2 /122:3’2 /IZI:,yZ
AniYn  An2Yn v AnYn

[0120] In some embodiments, a causality adjacency matrix (C) may be a M X M binary matrix,
if C;j is 1, it means that y; causes y;; zero otherwise. Its effect on the code is to filter out
columns of the library of functions A; (the index refers to the M different libraries used to each
variable y;). Then, if the £-th function of the library is an explicit function of y;, i.e., if h, =
hg(yj); and C;; = 0, then h, is removed from 4;.

[0121] To solve the equation &¢; = 0, the sequentially thresholding least squares (STLSq)
algorithm may be used. The method relies on transforming the problem to a convex problem, by

removing one of the columns of the matrix & and rearranging the problem:
— 7\ 2(J)
0; = 0;(4, Y, V)¢,
where 6; is the j-th column of the matrix Q(Ai, Y, YL), and 0; corresponds to & with the j-th
2(J)

column removed. ¢;°” is the sparsest vector of coefficients that solves the equation, found using
the sequentially thresholding least squares algorithm, which performs linear regressions
sequentially, removing the coefficients with values smaller than a given pre-established threshold

B.

[0122] In conventional methods, a problem arises of having to iterate over all elements of the
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library of functions and apply the STLSq to all of them. However, depending on the size of the
library of functions, the number of different columns can be so large as to increase the
computation time to prohibitive limits. In order to overcome this problem, embodiments may
operate to associate to each column a probability p; that the corresponding term belongs to the
true model. This probability can be initialized with an arbitrary prior, and updated as that given

term is selected on successive iterations over different 6;. With this information, instead of

navigating linearly through the columns of @, one can then go through them in an order of
decreasing probability. By implementing a stopping criterion, one can early stop the execution
once a convergence metric is satisfied.

[0123] In various embodiments, the output of a dynamic system learner may be or may include a
set of coefficients given a library of functions. It is possible to generalize these coefficients and
build an object that represents a dynamical system model, for example, via a dynamical system
model process or algorithm. For example, in some embodiments, given multiple input data due
to different realization/observations of the system, where Np stands for the number of different
realizations of the input. A dynamical system learner may output different models, given
different inputs. Assuming N,, is the number of different outputted models, the outputted models
may be added to a collection of models, which in some embodiments, may be a structure in the
code designed to organize the models. Mathematically, the collection of models may be or may
include a set of models, where, with y; representing one of the N,,, different models added to the
collection, then M = {1, iy, ..., Uy, }.

[0124] FIG. 14 illustrates an example of a dynamical system model process in accordance with
the present disclosure. In various embodiments, process 1400 may correspond with model
collections step 804 of FIG. 8.

[0125] In some embodiments, process 1400 may include accessing or building a dynamical
system learner 1401. In various embodiments, dynamical system learner 1401 may operate to
generate a general dynamical system model, given a library of functions, and which can then be
fitted to any new data. Dynamical system learner 1401 may receive a set of different realizations
1405, for example, of time series data. A collection of models 1410 may be built from the set of
different realizations 1405. In various embodiments, dynamical system learner 1401 may

operate to estimate each model parameter for any new data set presented to the model. From
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model collection 1410, the probability that a given term from the input library of functions is
present in the collection may be estimated. For instance, given multiple different models being
added to the collection, obtained from different realizations of the system, process 1400 may
estimate the probability of a particular term being in any model included in the collection. In
various embodiments, process 1400 may also operate to infer a causal diagram from the causal
relationships between the variables extracted from the models in collection 1410. In exemplary
embodiments, model collection 1410 may be used as a database of models, for example, for
complex systems.

[0126] Various model or model discovery processes may be used according to various
embodiments. A non-limiting example may include a Michaelis-Menten system. In various

embodiments, a Michaelis-Menten system may be represented as follows:

VinaxX

X =)™ kp+x’

where j, = 0.6, V.« = 1.0, and k,,, = 0.3.

[0127] In its rational form, the Michaelis-Menten equation can be rewritten as:

. _ 0.18-0.40x

0.30+x
which, given a library of functions made of second order polynomials for both the numerator and

denominator terms, the data-frame representation outputted by a dynamical system learner may

be:

xdot0

1 xdot 0.30
x xdot 1.00
x"2 xdot 0.00
1 -0.18

X 0.40
X2 -0.00

[0128] In some embodiments, for example, in a code or instructions form, a dynamical system
model object may be a tuple p = (A, E), where A is a library of functions, and E is a vector of

Boolean values representing which terms in the provided library are present in the current model

1. Using the Michaelis-Menten system as an example, its dynamical system model
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representation may be:

1x True

XX True

| |x?%]| |False
HMichaelis—Menten — 1| True
X True

x? False

Where the terms of the library of functions A that multiply x (the first three rows in the example
above) correspond to the denominator terms in the actual model represented mathematically in
the previous paragraph.

[0129] In various embodiments, when instantiating a new dynamical system model, arguments
may be passed, for instance, as a data-frame with actual coefficient values. In some
embodiments, any coefficient with an absolute value smaller than the machine epsilon (e.g., ~
1071%) may be considered zero; the input data-frame may be simplified. For example, the input
data-frame may be simplified using a (Python) sympy.cancel function, which may operate to
cancel common factors in a rational function f; and/or for M-dimensional systems, there are M
different vectors f3;, each one representing the selected models for each variable i. Because the
dynamical system model does not store any information regarding the value of the coefficients,

two models may be considered equal as long as they have the same terms from the library of
functions, i.e., if their ﬁ and their function library A are the same.

[0130] Parameter estimation may be performed according to various embodiments. For example,
given a data set composed of simultaneous observations of the variable y and its derivatives 3.7,
the vector of coefficients & = & (37, 3;/; /1) may be obtained given the model u(/l, ﬁ) The

regression operator R is such that:

0.9 ) = R(u(4.5)15.5).

[0131] The actual regression, for instance, a coefficient estimation, may be performed through
the following steps:

1. The library of functions is fitted to the data, such that a matrix is built where each column
corresponds to the application of the respective function from the library applied to the
data set. From the Michaelis-Menten example, where the library of functions used was
A=y, xy, y?y, 1, y, y?), the corresponding matrix is:
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o
AGY) =1y yy ¥*y 1 y y?|;
N

2. The appropriate terms from the library of functions are selected according to the binary

vector ﬁ . In the Michaelis-Menten case, this means that only the following columns were
selected:

, T
Aﬁ(ﬁ,ﬁ)=(1ly yly |1 }I])

3. The coefficients 5 should be such that:

which can be rewritten as:
[A[)’ (yr y)] 1 = [A[)’ (yr y)] 2,__,prartiala

where N is the number of True elements in the vector ﬁ , the notation [-]; corresponds to
the i-th column of the matrix in between brackets; and the full coefficients from the

selected model are given by: 5 =(1, )A(—gpartial), where (1,) is the one-dimensional
unity vector, and ~ is the concatenation operator;

4. Separate the first column from the rest of the matrix:

| |1
y =4 9], = (15/) X=[400], = (yly |1 T)
I

5. Perform a linear regression: fpartial = L(y, X), where fpartial are the coefficients from
the linear regression, without the intercept term.

[0132] Parameter estimation for non-linear dynamical systems is a complicated problem to
which different approaches have been attempted. For instance, as an optimization problem, in
which the parameters (and sometimes initial condition for the variables) are optimized to
minimize some objective function, an error measure of some kind, such as an information
criterion or likelihood. However, due to its usual high dimensionality, non-linearity and data
quality, this problem is usually ill-posed and does not have a simple method that solves it. For
that reason, different methods can be used to estimate the parameters in the vector of coefficients

¢. For example, more generally, the problem of parameter estimation can be stated as:
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&= mgne(y, Y,f, ),
where € is the objective function. It could be the Mean Square Error, or Bayesian Information

Criterion, among others.

[0133] In various embodiments, the collection of models may not keep repeated models, i.e., if

two distinct sets of input data generate the same model (have the same vector ﬁ), the respective
dynamical system model will be added only once to the model collection. However, the
information that this particular model was identified twice is not lost by not adding the model

two times to the collection. Instead, this information may be stored on the vector of probabilities

7. The vector 7 has the same dimension as ﬁ, and its i-th element 7; is the probability that the
corresponding i-th term from the library of functions was present in one model selected at the
many realizations from the input data used to generate the model collection.

[0134] In some embodiments, the calculation of the probability vector 7 may be carried out as
follows:

1. The model collection is initialized, internally it keeps a vector ¥ that keeps a counter for
each term of the library of functions; and a variable n that counts how many models were
added to the collection. Both are initialized with zero;

2. When a new model y; is added to the collection:

a) Increase the value of n by one.

b) Increase the value of k; (the i-th component of K) by one, if the correspondig term
in y; 1s different from zero.

c) Ifthe model had already been added to the collection, do nothing; otherwise, add
the model to the collection and increase the value of N,,, by one, where N, is the
number of distinct models in the collection;

3. At the end, the probability vector is approximated as 7 = K/n.

[0135] In one example, using a Michaelis-Menten process, if the following models were added to
the collection (only representing the binary vector ﬁ of each model): y; = (1,0,0,1,1,1)7; p, =
(1,1,0,1,1,0)7; and 3 = (1,1,0,1,1,0)7. Then the probabilistic model in this case would be a vector
given by: 7 = (1,2/3,0,1,1,1/3)7.

[0136] For each model in the collection M, it is possible to determine a causal diagram (for
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instance, a confidence matrix). Given a model for a M-dimensional problem u = {4, 5;}, where
i =1,..,M,y; causes y; if any non-zero element of f; is associated to a term of the library of
functions A that contains y;. For example, it is possible to write an equation in which y; =

f (yj). If that is true, then the corresponding term of the confidence matrix Cj; is 1, otherwise it
is zero.

[0137] The causal diagram for the collection of models may be extracted simply by averaging
the confidence matrices from all the models that belong to the collection. Consequently, the
collection confidence matrix is no longer a binary matrix but a matrix of probabilities, in which
the value of the ij element corresponds to the probability that the causal link from y; to y; exists
in the collection of models.

[0138] In some embodiments, a CKD/ESRD condition analysis process, such as a vascular
calcification analysis processes (for instance, process 800 of FIG. 8), may include a model
ranking step or process (such as model ranking 805 of FIG. 8). In various embodiments, a model
ranking process may operate, given a model collection M and an input data set {V;}, to rank,
score, or otherwise provide an indication of one or more models based on the data. In one non-
limiting example, models with a smaller score (or larger, depending on the scoring system) may
be better at describing the dynamics observed in the input data set. In this way, it is possible to
rank the models in M according to their score value.

[0139] FIG. 15 illustrates an exemplary model ranking process according to the present
disclosure. A shown in FIG. 15, a model ranking process may include ranking 1520 a collection
of models 1505 according to various ranking criteria to determine a score for one or more of the
models in collection 1505. The scored models may be ranked 1510 according to the score. In
some embodiments, the ranking criteria may be or may include the ability to fit new input data
1515.

[0140] In various embodiments, the models in a model collection may be ranked according to
the goodness of fit to any new input data. This model ranking may allow for determining best
models for subpopulations of the input data set. For example, given the model collection, the
models could be ranked separately for patients with and without diabetes. Use the model
collection to build a causal diagram based on the occurrence of specific terms in the best ranked

model.
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[0141] The model score may be determined using various processes. In one non-limiting
example, a model score may be determined using a process or based on a process described in
Pfister et al., “Learning stable and predictive structures in kinetic systems,” Proceedings of the
National Academy of Sciences, 116 (51), pp. 25405-25411(2019) (“Pfister process”), which is
incorporated by reference as if fully set forth in the present disclosure. For example, let

RSS(7,¥) be the residual sum of squares between the approximate function 9 and the noisy data
set y; and let 3;/# = u(y), be the value of the derivative calculated by the model x with

parameters defined from the data. Then the model score TM is given by:

. sy _ RSS(S[F19,],7) — RSS(S[71, )

T™™(; 3, 5) = =
RSS(SIylLy)

where S[:] corresponds to an smoothing spline approximation, and S[- | -] corresponds to a

derivative constrained smoothing spline.

[0142] The model scores may be implemented according to various embodiments. For example,
non-limiting implementations may include one or more of’ the current score does not measure
how well the current model fits to the data, but how well the current model fits the smoothing
spline approximation of the data; the constrained smoothing spline is a numerically expensive
calculation, since it requires a constrained optimization for the regularization parameter A, which
is significantly slower than a unconstrained optimization required for a regular smoothing spline;
the score requires knowledge both of the data and of its derivative, the derivative is necessary to
do the regression of the models coefficients; or the current score does not favor sparse models
over non-sparse ones, which could lead to overfitting.

[0143] In addition, various alternative scores may be used according to exemplary embodiments.
For instance, it is possible to use classical model selection criteria, as Bayesian Information
Criterion (BIC) or Akaike information criterion (AICc) as long, for example, there is available a

good approximation for the data derivative. For example, let I’ (y, Vpredicteds k) be any arbitrary

model selection criterion, where k is the number of parameters selected in the model M. Then

the proposed new score may be determined as follows:

o(ui3.3) = 1 (SEL 5 1A,
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where S'[%] corresponds to the first derivative of the spline approximation of the noisy data X;
D?M is the derivative calculated by the model; and || ﬁ || o is the £, norm of the binary vector ﬁ,

which is simply the number of selected elements from M .

[0144] Using these standard criteria for model selection is advantageous for not relying on the
calculation of a constrained smoothing spline. Also, they favor sparse models, and consequently
reduces the chance of overfitting. To improve the ability of the method to identify the correct
model, it is possible to limit the value of the sparsity degree (SD) such that only models with its
SD value smaller than a pre-defined threshold will be included in the list of models to rank. This
threshold must be imposed by the user and has the only objective of excluding from the ranking
any model with large sparsity degrees, which tend to overfit to the training data and are less
representative of the system dynamics and less generalizable.

[0145] Dynamical system models and associated methods may be used in various applications
according to some embodiments. Non-limiting example applications may include: determining a
model that is representative of the system dynamics and can be interpreted physiologically,
providing insight to the researcher as to the possible mechanisms underlying the observed
interactions between the system observables; building a model that allows forecasts of future
values of the system observables, which can then be used to virtually test the effect of different
interventions; incorporating the algorithm in a model predictive control loop, in which case the
model is determined from data, specifically for each patient, allowing a more precise prediction
and accurate intervention; and/or extracting causal information from time series data.

[0146] FIG. 16 illustrates an exemplary CKD/ESRD condition analysis processes according to a
second embodiment in accordance with the present disclosure. As shown in FIG. 16, a
CKD/ESRD condition analysis process may be or may include a dynamic system modeler
process 1600 configured for model selection and causal analysis.

[0147] Dynamical system modeling algorithms may use a library of test functions onto which
they perform a sparsity promoting regression with the data. In some embodiments, a function
library 1605 may be an input of process 1600. In various embodiments, function library 1605
may be or may include a collection of Ny functions f;: RY — R, represented as A =

(fl, f2) s fNF). As an example, if function library 1605 corresponds to all polynomial

combinations up to the second-order of two state vectors (x; and x,), then A =
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(1, x4, X, x12» xzzr X1X7).

[0148] A function library A may be an operator on the data, given a matrix of data: X =

(x1 x, -+ xy) where each row represents an observation of the state variables at a given time.
Then the operator 4 = (f1, f2, ..., fNF) applied on X and x,, denoted as A(%,, X) =

(AX)%, (0%, - fi(X) [f(X)), is a matrix where each column corresponds to the
application of a different function library 1605 on the data and each row corresponds to a
different time.

[0149] Patient data 1606 for process 1600 may be heterogeneous and noisy, for example, such
that some variables have missing values (represented by NA) and the values that are missing are
not in the same times for all variables. The data matrix ¥ may have each row of the matrix

referring to a different time, and each column referring to a different variable:

yi(t) v2.(t) ys(t) - yn(ty)
NA  y,(t) NA - yu(ty)

Y = N-A J’Z('t3) }’3('753) YN(‘t3) :
J’1('tL) J’Z('tL) J’3('tL) yNttL)

[0150] Model selection 1610 may receive as input function library 1605 (e.g., the library of
functions A) and patient data 1606 from all the patients in each population (each patient data
denoted Y) and builds a model collection 1607 (e.g., collection of models M = p,, u,, ....).
Each model may include or may be a Boolean matrix where each column refers to different state
variables and each row informs whether the corresponding element from function library 1605
was selected.
[0151] In one non-limiting example, function library 1605, with second-order polynomial for
two variables, may be selected:

X1 = $11%1 + $12X1 %7

% = E21%+E55%5
, = =——=—===2
Eo3+8oaxy

where ¢;; are coefficients. Then, the model to be incorporated into model collection M would
be:
Library A x; x;
x1 T T
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xf
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x5

X1%; T F.
For any given data matrix Y with N state variables, and its derivatives given by Y and a given
function library A, the output model p is given by:

p=r(y,v;4),

where I is the model selection operator.
[0152] The operator I requires its input data Y and its derivatives Y to be complete, i.e., there
cannot be missing values in any of the times passed to the operator. In order to overcome this
difficulty, an iterative use of smoothing splines may be used, defined as: Smoothing splines: for

each noisy variable y;(t) with i = 1, ..., N, the smoothing spline is given by:

Slyi] = argmin B o(yi(c) - y(t)) + AL §(1)? dx,
YEH ¢

where A is a regularization parameter, H is the space of all smooth functions for which values
and the first two derivatives are bounded in absolute value by C (for instance, according to the
Pfister process). For Smoothing splines with derivative constraints: a similar procedure can be
done, however with a constraint imposed in the derivatives y,:
Syily] = Syl st y(t,) = y.(Le).

With these two operators, the model selection algorithm may operate as follows (the indexes
represent the algorithm iteration):

1. Calculate spline on noisy data: X, = S[Y];

2. Calculate the first model estimate u® = I'(X°, X%; A);

37



WO 2022/256381 PCT/US2022/031734

Calculate derivative at data points with the obtained model: ¥; = u;_,(¥);

> »

Calculate constrained smoothing spline X; = S [Y|Yl],

5. Update the model estimate y; = I'(X;, X;; 4);

6. Repeat steps 3 to 5 until a convergence criterion is satisfied;

7. Add y; to the model collection M.
[0153] A model selection operator I' may follow a procedure in which, given the data X, its
derivative X, and the appropriate function library A, to find the best model is to solve the

following constrained optimization problem for each column %; of X:

minll ACX, %) — ACX, %) E ll,+ BII £ lly st. diagE =0,

where the selected model coefficients correspond to the columns of = with a sparse
representation that allows accurate prediction of x; given X.
[0154] Solving this minimization problem is very difficult due to its non-convexity. However, it
can be rewritten as a set of 2 X N convex problems:

(X, %) = A(X, %;|4)¢;,
where 4; is the j-th column of A; and /1(- |/1j) is the library of functions without its j-th column.
Then, we solve this problem by applying the sequential threshold least square algorithm to find a
sparse solution §;.
[0155] The choice of which set of coefficients ¢; is the actual solution to the system may be
made by one of many different model selection criteria, including, without limitation, AIC, BIC,
or derivates thereof. In principle, this optimization problem must be solved 2 X N times, one
for each element of the function library. However, it is possible to build a probability that a
given element j of the function library participates in the system dynamics. This probability is
updated at every new ¢ calculated, allowing the determination of some early stop criteria.
[0156] For performance gains, some embodiments may operate to reduce the number of times
model selection 1610 is called for a given population. It does not need to be calculated for all the
patients in the population and it also does not need to run every time the algorithm is executed.
Model selection 1610 may be run as many times as necessary to build a comprehensive model
collection 1607 for the given problem. With model collection 1607 (or M), model ranking 1615

may operate to rank the models according to their prediction power in a particular population of
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patients.
[0157] For a given model y; in model collection 1607, the actual coefficient values of the model
for each patient (or patient(s) of interest) of the population may be calculated. For example, with
Ay, the library of functions A reduced by g, i.e., selecting only the columns from A that are
present in y;, then A, is the matrix built with only these selected columns. For example, the
reduced library for x; would be A,(X, %) = (X x;  x1x3).
[0158] In some embodiments, the process or algorithm to find the model coefficients may
include:

1. Calculating spline on noisy data X, = S[Y];

2

2. Calculating the first estimate of model coefficients &, by:m{inll/l# (Xo, Xo)fllz;

3. Calculating derivative at data points with the model: ¥; = fulY, &1);
4. Calculating constrained smoothing spline X; = S [Y|Yl],

5. Calculating a new estimate of the coefficients: mgin||/1# (X;, Xi)f||2;

6. Repeat steps 3 through 5 until a convergence criterion is satisfied.

[0159] Each model in model collection 1607 may be scored according to the following equation,

where the sum is through all the N,, patients in the population:

1 Ny RSS(S[Y £, (Y, &)])-Rss(x)
T =25 “RSS(XO) :

where RSS is the residual sum of squares, f#(Y, &;) is the derivative calculated by the model u
with the coefficients ¢; calculated for patient i, and X; is the unconstrained smoothing spline of
the data. In some embodiments, the model with the lowest score is the model that best represents
the population, from all the models in the model collection, as it shows a more stable fit across
different patients.

[0160] The model selection process or algorithm may operate to score the variables as they
might be present in some models but not in others. A process the same or similar to the Pfister
process may be used to rank the variables according to their relevance in the best scoring models.
For instance, given the K top-ranked models, the following score may be assigned to the j-th
variable:

s; = Fraction of the top K models that depend on x;.
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In various embodiments, the relevance of a given variable may be interpreted as a robust

measure of causality, i.e., if a model for x; depends on x;, then we can say that x; causes x;, in a
sense that changes in x; lead to changes in x;. The score s; measures the fraction of the top-

scoring models that captured this causal relation.

EXPERIMENT I - DYNAMICAL SYSTEM LEARNER BENCHMARK RESULTS
[0161] A series of tests made with data generated by known models was performed for the
dynamical system learner to show the performance of the dynamical system learner under
different conditions. In order to assess the quality of the system output, the following series of
benchmark metrics were calculated under different conditions of the data:
*  True Positive Rate (TPR) - The proportion of True terms that were correctly selected,
larger is better;
«  False discovery rate (FDR) - The proportion of selected terms that were not correctly
selected, smaller is better;
*  Sparsity degree (SD) - Proportion of selected terms, smaller (but not zero) is better;
+  Causal Stability (CS) - Proportion of different terms in the confidence matrix, smaller is
better.
+  RSS Residual sum of squares, normalized to the size of the array. The RSS is calculated
with the original data X,
*  RSSnoise (nRSS) RSS calculated with the noise data with missing values. The missing
values are linearly interpolated when calculating the value of the derivative with the

model.

[0162] The data used in this benchmark was generated according to the following steps: (1)
Generate data X and X from n; initial conditions; (2) Add Gaussian Noise: X = X +
N(u=0,0 = pAX), where AX is the amplitude of the input time series, and p is a factor
representing the value of the added noise standard deviation in terms of the percentage of the
time series amplitude. V' (, o) is a Gaussian noise with mean u and variance o2; (3) Define a
library of functions: A; (4) Calculate the model ¢ with dynamical system learner (or
DynSysLearner) u = I’ (X X, A; ,8), where £ is the regularization parameter, and I” is the model

selection opperator, in other words, it is the mathematical representation of the dynamical system
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learner method; (5) Calculate benchmark metrics as a function of the regularization parameter
L=L(p).
Every model discovered by the DynSysLearner is saved to a collection of models. These saved

models can then be ranked according to the value of a model score (e.g., via the Pfister process),

rss(p9 . )-Rss(¥®
and described by the following equation: T(M) = % i (yconsrzga;r(?gi))) G ),

where n corresponds to the number of different observations of a given system, i.e., different
time series that represent the same system (e.g., data from different patients, or different
observations of the same experimental conditions for a given experiment). RSS is the residual
sum of squares V is a smoothing spline approximation of the time series calculated from the
noisy data, and V.onstrained 1S the smoothing spline approximation of the data constrained to the
values of derivatives calculated by the discovered model in the model collection.

[0163] This score is then calculated for all the models in the model collection, and the model
with the smallest score is considered the one with the most stable fit. Considering that each
model is saved in the model collection only with the information about which terms of the library
of functions are present in the model, a linear regression may be calculated on the data to
estimate the values of the coefficients, for each different input data set.

[0164] A set of benchmarks were made using a different score to rank the models: the Bayesian
Information Criterion: BIC(M; x, x) = BIC(S 'O %o, k), where S'[x] is the derivative of the
smoothing spline approximation to the data, X, is the derivative calculated from the model; and
k is the number of non zero coefficients from the selected model. The appropriate value of the
regularization parameter for the smoothing spline is calculated using a k-fold cross-validation.
[0165] In this Experiment I, benchmark results were determined for four different models: (i)
The Michaelis-Menten model; (7i) the Selkov system; (7ii) the Lorenz system; and (7v) a model

describing Osteoblast-Osteoclast activity (or bone remodeling system).
[0166] The cquation defining the Michaelis-Menten model is: x = j, — Zm%, where j, =
m
0.6, Vypax = 1.0,k = 0.3. An appropriate integration time may be At = 5a. u.t., where a.u.z.
stands for arbitrary units of time. The determination of the integration time was made as to

ensure that the time series passed to the algorithm has not yet reached a steady state.

[0167] In order to determine the most appropriate value of the regularization parameter, the
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system was benchmarked without noise and without any pre-processing for different values of
the STLSQ threshold £, and without optimizing the value of  for each run. The following

simulation parameters were used:

Parameter Value
Number of points for each time 100
series

Time of integration for each time 5
series

Number of different initial 25
conditions

Percentage of amplitude of added 0
noise (p)

[0168] As expected, if £ is too small the method fails to determine the correct model. However,
as f§ increases, all the appropriate metrics increase accordingly suggesting that the
DynSysLearner successfully found the correct equation. However, if the value of £ is increased
beyond a given threshold, then real terms are not selected, which deteriorates the quality of the
benchmark metrics. The chosen value for f was 0.75.
[0169] For systems that fall too rapidly to a steady state (fixed point), only the short lived
transient dynamics is relevant for model discovery. In the case that the underlying system is too
complex, it may be necessary to simulate more than one random initial condition to increase the
information on the system dynamics. Even for a system as complex as the Michaelis-Menten
model, only one initial condition (with 100 data points) may be enough to obtain the correct
model via DynSysLearner.
[0170] Benchmarks were determined for the model discovery method when the input time series
is more realistic and has noise. In order to mimic such behavior, Gaussian noise was added to the
time series and its derivative:

X' =X+6(0,pamp(X))

X =X+g (O,pamp(X))’

where G(u, 0) is a Gaussian distribution with mean y and standard deviation ¢, and amp(-) is
the amplitude operator. In this way p represents the ratio between the added noise standard

deviation and the time series amplitude, and it is referred to as the percentage of amplitude. In
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the benchmarks, only noise levels as large as 1073 start to disrupt the quality of the benchmark,
suggesting that the method is robust against noise.

[0171] Regarding the presence of noise for models with rational form and the value of the
regularization parameter, because both numerator and denominator can be re-scaled by a
common factor, the value of the coefficients are not fixed. That means that the value of the
regularization parameter may greatly affect the performance of the method.

[0172] The determination of the regularization parameter may be useful for the success of the
dynamical system learner process, in which case it would be desirable to have a non-arbitrary
way of determining it. For that reason, the value of the regularization parameter can be
optimized to minimize one of three implemented metrics for model selection: Cross Validation;
Bayesian Information criterion (BIC); or Akaike Information criterion (AIC)

[0173] For no-preprocessing benchmarks, a total of 2 distinct models were selected from all the
realizations with different parameters, and the true model is in the collection of models. When
ranked over a data set with 5 realizations of the system (5 initial conditions), with each
realization with 100 points, without added noise, the true model is the model with the lowest
rank in the collection, with rank value equal to 1.78518147 x 10°1.

[0174] Using a collection of models with 7 different models (generated from noisy data set), one
of them being the true model, using the following parameters when generating the noisy data to

rank the models:

Parameter Value
Number of points per time series 100
Time of integration 5
Number of different initial conditions 10

Percentage of amplitude of added noise (p)  0.01
Rate of missing values in the input data 0.25

Under these conditions and with 25% of missing values, using Bayesian Information Criterion to
rank the models, the method is capable of correctly identifying the true model.
[0175] The equation defining the Selkov model is:

X =—x+ay+xly

y =b—ay—x2y
where: a = 0.1 and b = 0.41. An appropriate integration time may be At = 25a.u.t., where

2
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a.u.t. stands for arbitrary units of time.

[0176] Benchmark simulations were determined where no noise is added to the time series. In
order to determine the most appropriate value of the regularization parameter, the system was
benchmarked without noise and without any pre-processing for different values of the STLSQ

threshold . The following simulation parameters were used:

Parameter Value
Number of points for each 100
time series

Time of integration for each 25
time series

Number of different initial 25
conditions

Percentage of amplitude of 0
added noise (p)

The results are very robust for small values of the regularization parameter, only when 8
increases to values with magnitude comparable to that of the real coefficients of the system (f ~
0.4) is that the method begins to fail. The value of § chosen for the subsequent benchmarks was
B = 0.05 . In addition, the values of the benchmark metrics are insensitive to the number of
initial conditions.

[0177] Gaussian noise was added to the time series for the Selkov model using the same
prescription already explained in the respective section for the Michaelis-Menten model. The
noiseless case are robust to noise levels as large as ~ 10™* of the input time series amplitude.
[0178] The optimization conditions used for the Selkov system are similar to the ones used for
the Michaelis-Menten system, the difference here is that having two equations, when the

optimize parameter from the fit method from the DynSysLearnerND object is set to 'all’, it means

that all the regularization parameters (ﬁ = (By, B1)T) are going to be optimized separately,
consequentely the value of the regularization parameter for each equation might be different.
[0179] For results with BIC, a total of 21 distinct models were identified and added to the
collection of models. The true model belongs to the final collection of models. The following

parameters were used when generating the data to rank the model:

Parameter Value
Number of points per time series 100
Time of integration 25
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Number of different initial conditions 5
Percentage of amplitude of added noise (p)  0.01

Rate of missing values in the input data 0.25
In this condition, the BIC was able to correctly rank the true model. The true model was also

correctly ranked when the noise standard deviation was 10% of the time series amplitude and
there was 50% missing values, in which case a total of 10 different initial conditions were used.
[0180] The Lorenz system is a system used in the study of non-linear dynamics. The equations

defining it are:

x =0y —x)
y =x(p—2)-y,
z =xy—pz

where the values of the coefficients are given by: p = 28, 0 = 10, § = 8/3.

[0181] The Lorenz system is very stable when subjected to the DynSysLearner, as the true
positive rate is 1 and the false discovery rate is zero for a very large range of values of the
regularization parameter. As the performance of the method seems to be indifferent to the value
of B, within the interval of values calculated in this study. The value f = 0.05 was kept fixed in
all the subsequent benchmarks. Regarding the number of initial conditions, the results for the
Lorenz system is consistent to the results observed previously for the other systems: the
performance of the DynSysLearner seems to be indifferent to the number of initial conditions
used, as long as the number of points sampled to the algorithm is large enough.

[0182] The algorithm is robust against the addition of noise for noise standard deviations as large
as 1073 of the input time series amplitude. By increasing the amplitude of the added noise, first
the number of falsely discovered terms increases and it is only at p ~ 1072 that the true positive
rate starts to decrease.

[0183] When optimizing the regularization parameter there are two different strategies
implemented: (1) if the value of the optimize parameter is set to 'all', then the regularization
parameter is going to be optimized separately for each equation in the model; (ii) if the value of
optimize is set to 'first', then the regularization parameter of the first equation is optimized and its
value is used for the subsequent equations. Collection of models

[0184] There were 27 different models saved in the model collection for the Lorenz system. The
true model is present in this model collection. When ranked with a noiseless data set, the model

with the lowest score is not the true model. Under these conditions the model with the lowest
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rank corresponds to the following set of equations:

X = +ax +azy+auyz
y =P+ Bx+ By +Bayz,
zZ =Y

where a, ff and y are constants. Increasing the amplitude of the noise in the input data to 1% of
the input time series amplitude, the model with the lowest rank corresponds to the following set
of equations:

X =ap T ax + a3y + auxz +asyz
Yy =P+ Box + By + Baxz
Z =Y1+Y2Z +Vaxy +Vay?

where a, § and y are constants.

[0185] For BIC, the following are the parameters used when ranking the models for the Lorenz

system. There were 38 models in the model collection.

Parameter Value
Number of points per time series 100
Time of integration 100
Number of different initial conditions 5

Percentage of amplitude of added noise (p) 0.0
Rate of missing values in the input data 0.0

[0186] In this noiseless case, the true model is correctly identified as the highest ranked model.
When PERCENTAGE OF AMPLITUDE = 0.01, then the highest ranked model is no longer
the correct model. However, reducing the time of integration to 10 allows the system to
correctly rank the true model. In this case, due to the higher frequencies present in the Lorenz
system time series, the smoothing spline step may have difficulties converging to a good
approximation of the system, jeopardizing the quality of the scoring of the models. Using the
smaller time spam leads to less oscillations in the observed time series, allowing for better
convergence of the smoothing spline. In this condition, even setting the rate of missing values in
the input data to 25% allows the correct identification of the true model.

[0187] Given the following parameters:

Parameter Value
Number of points per time series 100
Time of integration 10
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Number of different initial conditions 50
Percentage of amplitude of added noise (p) 0.1

Rate of missing values in the input data 0.5
the true model was correctly identified with the highest rank. Note that it was necessary to

increase the number of initial conditions, in other words, it was necessary to increase the amount
of data for the true equation to be correctly ranked, given the high noise amplitude and missing
value rate.

[0188] A model describing Osteoblast-Osteoclast activity, the same or similar to the model
described in Lemaire et al., “Modeling the interactions between osteoblast and osteoclast
activities in bone remodeling,” Journal of Theoretical Biology, 229(3), pp. 293-309 (2004), was

performed. The following is a description of the model:

C+ f,C
Te=Trrces
Dg = fodg
P = Ip/kp
PO :Sp/kp
PS = k6/k5

p = (P + P%) /(P + P5)

ki KPnpB Iy
T[L = P ) <1 —>
Kog laK |k <K0R+1> &
ky = kyko\ mp 0
The following are the equations for the model:
DBR
R - DRT[C -
c
B
=———kgB
¢ B

The values used for the parameters are:

Parameter Value

I 0
I 0
Ip 0
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c* 5e-3
Dy, 0.7
dg 0.7
D, 2.1e-3
Dy Te-4
fo 0.05
K 10
k, le-2
k, 10
ks 5.8e-4
ky 1.7e-2
ks 0.02
ke 3
kg 0.189
KP 3e6
ko 0.35
KE 2e5
kp 86
18 le3
Sp 250

[0189] When not explicitly mentioned, the following parameters were used in the simulations:

Parameter Value
Number of points per time series 100
Time of integration 20
Number of different initial conditions 25
OPTIMIZE ‘none’

Percentage of amplitude of added noise (p) 0.0
Regularization parameter (/) 0.8

Only a few additional initial conditions is sufficient to help the algorithm to find the right model.

[0190] Given an added noise with standard deviation corresponding to 1078 and 10™* of the
time series amplitude, a term by term comparison of the differences between the calculated and
the true model is provided. To make the comparison easier, both the calculated and true model
were normalized in their data frame representation, i.e., the following (Python) operation was
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performed:

calculated eqs == sympyfy model(
learner.coefficients / learner.coefficients. max())
true_eqs = sympyfy model(
true_model / true_model. max()),

where the sympyfy model uses the sympy.cancel to simplify the model in its rational function
representation.

[0191] The results presented in the following sections are organized in tables in which each row
refers to a different term from the library of functions. The first column represents the values of
the coefficients for of the true equation; the second column are the coefficients of the terms that
are missing in the model selected; and the in the third column are the coefficients of the terms
that were selected but that are not present in the true equation of the system.

[0192] Equation for R, p = 1078:

True Missing Extra
1 xdot 1.25e06 0 0
R xdot 0 0 0
B xdot 0 0 0
C xdot 0.00525 0 0
R"2 xdot O 0 0
RBxdot O 0 0
RCxdot 0 0 0
B2 xdot O 0 0
BCxdot O 0 0
C"2 xdot 1 0 0
1 -4.375e-11 -4.375e-11 0
R 8.75e07 0 0
B 0 0 0
C -3.5e07 0 0
R"2 0 0 0
RB 0 0 0
RC 0.00035 0 0
B"2 0 0 0
BC 0 0 0
Ccn2 0.0007 0 0
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R"™3 0 0 0
R"2 B 0 0 0
R2C 0 0 0
R B2 0 0 0
RBC 0 0 0
R C”2 0.035 0 0
B"3 0 0 0
B2 C 0 0 0
B C*2 0 0 0
Cn3 0 0 0

For this small noise amplitude, the result for R is satisfactory, since there are no extra terms and
the only missing term has a very small amplitude.

[0193] Equation for B, p = 1078:

True Missing  Extra
1 xdot 0.00025 O 0
R xdot 0 0 0
B xdot 0 0 0
C xdot 1 0 0
R"2 xdot O 0 0
RBxdot O 0 0
RCxdot 0 0 0
B2 xdot O 0 0
BCxdot O 0 0
C"2 xdot O 0 37120.3
1 0 0 0
R 0.000175 0 0
B 4.725e05 4.725¢05 0
C 0 0 0
R"2 0 0 0
RB 0 0 0
RC 0.035 0 0
B"2 0 0 0
BC 0.189 0 0
Ccn2 0 0 0
R"3 0 0 0

50



WO 2022/256381 PCT/US2022/031734

R"2 B 0 0 0
R2C 0 0 0
R B2 0 0 0
RBC 0 0 0
R C”2 0 0 -1299.21
B"3 0 0 0
B2 C 0 0 0
B C*2 0 0 7015.74
Cn3 0 0 0

In this case, the extra terms all have the C? term in common, meaning that they could be
simplified and lead only to terms proportional to R and B in the function numerator, which are
terms present in the original equation.

[0194] Equation for C, p = 1078

True Missing Extra

1 xdot 0.00670588 0 0

R xdot 147.429 0 0

B xdot 0 0 0.356341
C xdot 134118 0 0

R"2 xdot O 0 032171
RBxdot O 0 0.146277
R Cxdot 294857 0 0

B2 xdot O 0 0.148223
BCxdot O 0 1.36504
C"2xdot O 0 -3.27192
1 0 0 0

R 0 0 0

B 0.0208276 0 0

C 0.000234706 0.000234706 O

R"2 0 0 0

RB 0 0 0

RC 5.16 0 0

B"2 0 0 0

BC -4.16553 0 0

Ccn2 0.938824 0 0

R"3 0 0 0
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R"2 B 0 0 0
R2C 0 0 0.222141
R B2 0 0 0
RBC 0 0 0.100044
R C”2 20640 0 0
B"3 0 0 0
B2 C 0 0 0.103737
B C*2 0 0 0.964054
Cn3 0 0 -2.27439

The solution for € presents a large number of extra terms, suggesting that the method had
difficulties finding a sparse solution. This is probably explained by the fact that the dynamics for
C rapidly converges to a steady state, conveying not enough information on the system
dynamics.

[0195] Equation for R, p = 107*

True Missing Extra

1 xdot 1.25e06 0 0

R xdot 0 0 0.360919
B xdot 0 0 -1.84893
C xdot 0.00525 0 0

R"2 xdot O 0 0.131712
RBxdot O 0 0.539312
RCxdot 0 0 -711.453
B2 xdot O 0 2.80775
BCxdot O 0 -688.009
C"2 xdot 1 0 0

1 -4.375e-11 -4.375e-11 O

R 8.75e07 0 0

B 0 0 0

C -3.5e07 0 0

R"2 0 0 0.208772
RB 0 0 0.258294
RC 0.00035 0 0

B2 0 0 0.021849
BC 0 0 0.589835
Ccn2 0.0007 0 0
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R"™3 0 0 0.0451252
R"2 B 0 0 0.0430918
R2C 0 0 -24.9532
R B2 0 0 0.106825
RBC 0 0 -24.0966
R C”2 0.035 0 0

B"3 0 0 0

B2 C 0 0 0.108237
B C*2 0 0 0.0226103
Cn3 0 0 0.1334

The increase in the noise amplitude leads the algorithm to misidentify a significant number of
extra terms, producing a non-sparse solution.

[0196] Equation for B, p = 10~*

True Missing  Extra

1 xdot 0.00025 0.00025 O

R xdot 0 0 0

B xdot 0 0 -20.3642
C xdot 1 0 0

R"2 xdot O 0 0
RBxdot O 0 7.27951
RCxdot 0 0 -967.182
B2 xdot O 0 40.6743
BCxdot O 0 2605.89
C"2 xdot O 0 8030.61
1 0 0 0

R 0.000175 0.000175 0

B 4.725¢05 4.725¢05 O

C 0 0 0

R"2 0 0 0

RB 0 0 0

RC 0.035 0 0

B"2 0 0 -3.94657
BC 0.189 0 0

Ccn2 0 0 0

R"3 0 0 0
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R"2 B
R2C
R B2
RBC
R C”2
B"3

B2 C
B C*2
Cn3

O O O O O O O O

0

O O O O O O O O

0

0
34.2654
0
-273.94
-280.977
7.77352
492.304
1517.33
0

PCT/US2022/031734

For the B equation, the same consideration is valid, the obtained solution has too many extra

terms and is non-sparse.

[0197] Equation for C, p = 107*

True Missing Extra
1 xdot 0.00670588  0.00670588 O
R xdot 147.429 147.429 0
B xdot 0 0 0
C xdot 134118 0 0
R"2 xdot O 0 0
RBxdot O 0 0
R Cxdot 294857 0 0
B2 xdot O 0 1
BCxdot O 0 -5.32225
C"2 xdot O 0 0
1 0 0 0
R 0 0 0
B 0.0208276 0.0208276 0
C 0.000234706 0.000234706 O
R"2 0 0 0
RB 0 0 0
RC 5.16 5.16 0
B"2 0 0 0
BC -4.16553 -4.16553 0
Ccn2 0.938824 0 0
R"3 0 0 0
R"2 B 0 0 0
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R2C 0 0 0
R B2 0 0 0
RBC 0 0 0
R C”2 20640 0 0
B"3 0 0 0
B2 C 0 0 0
B C*2 0 0 -2.63053
Cn3 0 0 0

As for the € equation, the problem is opposite, i.e., it is the number of missing terms that is too
large, leading to non-representative solution.

[0198] For results with BIC, the true model is in the collection of models. The collection of
models has a total of 21 distinct models. The following are the parameters used when generating

data for the model ranking:

Parameter Value
Number of points per time series 20
Time of integration 2
Number of different initial conditions 100

Percentage of amplitude of added noise (p) 0.0
Rate of missing values in the input data 0.0

[0199] Note the small value for the integration time (TIME parameter), larger values make it
harder for the model ranking to correctly rank the true model. That is mostly due to the short
lived dynamics of the C variable, which very rapidly goes to a steady state given the set of
parameters used. Under these parameters the best ranked model is not the true model, it is instead

the following model:

xdotFalse xdotTrue xdot2

1 xdot True False False
R xdot True True True
B xdot True True False
C xdot True True False
R”2 xdot False True False
R B xdot True True False
R C xdot True True True
B2 xdot True True False

55



WO 2022/256381 PCT/US2022/031734

B C xdot True True True
C"2 xdot True True True
1 False False False
R True True False
B False False False
C True False False
R"2 False False False
RB True True False
RC True True False
B2 False True False
BC True True False
cn2 True False False
R"3 False False False
R"2 B False True False
R™2 C True True False
R B"2 False True False
RBC True True False
R C"2 True True True
B"3 False True False
B2 C False True False
B C™2 False True True
C"3 False False True

[0200] The selected model is not sparse, in fact it has a sparsity degree (ratio selected terms) of
0.522. For that reason, it might be interesting to limit the search for the best model only
including models that have a sparsity degree smaller than a pre-stablished threshold. If we set
this threshold to 30%, in which case the ranking should be called:

no_preprocessing_ids, no_preprocessing ranks = model collection.rank(
all_data, max_sparsity=0.3)
best ranking model = model collection[no preprocessing ids[0]].

Setting max_sparsity to 0.3 limits the search and allows the system to correctly rank the true
model. Even if the noise amplitude and the missing value rate are increased to
PERCENTAGE OF AMPLITUDE = 0.01 and MISSING VALUE RATE = 0.25, the system

still correctly ranks the true model.

EXPERIMENT II - DYNAMICAL SYSTEM LEARNER PATIENT RESULTS
56



WO 2022/256381 PCT/US2022/031734

[0201] The dynamical system learner (or DynSysLearner) was applied to a series of real data
from patients undergoing hemodialysis. The results include data obtained from the application of
the method to individual patients, a goal was to look at specific models that were obtained and
see their performance when reproducing the input time series through numerical integration.
Results were also obtained for the application of the method to a population of patients, aiming
to obtain more robust causal information from the statistical analysis of the models obtained
from different patients.

[0202] The following variables were available for analysis:

»  prePP: pre-treatment pulse pressure (P).

*  NLR: Neutrophils-Lymphocytes ratio (pny.).

*  Calcium: Serum calcium concentration (mg/dL) (Cc,).

*  IntactPTH: Intact Parathyroid Hormone (Cpry).

*  Albumin: Serum albumin concentration (g/dL) (Cap).

*  Phosphorus: Serum phosphorus concentration (mg/dL) (Cp).

* AP Alkaline Phosphatase (Cpp).
[0203] The population included a total of 2558 patients, with average age (62 + 15) years,
average weight (84 + 24) kg, 57.6% are male, 42.2% are declared white, 40.3% are black, 68
are asian, 25 are native hawaiian/other pacific islander, and 2 are american indian or alaska
native.
[0204] When applying the method to individual patient data, the following conditions were used:

»  Using intervals of the input time series with only 1.5 yr time span.

*  The following steps were taken:

a) Pre-process the input time series with smoothing spline: - The pre-processing
regularization parameter was optimized separately for each variable. - K-fold
cross validation with mean squared error (MSE) was used to optimize the
regularization parameter. - The pulse pressure is noisier and has a higher sampling
rate, for that reason a 5-fold cross validation was used. - All the other variables
are more precise and less frequent, so a leave-one-out cross-validation strategy
was used.

b) Define the library of functions with polynomials of order 3, setting the value of

max_cross_terms for the denominator to 2:
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library.set numerator library(polynomial order=3, max cross_terms=3)
library.set_denominator library(polynomial order=3, max_cross terms=2)
3. Optimize each variable’s regularization parameter within the range [0,0.02] with
100 iterations of the optimizer.
4. Fine tune the regularization parameters by hand to increase sparsity.
[0205] Results were determined for one single randomly selected patient with AP included and
three different patients without AP.
[0206] For the results with AP, the following table summarizes the values of the regularization

parameter and the corresponding sparsity degree for each variable, obtained from the Bayesian

optimization:

Sparsity Degree Number of terms Regularization Parameter
prePP 0.048780 10 0.000267
NLR 0.034146 7 0.000050
Calcium 0.014634 3 0.000800
IntactPTH 0.058537 12 0.000300
Albumin 0.048780 10 0.000003
Phosphorus 0.063415 13 0.000060
AP 0.073171 15 0.002126

[0207] The sparsity degree corresponds to the ratio of the number of selected terms and the
length of the input library of functions. In this case, the optimizer was able to successfully find
sparse models, with the least sparse model having only 15 terms. The following table depicts the
confidence matrix extracted from the obtained model. Each column represents the causal
relations present in the model for that particular variable, e.g., if in the column for prePP the row

for NLR is True, that means that in the model prePP = f(NLR).

prePP  NLR Calcium IntactPTH Albumin Phosphorus AP

prePP True False False True True True True
NLR True True True True True True True
Calcium False True  False True True True True
IntactPTH  True False False True True True True
Albumin False True True True True True True
Phosphorus False True  False True False False False
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AP True True  False True True True True
For illustrative purposes, the following are the obtained models for each one of the variables:
e  Pulse pressure:

dP  Pp(Cpp, P, Cpry, pai)

e~ Qp(Cap, Corns P)
Pp = 0.004C% — 0.02C4pP + 0.004Cpry P — 1.0p%; — 1.0py. P + 0.05P%
Qp = —0.03C3 + 0.003C,pCpry + 0.007CpryP + 0.1P?
e  Neutrophils-Lymphocytes ratio:
d
%(CAP, Capr Coar PN, Cp) = —0.0002C,p + 0.0009C,;, + 0.0002C,, — 0.001py,

+ 0.002Cp + 0.0001

Calcium concentration:
dCeq,
dt
Intact PTH concentration:
dCpry _ Pori (Cap, Cap) Ccar Cprry Pis Cpy P)

dt Qprr(Cap, Cans Cear P P)
?PTH = _0'01CAP - 0'0009CAb - 0'003CC£1 - O'OOZCPTH

+ 1.0py; — 0.0008Cp — 0.02P
Opry = 0.003C4p + 0.005C,;, + 0.006C;, — 0.02py; + 0.004P
Albumin Concentration:
dCp Pab(Cap, PrL» P, Cap, Cpra, Cea)

dt Qap(Cyp)

P =8.0-107%C2 +9.0-10"5Cyppy, — 9.0 - 1076C4pP — 7.0 - 1075C,, Cpry
—2.0-1075C,,P +3.0-107°C,,Cpry — 4.0 - 1076C, P
—6.0-107Cprypy, + 4.0 -1075py, P

Qap = Cyp

Phosphorus Concentration:

dCp  Pp (Cap, P, Cprri, Capy Cear PL)

dt Qp(Cap, pnr Coras P)

Pp = —0.0002C%P — 0.0001C4pCpryP — 0.0002C,pP? — 0.0002C,,Chry
—6.0-1075C,,Céry + 0.0001C374py; + 0.009Cor o5 P
—0.0002CpryP% +8.0-1075P3

Qp = 1.0C%py, + 0.0001C,pC37y + 0.0006C374P + 0.01Cpry P?

AP Concentration:

(Cap, pa) = 0.003Cyp — 0.003py,,
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dCap  Pap(Cap, Cpru, P, Cap, P Cea)
dt  Qap(Cap, Corar, Caps Ccar P)
P, = 0.005C% — 0.007C,pCpry + 0.01C4pP — 0.03C4, Cory — 0.06C o Cory
+ 0.3Cpry oy, — 0.005py, P — 0.008P2
Qup = —1.0C% + 0.1C4pCpry + 0.01C,,Cpry + 0.02Cc,Cory
— 0.003C374 + 0.04Cpry P + 0.05P?
[0208] For the results without AP, The exclusion of AP could improve the quality of the obtained

models for two reasons: (1) by reducing the number of equations in the system, (ii) and because
AP has a more indirect influence in the physiology of vascular calcification.

[0209] For Patient 1, In the following tables there are the results for the sparsity degree and
regularization parameter obtained from the Bayesian optimizer with 10 iterations. Originally the
value of the regularization parameter obtained for the NLR equation was not sufficiently low to

enforce the desired degree of sparsity. For that reason, it was artificially decreased.

Sparsity Degree Number of terms Regularization Parameter

prePP 0.074324 11 0.003972
NLR 0.054054 8 0.020000
Calcium 0.081081 12 0.007363
IntactPTH 0.054054 8 0.013704
Albumin 0.101351 15 0.013526
Phosphorus 0.081081 12 0.000060

[00100] The next table shows the confidence matrix obtained from the model.

Phosphorus Calcium IntactPTH Albumin NLR prePP

Phosphorus True True True True True True
Calcium True True True True True True
IntactPTH  False True False True False False
Albumin True True True True True True
NLR True True True True True True
prePP True False False True False True

The following are the associated equations:
*  Pulse Pressure:
dP  —0.04Cy;, + 0.08C¢, + 0.2py;, — 0.1Cp — 0.008P

dt 0.2Cyp + 0.2C¢, + 1.0py, — 0.6Cp — 0.06P + 0.04
e  Neutrophils-Lymphocytes ratio:
dpy,  —3.0Cy + 1.0Cc, — 0.9py;, + 0.5Cp + 2.0
dt 4.0Cy, + 0.2Ccq + 0.2pp1
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o Calcium concentration:
dCcq _ Pea(Caps Corns Purs Cps Ceg)
dt Qca(Corus Caps Ceas PuL)
Pea = —3.0CpCpry +0.01C pn + 0.2C4,Cp + 1.0C-,Cpry + 0.03Cc,pn1
- 0'1CC£1CP - 1'0CPTHpNL + O'SCPTHCP + S'OCPTH

Qca = Cpru(5.0Cy, +0.2Ccq +0.2pp;)

. Intact PTH concentration:
dCpry _ —2.0Cy, +0.7C¢q + 3.0py; — 1.0Cp, — 2.0

dt 0'3CC£1 - O'ZPNL + 0'1CP
. Albumin Concentration:
dCpp Pab(Cea Prr, P, Cp)

dt  Qua(Cap Cora, Cear P, Cp)
Py = 1.0CZ, — 0.9C,upyy — 0-4CeaP — 0.20y,P + 0.2CpP + 0.04P2

Qup = —1.0C4,Cpry + 3.0CcoCpry — 0.05C37 + 8.0CorypnL + 3.0CpryCp
— 1.0CpryP + 0.03p%;, + 0.03C% — 5.0P2
Phosphorus Concentration:

dCp 0.0001C,,Cp 0.0001C2, 0.0002Cc.pnL
== > = 0.003Cy, +—————+ > —0.002C,,
0.0002p3, 0.0001py.C
+ PNL _ PNLZP 4 00050y, — 0.001C, + 0.0002P — 0.0005

P P
[0210] In order to validate the obtained models, it is possible to numerically integrate the

equations and compare the solution with the original data. As initial condition, it was used the
value of the variables pre-processing at ¢ = 0. FIG. 21 provides graphs of the original data
(dots), the original pre-processing and the integrated solution from the obtained equations. For
FIGS. 21-24, the 2000 lines are the original lines and the 2001 lines are the lines using processes
according to some embodiments (if only a 2001 line is depicted, the 2001 line completely
overlapped the corresponding 2000 line). As can be seen, the 2001 lines overlap the 2000 lines
perfectly, meaning that the obtained equations perfectly describe the original pre-processed data.
An important remark is that the entire time series was used as input data of the dynamical system
learner (DynSysLearer or DynSysLearnerND), in order to more accurately test the obtained
equations, it is necessary to test their efficiency against a section of the time series that was not
used as input.

[0211] The following table provides the results of the regularization parameter and sparsity

degree for patient 2, the Bayesian optimizer was used with only 10 iterations:

Sparsity degree Number of terms Regularization parameter
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prePP 0.128378 19 0.087622
NLR 0.168919 25 0.002156
Calcium 0.047297 7 0.049756
IntactPTH 0.243243 36 0.060819
Albumin 0.060811 9 0.027989
Phosphorus 0.141892 21 0.051091

[0212] FIG. 22 illustrates an integrated time series plotted with the original data and original
pre-processing. Interestingly, patient 2 presents a richer dynamics than the one observed in
patient 1, and the DynSysLearnerND is still able to find a set of equations that successfully
reproduce the system dynamics for the same period of time provided as input.

[0213] For patient 3, the results are presented in the following table:

Sparsity Number of Regularization

degree terms parameter
prePP 0.182432 27 1.656041e-01
NLR 0.040541 6 2.273460e-01
Calcium 0.054054 8 2.393089¢-01
IntactPTH 0.189189 28 7.294742¢-02
Albumin 0.918919 136 2.882139¢-13
Phosphorus 0.216216 32 5.882389¢-02

[0214] In this case, the optimizer was unable to find an appropriate value for the regularization
parameter for the equation for Albumin. consequently, the number of terms in the obtained
equation was 136 (with a sparsity degree of 0.92). FIG. 23 depicts graphs of the results from the
integration of the equations, for a time larger than ~ 400 days, the integrated equation start to
diverge from the pre-processed time series, which suggests that non-sparse models are less
stable, even for time intervals that were used is input for the method.

[0215] In order to increase sparsity in the obtained model, the DynSysLearner can also run with
regularization parameters informed by the user (in which case the Bayesian optimizer is not
used). Using pre-determined regularization parameters (informed in the following table), the
method is capable of finding more sparse equations (0.095 sparsity degree for the albumin
equation), which leads to more stable solutions of the obtained equations, as shown in the graphs

of FIG. 24.

S parsity degree N Number of terms R regularization parameter
prePP  0.141892 21 0.003972
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NLR 0.121622 18 0.020000
Calcium 0.114865 17 0.007363
IntactPTH 0.074324 11 0.013704
Albumin 0.094595 14 0.013526
Phosphorus 0.175676 26 0.000060

[0216] In order to analyze the performance of the system over a population of patients, a smaller
subpopulation was selected from the original one with 2558 patients. The inclusion criteria was
patients that had at least 1.5 years of data and did not present any of the following comorbidities:
Ischemic heart disease, Peripheral vascular or arterial disease, Congestive heart failure,
Cardiovascular disease, Chronic obstructive pulmonary disease, Myocardial infarction including
cardiac arrest comorbidity, Hypertension, Cardiac dysrhythmia, and Diabetes.

[0217] A total of 129 patients were selected that satisfied all of these conditions, with average
age (57 + 17) years, average weight (80 + 25) kg, of which 40.3% are white, 36.4% are black,
and 9 are Asian. The regularization parameters were fixed with the same value for every patient
in the population:

REGULARIZATION PARAMETER = {
"prePP": 0.003972,
"NLR": 0.02,
"Calcium": 0.007363,
"IntactPTH": 0.013704,
"Albumin": 0.013526,
"Phosphorus": 0.000060,

}

[0218] The validation of the value of the regularization parameter can be made indirectly by
evaluating the sparsity degree of the obtained models. FIG. 25 depicts a graph of the probability
distribution function (density) of the sparsity degree of the full model for the entire
subpopulation. Even though there are models that have relatively high sparsity degrees (~ 0.4),
the majority has values of sparsity degree smaller than 0.3. In order to have a better
understanding of how each variable contributes to the sparsity of the selected mode, FIG. 26
depicts graphs of the distribution of the number of terms for each one of the variables. For all
the variables, there were a few selected models that were non-sparse, which can be seen by a
small peak between 50 and 100 terms present in all the variables’ distribution. However, the

majority of models selected had under 50 terms selected. Exceptionally, the DynSysLearner was
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unable to find a sparse model for the IntactPTH for the majority of models.

[0219] From the selected models, it is possible to perform a causal analysis that is averaged over
the entire population and extracts more robust causal information between the variables.

[0220] According to some embodiments, the causal diagrams were obtained in two different
ways:

From the probability of term: from all the selected models of the entire population
it was built a probabilistic model, which represents what is the probability that a given
term from the library of functions was selected in that population. By thresholding this
probabilistic model, i.e., by selecting only terms with probability of occurrence larger
than a pre-established threshold, it is possible to have a final model that represents the
population and from such model extract the associated confidence matrix;

From the probability of the confidence matrix: in this approach, for every patient
of the population it was built a confidence matrix from the selected model. The
confidence matrices from all of the patients were used to build a probabilistic confidence
matrix, i.e., each elements corresponds to the probability that a given causal link was
present in that population. By thresholding this probabilistic confidence matrix, it is then
possible to build causal diagrams for the entire population.

[0221] From the two approaches there is a slight difference in interpretation. The first approach
represents the probability that a given term was selected, therefore it is more restrictive in the
sense that it counts not only the existence of a causal link, but that the causal relationships have a
similar functional form for different patients. On the other hand, the second approach is less
restrictive as it only takes in consideration the existence of a causal dependency between two
variables, regardless of its functional form.

[0222] FIGS. 27 and 28 depict causality diagrams obtained from the probability of terms with
thresholds equal to 0.4 and 0.5, respectively. FIGS. 29 and 30 depict causality diagrams
obtained from the probability of the confidence matrix with thresholds 0.80 and 0.95,
respectively.

[0223] The same analysis from the previous section was performed on a subpopulation with only
25 randomly selected patients, in this case the regularization parameters were optimized with a
Bayesian optimizer with 100 iteration. FIGS. 31 and 32 depict the density of the sparsity degree

and number of terms of separated variables, respectively. In comparison with the results with
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pre-determined regularization parameters, the obtained models are sparser, even though the
models selected for Intact PTH still present a high probability of being non-sparse.

[0224] FIGS. 33 and 34 depict causality diagrams obtained from the probability of terms with
thresholds equal to 0.4 and 0.5, respectively. FIGS. 35 and 36 depict causality diagrams
obtained from the probability of the confidence matrix with thresholds 0.80 and 0.95,

respectively.

EXPERIMENT III - DYNAMICAL SYSTEM MODELER IMPLEMENTATION

[0225] A dynamical system modeler process may be implemented using various systems,
platforms, and/or the like. For example, this Example Implementation is written in Python 3 and
is structured around a Patients class, which organizes and handles patients data. The raw data
may be in various forms, including, without limitation, a *.csv or other table file, for instance,
where each column represents a different variable and each row is a different measure of those
variables, at different times. There may be other data columns, rows, fields, and/or the like. For
example, the patient data may include a column providing patient identification.

[0226] The Patients class may be structured around, for example, the Pandas multi-index data
frame as described in McKinney, W, “Data Structures for Statistical Computing in Python,”
Proceedings of the 9th Python in Science Conference, pp. 56-61 (2010). In some embodiments, the
Patients class may include the following attributes: data: data frame with the raw data passed to
the class; IDS: list of numbers with the patients’ identification; npatients: an integer variable
storing the total number of patients; variables: list with the column names of the variables in the
study; metadata: data frame with each patient metadata: duration of the study, date of death,
and/or the like; nobs: data frame with the number of observations for each variable and every
patient; and parameters: values for the criteria used to select valid patients.

[0227] In some embodiments, the Patients class may include the following methods:

read raw_data: read the data from a data frame without any pre-processing (raw format)l;
select valid: select only the valid patients (invalid ones are dropped), where validity is
determined by the total and a yearly number of observations; drop borders: drop patient data
from the borders of the time series; addpatient: add new patient information to the dataset;
delpatients: remove patients from the dataset based on the list of IDS; to_file: write patients’

information to hS file; from_file: read patients’ information from the hS file; sort IDS: sort the
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patients’ IDs; and get from IDS: get the patient information directly from ID.

[0228] The input data is noisy and non-uniform, where non-uniformity in this context means that
the time step between successive points is not constant throughout the time series. Accordingly,
the time series is pre-processed. The pre-processing is managed by the class
preProcessPopulation which applies one of the different pre-processing methods implemented to
all the patients in a population stored in a Patients class object.

[0229] The preProcessPopulation class has three methods: setup: reads an object derived from
the preProcessing base class. This object implements a particular pre-processing method;
read_patients: reads an instance of the Patients class; and run: a method that performs the actual
pre-processing, it must be called after the two previous methods.

[0230] The preProcessing class is used as the base for all the objects that implement a particular
pre-processing, it provides the interface for two methods: process and verify. The process
method reads the data from a particular patient and performs the actual pre-processing. Every
object must have its own version of it. The verify method is called by the preProcessPopulation
before it starts the pre-processing, its intent is simply verifying if all the necessary configuration
was called prior to the calculation. If the child class does not implement it, the preProcessing
class provides it.

[0231] Non-limiting examples of classes implemented for pre-processing may include:
preProcessingDoNothing: which simply smooths the variables marked as noisy, for all the other
variables it does nothing; preProcessingSpline: applies a simple spline to the data;
preProcessingGP: uses Gaussian process as pre-processing; and preProcessingKNN: applies the
nearest neighbors algorithm to impute the missing data.

[0232] The following code excerpt exemplifies the general workflow for pre-processing using
splines.

import ckdmbdvc as mb

import ckdmbdvc.preprocessing as mbp

noisyvars = [...]

pop = mb.Patients().from_file(...)
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spline = mbp.preProcessingSpline()

population_pre_process == mbp.preProcessPopulation()
population_pre process.read patients(pop)
population_pre_process.setup(spline)

population_pre_process.smooth frequent(noisyvars, timewindow="month', method='gp")

population_pre_process.run(dt=0.5, processes=NPROCESSES)
NewPopS = population_pre process.NewPop

NewPopS.to_file(...)

[0233] It is possible to average the result of two different pre-processing steps, which is done
through the average population function from the preprocessing module. Two different methods
to calculate the weights of the averages are implemented: linear and exponential. The usage of
the average is exemplified as follows:

import ckdmbdvc as mb

original data = mb.Patients().from_file(...)

pre_processing 1 = mb . Patients().from_file(...)

pre_processing 2 = mb Patients().from_file(...)

average = mb.preprocessing.average population( original data, (pre processing 1,
pre_processing_2), method="..."),

where the method parameter should be one of linear or exp.

[0234] The implementation of statistical analysis follows a similar structure to that of the pre-
processing. It is structured around two classes: AnalysisManagerBase, which is a base class for
different statistical or causal analysis one might want to implement; and PopulationAnalyzer,
which applies any method to a Patients class instance.

[0235] The AnalysisManagerBase provides an interface for any child class that implements any
statistical test to be applied to the Patients class. It enforces two methods: process, which must be
provided by the child class, and that reads a data frame with the patient data; and verify, which is
supposed to verify any configuration required by the method implemented. The base class

provides a verify method that does nothing, in case the implemented method has no requisites.
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[0236] There are two different correlation tests implemented: Kendall and Spearman correlation
(see, for example, Kendal et al., "A New Measure of Rank Correlation," Biometrika, 30(1-2),
pp. 81-93 (1938) and Kokoska et al., CRC Standard Probability and Statistics Tables and
Formulae, Student Edition. Taylor & Francis (2000)), which are available through the classes
KendallCorrelationManager and SpearmanCorrelationManager, respectively. The following
shows how to calculate Kendall correlation for a particular population of patients:

population = mb Patients().from_file(...)

kendall manager = mbs.KendallCorrelationManager()

analyzer = mbs.PopulationAnalyzer()
analyzer.setup(kendall manager)
analyzer.read patients(population)

analyzer.run()

analyzer.results.to_parquet("path to .parquet file")
mbs.correlation_heatmap(

mbs.KendallCorrelationManager.average over population(

analyzer.results),

filename="path to .png filename")
The results are stored in a multi-index data frame at analyzer.results. Both classes provide an
average over population static method, which averages the correlations calculated for each
patient. The correlation _heatmap function is a wrapper that plots the heatmap from matplotlib for
the calculated correlations.
[0237] The causality analyses are also implemented as classes derived from
AnalysisManagerBase, namely: GrangerCausalityManager and
KernelGrangerCausalityManager, for the Granger causality and kernel Granger causality,
respectively. Both classes share a similar structure (as they are both derived from the same
parent class), only the kernel Granger causality has a method get causality metadata
implemented that is responsible for calculating the values of hyperparameters of the method, and
it should be called right after the class in instantiated. The following code shows how to use the

KernelGrangerCausalityManager class:
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population = mb Patients().from_file()

granger manager = mbs.KernelGrangerCausalityManager(...)
granger manager.get causality metadata(...)

analyzer = mbs.PopulationAnalyzer()

analyzer.setup(granger manager)

analyzer.read patients(population)

confidence = analyzer.run()

number of patients = mbs how many patients(confidence)
confidence.to pickle("path to .pickle file")

population_confidence = mbs.create_confidence matrix _for population(confidence)

G =mbs.create_graph from_confidence matrix(population confidence, voting threshold)
mbs.generate matplotlib_figure of graph(G, figurename)

mbs.generate agraph figure(G, figurename).

[0238] The code is implemented for separate data only, i.e., given a set of data for X and X
(where X is a matrix where each column corresponds to the time-series of a different variable),
the algorithm returns a set of coefficients for each element of a given pre-established function
library.

[0239] The library of functions is defined through the class LibraryConstructor, this object
should be instantiated before the call of select best model. The following provides exemplary
usage:

from ckdmbdvc.modeling.selection import (

LibraryConstructor, select best model, sympyfy model)

library = LibraryConstructor(polynomial order=order)

model = select best model(X, Xdot, library)

symb_model = sympyfy model(model).

Where order is the maximum order of the polynomial terms in the library of functions, X and
Xdot are the time series and their derivatives, respectively. Model is a data frame where each
column corresponds to a different variable and each row to a different term in the library of

functions, the value of each element corresponds to the coefficient of that term in the selected

69



WO 2022/256381 PCT/US2022/031734

model. The function sympyfy model transforms the data frame representation of the selected
model into a list of sympy expressions.

[0240] A potential source of error from the causality analysis is its dependency on the imputation
method used to handle the missing data values. A possible approach to overcome this difficulty
is to use a probabilistic approach derived from Gaussian processes. Given a data matrix X where
each column corresponds to the time series of a different variable of your system, and X' is the
matrix of all their standard deviations, and a Kernel function K; let G(X, X, K) be the Gaussian
process derived from X and K in a way that X ~ G(X, 2, K) is a random time series sampled
from G.

[0241] Each different sample drawn from the GP, when subjected to the Kernel Granger
causality method, results in a different confidence matrix. Consequently, a causal link, let us say
from x; — x;, might not be present in the confidence matrix from all the samples. Based on the
frequency of selection of a given causal link over multiple samples, it is possible to build the
probability P;_,; that variable x; causes x;.

[0242] Given an appropriate choice of the kernel function K, and the correct estimation of the
variables’ standard deviation X', the samples from the Gaussian process are all valid models for
the time series, given the information available. In this regard, the replacement of a deterministic
view on causality by a probabilistic one directly handles the problem of the validity of the chosen
imputation/modeling method used.

[0243] To use Granger-based methods to identify causal relations in deterministic non-linear
systems might be problematic because these methods rely on the dynamics of the variables of the
system being separable, which is not always true for non-linear systems. For this reason, special
care must be taken when looking for causal relations in such systems.

[0244] One interpretation for causality is that if changes in x; lead to changes in x;, then x; is
said to cause x;. Possibly, this relationship could be estimated by measuring how much

information is shared by x; and the derivative of x;. Assuming mutual information as a valid

measure for this goal, we could define the Boolean variable C(i — j) as being true if x; causes

x;, under the condition:

c(i— ) =u(x;, a'cj) > €
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where u(x, y) is the mutual information between x and y, and € is a pre-established threshold.
The use of mutual information (or any other metric of shared information between the variables
and the derivatives) can help reduce the number of terms in the library of functions in the model
selection algorithm, which could greatly reduce its time of execution.
[0245] The method includes calculation of the sparse regression on the terms of the function
library. To that end, several different methods can be used, including, without limitation:
STLSQ: sequential thresholding least square, which performs repeated linear regression on the
data, removing from the following iterations the terms with the absolute value of the coefficients
smaller than a given threshold; EFS: evolutionary feature synthesis, a regression technique on
features based on evolutionary computation; ///°X: fast function extraction, a symbolic regression
technique; STRidge: sequential threshold ridge regression, which is similar to STLSQ, but it uses
a ridge regression instead of a linear regression.
[0246] The method of model selection may include the discovery of systems with some spatial
dependency, in which case a variable of interest (1) will depend not only on time £, but also on
some spatial variable x, therefore i = (¢, x). The mathematical formulation of this problem is
not fundamentally different from the model selection algorithm presented for the case in which ¥
is only time dependent. However partial differential equation recovery from noisy data seems to
be more sensitive to the noise magnitude, making the denoising step of the process of paramount
importance.
[0247] Let (t, 7) be the real value of the variable of interest, where 7 € R™ is a vector of the
spatial coordinates, where n can be any value, but will generally be limited to 1, 2, or 3. It is
assumed that the spatiotemporal evolution of ¥ (t, 7) is given by:

L&, Y, Y7, Yrp, o, T,8) = 0
Where L is an operator on 1 and its derivatives. £ is supposed to be linear on a small number of
terms, e.g., the Korteweg-De Vries equation L is a linear combination of the terms 1, Yy, and
Y, so that the KAV equation is given by: ¥y + Wy — 63, = 0. If noisy data ¢ is measured
at different locations of t and 7, and:

ot ) =97 +a(t, 1)

where ¢ is the noise amplitude, which might depend on the spatial location of the measured

point. Let D(+, n;, n,) be a denoising operator, which could be a Gaussian process (Rasmussen
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and Williams, 2005), or some machine learning-based algorithm, and n, and n,, are the orders of
desired time and space derivatives, respectively. In a way that the application of D on ¢ allows
the recovery of an approximation of 1 and its derivatives, denoted 1, i.e., ¥ ~ 1 =

D(¢p,n; =0,n, =0).

[0248] With the denoising operator at hand, it is possible to build a function library A, which
may be or may include a matrix where each column is a different term of the library, and each

row corresponds to a different time and space position from the data:

l/;(tq» Xo) l/;t(tpr Xo)
Kz(tz\%» Xo) l/;t(té)r Xo)

A= i
l/)(ti‘»xj) '»bt(t?»xo)

Pty x)  Pe(to, %)
In this way, the model selection algorithm is reduced to finding the sparse solution 5 to the
following equation:
AE=0
where {3 is a vector with the coefficients of each term in the function library.
[0249] Delay differential equations are ordinary differential equations in which the current value
of the derivative depends on past as well as current values of the state variables, i.e.:
%= f(t% %)
where X, (t) = X¥(t — 7). Its formulation is entirely like the formulation of the original model
selection algorithm, with the difference that the library of functions should be extended with
terms from 7 times before, i.e., let A; be the original library of functions at time t, the new
extended library A, is given by:
/It = (A Apr)
The determination of the appropriate value of T can be made from different methods: (i) it can be
any typical time scale derived from the underlying problem; (ii) it can be derived from the first
minimum of the autocorrelation function or from the delayed mutual information.
[0250] The applications of the CKD/ESRD condition analysis process, such as a vascular

calcification analysis process, described in the present disclosure are not limited to the study of
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vascular calcification on patients with CKD, but can be extended to the study of any system in
which there is access to time series data. One non-limiting application may include the
development of virtual clinics. Different from the usual machine learning models, in which a
prediction from a target variable is made based on input. The method proposed allows the
identification of a model that explains the relationship between the studied variables and allows
for simulation and numerical experimentation. With such a model at hand, it is possible to
simulate the effect of different interventions, which can provide insight into different courses of
action for treatment.

[0251] More importantly, because the model is derived directly from the data set, it is possible
not only to generate a general model with scientific interest, which can be used to better
understand a given phenomenon. But it is also possible to determine a model-specific for a
particular data set (from one patient, for example), which could provide information tailored for
that particular patient, instead of a model derived from average behavior from a given population

of patients.

EXPERIMENTS: DYNAMICAL SYSTEM MODELER PROCESS - MODEL DISCOVERY
[0252] FIG. 17 depicts a first model discovery example using processes according to some
embodiments (Michaelis-Menten Equation). FIGS. 18A and 18B depict a second model
discovery example using processes according to some embodiments (Lorenz Equation). FIGS.
19A and 19B depict a third model discovery example using processes according to some
embodiments (Glycolysis model). FIG. 20 depicts graphical representations of different model

performances.

[0253] FIG. 37 provides a listing of symbol definitions used in various processes according to
the present disclosure.

[0254] FIG. 38 illustrates an embodiment of an exemplary computing architecture 3800 suitable
for implementing various embodiments as previously described. In various embodiments, the
computing architecture 3800 may comprise or be implemented as part of an electronic device. In
some embodiments, the computing architecture 3800 may be representative, for example, of
computing device 110. The embodiments are not limited in this context.

[0255] As used in this application, the terms “system” and “component” and “module” are
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intended to refer to a computer-related entity, either hardware, a combination of hardware and
software, software, or software in execution, examples of which are provided by the exemplary
computing architecture 3800. For example, a component can be, but is not limited to being, a
process running on a processor, a processor, a hard disk drive, multiple storage drives (of optical
and/or magnetic storage medium), an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application running on a server and the server
can be a component. One or more components can reside within a process and/or thread of
execution, and a component can be localized on one computer and/or distributed between two or
more computers. Further, components may be communicatively coupled to each other by
various types of communications media to coordinate operations. The coordination may involve
the uni-directional or bi-directional exchange of information. For instance, the components may
communicate information in the form of signals communicated over the communications media.
The information can be implemented as signals allocated to various signal lines. In such
allocations, each message is a signal. Further embodiments, however, may alternatively employ
data messages. Such data messages may be sent across various connections. Exemplary
connections include parallel interfaces, serial interfaces, and bus interfaces.

[0256] The computing architecture 3800 includes various common computing elements, such as
one or more processors, multi-core processors, co-processors, memory units, chipsets,
controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards,
multimedia input/output (I/O) components, power supplies, and so forth. The embodiments,
however, are not limited to implementation by the computing architecture 3800.

[0257] As shown in FIG. 38, the computing architecture 3800 comprises a processing unit 3804,
a system memory 3806 and a system bus 3808. The processing unit 3804 may be a
commercially available processor and may include dual microprocessors, multi-core processors,
and other multi-processor architectures.

[0258] The system bus 3808 provides an interface for system components including, but not
limited to, the system memory 3806 to the processing unit 3804. The system bus 3808 can be
any of several types of bus structure that may further interconnect to a memory bus (with or
without a memory controller), a peripheral bus, and a local bus using any of a variety of
commercially available bus architectures. Interface adapters may connect to the system bus 3808

via a slot architecture. Example slot architectures may include without limitation Accelerated
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Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro
Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)),
PCI Express, Personal Computer Memory Card International Association (PCMCIA), and the
like.

[0259] The system memory 3806 may include various types of computer-readable storage media
in the form of one or more higher speed memory units, such as read-only memory (ROM),
random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM
(DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM
(PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM
(EEPROM), flash memory, polymer memory such as ferroelectric polymer memory, ovonic
memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS)
memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent
Disks (RAID) drives, solid-state memory devices (e.g., USB memory, solid-state drives (SSD)
and any other type of storage media suitable for storing information. In the illustrated
embodiment shown in FIG. 38, the system memory 3806 can include non-volatile memory 3810
and/or volatile memory 3812. A basic input/output system (BIOS) can be stored in the non-
volatile memory 3810.

[0260] The computer 3802 may include various types of computer-readable storage media in the
form of one or more lower speed memory units, including an internal (or external) hard disk
drive (HDD) 3814, a magnetic floppy disk drive (FDD) 3816 to read from or write to a
removable magnetic disk 3811, and an optical disk drive 3820 to read from or write to a
removable optical disk 3822 (e.g., a CD-ROM or DVD). The HDD 3814, FDD 3816 and optical
disk drive 3820 can be connected to the system bus 3808 by an HDD interface 3824, an FDD
interface 3826 and an optical drive interface 3828, respectively. The HDD interface 3824 for
external drive implementations can include at least one or both of Universal Serial Bus (USB)
and IEEE 1114 interface technologies.

[0261] The drives and associated computer-readable media provide volatile and/or nonvolatile
storage of data, data structures, computer-executable instructions, and so forth. For example, a
number of program modules can be stored in the drives and memory units 3810, 3812, including
an operating system 3830, one or more application programs 3832, other program modules 3834,

and program data 3836. In one embodiment, the one or more application programs 3832, other
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program modules 3834, and program data 3836 can include, for example, the various
applications and/or components of computing device 110.

[0262] A user can enter commands and information into the computer 3802 through one or more
wired/wireless input devices, for example, a keyboard 3838 and a pointing device, such as a
mouse 3840. These and other input devices are often connected to the processing unit 3804
through an input device interface 3842 that is coupled to the system bus 3808, but can be
connected by other interfaces.

[0263] A monitor 3844 or other types of display device is also connected to the system bus 3808
via an interface, such as a video adaptor 3846. The monitor 3844 may be internal or external to
the computer 3802. In addition to the monitor 3844, a computer typically includes other
peripheral output devices, such as speakers, printers, and so forth.

[0264] The computer 3802 may operate in a networked environment using logical connections
via wired and/or wireless communications to one or more remote computers, such as a remote
computer 3848. The remote computer 3848 can be a workstation, a server computer, a router, a
personal computer, portable computer, microprocessor-based entertainment appliance, a peer
device or other common network node, and typically includes many or all of the elements
described relative to the computer 3802, although, for purposes of brevity, only a
memory/storage device 3850 is illustrated. The logical connections depicted include
wired/wireless connectivity to a local area network (LAN) 3852 and/or larger networks, for
example, a wide area network (WAN) 3854. Such LAN and WAN networking environments are
commonplace in offices and companies, and facilitate enterprise-wide computer networks, such
as intranets, all of which may connect to a global communications network, for example, the
Internet.

[0265] The computer 3802 is operable to communicate with wired and wireless devices or
entities using the IEEE 802 family of standards, such as wireless devices operatively disposed in
wireless communication (e.g., IEEE 802.115 over-the-air modulation techniques). This includes
at least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™ wireless technologies, among
others. Thus, the communication can be a predefined structure as with a conventional network
or simply an ad hoc communication between at least two devices. Wi-Fi networks use radio
technologies called IEEE 802.11x (a, b, g, n, etc.) to provide secure, reliable, fast wireless

connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet,
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and to wire networks (which use IEEE 802.3-related media and functions).

[0266] Numerous specific details have been set forth herein to provide a thorough understanding
of the embodiments. It will be understood by those skilled in the art, however, that the
embodiments may be practiced without these specific details. In other instances, well-known
operations, components, and circuits have not been described in detail so as not to obscure the
embodiments. It can be appreciated that the specific structural and functional details disclosed
herein may be representative and do not necessarily limit the scope of the embodiments.

[0267] Some embodiments may be described using the expression "coupled" and "connected"
along with their derivatives. These terms are not intended as synonyms for each other. For
example, some embodiments may be described using the terms “connected” and/or “coupled” to
indicate that two or more elements are in direct physical or electrical contact with each other.
The term "coupled,” however, may also mean that two or more elements are not in direct contact
with each other, but yet still co-operate or interact with each other.

[0268] Unless specifically stated otherwise, it may be appreciated that terms such as

29 CC 29 CC

“processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or
processes of a computer or computing system, or similar electronic computing device, that
manipulates and/or transforms data represented as physical quantities (e.g., electronic) within the
computing system’s registers and/or memories into other data similarly represented as physical
quantities within the computing system’s memories, registers or other such information storage,
transmission or display devices. The embodiments are not limited in this context.

[0269] It should be noted that the methods described herein do not have to be executed in the
order described, or in any particular order. Moreover, various activities described with respect to
the methods identified herein can be executed in a serial or parallel fashion.

[0270] Although specific embodiments have been illustrated and described herein, it should be
appreciated that any arrangement calculated to achieve the same purpose may be substituted for
the specific embodiments shown. This disclosure is intended to cover any and all adaptations or
variations of various embodiments. It is to be understood that the above description has been
made in an illustrative fashion, and not a restrictive one. Combinations of the above
embodiments, and other embodiments not specifically described herein, will be apparent to those

of skill in the art upon reviewing the above description. Thus, the scope of various embodiments

includes any other applications in which the above compositions, structures, and methods are
77



WO 2022/256381 PCT/US2022/031734

used.

[0271] Although the subject matter has been described in language specific to structural features
and/or methodological acts, it is to be understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or acts described above. Rather, the
specific features and acts described above are disclosed as example forms of implementing the
claims.

[0272] As used herein, an element or operation recited in the singular and proceeded with the
word “a” or “an” should be understood as not excluding plural elements or operations, unless
such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present
disclosure are not intended to be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.

[0273] The present disclosure is not to be limited in scope by the specific embodiments
described herein. Indeed, other various embodiments of and modifications to the present
disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the
art from the foregoing description and accompanying drawings. Thus, such other embodiments
and modifications are intended to fall within the scope of the present disclosure. Furthermore,
although the present disclosure has been described herein in the context of a particular
implementation in a particular environment for a particular purpose, those of ordinary skill in the
art will recognize that its usefulness is not limited thereto and that the present disclosure may be
beneficially implemented in any number of environments for any number of purposes.
Accordingly, the claims set forth below should be construed in view of the full breadth and spirit

of the present disclosure as described herein.
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What is claimed is:

1. An apparatus, comprising:

at least one processor;

a memory coupled to the at least one processor, the memory comprising instructions that,
when executed by the at least one processor, cause the at least one processor to perform a chronic
kidney and/or end-stage renal diseases (CKD/ESRD) condition analysis process to determine a
CKD/ESRD condition model configured to model a CKD/ESRD condition, the vascular
calcification analysis process to:

receive input data associated with at least one patient,

perform a dynamical system learner process to build a collection of dynamical
system models,

determine a model rank for at least a portion of the collection of dynamical
system models, and

determine an optimal dynamical system model for modeling the CKD/ESRD

condition for the at least one patient.

2. The apparatus of claim 1, the instructions, when executed by the at least one processor, to

cause the at least one processor to pre-process the input data to impute missing values.

3. The apparatus of claim 1, the instructions, when executed by the at least one processor, to

cause the at least one processor to perform a causal analysis of the input data to generate causal

information.
4. The apparatus of claim 3, the causal information comprising a causal diagram.
5. The apparatus of claim 1, the model rank configured to indicate model performance for

dynamical relationships between variables in the input data.
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6. The apparatus of claim 1, the collection of dynamical system models to model one or
more of the following variables: pre-treatment pulse pressure (P), Neutrophils-Lymphocytes
ratio (pnr.), Serum calcium concentration (C¢,), Intact Parathyroid Hormone (Cpry ), Serum
albumin concentration (g/dL) (C,yp,), Serum phosphorus concentration (Cp), or Alkaline

Phosphatase (Cpp).

7. The apparatus of claim 1, the instructions, when executed by the at least one processor, to
cause the at least one processor to:

receive patient information for a patient;

analyze the patient information using one of the collections of dynamical models to

predict a CKD/ESRD condition process for the patient based on modeled variables.

8. The apparatus of claim 1, the input data comprising a time series of system observables

and a library of functions configured as an operator on the input data.

9. The apparatus of claim 1, the dynamical system models comprising differential equations

that describe a time evolution of at least one variable of the input data.

10. A computer-implemented method to perform a chronic kidney and/or end-stage renal
diseases (CKD/ESRD) condition analysis process to determine a CKD/ESRD condition model
configured to model a CKD/ESRD condition, the method comprising:
receiving input data associated with at least one patient,
performing a dynamical system learner process to build a collection of dynamical
system models,
determining a model rank for at least a portion of the collection of dynamical
system models, and
determining an optimal dynamical system model for modeling the CKD/ESRD

condition for the at least one patient.
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11. The method of claim 10, the instructions, when executed by the at least one processor, to

cause the at least one processor to pre-process the input data to impute missing values.

12. The method of claim 10, the instructions, when executed by the at least one processor, to

cause the at least one processor to perform a causal analysis of the input data to generate causal

information.
13. The method of claim 12, the causal information comprising a causal diagram.
14. The method of claim 10, the model rank is configured to indicate model performance for

dynamical relationships between variables in the input data.

15. The method of claim 10, the collection of dynamical system models to model one or
more of the following variables: pre-treatment pulse pressure (P), Neutrophils-Lymphocytes
ratio (pnr.), Serum calcium concentration (C¢,), Intact Parathyroid Hormone (Cpry ), Serum
albumin concentration (g/dL) (C,yp,), Serum phosphorus concentration (Cp), or Alkaline

Phosphatase (Cpp).

16. A computer-implemented method of vascular calcification analysis, the method
comprising, via a processor of a computing device:

determining a vascular calcification model configured to model vascular calcification of a
virtual patient to determine a causal relationship between at least one patient characteristic and a
vascular calcification indicator; and

generate a causal relationship structure configured to visualize a causal relationship

between the at least one patient characteristic and the vascular calcification indicator.

17.  The method of claim 1, the vascular calcification indicator comprising one of pulse

pressure (PP) or pulse wave velocity.
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18. The method of claim 1, the at least one patient characteristic comprising at least one of
parathyroid hormones (PTH), calcium (Ca), phosphate (PO4), calcium-phosphate product
(CaPO4), neutrophil-lymphocyte ratio (NLR), and albumin (Alb).

19. The method of claim 1, the causal relationship structure comprising at least one of a

causality fingerprint or a causality pathway map.

20. The method of claim 1, further comprising administering a treatment regimen based on

the causal relationship structure.
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