
US 20200285565A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0285565 A1

Jayaraman et al . (43) Pub . Date : Sep. 10 , 2020

(54) METHOD AND SYSTEM FOR
DYNAMICALLY TESTING A PRODUCT AND
PROCESS IN A VIRTUAL TESTING
ENVIRONMENT

(71) Applicant : Wipro Limited , Bangalore (IN)

(72) Inventors : Venkata Subramanian Jayaraman ,
Chennai (IN) ; Preetha Bolar ,
Bengaluru (IN) ; Vijay Kalyan
Nanduri , Hyderabad (IN)

(21) Appl . No .: 16 / 365,248

(52) U.S. CI .
CPC G06F 11/3664 (2013.01) ; GO6N 20/00

(2019.01) ; G06F 11/3688 (2013.01) ; G06F
11/3684 (2013.01)

(57) ABSTRACT

The present disclosure is related to field of software testing ,
disclosing method and system for dynamically testing prod
uct and process of production environment in virtual testing
environment . Testing system es production ata
related to each production activity corresponding to events
executing in real - time . Each production activity is related to
product and process of production environment . Further ,
testing system generates each scenario of production envi
ronment in virtual testing environment in real - time , based on
sequencing of each event and creates , in the virtual testing
environment , virtual process and virtual product correspond
ing to process and product of production environment , based
on at least the events , generated scenarios , and historical
data . Finally , testing system re - plays each production activ
ity in virtual testing environment for testing virtual process
and virtual product . The present disclosure enables testing
using real - time scenarios of production environment , allows
user to view testing process and perform selective actions
while testing

(22) Filed : Mar. 26 , 2019

(30) Foreign Application Priority Data

Mar. 7 , 2019 (IN) 201941008970

Publication Classification

(51) Int . Cl .
GOOF 1136
GO6N 20/00

(2006.01)
(2006.01)

Virtual testing environment 103

Real production environment 101 Virtual
product
108 ,

Virtual
product

Virtual
product

Product Product Product
105 , 1 Testing system 107

Processor 109
Shared

repository

1/0 interface 111

Memory 113

Virtual testing environment 103

Patent Application Publication

Real production environment 101

Virtual product 1081
Virtual product

Virtual product 108 ,

Product
Product 1052
poc

Product 105 ..

Testing system 107 Processor 109

Shared repository

wwwwww

Sep. 10 , 2020 Sheet 1 of 6

1/0 interface 111 Memory 113

US 2020/0285565 A1

Patent Application Publication Sep. 10 , 2020 Sheet 2 of 6 US 2020/0285565 A1

Testing system 107

Processor 109 1/0 interface 111

Memory 113

Data 203

Production data Scenario data 209 Virtual process and
product data 211

Test result data 213 1 Other data 215

Modules 205

Retrieving module Scenario generating
module 223

Creating module
out

Testing module 227 Display module 229 Other modules 231

FIG.2A

Patent Application Publication Sep. 10 , 2020 Sheet 3 of 6 US 2020 / 0285565A1

? 39

23 ??????? ?????? ?????? ?????? ?????
239

FIG.2B
437

233
235

{

23

Patent Application Publication Sep. 10 , 2020 Sheet 4 of 6 US 2020/0285565 A1

Production Production activity Listed in the Database
cleaning ang

production

dd iteriis to a right tag

Tag the item to the right Yes Production
activity 2

Capture barcode of the Yes
activity 3 container database

Production Enable storing storing of the Yes
container to a right location database

Production Update sionsge location , im Yes

Patent Application Publication Sep. 10 , 2020 Sheet 5 of 6 US 2020/0285565 A1

Retrieve production data related to each of one or more
production activities corresponding to one or more events

executing in real - time

303 Generate each of one or more scenarios of the production
environment in the virtual testing environment in real - time ,
based on sequencing of each of the one or more events

305 Create a virtual process and a virtual product
corresponding to the process and the product of the

production environment

Re - play each of the one or more production activities in the
virtual testing environment for testing the virtual process

and the virtual product

::

FIG.3

Patent Application Publication Sep. 10 , 2020 Sheet 6 of 6 US 2020/0285565 A1

INPUT
DEVICES

411

OUTPUT
DEVICES

412

PRODUCT PRODUCT
1051 VO

INTERFACE
401

COMPUTER
SYSTEM

105N

PROCESSOR NETWORK
INTERFACE

403

COMMUNICATIO
N NETWORK 409

STORAGE INTERFACE 404 VIRTUAL
PRODUCT

VIRTUAL
PRODUCT

108N
MEMORY 405

USER INTERFACE 406
SHARED

REPOSITOR OPERATING SYSTEM 407

WEB BROWSER 408
** . --- . ??? ???

US 2020/0285565 A1 Sep. 10 , 2020
1

METHOD AND SYSTEM FOR
DYNAMICALLY TESTING A PRODUCT AND

PROCESS IN A VIRTUAL TESTING
ENVIRONMENT

TECHNICAL FIELD

[0001] The present subject matter is related in general to
the field of software testing , and more particularly , but not
exclusively to method and system for dynamically testing a
product and process in a virtual testing environment .

BACKGROUND

a

[0002] Generally , quality of products and services deliv
ered is one of the key components of a client - vendor
relationship . To ensure the quality of products developed for
the clients , the products undergo a testing phase before
delivering the product to the client . However , upon deploy
ment of the product in the client environment , testing the
product in the production environment may require real - time
feedback from the products which is not only complex to
obtain but also may disrupt working of the product , hence
proving to be a non - feasible option .
[0003] Existing systems perform testing on the deployed
products based on a set of predefined test data and test
scenarios . However , the predefined test data and the test
scenarios may be an assumed scenario approach towards
testing , which may not be able to holistically cover sequence
of activities that generally occur in the production environ
ment when the products are deployed in the client environ
ment . Therefore , the predefined test data and test scenarios
cannot be used for testing different test scenarios that occur
in the production environment upon deployment of the
product . Even if the predefined test data and the test sce
narios are used for testing different test scenarios that occur
in the production environment , the test results may be
incorrect , which may reduce overall testing efficiency due to
usage of same test data and test scenarios continuously .
Further , the existing systems do not allow a user to manipu
late the test data while testing the deployed product , which
does not provide a perspective regarding behaviour of the
product under various conditions to a user such as how the
product might work with respect to faster input , slower
input , high quantity and the like .
[0004] The information disclosed in this background of
the disclosure section is only for enhancement of under
standing of the general background of the invention and
should not be taken as an acknowledgement or any form of
suggestion that this information forms the prior art already
known to a person skilled in the art .

more events executing in real - time . Each of the one or more
production activities may be related to the product and the
process of the production environment . Further , the method
includes generating each of one or more scenarios of the
production environment in the virtual testing environment in
real - time , based on sequencing of each of the one or more
events . Subsequently , the method includes creating , in the
virtual testing environment a virtual process and a virtual
product corresponding to the process and the product of the
production environment , respectively , based on at least the
one or more events , the generated scenarios occurring due to
the events , and historical data obtained from a shared
repository associated with the testing system . Finally , the
method includes re - playing each of the one or more pro
duction activities in the virtual testing environment for
testing the virtual process and the virtual product .
[0007] Further , the present disclosure includes a testing
system for dynamically testing a product and a process of
production environment in a virtual testing environment .
The testing system includes a processor and a memory
communicatively coupled to the processor . The memory
stores the processor - executable instructions , which , on
execution , cause the processor to retrieve production data
related to each of one or more production activities corre
sponding to one or more events executing in real - time . Each
of the one or more production activities may be related to the
product and the process of the production environment .
Further , the processor may be configured to generate each of
one or more scenarios of the production environment in the
virtual testing environment in real - time , based on sequenc
ing of each of the one or more events . Subsequently , the
processor may be configured to create , in the virtual testing
environment , a virtual process and a virtual product corre
sponding to the process and the product of the production
environment , respectively , based on at least the one or more
events , the generated scenarios occurring due to the events ,
and historical data obtained from a shared repository asso
ciated with the testing system . Finally , the processor may be
configured to re - play each of the one or more production
activities in the virtual testing environment for testing the
virtual process and the virtual product .
[0008] Furthermore , the present disclosure includes a non
transitory computer readable medium including instructions
stored thereon that when processed by at least one processor
causes a testing system to perform operations including
retrieving a production data related to each of one or more
production activities corresponding to one or more events
executing in real - time . Each of the one or more production
activities are related to the product and the process of the
production environment . Further , the instructions cause the
processor to generate each of one or more scenarios of the
production environment in the virtual testing environment in
real - time , based on sequencing of each of the one or more
events . Furthermore , the instructions cause the processor to
create a virtual process and a virtual product corresponding
to the process and the product of the production environ
ment , respectively , based on at least the one or more events ,
the generated scenarios occurring due to the events , and
historical data obtained from a shared repository associated
with the testing system . Finally , the instructions cause the
processor to re - play each of the one or more production
activities in the virtual testing environment for testing the
virtual process and the virtual product .

SUMMARY

[0005] One or more shortcomings of the prior art are
overcome , and additional advantages are provided through
the present disclosure . Additional features and advantages
are realized through the techniques of the present disclosure .
Other embodiments and aspects of the disclosure are
described in detail herein and are considered a part of the
claimed disclosure .
[0006] Disclosed herein is a method of dynamically test
ing a product and a process of a production environment in
a virtual testing environment . The method includes retriev
ing , by a testing system , production data related to each of
one or more production activities corresponding to one or

US 2020/0285565 A1 Sep. 10 , 2020
2

[0009] The foregoing summary is illustrative only and is
not intended to be in any way limiting . In addition to the
illustrative aspects , embodiments , and features described
above , further aspects , embodiments , and features will
become apparent by reference to the drawings and the
following detailed description .

BRIEF DESCRIPTION OF THE
ACCOMPANYING DIAGRAMS

[0010] The accompanying drawings , which are incorpo
rated in and constitute a part of this disclosure , illustrate
exemplary embodiments and , together with the description ,
serve to explain the disclosed principles . In the figures , the
left - most digit (s) of a reference number identifies the figure
in which the reference number first appears . The same
numbers are used throughout the figures to reference like
features and components . Some embodiments of system
and / or methods in accordance with embodiments of the
present subject matter are now described , by way of example
only , and with reference to the accompanying figures , in
which :
[0011] FIG . 1 shows an exemplary architecture for
dynamically testing a product and a process of a production
environment in a virtual testing environment in accordance
with some embodiments of the present disclosure ;
[0012] FIG . 2A shows a detailed block diagram of a
testing system for dynamically testing a product and a
process of a production environment in a virtual testing
environment in accordance with some embodiments of the
present disclo
[0013] FIG . 2B shows an exemplary model of a ware
house scene replicated in a 3D space in accordance with
some embodiments of the present disclosure ;
[0014] FIG . 2C shows a table of exemplary production
activities in accordance with some embodiments of the
present disclosure ;
[0015] FIG . 3 shows a flowchart illustrating method of
dynamically testing a product and a process of a production
environment in a virtual testing environment in accordance
with some embodiments of the present disclosure ; and
[0016] FIG . 4 is a block diagram of an exemplary com
puter system for implementing embodiments consistent with
the present disclosure .
[0017] It should be appreciated by those skilled in the art
that any block diagram herein represents conceptual views
of illustrative systems embodying the principles of the
present subject matter . Similarly , it will be appreciated that
any flow chart , flow diagram , state transition diagram ,
pseudo code , and the like represent various processes which
may be substantially represented in computer readable
medium and executed by a computer or a processor , whether
or not such computer or processor is explicitly shown .

be described in detail below . It should be understood ,
however that it is not intended to limit the disclosure to the
particular forms disclosed , but on the contrary , the disclo
sure is to cover all modifications , equivalents , and alterna
tives falling within the scope of the disclosure .
[0020) The terms " comprises " , " includes " , " comprising " ,
" including ” or any other variations thereof , are intended to
cover a non - exclusive inclusion , such that a setup , device or
method that comprises a list of components or steps does not
include only those components or steps but may include
other components or steps not expressly listed or inherent to
such setup or device or method . In other words , one or more
elements in a system or apparatus proceeded by " comprises
... a ” or “ includes ... a ” does not , without more constraints ,
preclude the existence of other elements or additional ele
ments in the system or method .
[0021] The present disclosure provides a method and a
system for dynamically testing a product and a process of a
production environment in a virtual testing environment . As
an example , the product may be Point of Sale (POS) device
and the process may be card payment . As an example , the
product may be a scanner and the process may be scanning
items . A testing system may retrieve production data related
to each of one or more production activities corresponding
to one or more events being executed in real - time , in the
production environment . Each of the one or more production
activities may be related to the product and the process of the
production environment . Further , the testing system may
sequence each of the one or more events retrieved as part of
the production data . Based on the sequencing of each of the
one or more events , the testing system may generate each of
one or more scenarios of the production environment in the
virtual testing environment in real - time . Subsequently , the
testing system may create a virtual process and a virtual
product corresponding to the process and the product of the
production environment , in the virtual testing environment .
In some embodiments , the testing system may create the
virtual process and the virtual product based on at least one
of the one or more events , the generated scenarios occurring
due to the events , and historical data . In some embodiments ,
the historical data may be obtained from a shared repository
associated with the testing system . Further , the testing
system may re - play each of the one or more production
activities in the virtual testing environment for testing the
virtual process and the virtual product .
[0022] The present disclosure provides a method of
dynamically testing the product and the process of the
production environment , without interrupting working of the
product and the process , by performing tests on recreated
virtual process and virtual product in a virtual testing
environment . Further , the present disclosure performs test
ing based on snapshot of the production data retrieved from
the production environment in real - time , thereby enabling
accurate and exact simulation of each interaction of the
production environment , that helps in performing testing
based on real - time scenarios occurring in the production
environment . Further , the present disclosure facilitates per
forming one or more selective actions while testing such as
play , pause , restart , and stop the testing of the virtual process
and the virtual product . Further , the present disclosure
allows the user to modify data used for testing and perform
testing process , which provides the user a perspective
regarding behaviour of the product under various conditions
such as how the product might work with respect to faster

DETAILED DESCRIPTION

[0018] In the present document , the word “ exemplary ” is
used herein to mean “ serving as an example , instance , or
illustration . ” Any embodiment or implementation of the
present subject matter described herein as “ exemplary ” is
not necessarily to be construed as preferred or advantageous
over other embodiments .
[0019] While the disclosure is susceptible to various modi
fications and alternative forms , specific embodiment thereof
has been shown by way of example in the drawings and will

US 2020/0285565 A1 Sep. 10 , 2020
3

input , slower input , high quantity and the like . This may
enable the user to plan development of a more efficient
version of the product .
[0023] In the following detailed description of the embodi
ments of the disclosure , reference is made to the accompa
nying drawings that form a part hereof , and in which are
shown by way of illustration specific embodiments in which
the disclosure may be practiced . These embodiments are
described in sufficient detail to enable those skilled in the art
to practice the disclosure , and it is to be understood that
other embodiments may be utilized and that changes may be
made without departing from the scope of the present
disclosure . The following description is , therefore , not to be
taken in a limiting sense .
[0024] FIG . 1 shows an exemplary architecture for
dynamically testing a product and a process of a production
environment in a virtual testing environment in accordance
with some embodiments of the present disclosure .
[0025] The architecture 100 includes a production envi
ronment 101 , a virtual testing environment 103 and a shared
repository 115. In some embodiments , the production envi
ronment 101 may include products 105 , to 105n (also
referred as products 105) that implement corresponding
processes . As an example , the products 105 may be a printer
implementing the corresponding process of printing data , a
scanner implementing the corresponding process of scan
ning data / items and the like . Further , the virtual testing
environment 103 may include a testing system 107 and
virtual products 108 , to 108 , (also referred as virtual prod
ucts 108) . In some embodiments , the virtual products 108
may implement corresponding virtual processes . In some
embodiments , the virtual product 108 may be a simulated
version of the corresponding product 105 and the virtual
processes may be a replica of the corresponding processes
that are implemented in the production environment 101 .
The present disclosure is explained in terms of a single
product 105 and a single virtual product 108 throughout the
description for easy understanding . However , this should not
be construed as a limitation of the present disclosure .
[0026] In some embodiments , the testing system 107 may
be associated with the product 105 and the virtual product
108 via a communication network (not shown in the FIG . 1) .
In some embodiments , the communication network may be
at least one of a wired communication network and a
wireless communication network .
[0027] The testing system 107 may include a processor
109 , an Input / Output (I / O) interface 111 and a memory 113 .
The I / O interface 111 may retrieve production data related to
each of one or more production activities corresponding to
one or more events executing in real - time , in the production
environment 101. In some embodiments , the production data
may be retrieved directly from the products 105. In some
other embodiments , the production data may be retrieved
from at least one of servers , computing devices and storage
devices (not shown in the FIG . 1) associated with the
products 105 in the production environment . As an example ,
the production data may include , but not limited to , names
of the one or more production activities and the one or more
events , identifiers (IDs) associated with the one or more
production activities , time stamp associated with the one or
more production activities , and quantity related to the one or
more production activities . Further , the processor 109 may
clean the production data i.e. may categorize the production
data based on a list of predefined production activities . Upon

cleaning the production data , the processor 109 may
sequence each of the one or more events based on one or
more of , a time stamp associated with the one or more
production activities and one or more unique identifiers
associated with the one or more production activities . Fur
ther , the processor 109 may generate each of one or more
scenarios of the production environment in the virtual test
ing environment 103 in real - time , based on sequencing of
each of the one or more events .
[0028] Upon generating the one or more scenarios , the
processor 109 may create , in the virtual environment , the
virtual process and the virtual product 108 corresponding to
the process and the product 105 of the production environ
ment 101 , respectively . In some embodiments , the processor
109 may create the virtual process and the virtual product
108 based on at least , the one or more events , the generated
scenarios occurring due to the events , and historical data
obtained from the shared repository 115 associated with the
testing system 107 , via the communication network . In some
embodiments , the creation of the virtual process and the
virtual product may be performed in a 3 - Dimensional (3D)
space . Further , the processor 109 may re - play each of the
one or more production activities in the virtual testing
environment 103 for testing the virtual process and the
virtual product 108 .
[0029] In some embodiments , to re - play each of the one or
more production activities , the processor 109 may provide
the production data to the virtual product 108 to test the
virtual product 108 and the virtual process . Upon providing
the production data , the processor 109 may trigger each of
one or more virtual applications sequentially to perform the
corresponding one or more production activities in accor
dance with the production data , until the virtual process is
completely simulated . In some embodiments , the one or
more virtual applications may be installed in the virtual
product for implementing the virtual process . In some
embodiments , simulating the virtual process may include
implementing the virtual process in the virtual testing envi
ronment 103 in a predefined manner . In some embodiments ,
the predefined manner may include accurately matching the
sequence of the one or more events and timestamp associ
ated with each of the one or more production activities , with
the sequence of the one or more events and the timestamp of
the one or more production activities constituting the pro
cess executed in the production environment 101 .
[0030] In some embodiments , as the one or more virtual
applications sequentially perform the corresponding one or
more production activities , the processor 109 may receive a
response from each of the one or more virtual applications
sequentially . The response thus received by the processor
109 may be a test result obtained upon simulating the virtual
process . In some embodiments , while testing the virtual
product 108 and the virtual process , the processor 109 may
facilitate one or more selective actions that may include , but
not limited to , play the testing , pause the testing , restart the
testing and stop the testing of the virtual process and the
virtual product 108 .
[0031] FIG . 2A shows a detailed block diagram of a
testing system for dynamically testing a product and a
process of a production environment in a virtual testing
environment in accordance with some embodiments of the
present disclosure .
[0032] In some implementations , the testing system 107
may include data 203 and modules 205. As an example , the

US 2020/0285565 A1 Sep. 10 , 2020
5

and one or more unique identifiers (IDs) associated with the
one or more production activities . In some embodiments ,
both the timestamp and the unique IDs associated the one or
more production activities corresponding to the one or more
events may be vital for the scenario generating module 223
to analyze the sequence of the one or more events . The
timestamp associated with the one or more production
activities may determine exact place / location where the one
or more production activities occurred . The unique IDs
associated with each of the one or more production activities
may determine specification of the corresponding produc
tion activities . In some embodiments , the scenario generat
ing module 223 may use any existing predefined techniques
to perform sequencing based on the time stamp , the unique
IDs and combination of both timestamp and unique IDs . In
some embodiments , the scenario generating module 223
may generate sequence of the one or more events based on
the timestamp and the unique IDs . The sequence of the one
or more events thus generated may be at least one of a
correct sequence , a partially correct sequence and an incor
rect sequence .
[0045] In some embodiments , the sequence of the one or
more events whose sequencing is accurate may be stated as
the correct sequence . In some embodiments , the sequence of
the one or more events whose sequencing is not completely
accurate but a major part of the sequencing is accurate , may
be stated as the partially correct sequence . In some embodi
ments , the sequence of the one or more events whose
sequencing is completely inaccurate may be stated as the
incorrect sequence .
[0046] Further , when the scenario generating module 223
determines the sequence of the one or more events to be the
correct sequence , the scenario generating module 223 may
fetch a scenario corresponding to the one or more events
from a shared repository 115 associated with the testing
system 107. In some embodiments , the shared repository
115 may include , but not limited to , historical data . In some
embodiments , the historical data may include , but not lim
ited to , patterns that show how a certain production activity
should be performed , error patterns that were observed in
previous iterations , failures that occurred due to errors in the
production activities , solutions used for resolving the errors
whenever the failures occurred , and scenarios generated /
occurred due to the one or more events in previous itera
tions . Further , when the scenario generating module 223
determines the sequence of the one or more events to be the
partially correct sequence , the scenario generating module
223 may perform at least one of , generating request for
retransmission of production data 207 for sequencing the
one or more events and ignoring the one or more events that
are redundant in the sequence of the events . In some
embodiments , the scenario generating module 223 may
request for retransmission of the production data 207 when
conditions such as incomplete availability of the production
data 207 , presence of improper production data , deletion of
the production data 207 and the like , occur . In some embodi
ments , the scenario generating module 223 may ignore the
one or more events when the sequence of the one or more
events includes a redundant mention of the one or more
events . As an example , consider an exemplary sequence of
the one or more events as shown below :

[0047] Time 1 , module 2 , production activity 1 of event
1

[0048] Time 1 , module 2 , production activity 1 of event
1

[0049] Time 2 , module 3 , production activity 1 of event
1

[0050] In the abovementioned exemplary sequence of the
one or more events , first two rows of the sequence are
redundant . In such conditions , the scenario generating mod
ule 223 may ignore the one or more events . In some
embodiments , irrespective of type of sequence , when the
sequence includes redundant data , the scenario generating
module 223 may ignore / eliminate redundancy .
[0051] Further , in some embodiments , when the scenario
generating module 223 determines the sequence of the one
or more events to be the incorrect sequence , the scenario
generating module 223 may self - learn , using one or more
pre - trained machine learning techniques , and may create
data required for sequencing the one or more events . In some
embodiments , the scenario generating module 223 may
self - learn by analysing the historical data obtained from the
shared repository 115 and the one or more production
activities of the production environment , to create the data
required for sequencing the one or more events . In some
embodiments , the one or more events that form the incorrect
sequence , may be related to the production data 207 , which
is stored as part of the second database . Therefore , upon
generating the data required for sequencing the one or more
events using the one or more pre - trained machine learning
techniques , the one or more production activities corre
sponding to those one or more events may be updated to the
list of the predefined production activities . Therefore , when
the processor 109 detects the one or more production
activities corresponding to the one or more events , and
sequence of the events , using pre - trained machine learning
techniques , based on analysis of historical data and the
production data 207 , the processor 109 may dynamically
update the value of the data cleaning flag associated with the
one or more production activities , from “ True ” to “ False ” or
from “ 1 ” to “ O ” . Further , upon updating the value of the data
cleaning flag associated with the one or more production
activities from “ True ” to “ False ” , the processor 109 may
migrate those one or more production activities from the
second database to the first database .
[0052] In some embodiment , the scenario generating mod
ule 223 may perform sequencing of the one or more events ,
until each sequence of the one or more events is determined
as the correct sequence and the scenario corresponding to
the correct sequence is fetched from the shared repository
115. The sequence of the one or more events thus generated ,
may be stored as the scenario data 209 .
[0053] In some embodiments , upon fetching the scenario
corresponding to the sequence of the one or more events , the
scenario generating module 223 may determine the process
and the product 105 that may be involved in the scenario by
analysing data flow elements in the scenario and amount of
data that has changed . In some embodiments , the data may
be the production data 207 , data generated by sequencing the
one or more events and data related to the scenario fetched
based on the sequence of the one or more events . Further , the
scenario generating module 223 may sequence the data
according to time and slide the data to understand flow and
time slicing related to the sequence of the one or more
events . Subsequently , the scenario generating module 223
may gather a product log and compare with the data to
ensure consistency . In some embodiments , the product log

US 2020/0285565 A1 Sep. 10 , 2020
6

may be data related to the product 105 deployed in the
production environment 101 which is initially retrieved by
the retrieving module 221. Upon ensuring consistency of the
data with the product log , the scenario generating module
223 may simulate the data in accordance with the flow and
the time slicing to recreate each of the one or more scenarios
in the virtual testing environment 103 exactly as occurred in
the production environment 101. The one or more scenarios
thus recreated may be stored as part of the scenario data 209 .
[0054] Further , the creating module 225 may create in the
virtual testing environment 103 , a virtual process and a
virtual product 108 corresponding to the process and the
product 105 of the production environment 101 , respec
tively , based on at least the one or more events , the generated
scenarios occurring due to the events , and the historical data .
In some embodiments , creation of the virtual process and the
virtual product 108 may be performed in a 3 - Dimensional
(3D) space . In some embodiments , the creating module 225
may initially receive one or more images associated with the
one or more production activities implemented in the pro
duction environment 101. The one or more images may
include , but not limited to , one or more objects of the
production environment 101. As an example , if the scene in
the production environment 101 is related to a warehouse ,
the one or more objects may be a conveyor belt , items
moving on the conveyor belt , container collecting the items ,
shelves store the items and the like . In some embodi
ments , the one or more images may facilitate simulation of
each of the one or more production activities in the virtual
testing environment 103. Upon receiving the one or more
images , the creating module 225 may replicate a position
and a layout of each of the one or more objects present in the
one or more images , in the virtual testing environment 103 .
FIG . 2B shows an exemplary model of a warehouse scene in
production environment 101 replicated in a 3D space based
on the one or more images . In the FIG . 2B , 233 indicates an
exemplary warehouse , 235 , to 235 , indicate exemplary
items in the exemplary warehouse 233 , 237 indicates an
exemplary conveyor belt to carry the items , 239 , to 239
indicate exemplary shelves to store the items .
[0055] Further , the creating module 225 may create the
virtual process based on at least the one or more events , the
generated scenarios occurring due to the events , and the
historical data , by implementing a messaging sequence . In
some embodiments , the message sequence may occur
between an intermediate layer and a 3D creation layer of the
creating module 225. In some embodiments , the messaging
sequence may include providing a trigger to the 3D creation
layer by the intermediate layer and gather relevant data
required to perform the sequence of the one or more sce
narios by the 3D creation layer . In some embodiments , the
creating module 225 may initially capture layout by per
forming time and motion analysis . Further , the creating
module 225 may measure when each trigger should be
initiated and a time sequence corresponding to each trigger .
Subsequently , based on the trigger , the creating module 225
may gather and correlate the relevant data . In some embodi
ments , the relevant data may include each minute detail
required for achieving an exact replica of the process in the
production environment . As an example , in a warehouse
scene where an item is being conveyed on a conveyor belt ,
the relevant data may include conveying direction , name of
the item , waiting time of the item , working time of the item ,
storage time of the item and the like . Further , the creating

module 225 may activate the messaging sequence to initiate
the triggers in a manner that it creates the virtual process
which is an exact replica of the process implemented in the
production environment 101. In some embodiments , the
creating module 225 may then create the virtual product 108
corresponding to the virtual process . As an example , when
the virtual process is related to scanning , the creating
module 225 may create a scanner as the virtual product 108
by simulating constructional and functional features of the
scanner . In some embodiments , the creating module 225
may install one or more virtual applications in the virtual
product 108 to implement the virtual process . The virtual
process and the virtual product 108 thus created may be
stored as the virtual process and product data 211 .
[0056] Further , in some embodiments , the testing module
227 may re - play each of the one or more production activi
ties in the virtual testing environment 103 for testing the
virtual process and the virtual product 108. In some embodi
ments , initially , the testing module 227 may provide the
production data 207 to the virtual product 108. Further , the
testing module 227 may trigger each of one or more virtual
applications sequentially to perform the corresponding one
or more production activities in accordance with the pro
duction data 207. In some embodiments , based on the
trigger , the testing module 227 may also provide one or more
scenarios to be simulated and the corresponding historical
data to each of the one or more virtual applications . Further ,
the testing module 227 may receive a response from each of
the one or more virtual applications sequentially . The
response thus received by the testing module 227 may be a
test result obtained upon simulating the virtual process . The
test result thus obtained may be stored as the test result data
213. In some embodiments , each of the one or more virtual
applications may be sequentially triggered until the virtual
process is completely simulated . As the testing module 227
re - plays each of the one or more production activities , a
display module 229 may display a 3D view on a display
device associated with the testing system 107. In some
embodiments , the display module 229 may enable users to
view the re - play of each of the one or more production
activities , errors occurring in the virtual process , fixing of
the errors in the virtual process and the like . The display
module 229 may create an exact 3D scene as present in the
production environment 101 , based on the one or more
images that are captured in the production environment 101 .
[0057] In some embodiments , this 3D visualization of the
testing enables the testing module 227 to facilitate users to
perform one or more selective actions while testing . As an
example , the one or more selective actions may include , but
not limited to , play the testing , pause the testing , restart the
testing and stop the testing of the virtual process and the
virtual product 108. In some embodiments , the selective
action “ play ” may allow the user to initiate the process of
testing . The selective action " pause ” may allow the user to
halt the process of testing at any given point which may
enable the user to observe in detail and draw inferences . The
selective action “ stop ” may enable the user to terminate the
process of testing at any given point of time as per require
ment of the user . The selective action of “ restart " may enable
the user to re - initiate the process of testing at any given point
of time . As an example , when the user missed to observe
certain part of the testing , the user may immediately termi
nate the testing using the selective action “ stop ” and reini
tiate the process of testing using the selective action “ restart ”

1

US 2020/0285565 A1 Sep. 10 , 2020
7

may enable

to view the part missed by the user previously . In some
embodiments , the testing module 227 may also facilitate the
user to perform a selective action “ modify ” , that
the user to alter the data provided for testing , to analyse test
results under varying conditions . The one or more selective
actions performed while testing , may allow the users to
analyse error patterns in the virtual process .
[0058] Henceforth , the process of dynamically testing the
product 105 and the process of the production environment
101 in the virtual testing environment 103 is explained with
the help of one or more examples for better understanding of
the present disclosure . However , the one or more examples
should not be considered as limitation of the present disclo
sure .

[0059] Consider an exemplary warehouse scenario . As an
example , consider the product 105 is a barcode scanner and
the process corresponding to the product 105 is to scan
barcode of 5 containers . The exemplary events related to the
product 105 and the corresponding process may be “ Suc
cessful scanning of barcode of container 1 ” , “ Successful
scanning of barcode of container 2 ” , “ Successful scanning of
barcode of container 3 ” and the like . The exemplary pro
duction activities corresponding to the exemplary event 1
may be :

[0060] Add items to a right tag
[0061] Tag the item to the a right container
[0062] Capture barcode of the container
[0063] Enable storing of the container to a right location
[0064] Update storage location in a database

[0065] The exemplary production activities mentioned
above may also be an exemplary list of predefined produc
tion activities .
[0066] The processor 109 may obtain snapshot of the
production data 207 , which is further cleaned and validated ,
to obtain the production data 207 as shown in the Table of
FIG . 2C .
[0067] Upon retrieving the production data 207 , the pro
cessor 109 may sequence the one or more events based on
the timestamp and the unique IDs associated with each
production activity . An exemplary sequence of events may
be as shown below :
Time 12:09:02 ; module 1 ; production activity 1 of Event 1
Time 12:09:15 ; module 1 ; production activity 2 of Event 1
Time 12:09:30 ; module 1 ; production activity 3 of Event 1
Time 12:10:01 ; module 2 ; production activity 4 of Event 1
Time 12:10:09 ; module 2 ; production activity 5 of Event 1
Time 12:10:18 ; module 2 ; production activity 5 of Event 1
[0068] In the above sequence of the events , since produc
tion activity 5 is redundant , the sequence generated is a
partially correct sequence . Therefore , the processor 109 may
ignore the redundant data and thereby obtain correct
sequence of the events . In some embodiments , the processor
109 may retrieve a scenario corresponding to the correct
sequence of the events from the shared repository 115 and
recreate the scenario in accordance with the correct
sequence of the events .
[0069] Further , the processor 109 may create the virtual
product 108 i.e. a simulated version of the scanner in the
virtual testing environment 103. The virtual product 108
may include one or more virtual applications that may
implement the virtual process . In some embodiments , the
processor 109 may create the virtual process based on the at
least the one or more events , the generated scenario and the
historical data . Further , the processor 109 may re - play each

of the one or more production activities in the virtual testing
environment 103 for testing the virtual process and the
virtual product 108. For re - playing the one or more produc
tion activities , initially the processor 109 may trigger in the
following sequence one after the other :
Virtual application 1 for performing production activity 1 ;
Virtual application 2 for performing production activity 2 ;
Virtual application 3 for performing production activity 3 ;
and
Virtual application 4 for performing production activity 4
and 5 .
[0070] Upon triggering the virtual applications in the
above sequence , the processor 109 may receive a response
from each of the one or more virtual applications sequen
tially . The response thus received by the testing module 227
is the test result obtained upon simulating the virtual pro
cess . Consider a scenario , where the user needs to observe
certain part of the testing process multiple times . The user
may immediately terminate the testing using the selective
action “ stop ” and reinitiate the process of testing using the
selective action “ restart ” to view the part desired by the user .
Similarly , the user may perform selective actions such as
“ pause ” , “ play ” , “ modify ” and the like .
[0071] FIG . 3 shows a flowchart illustrating a method of dynamically testing a product and a process of a production
environment in a virtual testing environment in accordance
with some embodiments of the present disclosure .
[0072] As illustrated in FIG . 3 , the method 300 includes
one or more blocks illustrating a method of dynamically
testing a product 105 and a process of a production envi
ronment 101 in a virtual testing environment 103. The
method 300 may be described in the general context of
computer - executable instructions . Generally , computer - ex
ecutable instructions can include routines , programs ,
objects , components , data structures , procedures , modules ,
and functions , which perform functions or implement
abstract data types .
[0073] The order in which the method 300 is described is
not intended to be construed as a limitation , and any number
of the described method blocks can be combined in any
order to implement the method 300. Additionally , individual
blocks may be deleted from the methods without departing
from the spirit and scope of the subject matter described
herein . Furthermore , the method 300 can be implemented in
any suitable hardware , software , firmware , or combination
thereof .
[0074] At block 301 , the method 300 may include retriev
ing , by a processor 109 of the testing system 107 , production
data 207 related to each of one or more production activities
corresponding to one or more events executing in real - time .
In some embodiments , each of the one or more production
activities are related to the product 105 and the process of
the production environment 101 .
[0075] At block 303 , the method 300 may include gener
ating , by the processor 109 , each of one or more scenarios
of the production environment 101 in the virtual testing
environment 103 in real - time , based on sequencing of each
of the one or more events . In some embodiments , sequence
obtained upon sequencing each of the one or more events
may be a correct sequence , a partially correct sequence and
an incorrect sequence .
[0076] At block 305 , the method 300 may include creat
ing , in the virtual testing environment 103 , by the processor
109 , a virtual process and a virtual product 108 correspond

US 2020/0285565 A1 Sep. 10 , 2020
8

memory 405

ing to the process and the product 105 of the production
environment 101 , respectively . In some embodiments , the
processor 109 may create the virtual process and the virtual
product 108 based on at least the one or more events , the
generated scenarios occurring due to the events , and histori
cal data obtained from a shared repository 115 associated
with the testing system 107. In some embodiments , the
creation of the virtual process and the virtual product 108
may be performed in a 3 - Dimensional (3D) space .
[0077] At block 307 , the method 300 may include re
playing , by the processor 109 , each of the one or more
production activities in the virtual testing environment 103
for testing the virtual process and the virtual product 108. In
some embodiments , the processor 109 may facilitate a user
to perform at least one selective action of play , pause , restart ,
and stop the testing of the virtual process and the virtual
product 108 .
[0078] FIG . 4 is a block diagram of an exemplary com
puter system for implementing embodiments consistent with
the present disclosure .
[0079] In some embodiments , FIG . 4 illustrates a block
diagram of an exemplary computer system 400 for imple
menting embodiments consistent with the present invention .
In some embodiments , the computer system 400 can be
testing system 107 that is used for dynamically testing a
product 105 and a process of a production environment 101
in a virtual testing environment 103. The computer system
400 may include a central processing unit (“ CPU ” or “ pro
cessor ”) 402. The processor 402 may include at least one
data processor for executing program components for
executing user or system - generated business processes . A
user may include a person , a person using a device such as
those included in this invention , or such a device itself . The
processor 402 may include specialized processing units such
as integrated system (bus) controllers , memory management
control units , floating point units , graphics processing units ,
digital signal processing units , etc.
[0080] The processor 402 may be disposed in communi
cation with input devices 411 and output devices 412 via I / O
interface 401. The I / O interface 401 may employ commu
nication protocols / methods such as , without limitation ,
audio , analog , digital , stereo , IEEE - 1394 , serial bus , Uni
versal Serial Bus (USB) , infrared , PS / 2 , BNC , coaxial ,
component , composite , Digital Visual Interface (DVI) , high
definition multimedia interface (HDMI) , Radio Frequency
(RF) antennas , S - Video , Video Graphics Array (VGA) ,
IEEE 802.n / b / g / n / x , Bluetooth , cellular (e.g. , Code - Division
Multiple Access (CDMA) , High - Speed Packet Access
(HSPA +) , Global System For Mobile Communications
(GSM) , Long - Term Evolution (LTE) , WiMax , or the like) ,
etc.

[0081] Using the I / O interface 401 , the computer system
400 may communicate with the input devices 411 and the
output devices 412 .
[0082] In some embodiments , the processor 402 may be
disposed in communication with a communication network
409 via a network interface 403. The network interface 403
may communicate with the communication network 409 .
The network interface 403 may employ connection proto
cols including , without limitation , direct connect , Ethernet
(e.g. , twisted pair 10/100/1000 Base T) , Transmission Con
trol Protocol / Internet Protocol (TCP / IP) , token ring , IEEE
802.11a / b / g / n / x , etc. Using the network interface 403 and
the communication network 409 , the computer system 400

may communicate with products 105 (105 , up to 105n) ,
virtual products 108 (108 , up to 108n) and a shared reposi
tory 115. The communication network 409 can be imple
mented as one of the different types of networks , such as
intranet or Local Area Network (LAN) , Closed Area Net
work (CAN) and such . The communication network 409
may either be a dedicated network or a shared network ,
which represents an association of the different types of
networks that use a variety of protocols , for example ,
Hypertext Transfer Protocol (HTTP) , CAN Protocol , Trans
mission Control Protocol / Internet Protocol (TCP / IP) , Wire
less Application Protocol (WAP) , etc. , to communicate with
each other . Further , the communication network 409 may
include a variety of network devices , including routers ,
bridges , servers , computing devices , storage devices , etc. In
some embodiments , the processor 402 may be disposed in
communication with a memory 405 (e.g. , RAM , ROM , etc.
not shown in FIG . 4) via a storage interface 404. The storage
interface 404 may connect to memory 405 including , with
out limitation , memory drives , removable disc drives , etc. ,
employing connection protocols such as Serial Advanced
Technology Attachment (SATA) , Integrated Drive Electron
ics (IDE) , IEEE - 1394 , Universal Serial Bus (USB) , fibre
channel , Small Computer Systems Interface (SCSI) , etc. The
memory drives may further include a drum , magnetic disc
drive , magneto - optical drive , optical drive , Redundant Array
of Independent Discs (RAID) , solid - state memory devices ,
solid - state drives , etc.
[0083] The may store a collection of program
or database components , including , without limitation , a
user interface 406 , an operating system 407 , a web browser
408 etc. In some embodiments , the computer system 400
may store user / application data , such as the data , variables ,
records , etc. as described in this invention . Such databases
may be implemented as fault - tolerant , relational , scalable ,
secure databases such as Oracle or Sybase .
[0084] The operating system 407 may facilitate resource
management and operation of the computer system 400 .
Examples of operating systems include , without limitation ,
APPLE® MACINTOSH® OS X , UNIX® , UNIX - like
system distributions (E.G. , BERKELEY SOFTWARE DIS
TRIBUTION® (BSD) , FREEBSD® , NETBSDB , OPEN
BSD , etc.) , LINUX® DISTRIBUTIONS (E.G. , RED
HAT® , UBUNTU? , KUBUNTU? , etc.) , IBM® OS / 2® ,
MICROSOFT® WINDOWS® (XP® , VISTA® / 7 / 8 , 10
etc.) , APPLE? IOS® , GOOGLETM ANDROIDTM , BLACK
BERRY® OS , or the like . The User interface 406 may
facilitate display , execution , interaction , manipulation , or
operation of program components through textual or graphi
cal facilities . For example , user interfaces may provide
computer interaction interface elements on a display system
operatively connected to the computer system 400 , such as
cursors , icons , checkboxes , menus , scrollers , windows , wid
gets , etc. Graphical User Interfaces (GUI) may be
employed , including , without limitation , Apple? Macin
tosh® operating systems ' Aqua® , IBM® OS / 2® , Micro
soft® Windows® (e.g. , Aero , Metro , etc.) , web interface
libraries (e.g. , ActiveX® , Java , Javascrip® , AJAX ,
HTML , Adobe Flash® , etc.) , or the like .
[0085] In some embodiments , the computer system 400
may implement the web browser 408 stored program com
ponents . The web browser 408 may be a hypertext viewing
application , such MICROSOFT® INTERNET
EXPLORER® , GOOGLETM CHROMETM , MOZILLA?

as

US 2020/0285565 A1 Sep. 10 , 2020
9

embodiments shown , and it should be anticipated that on
going technological development will change the manner in
which particular functions are performed . These examples
are presented herein for purposes of illustration , and not
limitation . Further , the boundaries of the functional building
blocks have been arbitrarily defined herein for the conve
nience of the description . Alternative boundaries can be
defined so long as the specified functions and relationships
thereof are appropriately performed . Alternatives (including
equivalents , extensions , variations , deviations , etc. , of those
described herein) will be apparent to persons skilled in the
relevant art (s) based on the teachings contained herein . Such
alternatives fall within the scope and spirit of the disclosed
embodiments . Also , the words “ comprising , ” “ having , ”
" containing , ” and “ including , ” and other similar forms are
intended to be equivalent in meaning and be open ended in
that an item or items following any one of these words is not
meant to be an exhaustive listing of such item or items , or
meant to be limited to only the listed item or items . It must
also be noted that as used herein and in the appended claims ,
the singular forms “ a , ” “ an , ” and “ the ” include plural
references unless the context clearly dictates otherwise .
[0090] Finally , the language used in the specification has
been principally selected for readability and instructional
purposes , and it may not have been selected to delineate or
circumscribe the inventive subject matter . It is therefore
intended that the scope of the invention be limited not by this
detailed description , but rather by any claims that issue on
an application based here on . Accordingly , the embodiments
of the present invention are intended to be illustrative , but
not limiting , of the scope of the invention , which is set forth
in the following claims .

FIREFOX® , APPLE? SAFARI® , etc. Secure web brows
ing may be provided using Secure Hypertext Transport
Protocol (HTTPS) , Secure Sockets Layer (SSL) , Transport
Layer Security (TLS) , etc. Web browsers 408 may utilize
facilities such as AJAX , DHTML , ADOBE® FLASH® ,
JAVASCRIPT® , JAVA® , Application Programming Inter
faces (APIs) , etc. In some embodiments , the computer
system 400 may implement a mail server stored program
component . The mail server may be an Internet mail server
such as Microsoft Exchange , or the like . The mail server
may utilize facilities such as Active Server Pages (ASP) ,
ACTIVEX® , ANSI® C ++ / C # , MICROSOFT® , .NET , CGI
SCRIPTS , JAVA , JAVASCRIPT® , PERL® , PHP ,
PYTHON® , WEBOBJECTS® , etc. The mail server may
utilize communication protocols such as Internet Message
Access Protocol (IMAP) , Messaging Application Program
ming Interface (MAPI) , MICROSOFT® exchange , Post
Office Protocol (POP) , Simple Mail Transfer Protocol
(SMTP) , or the like . In some embodiments , the computer
system 400 may implement a mail client stored program
component . The mail client may be a mail viewing appli
cation , such as APPLE? MAIL , MICROSOFT® ENTOU
RAGE? , MICROSOFT® OUTLOOK® , MOZILLAR
THUNDERBIRD® , etc.
[0086] Furthermore , one or more computer - readable stor
age media may be utilized in implementing embodiments
consistent with the present invention . A computer - readable
storage medium refers to any type of physical memory on
which information or data readable by a processor may be
stored . Thus , a computer - readable storage medium may
store instructions for execution by one or more processors ,
including instructions for causing the processor (s) to per
form steps or stages consistent with the embodiments
described herein . The term “ computer - readable medium ”
should be understood to include tangible items and exclude
carrier waves and transient signals , i.e. , non - transitory .
Examples include Random Access Memory (RAM) , Read
Only Memory (ROM) , volatile memory , non - volatile
memory , hard drives , Compact Disc (CD) ROMs , Digital
Video Disc (DVDs) , flash drives , disks , and any other
known physical storage media .
[0087] A description of an embodiment with several com
ponents in communication with each other does not imply
that all such components are required . On the contrary a
variety of optional components are described to illustrate the
wide variety of possible embodiments of the invention .
[0088] When a single device or article is described herein ,
it will be readily apparent that more than one device / article
(whether or not they cooperate) may be used in place of a
single device / article . Similarly , where more than one device
or article is described herein (whether or not they cooperate) ,
it will be readily apparent that a single device / article may be
used in place of the more than one device or article or a
different number of devices / articles may be used instead of
the shown number of devices or programs . The functionality
and / or the features of a device may be alternatively embod
ied by one or more other devices which are not explicitly
described as having such functionality / features . Thus , other
embodiments of the invention need not include the device
itself .
[0089] The specification has described a method and a
system for dynamically testing a product and a process of a
production environment in a virtual testing environment .
The illustrated steps are set out to explain the exemplary

REFERRAL NUMERALS

[0091]

Reference
Number Description
100
101
103
105
107
108
109
111
113
115
203
205
207
209
211
213
215
221
223
225
227
229
231
233
235
237
239
400
401

Architecture
Real production environment
Virtual testing environment
Product
Testing system
Virtual product
Processor
I / O interface
Memory
Shared repository
Data
Modules
Production data
Scenario data
Virtual process and product data
Test result data
Other data
Retrieving module
Scenario generating module
Creating module
Testing module
Display module
Other modules
Exemplary warehouse
Exemplary items in an exemplary warehouse
Exemplary conveyor belt
Exemplary shelves
Exemplary computer system
I / O Interface of the exemplary computer system

US 2020/0285565 A1 Sep. 10 , 2020
10

-continued

Reference
Number Description
402
403
404
405
406
407
408
409
411
412

Processor of the exemplary computer system
Network interface
Storage interface
Memory of the exemplary computer system
User interface
Operating system
Web browser
Communication network
Input devices
Output devices

What is claimed is :
1. A testing system for dynamically testing a product and

a process of a production environment in a virtual testing
environment , the testing system comprises :

a processor ; and
a memory communicatively coupled to the processor ,

wherein the memory stores the processor - executable
instructions , which , on execution , causes the processor
to :

retrieve production data related to each of one or more
production activities corresponding to one or more
events executing in real - time , wherein each of the one
or more production activities are related to the product
and the process of the production environment ;

generate each of one or more scenarios of the production
environment in the virtual testing environment in real
time , based on sequencing of each of the one or more
events ;

create , in the virtual testing environment , a virtual process
and a virtual product corresponding to the process and
the product of the production environment , respec
tively , based on at least the one or more events , the
generated one or more scenarios occurring due to the
one or more events , and historical data obtained from
a shared repository associated with the testing system ;
and

re - play each of the one or more production activities in the
virtual testing environment for testing the virtual pro
cess and the virtual product .

2. The testing system as claimed in claim 1 , wherein to
retrieve the production data , the processor is configured to :

obtain a snapshot of the production data ;
assign a value to a data cleaning flag associated with each

of the one or more production activities , wherein the
value is set as “ False ” for each of the one or more
production activities that are present in a list of pre
defined production activities , and the value is set as
“ True ” for each of the one or more production activities
that are to be included to the list of the predefined
production activities ; and

create a copy of the production data corresponding to each
of the one or more production activities associated with
the data cleaning flag assigned with the value “ False ”
in a first database associated with the testing system
and the production data corresponding to each of the
one or more production activities associated with the
data cleaning flag assigned with the value “ True ” in a
second database associated with the testing system .

3. The testing system as claimed in claim 2 , wherein the
processor is further configured to update , dynamically , the

value of the data cleaning flag associated with the one or
more production activities from “ True ” to “ False ” , when the
processor detects the one or more production activities
corresponding to the one or more events , and sequence of
the one or more events , using pre - trained machine learning
techniques , based on analysis of historical data obtained
from a shared repository associated with the testing system
and the production data .

4. The testing system as claimed in claim 3 , wherein the
processor is further configured to migrate the one or more
production activities from a second database to a first
database upon updating the value of the data cleaning flag
associated with the one or more production activities from
“ True ” to “ False ” , wherein the first database comprises
production data corresponding to each of the one or more
production activities associated with the data cleaning flag
assigned with the value “ False ” and the second database
comprises production data corresponding to each of the one
or more production activities associated with the data clean
ing flag assigned with the value “ True ” .

5. The testing system as claimed in claim 1 , wherein the
production data comprises names of the one or more pro
duction activities and the one or more events , identifiers
(IDs) associated with the one or more production activities ,
time stamp associated with the one or more production
activities , and quantity related to the one or more production
activities .

6. The testing system as claimed in claim 1 , wherein the
processor performs sequencing of the one or more events
based on one or more of : a time stamp associated with the
one or more production activities and one or more unique
identifiers associated with the one or more production activi
ties , wherein the sequence of the one or more events
comprises at least one of a correct sequence , a partially
correct sequence and an incorrect sequence .

7. The testing system as claimed in claim 6 , wherein ,
when the processor determines the sequence of the one or
more events to be the correct sequence , the processor fetches
a scenario corresponding to the one or more events from a
shared repository associated with the testing system .

8. The testing system as claimed in claim 6 , wherein ,
when the processor determines the sequence of the one or
more events to be the partially correct sequence , the pro
cessor performs at least one of , generating request for
retransmission of production data for sequencing the one or
more events and ignoring the one or more events that are
redundant in the sequence of the one or more events ; and
when the processor determines the sequence of the one or
more events to be the incorrect sequence , the processor
self - learns by analysing historical data obtained from a
shared repository associated with the testing system and the
one or more production activities of the production envi
ronment , and creates data required for sequencing the one or
more events .

9. The testing system as claimed in claim 1 , wherein to
create the virtual process and the virtual product , the pro
cessor is further configured to :

receive one or more images associated with the one or
more production activities implemented in the produc
tion environment , wherein the one or more images
comprise one or more objects , and wherein the one or
more images facilitate simulation of each of the one or
more production activities in the virtual testing envi
ronment ; and

US 2020/0285565 A1 Sep. 10 , 2020
11

replicate a position and a layout of each of the one or more
objects present in the one or more images , in the virtual
testing environment .

10. The testing system as claimed in claim 1 , wherein for
testing , the processor is configured to :

provide the production data to the virtual product ;
trigger each of one or more virtual applications sequen

tially to perform the corresponding one or more pro
duction activities in accordance with the production
data , until the virtual process is completely simulated ,
wherein the one or more virtual applications are
installed in the virtual product for implementing the
virtual process ; and

receive a response from each of the one or more virtual
applications sequentially , wherein each response is a
test result obtained upon simulating the virtual process .

11. The testing system as claimed in claim 1 , further
comprising facilitating at least one selective action of play ,
pause , restart , and stop the testing of the virtual process and
the virtual product .

12. A method of dynamically testing a product and a
process of a production environment in a virtual testing
environment , the method comprising :

retrieving , by a testing system , production data related to
each of one or more production activities correspond
ing to one or more events executing in real - time ,
wherein each of the one or more production activities
are related to the product and the process of the
production environment ;

generating , by the testing system , each of one or more
scenarios of the production environment in the virtual
testing environment in real - time , based on sequencing
of each of the one or more events ;

creating , in the virtual testing environment , by the testing
system , a virtual process and a virtual product corre
sponding to the process and the product of the produc
tion environment , respectively , based on at least the one
or more events , the generated scenarios occurring due
to the one or more events , and historical data obtained
from a shared repository associated with the testing
system ; and

re - playing , by the testing system , each of the one or more
production activities in the virtual testing environment
for testing the virtual process and the virtual product .

13. The method as claimed in claim 12 , wherein to
retrieving the production data comprises :

obtain a snapshot of the production data ;
assign a value to a data cleaning flag associated with each

of the one or more production activities , wherein the
value is set as “ False ” for each of the one or more
production activities that are present in a list of pre
defined production activities , and the value is set as
“ True ” for each of the one or more production activities
that are to be included to the list of the predefined
production activities ; and

create a copy of the production data corresponding to each
of the one or more production activities associated with
the data cleaning flag assigned with the value “ False ”
in a first database associated with the testing system
and the production data corresponding to each of the
one or more production activities associated with the
data cleaning flag assigned with the value “ True ” in a
second database associated with the testing system .

14. The method as claimed in claim 13 , further compris
ing dynamically updating the value of the data cleaning flag
associated with the one or more production activities from
“ True ” to “ False ” , upon detecting the one or more produc
tion activities corresponding to the one or more events , and
sequence of the one or more events , using pre - trained
machine learning techniques , based on analysis of historical
data obtained from a shared repository associated with the
testing system and the production data , and

migrating the one or more production activities from a
second database to a first database upon updating the
value of the data cleaning flag associated with the one
or more production activities from “ True ” to “ False ” ,
wherein the first database comprises production data
corresponding to each of the one or more production
activities associated with the data cleaning flag
assigned with the value “ False ” and the second data
base comprises production data corresponding to each
of the one or more production activities associated with
the data cleaning flag assigned with the value “ True ” .

15. The method as claimed in claim 12 , wherein the
sequencing of the one or more events is performed based on
one or more of : a time stamp associated with the one or more
production activities and one or more unique identifiers
associated with the one or more production activities ,
wherein the sequence of the one or more events comprises
at least one of a correct sequence , a partially correct
sequence and an incorrect sequence .

16. The method as claimed in claim 15 , wherein , upon
determination of the sequence of the one or more events to
be the correct sequence , fetching a scenario corresponding to
the one or more events from a shared repository associated
with the testing system .

17. The method as claimed in claim 15 , wherein , upon
determination of the sequence of the one or more events to
be the partially correct sequence , performing at least one of ,
generating request for retransmission of production data for
sequencing the one or more events and ignoring the one or
more events that are redundant in the sequence of the one or
more events ; and upon determination of the sequence of the
one or more events to be the incorrect sequence , performing
self - learning by analysing historical data obtained from a
shared repository associated with the testing system and the
one or more production activities of the production envi
ronment , and creates data required for sequencing the one or
more events .

18. The method as claimed in claim 12 , wherein the
virtual process and the virtual product are created by :

receiving one or more images associated with the one or
more production activities implemented in the produc
tion environment , wherein the one or more images
comprise one or more objects , and wherein the one or
more images facilitate simulation of each of the one or
more production activities in the virtual testing envi
ronment ; and

replicating a position and a layout of each of the one or
more objects present in the one or more images , in the
virtual testing environment .

19. The method as claimed in claim 12 , wherein the
testing is performed by :

providing the production data to the virtual product ;
triggering each of one or more virtual applications

sequentially to perform the corresponding one or more
production activities in accordance with the production

US 2020/0285565 A1 Sep. 10 , 2020
12

data , until the virtual process is completely simulated ,
wherein the one or more virtual applications are
installed in the virtual product for implementing the
virtual process ; and

receiving a response from each of the one or more virtual
applications sequentially , wherein each response is a
test result obtained upon simulating the virtual process .

20. A non - transitory computer readable medium for
dynamically testing a product and a process of a production
environment in a virtual testing environment , having stored
thereon one or more instructions that when processed by at
least one processor causes a testing system to perform
operations comprising :

retrieving a production data related to each of one or more
production activities corresponding to one or more
events executing in real - time , wherein each of the one

or more production activities are related to the product
and the process of the production environment ;

generating each of one or more scenarios of the produc
tion environment in the virtual testing environment in
real - time , based on sequencing of each of the one or
more events ;

creating a virtual process and a virtual product corre
sponding to the process and the product of the produc
tion environment , respectively , based on at least the one
or more events , the generated scenarios occurring due
to the one or more events , and historical data obtained
from a shared repository associated with the testing
system ; and

re - playing each of the one or more production activities in
the virtual testing environment for testing the virtual
process and the virtual product .

