
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
18

7 
04

2
B

1
*EP001187042B1*
(11) EP 1 187 042 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
15.10.2003 Bulletin 2003/42

(21) Application number: 01120244.7

(22) Date of filing: 07.08.1998

(51) Int Cl.7: G06F 17/50

(54) A method of designing FPGAs for dynamically reconfigurable computing

Verfahren für Entwurf von FPGAs für dynamisch rekonfigurierbares Rechnen

Procédé de conception de FPGA de calcul reconfigurable dynamiquement

(84) Designated Contracting States:
DE FR GB

(30) Priority: 28.08.1997 US 919531

(43) Date of publication of application:
13.03.2002 Bulletin 2002/11

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
98939275.8 / 1 008 069

(73) Proprietor: Xilinx, Inc.
San Jose, California 95124 (US)

(72) Inventor: Guccione, Steven, A
Austin, TX 78727 (US)

(74) Representative: Freeman, Jacqueline Carol
W.P. THOMPSON & CO.
55 Drury Lane
London WC2B 5SQ (GB)

(56) References cited:
EP-A- 0 645 723 WO-A-94/10627
US-A- 5 499 192

• LECHNER E ET AL: "The Java Environment for
Reconfigurable Computing"
FIELD-PROGRAMMABLE LOGIC AND
APPLICATIONS. 7TH INTERNATIONAL
WORKSHOP, FPL ’97. PROCEEDINGS,
FIELD-PROGRAMMABLE LOGIC AND
APPLICATIONS. 7TH INTERNATIONAL
WORKSHOP, FPL ’97. PROCEEDINGS,
LONDON, UK, 1-3 SEPT. 1997, pages 284-293,
XP002086682 ISBN 3-540-63465-7, 1997, Berlin,
Germany, Springer-Verlag, Germany



EP 1 187 042 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to the
field of field programmable gate arrays (FPGAs) and
more particularly to a method of configuring an FPGA
using a host processor and a high level language com-
piler.

Description of the Background Art

[0002] In recent years, there has been an increasing
interest in reconfigurable logic based processing. These
systems use dynamically reconfigurable logic, such as
FPGAs that can be reconfigured while in use, to imple-
ment algorithms directly in hardware, thus increasing
performance.
[0003] By one count, at least 50 different hardware
platforms (e.g., computers) have been built to investi-
gate this novel approach to computation. Unfortunately,
software has lagged behind hardware in this area. Most
systems today employ traditional circuit design tech-
niques, then interface these circuits to a host computer
using standard programming languages.
[0004] Work done in high-level language support for
reconfigurable logic based computing currently falls into
two major approaches. The first approach is to use a
traditional programming language in place of a hard-
ware description language. This approach still requires
software support on the host processor. The second ma-
jor approach is compilation of standard programming
languages to reconfigurable logic coprocessors. These
approaches typically attempt to detect computationally
intensive portions of code and map them to the coproc-
essor. These compilation tools, however, are usually
tied to traditional placement and routing back-ends and
have relatively slow compilation times. For example, the
document WO-A-94 10627 (GlGA OPERATIONS
CORP; TAYLOR BRAD (US); DOWLING ROBERT
(US)), published 11 May 1994, discloses a system of
programmable logic devices (PLDs) for implementing a
program in hardware, wherein the host C compiler com-
piles host C source code into executable binary host
code whereas the separate PLD C source code which
contains the placement and routing information must be
compiled by the PLD C compiler to configuration data
suited to run on a PLD. They also provide little or no run-
time support for dynamic reconfiguration.
[0005] In general, today's tools are based on static cir-
cuit design tools originally developed for use in circuit
board and integrated circuit design. The full potential of
dynamic logic is not supported by such static design
tools.

SUMMARY OF THE INVENTION

[0006] According to the present invention there is pro-
vided: A method of configuring a field programmable
gate array (FPGA) (106) for dynamically reconfigurable
computing, the method comprising the steps of:

a) programming the host processor with instruc-
tions (201) in a high level language;
b) providing a compiler (203) for the high level pro-
gramming language running on the host processor
for generating executable code (204) in response
to the instructions (201), the executable code (204)
including compiled placement and routing informa-
tion; and
c) connecting the host processor to the FPGA (106)
for dynamic reconfiguration programming of the FP-
GA (106) by the host processor via the executable
code (204).

[0007] The high level language may be Java. The in-
vention may comprise the further step of instantiating
elements from a library of elements compatible with the
compiler. The library may comprise combinational logic
elements, or flip-flops or latch elements.
[0008] The method of design for reconfigurable com-
puting (MDRC) of the invention represents a novel ap-
proach to hardware/software co-design for reconfigura-
ble logic based coprocessors. A system and method
may be provided for configuring an FPGA directly from
a host processor. It is not necessary to store the config-
uration data in a file, although it can be so stored if de-
sired.
[0009] Therefore, this method is particularly suited for
use with FPGAs such as reconfigurable coprocessors,
which are often reconfigured "on the fly", i.e., without
overpowering the FPGA and sometimes while reconfig-
uring only a portion of the FPGA . A description of the
desired functionality for the FPGA is entered using the
MDRC libraries and a standard high level language such
as Java™ (Java is a trademark of Sun Microsystems,
Inc.). Configuration, reconfiguration and host interface
software for reconfigurable coprocessors us supported
in a single piece of code.
[0010] Since MDRC does not make use of the tradi-
tional placement and routing approach to circuit synthe-
sis, compilation times are significantly shorter than with
prior art methods, being on the order of seconds. This
high-speed compilation provides a development envi-
ronment which closely resembles those used for mod-
ern software development.
[0011] The MDRC provides a simple alternative to tra-
ditional Computer Aided Design (CAD) tool based de-
sign. In the preferred embodiment, Java libraries are
used to program an FPGA device. This method has the
following benefits:

Very fast compilation times Because standard pro-

1 2



EP 1 187 042 B1

3

5

10

15

20

25

30

35

40

45

50

55

gramming language compilers are used by this ap-
proach, compilation is as fast as the host native
compiler. With current Java compilers such as Mi-
crosoft's J++ 1.1 compiler compiling over 10,000
lines of code per second, compiling circuits built us-
ing MDRC will take on the order of a second to com-
plete. This is in contrast to the hours of turnaround
time in existing CAD tools.
Run time parameterization of circuits . Perhaps the
most interesting feature of MDRC is its ability to do
run-time parameterization of circuits. For instance,
a constant adder, using a constant value known on-
ly at run-time, can be configured by MDRC during
execution. The size of a given component may also
be specified dynamically. A 5-bit adder or a 9-bit
counter, for instance, can be configured at run-time.
This feature has uses in areas such as adaptive fil-
tering.
Object-Oriented Hardware Design . Because Java
is an object oriented language (i.e., a structured lan-
guage in which elements are described in terms of
objects and the connections between these ob-
jects), hardware designed in this language can
make use of object-oriented support. Libraries con-
structed with MDRC may be packaged as objects
and manipulated and reused like any standard soft-
ware component.
Support for dynamic reconfiguration . The ability to
dynamically configure a circuit automatically brings
with it the ability to do dynamic reconfiguration. Us-
es for this capability are beginning to appear. For
example, a portion of a dynamically reconfigurable
FPGA could be configured as a multiplier that mul-
tiplies an input value by a constant, the constant be-
ing a scaling factor in a signal processing applica-
tion. Using dynamic reconfiguration, this scaling
factor could be changed without interrupting the
function of other portions of the configured FPGA.
Standard software development environment. Us-
ing a standard programming language (in this case,
Java) permits standard software environments to
be used by circuit developers. In other words, wide-
ly available, off-the-shelf compilers such as Micro-
soft's J++ 1.1 compiler could be used to develop cir-
cuits to be implemented in an FPGA. This capability
has two immediate advantages. First, the user can
continue to use whichever tool he or she is already
familiar with. Secondly, and perhaps most impor-
tantly, FPGA design becomes a software develop-
ment effort open to programmers. This capability
could greatly expand the existing base of FPGA us-
ers.
Simplified host interfacing. MDRC requires a host
processor to be available for executing the Java
code and supplying configuration data to the FPGA.
This processor/FPGA combination is a powerful co-
processing environment currently being investigat-
ed by researchers. One barrier to use of these sys-

tems is the need to interface the FPGA hardware
design with the host software design. MDRC merg-
es the software and hardware design activities into
a single activity, eliminating these interfacing is-
sues.
Flexibility. Because MDRC comprises a library used
by a standard programming language, it may be ex-
tended, even by users. This capability provides a
level of flexibility unavailable in a static design tool.
Users are free to provide new libraries and library
elements, or even accessories such as custom
graphical user interfaces.
Standard device interface . One way to think of
MDRC is not so much as a tool in itself, but as a
standard interface to the FPGA device. This inter-
face may be used for FPGA configuration, or it may
be used to build other tools. MDRC may even be
used as the basis for traditional CAD software such
as placement and routing tools. Another way to
think of MDRC is as the "assembly language" of the
FPGA.
Guaranteed "safe" circuits. MDRC provides an ab-
straction (a software construct that provides a rep-
resentation, often simplified, of the hardware) which
makes it impossible to produce circuits with conten-
tion problems. This makes it impossible when using
MDRC to accidentally damage or destroy the device
due to a bad configuration. Such protection is highly
desirable in a dynamic programming environment
like MDRC, where a programming error could oth-
erwise result in permanently damaged hardware.
(An incorrectly configured FPGA may inadvertently
short power and ground together, destroying the de-
vice.) A side effect of this feature is that the MDRC
may be used as an implementation vehicle for the
emerging field of genetic algorithms.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The aforementioned objects and advantages
of the present invention, as well as additional objects
and advantages thereof, will be more fully understood
hereinafter as a result of a detailed description of a pre-
ferred embodiment when taken in conjunction with the
following drawings.

Figure 1 is a block diagram illustrating the prior art
design flow for design of a circuit implemented in an
FPGA using a reconfigurable logic coprocessor.
Figure 2 is a block diagram illustrating the design
flow in the present invention.
Figure 3 is a diagram of a level 1 logic cell abstrac-
tion of the present invention.
Figure 3A is a diagram of an XC6200 logic cell rep-
resented by the abstraction of Figure 3.
Figure 4 is a diagram of a multi-bit counter accord-
ing to one embodiment of the invention.
Figure 5 is an element definition code listing for the

3 4



EP 1 187 042 B1

4

5

10

15

20

25

30

35

40

45

50

55

basic elements of the embodiment of Figure 4.
Figure 6A is a diagram of a toggle flip-flop cell of the
embodiment of Figure 4.
Figure 6B is a diagram of a carry logic cell of the
embodiment of Figure 4.
Figure 7 is a configuration code listing for the coun-
ter of Figure 4.
Figure 8A is a run time code for the counter of Figure
4.
Figure 8B is an execution trace for the counter of
Figure 4.

DETAILED DESCRIPTION OF THE DRAWINGS

[0013] Design of a circuit implemented in an FPGA
using a reconfigurable logic coprocessor currently re-
quires a combination of two distinct design paths, as
shown in prior art Figure 1. The first and perhaps most
significant portion of the effort involves circuit design us-
ing traditional CAD tools. The design path for these CAD
tools typically comprises entering a design 101 using a
schematic editor or hardware description language
(HDL), using a netlister 102 to generate a netlist 103 for
the design, importing this netlist into an FPGA place-
ment and routing tool 104, which finally generates a bit-
stream file 105 of configuration data which is used to
configure FPGA 106.
[0014] Once the configuration data has been pro-
duced, the next task is to provide software to interface
the host processor to the FPGA. The user enters user
code 107 describing the user interface instructions,
which is then compiled using compiler 108 to produce
executable code 109. The instructions in executable
code 109 are then used by the processor to communi-
cate with the configured FPGA 106. It is also known to
use executable code 109 to control the configuration of
FPGA 106 with bitstream file 105. This series of tasks
is usually completely decoupled from the task of design-
ing the circuit and hence can be difficult and error-prone.
[0015] In addition to the problems of interfacing the
hardware and software in this environment, there is also
the problem of design cycle time. Any change to the cir-
cuit design requires a complete pass through the hard-
ware design tool chain (101-106 in Figure 1). This proc-
ess is time consuming, with the place and route portion
of the chain typically taking several hours to complete.
[0016] Finally, this approach provides no support for
reconfiguration. The traditional hardware design tools
provide support almost exclusively for static design. It is
difficult to imagine constructs to support run-time recon-
figuration in environments based on schematic or HDL
design entry.
[0017] In contrast, the MDRC environment comprises
a library of elements which permit logic and routing to
be specified and configured in a reconfigurable logic de-
vice. By making calls to these library elements, circuits
may be configured and reconfigured. Additionally, host
code may be written to interact with the reconfigurable

hardware. This permits all design data to reside in a sin-
gle system, often in a single Java source code file.
[0018] In addition to greatly simplifying the design
flow, as shown in Figure 2, the MDRC approach also
tightly couples the hardware and software design proc-
esses. Design parameters for both the reconfigurable
hardware and the host software are shared. This cou-
pling provides better support for the task of interfacing
the logic circuits to the software.
[0019] As shown in Figure 2, entering and compiling
an FPGA circuit using the MDRC method requires many
fewer steps than in the prior art method of Figure 1. User
code 201, in this embodiment Java code,.is entered.
This-code includes not just instructions describing the
user interface and the configuration process, but also a
high-level description of the desired FPGA circuit. This
circuit description comprises calls to library elements
(function calls) in MDRC libraries 202. In one embodi-
ment, these cells can be parameterized. Java compiler
203 combines the circuit descriptions from MDRC librar-
ies 202 with the instructions from user code 201 to gen-
erate executable code 204. Executable code 204 in-
cludes not only user interface instructions, as in execut-
able code 109 of Figure 1, but also configuration instruc-
tions. When using MDRC, the bitstream need not be
stored as a file; if desired the configuration data can be
directly downloaded to FPGA 106 by executable code
204. This technique is particularly useful in reconfigura-
ble computing, i.e., when using a reconfigurable FPGA
as a coprocessor to perform a series of different com-
putations for a microprocessor.

The MDRC Abstraction

[0020] MDRC takes a layered approach to represent-
ing the reconfigurable logic. At the lowest (most de-
tailed) layer, called Level 0, MDRC supports all acces-
sible hardware resources in the reconfigurable logic. Ex-
tensive use of constants and other symbolic data makes
Level 0 usable, in spite of the necessarily low level of
abstraction.
[0021] The current platform for the MDRC environ-
ment is the XC6200DS Development System manufac-
tured by Xilinx, Inc. the assignee of the present inven-
tion. The XC6200DS Development System comprises
a PCI board containing a Xilinx XC6216 FPGA. In the
XC6200 family of FPGAs, Level 0 support comprises
abstractions for the reconfigurable logic cells and all
routing switches, including the clock routing. The code
for Level 0 is essentially the bit-level information in the
XC6200 Data Sheet coded into Java. (The "XC6200 Da-
ta Sheet" as referenced herein comprises pages 4-251
to 4-286 of the Xilinx 1996 Data Book entitled "The Pro-
grammable Logic Data Book", published September
1996, available from Xilinx, Inc., 2100 Logic Drive, San
Jose, California 95124. (Xilinx, Inc., owner of the copy-
right, has no objection to copying these and other pages
referenced herein but otherwise reserves all copyright

5 6



EP 1 187 042 B1

5

5

10

15

20

25

30

35

40

45

50

55

rights whatsoever.)
[0022] While Level 0 provides complete support for
configuring all aspects of the device, it is very low level
and may be too tedious and require too much special-
ized knowledge of the architecture for most users. Al-
though this layer is always available to the programmer,
it is expected that Level 0 support will function primarily
as the basis for the higher layers of abstraction. In this
sense, Level 0 is the "assembly language" of the MDRC
system.
[0023] Above the Level 0 abstraction is the Level 1
abstraction. This level of abstraction permits simpler ac-
cess to logic definition, clock and clear routing, and the
host interface.
[0024] The most significant portion of the Level 1 ab-
straction is the logic cell definition. Using the logic cell
definition, one logic cell in the XC6200 device can be
configured as a standard logic operator. In one embod-
iment, AND, NAND, OR, NOR, XOR, XNOR, BUFFER
and INVERTER combinational logic elements are sup-
ported. These elements may take an optional registered
output. Additionally, a D flip-flop and a register logic cell
are defined. In one embodiment, a latch cell is defined
instead of or in addition to the flip-flop element. All of
these logic operators are defined exclusively using
MDRC level 0 operations, and hence are easily extend-
ed.
[0025] Figure 3 is a diagram of the Level 1 logic cell
abstraction. Outputs Nout, Eout, Sout, Wout correspond
to the outputs of the same names in the XC6200 logic
cell, as pictured on page 4-256 of the XC6200 data
sheet. The XC6200 logic cell is also shown in Figure 3A
herein. Input Sin of Figure 3 corresponds to input S of
the logic cell of Figure 3A, input Win corresponds to in-
put W, Nin to N, and Ein to E. The Level 1 abstraction
shown in Figure 3 is a simplified representation of the
XC6200 logic block. In this embodiment, for example,
inputs S4, W4, N4, and E4 are not supported in the Level
1 abstraction, although they are supported in the Level
0 abstraction. The Logic block and flip-flop shown in Fig-
ure 3 signify the circuits available in one XC6200 logic
cell. Inputs A, B, and SEL in Figure 3 (corresponding to
inputs X1, X2, and X3 of Figure 3A) are the inputs to the
Logic block; they can be mapped to any of logic cell in-
puts Sin, Win, Nin, and Ein. The circuits available in one
logic cell differ in other FPGA devices.
[0026] In addition to the logic cell abstraction, the
clock routing is abstracted. Various global and local
clock signals (such as Clk and Clr in Figure 3) may be
defined and associated with a given logic cell.
[0027] A third portion of the MDRC Level 1 abstraction
is the register interface. In the XC6200 device, columns
of cells may be read or written via the bus interface, the
columns of cells thus forming read/write registers. The
Register interface allows registers to be constructed and
accessed symbolically.

An Example

[0028] Figure 4 shows a simple counter designed for
an XC6200 device, based on toggle flip-flops 402 and
carry logic 401 using the Level 1 abstraction. In less than
30 lines of code, the circuit is described and configured,
and clocking and reading of the counter value is per-
formed. In addition, the structure of this circuit permits
it to be easily packaged as a parameterized object, with
the number of bits in the counter being set via a user-
defined parameter. Such an object-based approach
would permit counters of any size to be specified and
placed at any location in the XC6200 device. Once im-
plemented, the counter of Figure 4 could also be placed
in a library of parameterized macrocells.
[0029] The implementation process is fairly simple.
First, the logic elements required by the circuit are de-
fined. These circuit element definitions are abstractions
and are not associated with any particular hardware im-
plementation.
[0030] Once these logic elements are defined, they
may be written to the hardware, configuring the circuit.
Once the circuit is configured, run time interfacing of the
circuit, usually in the form of reading and writing regis-
ters and clocking the circuit, is performed. If the appli-
cation demands it, the process may be repeated, with
the hardware being reconfigured as necessary.
[0031] The counter example contains nine basic ele-
ments. Five basic elements provide all necessary sup-
port circuitry to read, write, clock and clear the hardware.
The remaining basic elements are used to define the
counter circuit itself. These elements are best seen by
looking at Figure 5 in conjunction with Figure 4. Figure
5 gives the MDRC code for describing the basic ele-
ments. The pci6200 object passed to each of the two
register definitions is the hardware interface to the
XC6200DS PCI board.
[0032] The support circuitry includes two registers
which simply interface the circuit to the host software.
These two registers are used to read the value of the
counter ("Register counterReg" in Figure 5) and to tog-
gle a single flip-flop 404, producing the local clock
("Register clockReg" in Figure 5). To support the flip-
flops in the XC6200 device, clock and clear (reset) in-
puts must also be defined. The global clock ("ClockMux
globalClock" in Figure 5) is the system clock for the de-
vice and must be used as the clock input to any writable
register. In this circuit, the flip-flop which provides the
software-controlled local clock must use the global
clock. The local clock ("ClockMux localClock" in Figure
5) is the output of the software controlled clock, and
must be routed to the toggle flip-flops which make up
the counter. Finally, all flip-flops in the XC6200 device
need a clear input ("ClearMux clear" in Figure 5). In this
embodiment, the clear input to all flip-flops is simply set
to logic zero (GND).
[0033] The first logic element in the counter circuit is
the clock ("Logic clock" in Figure 5). This element is just

7 8



EP 1 187 042 B1

6

5

10

15

20

25

30

35

40

45

50

55

a single bit register 404 (Figure 4) which is writable by
the software. Toggling register 404 via software control
produces clock Local_clock for the counter circuit. The
next counter circuit element is a toggle flip-flop such as
flip-flop 402, ("Logic tff" in Figure 5). This flip-flop is de-
fined as having an input coming from the west. (Accord-
ing to the standard XC6200 data sheet nomenclature,
the names Logic.EAST and Ein denote an east-bound
signal, i.e., a signal coming from the west.) The toggle
flip-flop element provides the state storage for the coun-
ter. Next, the carry logic element 401 for the counter
("Logic carry" in Figure 5) is simply an AND-gate with
inputs from the previous stage carry logic and the output
of the current stage toggle flip-flop. The carry element
generates the "toggle" signal for the next stage of the
counter. Figures 6A and 6B are graphical representa-
tions of the flip-flop and carry logic cells, respectively, in
an XC6200 device. Finally, a logical "one" or VCC cell
("Logic one" in Figure 5, block 403 in Figure 4) is imple-
mented for the carry input to the first stage of the coun-
ter.
[0034] Once this collection of abstract elements is de-
fined, they may be instantiated anywhere in the XC6200
cell array. This instantiation is accomplished by making
a call to the write() function associated with each object.
This function takes a column and row parameter which
define the cell in the XC6200 device to be configured.
Additionally, the hardware interface object is passed as
a parameter. In this case, all configuration is done to
pci6200, a single XC6200DS PCF board.
[0035] An example of this instantiation is shown in
Figure 7, which instantiates the elements for the counter
of Figure 4. The code in Figure 7 performs all necessary
configuration. In the for() loop, the carry cells (401 in
Figure 4) are in one column with the toggle flip-flops tff
(402 in Figure 4) in the next column. A local clock and
a clear are attached to each toggle flip-flop tff. The rel-
ative location of these cells is shown in Figure 4.
[0036] Below the for() loop, a constant "1" is set as
the input to the carry chain (403 in Figure 4). Next, the
software-controlled clock (Local_clock in Figure 4) is
configured. This is the clock object, with its localClock
routing attached to the toggle flip-flops tff of the counter.
Finally, the global clock is used to clock the software-
controlled local clock. In some embodiments, the clock
and clear basic elements are not required; in this em-
bodiment their presence is necessary to support the
XC6200 architecture.
[0037] Once the circuit is configured, it is a simple
matter to read and write the Register objects via the get
() and set() functions, respectively. In Figure 8A, the
clock is toggled by alternately writing "0" and "1" to the
clock register (404 in Figure 4). The counter register (not
shown) is used to read the value of the counter (outputs
COUNT[0], COUNT[1], COUNT [2], etc.). Figure 8B
shows an actual trace of the execution of this code run-
ning on the XC6200DS development system.

Conclusions

[0038] While this example is a simple one for demon-
stration purposes, it makes use of all the features of
MDRC. These features include register reads and
writes, as well as features such as software-driven local
clocking. Other more complex circuits have also been
developed using MDRC. More complex circuits are built
using the same basic features; the primary difference is
in the size of the code.
[0039] MDRC provides a simple, fast, integrated tool
for reconfigurable logic based processing. MDRC is cur-
rently a manual tool, since it is desirable for the program-
mer to exercise tight control over the placement and
routing of circuits for reconfigurable computing. Howev-
er, MDRC provides very fast compilation times in ex-
change for the manual design style. The compile times
necessary to produce these circuits and run-time sup-
port code is on the order of seconds, many orders of
magnitude faster than the design cycle time of traditional
CAD tools. This unusual speed permits development in
an environment that is similar to a modern integrated
software development environment. Additionally, the
object-oriented nature of Java permits libraries of pa-
rameterized cells to be built. This feature could signifi-
cantly increase the productivity of MDRC users.
[0040] MDRC may be used as a basis for a traditional
graphical CAD tool. This approach would be useful for
producing static circuits.
[0041] The above text describes the MDRC in the
context of FPGAs used for dynamically reconfigurable
computing, such as the Xilinx XC6200 family of FPGAs.
However, the invention can also be applied to other FP-
GAs and other software programmable ICs not used for
dynamically reconfigurable computing.
[0042] Those having skill in the relevant arts of the
invention will now perceive various modifications and
additions which may be made as a result of the disclo-
sure herein. Accordingly, all such modifications and ad-
ditions are deemed to be within the scope of the inven-
tion.

Claims

1. A method of configuring a field programmable gate
array FPGA (106) for dynamically reconfigurable
computing, the method comprising the steps of:

a) programming the host processor with in-
structions (201) in a high level language;
b) providing a compiler (203) for the high level
programming language running on the host
processor for generating executable code
(204) in response to the instructions (201), the
executable code (204) including compiled
placement and routing information; and
c) connecting the host processor to the FPGA

9 10



EP 1 187 042 B1

7

5

10

15

20

25

30

35

40

45

50

55

(106) for dynamic reconfiguration programming
of the FPGA (106) by the host processor via the
executable code (204).

2. The method recited in Claim 1 wherein the high lev-
el language is Java.

3. The method recited in Claim 1 or 2 further compris-
ing the step of:

d) instantiating elements from a library (202) of
elements compatible with the compiler (203).

4. The method recited in Claim 3 wherein the library
(202) comprises combinational logic elements
(401).

5. The method recited in Claim 3 wherein the library
(202) comprises flip-flop elements (402,404).

6. The method recited in Claim 3 wherein the library
(202) comprises latch elements.

Patentansprüche

1. Verfahren zum Konfigurieren einer frei program-
mierbaren logischen Anordnung FPGA (106) zum
dynamisch umkonfigurierbaren Rechnen, wobei
das Verfahren die folgenden Schritte umfasst:

a) Programmieren des Host-Prozessors mit
Anweisungen (201) in einer höheren Program-
miersprache;
b) Bereitstellen eines Compilers (203) für die
höhere Programmiersprache, der auf dem
Host-Prozessor läuft, um ablauffähigen Code
(204) als Reaktion auf die Anweisungen (201)
zu erzeugen, wobei der ablauffähige Code
(204) kompilierte Platzierungs- und Leitwegin-
formationen beinhaltet; und
c) Verbinden des Host-Prozessors mit der FP-
GA (106) für eine dynamische Umkonfigurati-
onsprogrammierung der FPGA (106) durch
den Host-Prozessor über den ablauffähigen
Code (204).

2. Verfahren nach Anspruch 1, bei dem die höhere
Programmiersprache Java ist.

3. Verfahren nach Anspruch 1 oder 2, ferner umfas-
send den folgenden Schritt:

d) Instanziieren von Elementen von einer Bi-
bliothek (202) von Elementen, die mit dem
Compiler (203) kompatibel sind.

4. Verfahren nach Anspruch 3, bei dem die Bibliothek

(202) kombinatorische Logikelemente (401) um-
fasst.

5. Verfahren nach Anspruch 3, bei dem die Bibliothek
(202) Flipflop-Elemente (402, 404) umfasst.

6. Verfahren nach Anspruch 3, bei dem die Bibliothek
(202) Latch-Elemente (401) umfasst.

Revendications

1. Procédé de configuration d'un circuit prédiffusé pro-
grammable par l'utilisateur FPGA (106) pour un cal-
cul reconfigurable dynamiquement, le procédé
comprenant les étapes de :

a) programmation du processeur hôte avec des
instructions (201) en langage évolué ;
b) fourniture d'un compilateur (203) du langage
de programmation évolué exécuté sur le pro-
cesseur hôte pour générer un code exécutable
(204) en réponse aux instructions (201), le co-
de exécutable (204) comportant des informa-
tions de placement et de routage compilées ; et
c) connexion du processeur hôte au FPGA
(106) pour une programmation de reconfigura-
tion dynamique du FPGA (106) par le proces-
seur hôte par l'intermédiaire du code exécuta-
ble (204).

2. Procédé selon la revendication 1, dans lequel le
langage évolué est Java.

3. Procédé selon la revendication 1 ou 2, comprenant
en outre l'étape de :

d) instanciation d'éléments à partir d'une biblio-
thèque (202) d'éléments compatible avec le
compilateur (203).

4. Procédé selon la revendication 3, dans lequel la bi-
bliothèque (202) comprend des éléments logiques
combinatoires (401).

5. Procédé selon la revendication 3, dans lequel la bi-
bliothèque (202) comprend des éléments de bas-
cule (402, 404).

6. Procédé selon la revendication 3, dans lequel la bi-
bliothèque (202) comprend des éléments de ver-
rou.

11 12



EP 1 187 042 B1

8



EP 1 187 042 B1

9



EP 1 187 042 B1

10



EP 1 187 042 B1

11



EP 1 187 042 B1

12



EP 1 187 042 B1

13



EP 1 187 042 B1

14


	bibliography
	description
	claims
	drawings

