
O US005422999A

United States Patent (19) 11 Patent Number: 5,422,999
Travis et al. 45 Date of Patent: Jun. 6, 1995

54 INFORMATION OBJECT TRANSP (54) SYSTEM CT SPORT OTHER PUBLICATIONS

75) Inventors: Robert L. Travis, Concord, Mass.; Stephen Mallinson, "IBM Communications-Architec
o Martin L. Jack Merrimack N H tures and Directions,” Proceedings of the Int'l Conf on

William R. Laurane, Maple valley, Networking Technology and Architectures, London, Jun.
Wash.; Nigel Norris, Reading, 1988 pp. 49-60.
England Primary Examiner-Edward R. Cosimano

73 Assignee: Digital Equipment Corporation, Attorney, Agent, or Firm-Arnold, White & Durkee
Maynard, Mass. 57 ABSTRACT

21) Appl. No.: 368,681 An information object transport system for enabling
22 Filed: Jun. 19, 1989 nodes to transmit objects a digital data processing sys

tem. Each node includes an object store for storing a
s .395S., plurality of objects, at least one of the objects including
OMX AM oe as adou ou u osasa as sees use 370/94 at least one external reference identifying another ob

58) Field of Search 340/825.07 3647131 ject. An information object transport arrangement re
364/132, 138, 200, 900; 370/60, 94.1, 109 sponsive to receipt of a command identifying an object

is a w w w w 1 WW 395206 in the object store performs a packing operation to
generate a message comprising the identified object and

(56) References Cited other objects identified by an external reference of the
U.S. PATENT DOCUMENTS identified object. After generating a message, the node

Re. 31,182 3/1983 Crager et al. ox transmits it to another node in the digital data process
3,444,521 5/1969 Breese ing system. Upon receiving a message, an external refer
4,058,672 11/1977 Crager et al. ... 370/94.1 x ences resolution portion selects an object in a message
4,058,838 11/1977 Crager et al...................... 370/60 X and iteratively processes external references in the se
4,517,637 5/1985 Cassell 364/138 lected object to identify other objects in the message.
4,622,633 1/1986 Ceccon et al. 20/20. The external reference resolution portion enables the
4,631,664 12/1986 Bachmann 364/200
4,751,740 6/1988 Wright 382/ object storing portion to store objects identified
4,791,550 12/1988 Stevenson et al. .. E36/200 thereby.
4,870,590 9/1989 Kawata et al. .. 364/131 X
4,943,932 6/1990 Lark et al............................ 364/513 24 Claims, 7 Drawing Sheets

DIGITAL DATA PROCESSING SYSTEM O

1
NODE // a

USER
PROCESSES

OBEC
STORE

OCA iNFO OBJ
GLOBAL INFO OBJ

PACKER UNPACKER
ea 774

U.S. Patent June 6, 1995 Sheet 1 of 7 5,422,999

DIGITAL DATA PROCESSING SYSTEM O

NODE //a

OBJECT
STORE

LOCAL INFO OBJ
GLOBAL INFO OBJ

PACKER UNPACKER
/64 /74

A/G /

U.S. Patent June 6, 1995 Sheet 2 of 7 5,422,999

EXTERNAL
REFERENCES VECTOR g

REF DATA TYPE

EXTERNAL
REFERENCE

NFO OBJECT /
3O

DESCRIPTOR

GEN' NFO

EXTERNAL
REFERENCES
VECTOR

GEN' INFO

CONTENT
SEGMENTS

l1
1. CONTENT PORTION 33
la

A/G 24

U.S. Patent June 6, 1995 Sheet 3 of 7 5,422,999

TRANSPORT OBJECT

OBJECT TYPE

NAME DEFAULTS REFERENCE MAP 75

REF OBJ PTR 76 1 Refoe PTR 7;
72 1

NAME PREFX

NAME TYPE

REFERENCE MAP

U.S. Patent June 6, 1995 Sheet 4 of 7 5,422,999

PACKER
PACKER RECEIVES COMMAND
FROM USER PROCESS TO

(OON INITIATETRANSFER OF
IDENTIFIED INFO OBJECT

PACKER ESTABLISHES A TRANSPORT
OBJECT TO CARRY DENTIFIED INFO
OBJECT, ESTABLISHES REFERENCE TABLE
ENTRY IN TRANSPORT OBJECT
HEADER AND LOADS. IDENTIFIED INFO
OBJECT AS FIRST OBJECT N OBJECT
PORTION OF TRANSPORT OBJECT

MO/

PACKER DETERMINES WHETHER
2-N IDENTIFIED INFO OBJECT HAS AN

EXTERNAL REFERENCE
VECTOR

A76, 34-2

EXIT
(ON (COUPLE TRANSPORT OBJECT

A76. 34-2 TO TRANSMITTER)

YES

MO4

PACKER DETERMINES WHETHER
IT HAS PROCESSED ALL EXTERNAL
REFERENCES IN EXTERNAL
REFERENCE VECTOR

A/G 34-2 PACKER SELECTS NEXT EXTERNAL
MO5 REFERENCE IN EXTERNAL

REFERENCES VECTOR .

PACKER TESTS REFERENCE CONTROL
/O6 FLAG TO DETERMINE WHETHER INFO

OBJECT REFERENCED BY EXTERNAL
REFERENCE IS LOCAL OR GLOBAL.

A/G 34-/ (A) A/G 34-2

U.S. Patent

AO7

(Os

A/O

///

//2

June 6, 1995 Sheet 5 of 7

PACKER DETERMINES WHETHER
REFERENCED INFO OBJECT HAS
PREVIOUSLY BEEN LOADED INTO
TRANSPORT OBJECT

PACKER LOCATES REFERENCED
NFO OBJECT AND LOADS IT
AS NEXT INFO OBJECT IN
TRANSPORT OBJECT

PACKER LOADS, INTO REFERENCE
MAP OF REFERENCE TABLE ENTRY
FOR SELECTED INFO OBJECT, A
POINTERTO REFERENCED INFO
OBJECT N TRANSPORT OBJECT

PACKER DETERMINES WHETHER
THE TRANSPORT OBJECT CONTAINS
A NEXT INFO OBJECT

GD) A/G 34-/

PACKER SELECTS NEXT INFO OBJECT
N TRANSPORT OBJECT AS THE
DENTIFIED INFO OBJECT

PACKER DETERMINES WHETHER NEW
DENT FED INFO OBJECT HAS AN
EXTERNAL REFERENCE VECTOR

A/G 34-2

5,422,999

U.S. Patent

/2/

A2.2

A3

A24

A76 3A-2

A26

/30

A76.3A-2

A37

June 6, 1995 Sheet 6 of 7

UNPACKER

UNPACKER RECEIVES TRANSPORT
OBJECT FROM RECEIVER

UNPACKER LOCATES FIRST
REFERENCE TABLE ENTRY
N HEADER PORTION OF
TRANSPORT OBJECT

UNPACKER DETERMINES WHETHER FRST
REFERENCE TABLE ENTRY HAS A
NON-EMPTY REFERENCE MAP

YES

NO

UNPACKER STORES INFO OBJECT FROM
OBJECT PORTON IN LOCAL NODE

UNPACKER DENTIFIES LAST INFO
OBJECT IN OBJECT PORTION OF
TRANSPORT OBJECT AND ITS ORDINAL
POSITION IN TRANSPORT OBJECT

UNPACKER GENERATES A LOCAL
STORAGE IDENTFER FOR AST INFO
OBJECT AND STOREST IN LOCA NODE

UNPACKER DENTIFIES REFERENCE MAP
OF FIRST REFERENCE TABLE ENTRY
N HEADER PORTION OF
TRANSPORT OBJECT

UNPACKER DETERM NES WHETHER
DENTIFIED REFERENCE MAP HAS
A REFERENCED OBJECT POINTER PONTING
TO JUST-STORED INFO OBJECT

5,422,999

YES

A/G 3A-/ GE) A76.3A-2 GE) A/G 3A-2

U.S. Patent June 6, 1995 Sheet 7 of 7

GE) A76. 3A-/

UNPACKER LOCATES CORRESPONDING
EXTERNAL REFERENCE IN HEADER
OF INFO OBJECT AssociaTED
WITH REFERENCE TABLE ENTRY

UNPACKER UPDATES LOCATED
EXTERNAL REFERENCE WITH

/33 NEW STORAGE IDENT FER
A/G tit-2 OF JUST-STORED INFO OBJECT

UNPACKER DETERMINES WHETHER
THE HEADER PORTION INCLUDES
ANY ADDITIONAL REFERENCE
TABLE ENTRIES

YES

UNPACKER DENTFES REFERENCE
A35 MAP OF NEXT REFERENCE TABLE

ENTRY IN HEADER PORTION OF
TRANSPORT OBJECT

GG) A76 3A-/

UNPACKR Day:RNES WEEI-R
At 6 EAS STORD A, OF NE NORA. ON

OBJECS WEC WR3 RANSPORD
N NE RANSPOR OBJEC

EXIT

OBJECT N OBJECT PORTION OF
A37

POSITION N TRANSPORT OBJECT

GE) A/639-/

UNPACKER SELECTS NEW AS INFO

TRANSPORT OBJECT AND TS ORDNA

5,422,999

A/G 3A-2

5,422,999
1.

INFORMATION OBJECT TRANSPORT SYSTEM

FIELD OF THE INVENTION

The invention relates generally to the field of digital
data processing systems, and more particularly to ar
rangements for transferring information objects among
various processing elements in digital data processing
systems.

BACKGROUND OF THE INVENTION

As small and medium sized computer systems are
becoming less expensive and more powerful, a number
of them are being interconnected to form networks to
ensure that a number of different types of services are
available at any time to users having diverse processing
needs, and also to facilitate communications among the
various computer system users connected to the net
work. In many applications, for example, in networked
mail applications, it is necessary to send data, in the
form of messages, from a user operating one computer
on the network, to another user operating another com
puter, both computers being nodes on the network. A
message may contain only a small amount of data, or
alternatively, it may contain large amounts, represent
ing data generated by other applications processed by
each computer.

SUMMARY OF THE INVENTION
The invention provides a new and improved data

transport system for transferring data in a digital data
processing system.

In brief summary, the new data transport system
enables nodes to transmit data, represented in the form
of objects, to other nodes in a digital data processing
system. Each node includes an object store for storing a
plurality of objects, at least one of the objects including
at least one external reference identifying another ob
ject. An information object transport arrangement re
sponsive to receipt of a command identifying an object
in the object store performs a packing operation to
generate a message comprising the identified object and
other objects identified by an external reference of the
identified object. After generating a message, the node
transmits it to another node in the digital data process
ing system. Upon receiving a message, an external refer
ences resolution portion selects an object in a message
and iteratively processes external references in the se
lected object to identify other objects in the message.
The external reference resolution portion enables the
object storing portion to store objects identified
thereby.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the
appended claims. The above and further advantages of
this invention may be better understood by referring to
the following description taken in conjunction with the
accompanying drawings, in which:

FIG. 1 is a functional block diagram of a digital data
processing system including an information object
transport system in accordance with the invention;

2
tion object transport system to transport information
objects in accordance with the invention; and
FIGS. 3A-1 through 3B-2 are flow diagrams depict

ing the operations of the information object transport
5 system in connection with transporting an information

10

15

20

25

object as depicted in FIG. 2.
DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

FIG. 1 depicts a functional block diagram of a digital
data processing system 10 including an information
object transport system in accordance with the inven
tion. With reference to FIG. 1, the digital data process
ing system 10 includes a plurality of nodes 11A through
11C (generally identified by reference numeral 11)
which transmit messages over a communications link
12, thereby facilitating transfer of data and other infor
mation among the various nodes 11.
The structures of the nodes 11 are similar, and so the

structure of only node 11A is shown in detail in FIG. 1.
In particular, the node 11A includes an object store 13A
(generally identified by reference numeral 13) which
stores data and other information, such as programs, in
the form of information objects. The detailed structure
of an illustrative information object is described below
in connection with FIG. 2A. The information objects in

30

35

45

50

55

60

object store 13A are processed by user processes 14A.
In one specific embodiment, an information object gen
erally comprises a set of data or other information
which is identified, processed and otherwise used by,
for example, user processes 14A (generally identified by
reference numeral 14), as a unit. An information object
may comprise, for example, the contents of an entire file
which may be stored on disk or other storage medium,
or a record or other named portion of a file. Each infor
mation object has an associated name by which it is
identified in the node 11A.
Some information objects may be global information

objects, that is, information objects whose names or
other identifications are unique across the system 10 and
which may be accessed by any user process 14 in any
node in the system by reference to the same name or
identification. A global information object may be repli
cated in the various nodes 11, so that the object store in
each node 11 includes a copy of the global information
objects. Alternatively, a global information object may
be resident on a single node 11, and the other nodes may
be able to retrieve a copy of it from the node on which
it resides by reference to the name of the global infor
mation object. Other information objects are local in
formation objects, and may be accessed by name by user
processes 14, only on the node 11 in which the local
information object resides.
The object store 13A of node 11A is also accessible

by an information object transport system 15A, com
prising a packer 16A and an unpacker 17A. The packer
16A, on receiving a transfer request from a user process
14A, retrieves an information object from object store
13A, and performs a packing operation described below
to generate a transport object, which is described in
detail below in connection with FIG. 2B, which it cou
ples to a transceiver 20A, and in particular, a transmitter
21A. The transmitter 21A transmits the transport ob
ject, which it receives from the packer 16A, as a mes

FIG. 2A is a diagram of an information object trans- 65 sage over the communications link 12. As described
ported by the information object transport system, and
FIG. 2B is a diagram generally depicting the structure
of a transport object generated and used by the informa

below in connection with FIG.2A and 2B, the informa
tion object identified by the user process 14 may iden
tify and incorporate by reference other information

5,422,999
3

objects in the object store. 13A; accordingly, perform
ing the packing operation and generating the transport
object to be transmitted, the packer 16A includes, along
with the object identified by the user process 14, the
local information objects referenced by the information
object identified by the user process 14A along with the
information object that was identified by the user pro
cess. The operations performed by the packer 16A in
this connection are described below in connection with
FIGS. 3A-1 and 3A-2.
As noted above, the transceiver 20A also includes a

receiver 22A which receives messages from the com
munications link 12, which it couples to an unpacker
17A in the information object transport system 15A.
The unpacker 17A obtains a transport object from the
received message and separates it into various distinct
information objects. In that connection, the unpacker
17A establishes any required references among the in
formation objects to indicate the incorporations by
reference in the transmitting node 11. In addition, the
unpacker loads the various information objects in the
object store 13A. In this operation, which is described
below in greater detail in connection with FIGS. 3B-1
and 3B-2, the unpacker 17A separates the individual
information objects, which had been packed together
by the packer 16 of the node 11 which had originated
the message.
With this background, following a description of the

structure of an information object in connection with
FIG.2A and a transport object in connection with FIG.
2B, the details of operation of a packer 16A and an
unpacker 17A will be described in connection with
FIGS. 3A-1 through 3B-2. With reference initially to
FIG. 2A, an information object 30 includes three pri
mary portions, including a descriptor portion 31, a
header portion 32 and a content portion 33. The de
scriptor portion 31 includes a plurality of fields, includ
ing fields for such information as the identification of
the computer program or other product that generated
the information object 30. The header portion 32 also
includes a plurality of fields, including fields for infor
mation such as the information object's title and author,
if any, and the date on which the information object was
created or last modified.

In addition, if the information object 30 incorporates
other information objects by reference, the header por
tion 30 includes an external references vector field 34
which stores an external reference vector 35, which is
also depicted in FIG. 2. The external reference vector
35 includes one or more external reference entries 36,
each identifying an external information object incorpo
rated by reference into the information object 30. Each
external reference includes five fields 37 and 40 through
43. A reference data type field 37 and a reference de
scriptor field 40 store values that identify the data type
of the referenced information object. The reference
data type field 37 stores a coded value which identifies
the data type of the referenced information object, and
the reference descriptor field 40 stores a human-reada
ble descriptor of the data type.
The external reference 36 also includes a reference

label field 41 and a reference label type field 42 that
store values that jointly identify the information object
incorporated by reference. In particular, the reference
label field 41 stores a value corresponding to the name
of the referenced information object. In one embodi
ment of the digital data processing system 10 (FIG. 1),
a node 11A may include an operating system (not

10

15

20

25

30

35

40

45

50

55

65

4.
shown), and information objects may comprise files,
maintained by the operating system, with each file being
named according to a naming convention maintained by
the operating system. In the same embodiment, the node
11A may also include a record management system, and
information objects may comprise records maintained
by the record management system, with each record
being named according to a naming convention main
tained by the record management system. In that em
bodiment, the information objects identified according
to the operating system naming convention may be
accessed and manipulated through the operating sys
tem, whereas information objects identified according
to the record management system naming convention
are accessed and manipulated through the record man
agement system. The reference label field 41 stores the
file or record name of the referenced information ob
ject, and the reference label type field 42 stores a value
indicating whether the name is according to the operat
ing system naming convention or the record manage
ment system naming convention.
As indicated above, the referenced information ob

ject may be a local information object or a global infor
mation object. The external reference 36 also includes a
reference control field 43 that includes a flag whose
condition indicates whether the referenced information
object is a local information object or a global informa
tion object. As noted above, and described below in
connection with FIGS. 3A-1 and 3A-2, if the packer 16
determines that the flag in the reference control field 43
of information object 30 indicates that the referenced
information object, that is, the information object iden
tified by the values in reference label field 41 and refer
ence label type field 42, is a local information object, the
packer 16A packs the referenced information object
with the information object 30 for transmission, by the
transmitter 21A, over the communications link 12. In
this operation, the packer appends the referenced infor
mation object to the information object 30 and modifies
the contents of fields 41 and 42 to point to the appended
referenced information object. If, on the other hand, the
packer 16A determines that the flag in the reference
control field 43 of information object 30 indicates that
the referenced information object is a global informa
tion object, the packer does not pack the referenced
information object with the information object 30 for
transmission.
On receipt of the packed information object, if the

unpacker determines that the flag of an external refer
ence 36 indicates that the referenced information object
is a local information object, it uses the pointer in fields
41 and 42 to locate the appended information object,
and creates a new local information object therefor for
storage in the node's object store 13A. If the unpacker
determines that the flag indicates that the reference
information object is a global information object, the
global information object is not packed with the trans
mitted information object, and so it performs no opera
tion in connection therewith.

In the information object 30, the data used by the user
processes 14 are stored in the content portion33. In one
embodiment, the content portion 33 comprises one or
more segments 44, one segment being depicted in FIG.
2A. In that embodiment, the segment 44 are in the form
of a plurality of nested segments, with one segment 44
being generally shown in FIG. 2A. The beginning of a
segment 44 is identified by a segment identification in a
segment identification field 45, and the end is identified

5,422,999 5
by a predetermined code value which thereby defines
an end segment field 46. In addition to the segment
identification in field 45, the segment 44 may include a
fields 47 and 50 which store various information for the
hierarchical segment, and may also store other seg
ments, thereby defining the nested hierarchical struc
ture of the content portion 33.

In addition, a segment 44 may include an external
reference index field 51. If present in a segment 44, the
external reference index field 51 stores a value, essen
tially comprising an index into the external references
vectors 35, which identifies one of the external refer
ences 36 in the vector 35. If field 51 is present in a seg
ment 44, the information object identified by the exter
nal reference 36 comprises the information for the seg
ment 44. The reference in the external references index
field 51 of the segment 44 to the external reference 36
thereby incorporates the information into the informa
tion object 30, and specifically into the segment 44.
FIG.2B depicts the structure of a transport object 60.

With reference to FIG. 2B, a transport object 60 in
cludes two portions, namely, aheader portion 61 and an
object portion 62. The object portion 62 includes one or
more slots 63(1) through 63(N) (generally identified by
reference numeral 63), and the packer 16, during gener
ation of the transport object 60, loads each of the vari
ous information objects 30 to be transferred into a slot
63 in the object portion 62 of the transport object 60. In
addition, when it loads an information object into the
object portion 60, the packer 16 establishes a corre
sponding reference table entry 64() (“i' being an inte
ger), in the header portion 61.
The reference table entry 64(i) associated with an

information object 30 in a slot 63(i) identifies the infor
mation object 30 in the slot and also identifies the vari
ous local information objects 30 referenced thereby
which are included in the transport object 60. More
specifically, a reference table entry 64 includes a data
type field 70 which provides information as to the infor
mation object's data type. The reference table entry 64
also includes four fields 71 through 74 which provide
naming information, including an object name field 71,
a name defaults field 72, a name prefix field 73 and a
name type field 74. The name type field 74 contains
information similar to that included in the reference
label type field 42, identifying the naming convention
used in the name in the other naming fields 71 through
73. If, for example, the name contained in the other
fields 71 through 73 is that of a hierarchical storage
system, such as that of a disk file in a directory main
tained on a node 11, the contents of the name defaults
field 72 and name prefix field 73 may contain such infor
mation as the sequence of directories and subdirectories
defining the file specification for the information object,
and the object name field 71 may contain the actual
name of the file for the information object.
A reference table entry 64(i) also includes a reference

map field 75 which identifies the various information
objects in the transport object 60 identified by the infor
mation object 30 in the corresponding slot 63(i). More
specifically, the reference map 75 includes a plurality of
entries 76(1) through 76(M) (generally identified by
reference numeral 76) each storing a pointer which
identifies the ordinal location, in the transport object 60,
of each of the local information objects referenced by
the external references vector 35 of the header 32 of the
information object 30 in the corresponding slot 63(i).
The order of the pointers in the entries 76 of a reference

10

15

20

25

30

35

40

45

50

55

60

65

6
table entry 64(ii) is the same as the order of external
references 36 in the external references vector 35 of the
information object in the associated slot 63(i). That is, in
a reference table entry 64(1), the pointer in the first entry
76(1) identifies the slot 63 containing the information
object pointed to by the first external reference 36 in the
external references vector 35 of the information object
in slot 63(1), the pointer in the second entry 76(1) identi
fies the slot 63 containing the information object
pointed to by the second external reference 36 in the
external references vector 35 of the information object
in slot 63(i), and so on.
With this background, the operations performed by

the information object transport system 15A will be
described in connection with FIGS. 3A-1 through 3B-2,
with the operations of the packer 16 being depicted in
FIGS. 3A-1 and 3A-2, and the operations of the un
packer 17A being depicted in FIGS. 3B-1 and 3B-2.
With reference initially to FIG. 3A-1, the packer 16A in
a node 11 initially receives a command from one of the
user process 14A in the same node. 11A to initiate trans
fer of an information object 30 in the information object
store 13A of the same node 11A, the information object
to be transferred to another node (11B or 11C) (step
100). In the command, the user process 14A identifies
the information object 30 and the destination node (11B
or 11C), that is, the node to which the information
object 30 is to be transmitted.
Upon receiving the command, the packer 16 initially

receives a command from a one of the user processes
14A to initiate a transfer of an information object 30, the
identification of which is included with the command
(step 100). The packer 16A initially establishes a trans
port object 60 (FIG.2B) to carry the information object
30 identified by the command (step 101). In that connec
tion, the packer 16A establishes a reference table entry
64(1) for the identified information object 30, and a slot
63(1) into which it loads the identified information ob
ject 30.

Thereafter, the packer 17A determines, by reference
to the header 32 of the information object 30 in slot
63(1), whether the information object 30 includes an
external references vector 35 in field 34 (step 102). If
not, the information object 30 does not incorporate any
other information objects by reference, and so the
packer 16A may exit (step 103), in the process transfer
ring the transport object, including the single reference
table entry 64(1) and slot 63(1) to the transmitter 21A in
transceiver 20. Thereafter, the transmitter may build a
message, in a conventional manner, from transport ob
ject 60 and the identification of the destination node,
and couple the message over the communications link
12 to the destination node 11B or 11C.

If the packer 16A determines, in step 102, that the
information object 30 has an external references vector
35 in a field 34, it proceeds to a sequence comprising
steps 104 through 109 to begin iteratively (1) packing, in
successive slots 63 following slot 63(1) in the transport
object 60, the local information objects 30 identified by
the external references 36 in the external references
vector 35 of the information object 30 stored in slot
63(1) as identified by the user process 14A, and (2)
updating the entries in the reference map 75 of the refer
ence table entry 64(1) associated with the slot 63(1)
containing the information object identified by the com
mand from the user process 14A.
At the beginning of each iteration, the packer 16A

first determines whether it has processed all of the ex

5,422,999
7

ternal references 36 in the external references vector 35
(step 104). If the packer 16A determines in step 104 that
it has not processed all of the external references 36 in
the external references vector 35, it selects an external
reference 36 in the external references vector 35 (step
105). It will be appreciated that, during the first itera
tion, the packer 16A will select the first external refer
ence 36 in the external references vector 35, and subse
quent external references, if any, during subsequent
iterations. After selecting an external reference 36, the
packer 16A tests the reference control flag 43 of the
external reference 36 to determine whether the refer
enced information object is a global information object
or a local information object (step 106). As described
above, if the referenced information object is a global
information object, the packer 16A does not load it into
a slot 63 in the transport object 60, but instead, the
packer 16A loads a null value in the corresponding
entry 76 of the reference map 75, to thereby indicate
that it is not included in a slot 63 in the transport object
60. If the referenced information object is a global infor
mation object, the packer 16A returns to step 104 to
select the next external reference 36 in the external
references vector 35.

If, in step 106, the packer 16A determines that the
reference control flag 43 of the selected external refer
ence 36 indicates that the information object referenced
thereby is a local information object, it sequences to
step 107. In step 107, the packer 16A determines
whether the referenced local information object has
previously been loaded into the transport object. In this
operation, the packer 16A may maintain a table (not
shown), external to the transport object 60, listing the
local information objects that it has previously loaded
into the transport object, which also identifies the ordi
nal locations of the respective local information objects
in the transport object 60, which it may search to deter
mine whether the referenced object has previously been
loaded into the transport object 60. Alternatively,
packer 16A may search through the previously-estab
lished reference table entries 64 of the header portion 61
of the transport object 60 to determine whether the
referenced local information object has been previously
loaded into the transport object.

If the packer 16 determines, in step 107, that the refer
enced local information object has not been loaded into
the transport object 60, it sequences to step 108 to locate
it in the node's information object store 13A, establish a
new slot 63 in the object portion 62 of the transport
object 60, and load the just-located referenced local
information object30 into the just-created slot 63 in the
transport object 60. Contemporaneously, the packer
16A establishes a reference table entry 64 for the header
portion 61 associated with the newly-created slot 63.
Thereafter, the packer 16A sequences to step 109. On
the other hand, if the packer determines, in step 107,
that it has previously loaded the referenced local infor
mation object into the transport object 60, it sequences
directly to step 109. In step 109, the packer 16A loads a
pointer to the newly-created slot 63 in the entry 76 in
the reference map 75 of the reference table entry 64(1),
which, as noted above, is associated with the slot 63(1)
containing the information object to be transferred, as
identified in the command from the user process 14A.
Thereafter, the packer 16A returns to step 104 to per
form steps 104 through 109 in connection with next
external reference 36 in the external references vector
35.

5

10

15

20

25

30

35

45

SO

55

65

8
It will be appreciated that the information objects

referenced by the information object identified by the
command from a user process 14A may also contain
external references, similar to those in information ob
ject 30, some of which may constitute references to
local information objects. The packer 16A also loads
these secondarily-referenced information objects into
the transport object 60, in the same manner as described
above in connection with steps 104 through 109.
More specifically, if, in step 104, the packer 16A

determines that it has processed all of the external refer
ences 36 in the external references vector 35 of the
information object 30 identified by the command from
the user process 14A, it proceeds to a sequence, com
prising steps 110 and 111, to initiate processing of the
secondarily-referenced information objects 30. In step
110, the packer 16A determines whether the transport
object 60 contains an information object 30 in a slot 63
following the slot 63 for the information object30 it was
just processing. If not, it has completed building the
transport object 60, and so it sequences to step 103 to
transfer the transport object 60 to the transmitter 21A.
On the other hand, if the packer determines, in step 110,
that the transport object 60 contains a subsequent slot
63, it selects that information object as a new "identi
fied' information object (step 111).

If the packer 16A determines that new "identified'
information object includes an external references vec
tor 35 (step 112), it returns to step 104 to process the
external references 36 therein as described above. On
the other hand, if the packer determines in step 112 that
it does not include an external references vector, it
returns to step 110. At some point, the packer 16 will
determine, in step 110, that the transport object 60 does
not include any additional information objects 30, at
which point it has completed the transport object 60. At
that point, it sequences to step 103 to transfer the com
pleted transport object 60 to the transmitter 21A, which
constructs a message therefrom for transmission to the
node or nodes 11B, or 11C intended to receive it.
The operations performed by the unpacker 17A, de

picted in FIGS. 3B-1 and 3B-2, are essentially the con
verse of those performed by the packer 16A. With ref.
erence to FIG. 3B-1, the unpacker 17A in a destination
node 11 initially receives a message, including a trans
port object 60 from the node's receiver 22A (step 120).
Upon receiving the transport object 60 the unpacker
17A initially locates the first reference table entry 64(1)
of the header portion 61 and determines, by reference to
the reference map 75 of the first reference table entry 64
in the header portion 61, whether the received transport
object 60 includes only a single information object 30,
which was identified in the user process command in
the transmitting node 11B or 11C that initiated the
transfer. In that operation, the unpacker 17A locates the
first reference table entry 64(1) in the header portion 61
of the received transport object (step 121) and deter
mines whether that entry 64(1) has a non-empty refer
ence map 75 (step 122). Otherwise stated, in step 122 the
unpacker 17A determines whether the reference map 75
of the first reference table entry 64(1) includes at least
one entry 76. If the unpacker 17A determines, in step
122 that the first reference table entry 64(1) has a refer
ence map that is empty, it includes an information ob
ject 30 only in the first slot 63(1), and so it sequences to
step 123 to store that information object 30 in the object
store 13A in the receiving node 11A.

5,422,999 9
If the unpacker 17A determines, in step 122, that the

first reference table entry 64(1) has a reference map 75
that is not empty, it sequences to step 134 to begin un
packing the various information objects in the transport
object 60. In this operation, the unpacker 17A, begin
ning with the information object 30 in the last slot
63(N), identifies the information object and its ordinal
position (that is, its slot number) in the object portion 62
and stores it in the node 11A. Thereafter, the unpacker
17A searches through the reference maps 75 in the
reference table entries 64 to identify the various infor
mation objects 30 in the other slots 63(1) through 63(N-
1) which reference the just-stored information object
30, and update the external references 36 in their exter
nal reference vectors 35 referencing the just-stored
information object 30. The unpacker 17A iteratively
performs these operations in connection with each of
the information objects in the slots 63 from the last slot
63(N) to the first slot 63(1).
More specifically, in step 124 the unpacker 17A ini

tially identifies the information object 30 in the last slot
63(N) of the object portion 62 of the transport object 60,
and also identifies its ordinal position in the transport
object 60. In this case, the ordinal position identifies its
location in the transport object 60, which is the value
"N." The unpacker 17A then generates a local storage
identifier, or name, for the information object and stores
it in the local node 11A (step 125). At that point, the
unpacker 17A may also purge the last reference table
entry 64(N) since it is not needed for further operations.

Thereafter, the unpacker 17A iteratively performs a
series of operations defined by steps 130 through 135 to
iteratively use the reference maps 75 of the sequential
reference table entries 64 in the header portion 61 to
identify the information objects 30, in the other slots
63(1) through 63(N-1) which reference the information
object previously in slot 63(N). The unpacker 17A ini
tially identifies the reference map 75 of the first refer
ence table entry 64(1) in the header portion 61 of the
transport object 60 (step 130). The unpacker 17A then
searches through the various entries 76 in the reference
map 75 to determine whether any contain the value "N”
(step 131).

If the information object 30 does reference the infor
mation object previously in slot. 63(N) (step 131), the
external reference 36 in the same ordinal position in the
external references vector 35 as the entry 76 in the
reference map 75 defines the reference to the referenced
information object. Accordingly, the unpacker 17A
locates the that external reference 36 (step 132), that is,
the one in the same ordinal position in the external
references vector 35 as the entry 76 in the reference
map 75, and updates that external reference 36, (step
133), specifically, the contents of reference label field 41
(FIG. 2A) with a storage identifier identifying the refer
enced information object 30, that is, the information
object that was stored in step 125.

If the unpacker 17A determines, in step 131, that the
reference map 75 does not reference the information
object that was stored in step 125, or after updating the
reference map in step 133, it sequences to step 134 to
determine whether the header portion 61 includes any
additional reference table entries 64. If so, it identifies
the reference map 75 of the next reference table entry 64
in the header portion 61 of the transport object 60 and
returns to step 131 to determine if it contains a refer
ence to the information object 30 that was in the last slot
63(N) of the transport object 60 (step 135). The un

O

15

20

25

30

35

45

50

55

65

10
packer 17 iteratively performs steps 131 through 135 to
determine whether the reference maps 75 in any of the
other reference table entries 64(2) through 64(N-1)
reference the information object that was stored in slot
63(N).
While performing step 134 in connection with the last

reference table entry 64 in the header portion 61, the
unpacker 17A will determine that the header portion 61
does not include any additional reference table entries.
At that point, the unpacker 17 will sequence to step 136
to determine whether it has stored all of the information
objects 30 which were transported in the transport
object 60. If not, the unpacker 17A selects a new last
information object 30, that is, the information object in
slot 63(N-1) (step 137), and performs steps 125, to
store the information object 30 in node 11A, and steps
130 through 135 to update the various external refer
ences 36 in the external references vectors 35 of the
other information objects 30 still in the transport object
60. The unpacker 17A thus iteratively performs the
operations identified in steps 125 and 130 through 135 in
connection with the information objects 30 in each of
the slots 63 from the last slot 63(N) to the first slot 63(1)
in the object portion 62 of the transport object 60. Upon
reaching the first slot 63(1) in the transport object 60,
the unpacker 17A will, upon returning to step 136, then
determine that it has stored all of the information ob
jects which were transported in the transport object. In
other words, at this point the transport object does not
include any additional objects, and the unpacker 17A
will exit. -

The information object transport system 15thus facil
itates communications among nodes 11A, 11B and 11C
in a distributed digital data processing system. It will be
appreciated that the information object transport sys
tem may also be used to facilitate communication
among processes processed by a single computer, by
packing one or more information objects 30 into a single
transport object 60 for transmission from one process to
another, and unpacking the information objects for use
by the other process. In that case, the communications
link 12 may comprise any interprocess communication
mechanism, such as an interprocess call operation.

Further, it will be appreciated that, placing refer
ences to all of the external information objects in a
vector 35, located in a predetermined location in the
object's header 32, simplifies location of the external
references in the information object 30. The external
reference indexes, such as in field 51, in the various
segments 45 may be distributed throughout the informa
tion object 30, and so if the vector 35 were not provided
the packer 16A might otherwise have to search through
the information object to locate all of the indexes that an
information object might contain.

In addition, if multiple segments in an information
object 30 require referencing the same external informa
tion object, that can be accommodated by having the
indexes 51 reference the same external reference 36 in
the vector 35. If the information object did not include
a vector 35, it would be desirable for the packer 16A, as
it appended each information object, to maintain a re
cord of the identifications of the appended information
objects so that it would not append the same informa
tion object twice. This could cause the unpacker 17A to
unpack the message and generate multiple copies of the
same information object, which in turn could result in
problems of maintaining consistency among the various
copies.

5,422,999
11

Finally, while the information object 30 has been
described as including a content portion 33 organized in
a plurality of hierarchical segments 44, the information
object transport system 15A may be used in connection
with information object whose content portions having
a plurality of diverse organizations.

It will be appreciated that the various portions de
scribed above may all comprise special-purpose appara
tus, or they may comprise computer programs executed
by a general purpose computer.
The foregoing description has been limited to a spe

cific embodiment of this invention. It will be apparent,
however, that variations and modifications may be
made to the invention, with the attainment of some or
all of the advantages of the invention. Therefore, it is
the object of the appended claims to cover all such
variations and modifications as come within the true
spirit and scope of the invention.
What is claimed as new and desired to be secured by

Letters Patent of the United States is:
1. A node for use in a digital data processing system,

said node comprising:
A. an object store including a data storage medium

for storing a plurality of objects, at least one of the
objects including at least one external reference
identifying another object; and

B. information object transport means responsive to
receipt of a command identifying an object in the
object store for performing a packing operation to
generate a message comprising the identified object
and other objects identified by an external refer
ence of the identified object,

wherein the information object transport means com
prises:
(a) object retrieval means for retrieving from the

object store the object identified by the com
mand;

(b) external references processing means for itera
tively processing external references in the ob
ject retrieved by the object retrieval means, and
for enabling the object retrieval means to re
trieve, from the object store, objects identified
by the external references; and

(c.) message generation means for generating a
message including each object retrieved by the
object retrieval means, and for modifying exter
nal references in the objects in the message to
point to respective objects in the message.

2. A node as defined in claim 1 wherein the external
references processing means includes means for recur
sively processing external references in the objects re
trieved by the object retrieval means.

3. A node as defined in claim 1 further comprising a
transmitter for transmitting over a communications link
messages generated by the information object transport
eaS. W

4. A node as defined in claim 1 further including
external reference detector means for inspecting each
object retrieved by the object retrieval means to deter
mine whether said each object includes any external
references and to disable the external references pro
cessing means when said each object does not include
any external references.

5. A node as defined in claim 4 wherein any external
references of said each object are maintained in an ex
ternal references vector in a predetermined location in
said each object, and the external references detector

O

15

20

25

30

35

45

50

55

65

12
means includes means for determining whether said,
each object includes an external references vector.

6. A node as defined in claim 1 wherein the informa
tion object transport means further includes unpacker
means for identifying various objects included in a mes
sage and storing the various objects in the object store.

7. A node as defined in claim 6 further comprising a
receiver for receiving messages over a communications
link for unpacking by the unpacker means of the infor
mation object transport means.

8. A node as defined in claim 1 wherein each external
reference in the objects retrieved by the object retrieval
means includes a reference control flag, and said exter
nal references processing means includes control flag
detector means for inspecting the reference control flag
of said each external reference for selectively control
ling retrieval of an object identified by said each exter
nal reference.

9. A node as defined in claim 8 wherein said control
flag detector means selectively enables the object re
trieval means in response to the reference control flag.

10. A node as defined in claim 9 wherein any external
references of each object retrieved by the object re
trieval means are maintained in an external references
vector in a predetermined location in said each object,
and the external references processing means further
includes external references selector means for itera
tively selecting sequential external references in the
external references vector.

11. A node as defined in claim 1 wherein the informa
tion object transport means further comprises:
A. an object storing means for storing an object in the

object store; and
B. an external references resolution means for select
ing an object in another message and iteratively
processing external references in the selected ob
ject to identify additional objects in said another
message, and enabling the object storing means to
store said additional objects.

12. A node as defined in claim 11 wherein said addi
tional objects identified by the external references reso
lution means include additional external references, and
the external references resolution means includes means
for using the additional external references to enable the
object storing means.

13. A node as defined in claim 11 wherein the external
references resolution means further includes external
references detector means for inspecting each of the
additional objects to determine whether each of the
additional objects includes any external references.

14. A node as defined in claim 13 wherein any exter
nal references of each of the additional objects are main
tained in an external references vector in a predeter
mined location in said each of the additional objects,
and the external references detector means includes
means for determining whether said each of the addi
tional objects includes an external references vector.

15. A node as defined in claim 11 wherein each exter
nal reference processed by the external references reso
lution means includes a reference control flag, and the
external references resolution means includes control
flag detector means for inspecting the reference control
flag of said each external reference for selectively con
trolling storage of an object identified by said each
external reference.

16. A node as defined in claim 15 wherein said control
flag detector means selectively enables the object stor
age means in response to the reference control flag.

5,422,999
13

17. A node as defined in claim 16 wherein each exter
nal reference processed by the references resolution
means is maintained in an external references vector,
and the external references processing means includes
external references selector means for iteratively select
ing sequential external references in the external refer
ences Vector.

18. A method of operating a digital computer for
communication of a message including a specified ob
ject, said method comprising the steps of:

a. inspecting the specified object to identify external
references in the specified object that refer to other
objects;

b. generating said message by adding to the specified
object at least some of said other objects;

c. modifying external references in the objects in the
message to point to respective objects in the mes
sage; and

d. transmitting the message.
19. A method of operating a digital computer at a first

node for communication of a message from the first
node to a second node in a computer system, said mes
sage including a specified object, said method compris
ing the steps of:

a inspecting the specified object to identify external
references in the specified object that refer to other
objects;

b. determining whether each of the other objects
referred to by the external references is either
global to said first and second node or is local to
said first node;

c. generating said message by adding to the specified
object the objects that are determined to be local to
said first node;

d. modifying external references in the objects in the
message to point to respective objects in the mes
Sage; and

e. transmitting the message from the first node to the
second node.

20. A method of operating a digital computer at a first
node for communication of a message from the first
node to a second node in a computer system, said mes
sage including a specified object, said method compris
ing the steps of:

a. inspecting the specified object to identify external
references in the specified object that refer to other
objects;

b. determining whether said each of said other objects
is either global to said first node and said second
node or is local to said first node;

c. generating said message by adding to the specified
object the objects determined to be local to said
first node, but not adding to the specified object the
objects that are determined to be global to said first
and second node; and

d. transmitting the message from the first node to the
second node.

21. A method of operating a digital computer at a first
node for communication of a message from the first
node to a second node in a computer system, said mes
sage including a specified object, said method compris
ing the steps of:

a. inspecting the specified object to identify external
references in the specified object that refer to other
objects;

b. determining whether each of said other objects is
either global to said first node and said second node
or is local to said first node;

10

20

25

30

35

45

50

55

65

14
c. inspecting each of said other objects determined to
be local to identify any external references in said
each of said other objects that refer to additional
objects, and when an external reference is found in
said each of said other objects that refers to an
additional object, determining whether the addi
tional object is either global to said first node and
said second node or is local to said first node;

d. generating said message by adding to the specified
object the objects determined to be local; and

e. transmitting the message from the first node to the
second node.

22. A method of operating a digital computer at a first
node for communication of a message from the first
node to a second node in a computer system, said mes
sage including a specified object, said method compris
ing the steps of:

a. inspecting the specified object to identify external
references in the specified object that refer to other
objects;

b. determining whether each of said other objects is
either global to said first node and said second node
or is local to said first node;

... inspecting each of said other objects determined to
be local to identify any external references in said
each of said other objects that refer to additional
objects, and when an external reference is found in
said each of said other objects that refers to an
additional object, determining whether the addi
tional object is either global to said first node and
said second node or is local to said first node;

d. generating said message by adding to the specified
object the objects determined to be local;

e. modifying external references in the objects in the
message to point to respective objects in the mes
Sage; and

f. transmitting the message from the first node to the
second node.

23. A digital computer comprising:
a. object retrieval means for retrieving a specified

object from an object store;
b. iterative processing means for processing external

references in the object retrieved by said object
retrieval means, and during successive iterations,
enabling the object retrieval means to retrieve the
objects identified by the external references;
message generating means for generating a message
including each retrieved object; and

d. external reference processing means for modifying
external references in the objects in the message to
point to respective objects in the message.

24. A digital computer comprising:
a. object retrieval means for retrieving a specified

object from an object store;
b. first iterative processing means for processing ex

ternal references in the object retrieved by said
object retrieval means, and during successive itera
tions, enabling the object retrieval means to re
trieve the objects identified by the external refer
ences;

c. message generating means for generating a first
message including each retrieved object;

d. external reference processing means for modifying
external references in the objects in the first mes
sage to point to respective objects in the first mes
Sage;

e. object selection means for selecting an object in a
second message;

C.

5,422,999
15 16

references in the object selected by the object se f Second iterative processing means for iteratively lecti d
ection means; an

processing external references in the object se- g. object storing means for storing in said object store
lected by the object selection means, and, during the object selected by the object selecting means
successive iterations, identifying additional objects 5 and the additional objects identified by the second

s iterative processing means.
in the second message identified by the external + k

10

15

20

25

30

35

45

50

55

65

