w0 2024/119490 A 1 I IALH B0 000 00O OO OO R O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
13 June 2024 (13.06.2024)

(10) International Publication Number

WO 2024/119490 A1

WIPO I PCT

(51) International Patent Classification:
GO6F 11/36 (2006.01)

(21) International Application Number:
PCT/CN2022/137991

(22) International Filing Date:
09 December 2022 (09.12.2022)

KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU,
LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA,
ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of regional protection available): ARIPO (BW, CV,
. L. . GH, GM,KE, LR, LS5, MW, MZ, NA, RW, SC, SD, SL, ST,
(26) Publication Language: English SZ. TZ. UG, ZM. ZW), Eurasian (AM. AZ. BY, KG. KZ.
(71) Applicant: EBAY INC. [US/US]; 2025 Hamilton Avenue, RU, TJ, T™M), European (AL, AT, BE, BG, CH, CY, CZ,
San Jose, California 95125 (US). DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
a2 I ¢ d LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
nventor; an
Lo . SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN,
(71) Applicant (for SC only): CHEN, Wei [CN/CN]; 2nd Floor, GQ, GW. KM, ML, MR, NE, SN, TD, TG).
Tower 3, 88 Keyuan Road, Pudong, Shanghai 201203 (CN).
(74) Agent: CHINA SCIENCE PATENT & TRADEMARK Published:

AGENT LTD.; Suite 4-312, No. 87, West 3rd Ring North
Rd., Haidian District, Beijing 100089 (CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,

with international search report (Art. 21(3))

(54) Title: FAULT INJECTION IN A NOTIFICATION PLATFORM

PROCESSOR
104

CLIENT COMPUTING DEVICE
102

DATA STORAGE
DEVICE 106

FAULT INJECTION PROGRAM

SOFTWARE
PROGRAM
108

[
‘ NOTIFICATION PLATFORM 122 ‘

COMMUNICATION

NETWORK
114

SERVER 112

FAULT INJECTION PROGRAM
1108

STORAGE DEVICE
18

FIG. 1

(57) Abstract: The present invention may include an embodiment that determines
a code of an application. The embodiment may receive one or more parameters
from a GUI. The embodiment may convert the one or more parameters to an in-
strumentation code in the code of the application, where the instrumentation code
simulates one or more faults in a system and comprises annotation. The embodi-
ment may execute the instrumentation code in the code of the application to iden-
tify resilience of the application.

WO 2024/119490 PCT/CN2022/137991

FAULT INJECTION IN A NOTIFICATION PLATFORM

BACKGROUND

[0001] The present invention relates, generally, to the field of computing, and more
particularly to building resilient computer systems.

[0002] Fault injection is the process by which a user deliberately introduces faults into
the system. Thus, the user may observe the system behavior with the injected faults to identify
the weakness of the system. Within the industry, fault injection is a common practice as a means

to build fault-tolerant, resilient systems.

SUMMARY

[0003] According to one embodiment, a method, computer system, and computer
program product for injecting faults in the application level is provided. The present invention
may include an embodiment that determines a code of an application. The embodiment may
receive one or more parameters from a GUL. The embodiment may convert the one or more
parameters to an instrumentation code in the code of the application, where the instrumentation
code simulates one or more faults in a system and comprises annotation. The embodiment may
execute the instrumentation code in the code of the application to identify resilience of the

application.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present technology is described in detail below with reference to the attached

drawing figures, wherein:

WO 2024/119490 PCT/CN2022/137991

[0005] FIG. 1 is a block diagram depicting an exemplary networked computer
environment according to one of the embodiments;
[0006] FIG. 2 is an embodiment depicting communications between notification service

and faults injection agent according to one of the embodiments;

[0007] FIG. 3 depicts a block or interrupt instrumentation according to one of the
embodiments;
[0008] FIG. 4 depicts change of method parameters instrumentation according to one of

the embodiments;

[0009] FIG. 5 depicts value replacement instrumentation according to one of the
embodiments;
[0010] FIG. 6 depicts an example of instrumentation using a class loader that instruments

and annotates the code;

[0011] FIG. 7 depicts an instrumentation logic with a string literal according to one of the
embodiments;

[0012] FIG. 8 depicts a timeout exception instrumentation according to one of the
embodiments;

[0013] FIG. 9 depicts a customized class loader diagram according to an example
embodiment; and

[0014] FIG. 10 depicts Graphical User Interface (GUI) of the fault injection according to

one of the embodiments.

WO 2024/119490 PCT/CN2022/137991

DETAILED DESCRIPTION

[0015] Detailed embodiments of the claimed structures and methods are disclosed herein;
however, it can be understood that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied in various forms. This invention may,
however, be embodied in many different forms and should not be construed as limited to the
exemplary embodiments set forth herein. In the description, details of well-known features and

techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.

[0016] The present invention may be a system, a method, and/or a computer program
product at any possible technical detail level of integration. The computer program product may
include a computer readable storage medium (or media) having computer readable program

instructions thereon for causing a processor to carry out aspects of the present invention.

[0017] The computer readable storage medium can be a tangible device that can retain
and store instructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a semiconductor
storage device, or any suitable combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium includes the following: a portable
computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM),
an erasable programmable read-only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital

versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as

WO 2024/119490 PCT/CN2022/137991

punch-cards or raised structures in a groove having instructions recorded thereon, and any
suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical

signals transmitted through a wire.

[0018] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local area
network, a wide area network and/or a wireless network. The network may comprise copper
transmission cables, optical transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the
network and forwards the computer readable program instructions for storage in a computer

readable storage medium within the respective computing/processing device.

[0019] Computer readable program instructions for carrying out operations of the present
invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine
instructions, machine dependent instructions, microcode, firmware instructions, state-setting data,
configuration data for integrated circuitry, or either source code or object code written in any
combination of one or more programming languages, including an object oriented programming

language such as Smalltalk, C++, or the like, and procedural programming languages, such as

WO 2024/119490 PCT/CN2022/137991

the "C" programming language or similar programming languages. The computer readable
program instructions may execute entirely on the user's computer, partly on the user's computer,
as a stand-alone software package, partly on the user's computer and partly on a remote computer
or entirely on the remote computer or server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may be made to an external computer
(for example, through the Internet using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable
program instructions by utilizing state information of the computer readable program instructions

to personalize the electronic circuitry, in order to perform aspects of the present invention.

[0020] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer readable program

instructions.

[0021] These computer readable program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor of the

computer or other programmable data processing apparatus, create means for implementing the

WO 2024/119490 PCT/CN2022/137991

functions/acts specified in the flowchart and/or block diagram block or blocks. These computer
readable program instructions may also be stored in a computer readable storage medium that
can direct a computer, a programmable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer readable storage medium having
instructions stored therein comprises an article of manufacture including instructions which

implement aspects of the function/act specified in the flowchart and/or block diagram block or

blocks.

[0022] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other device to produce
a computer implemented process, such that the instructions which execute on the computer, other
programmable apparatus, or other device implement the functions/acts specified in the flowchart

and/or block diagram block or blocks.

[0023] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the functions noted in the blocks may
occur out of the order noted in the Figures. For example, two blocks shown in succession may, in

fact, be executed substantially concurrently, or the blocks may sometimes be executed in the

WO 2024/119490 PCT/CN2022/137991

reverse order, depending upon the functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based
systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

[0024] The eBay notification platform team may utilize an idea of fault injection from a
different perspective in eBay’s notification platform. This platform is responsible for pushing
platform notifications to third party applications to provide the latest changes in item price, item
stock status, payment status and more. It is a highly distributed and large-scale system relying on
many external dependencies, including distributed store, message queue, push notification
endpoints and others. Any faults in these dependent services will directly impact the stability of
the system, so the notification platform may be utilized to run experiments in the system
containing the failures of these dependencies, in order to understand the behaviors and mitigate

any weaknesses in the application and the corresponding system that executes the application.

[0025] To achieve system and application resilience, the faults may be injected by
simulation in the application level by the code instrumentation as described below. This is a
novel approach in the industry that enables experimentation on the mission-critical system with
different kinds of deliberately designed faults to improve system stability and overall resilience

to errors.

WO 2024/119490 PCT/CN2022/137991

[0026] There is no unified way to inject these faults into an application. The most
straightforward and ubiquitous way to do so in the industry is to create real faults directly in the
underlining system. For example, to introduce the Attp disconnection or timeout error, one option
is to turn off the network or shut down the downstream services temporarily; to introduce the
disk full error, one option is to create a bunch of files in the file system. Typical user may think
of this as fault injection at the infrastructure level, and if the user thinks about it from this
perspective, it will inevitably drive the user to create the concrete faults for the infrastructure
resources. Creating faults may directly harm the infrastructure resources. For example, turning
off the network obviously causes multiple issues, as mentioned in the previous example. When
the resource is shared, this haring may introduce extra impacts and risks to other services

depending on that resource. If the resource is dedicated, it may increase the cost.

[0027] Alternatively, a different way to approach this problem may be utilized. Instead of
creating faults at the infrastructure level, what if we may generate the faults at the application
level? This would allow an user to simulate the faults he would like to use with the application
API leveraged to communicate with the infrastructure resources. For example, to inject the http
timeout fault, a latency in the http client library may be added; to simulate the internal service
error, the response code with 500 Atip status code may be simulated. The faults may be restricted
to the API level and would not harm the underlying infrastructure resources. In this way, we may

create an affordable, secure and reusable software-based solution to do fault injection.

[0028] According to one embodiment, a Java-based application such as Java agent may

be provided. Within the agent, instrumented the class files of the client libraries for the

WO 2024/119490 PCT/CN2022/137991

dependent services to introduce different kinds of faults may be instrumented and defined.
Furthermore, the introduced faults may be raised when our service communicates with the
underlying resource through the instrumented API The faults do not really happen in our
dependent services, owing to the changed codes, but the effect is simulated, enabling

experimentation without risk to the system.

[0029] Referring to Fig. 1, an exemplary networked computer environment 100 is
depicted, according to at least one embodiment. The networked computer environment 100 may
include client computing device 102 and a server 112 interconnected via a communication
network 114. According to at least one implementation, the networked computer environment
100 may include a plurality of client computing devices 102 and servers 112, of which only one

of each is shown for illustrative brevity.

[0030] The communication network 114 may include various types of communication
networks, such as a wide area network (WAN), local area network (LAN), a telecommunication
network, a wireless network, a public switched network and/or a satellite network. The
communication network 114 may include connections, such as wire, wireless communication
links, or fiber optic cables. It may be appreciated that Fig. 1 provides only an illustration of one
implementation and does not imply any limitations with regard to the environments in which
different embodiments may be implemented. Many modifications to the depicted environments

may be made based on design and implementation requirements.

WO 2024/119490 PCT/CN2022/137991

[0031] Client computing device 102 may include a processor 104 and a data storage
device 106 that is enabled to host and run a software program 108, notification platform 122 and
a fault injection program 110A and communicate with the server 112 via the communication
network 114, in accordance with one embodiment of the invention. Client computing device 102
may be, for example, a mobile device, a telephone, a personal digital assistant, a netbook, a
laptop computer, a tablet computer, a desktop computer, or any type of computing device

capable of running a program and accessing a network.

[0032] The server computer 112 may be a laptop computer, netbook computer, personal
computer (PC), a desktop computer, or any programmable electronic device or any network of
programmable electronic devices capable of hosting and running a fault injection program 110B
and a database 116 and communicating with the client computing device 102 via the
communication network 114, in accordance with embodiments of the invention. The server 112
may also operate in a cloud computing service model, such as Software as a Service (SaaS),
Platform as a Service (PaaS), or Infrastructure as a Service (IaaS). The server 112 may also be
located in a cloud computing deployment model, such as a private cloud, community cloud,

public cloud, or hybrid cloud.

[0033] According to the present embodiment, the fault injection program 110A, 110B

may be a program capable of instrumentation and annotation of a code of a software program

108 to inject faults and analyze the effect of the faults on the software program 108.

10

WO 2024/119490 PCT/CN2022/137991

[0034] Referring now to Fig. 2, communications between notification service and faults
injection agent according to one of the embodiments are depicted. To simulate the faults for the
client libraries by instrumentation is challenging. Our main task is to force the invoked methods
to experience failures. One method to do this is to inject failure directly into the method, by, for
example, throwing the exception in the method body. The other method calls for changing the
value or the state of the input parameters to drive the method to go to the failure execution path.
There are three instrumentation patterns in our project.

[0035] Referring now to Fig. 3, a block or interrupt instrumentation according to one of
the embodiments is depicted. This type of instrumentation is straightforward in that the
application programming interface (API) may be utilized to throw exceptions or sleep for a
specific period of time to simulate the desired error or timeout.

[0036] Referring now to Fig.4 a change of method parameters instrumentation according
to one of the embodiments is depicted. Under some circumstances, the simulation of faults may
depend on the specific state of the input parameters. For example, the below method logic 1s
depending on the return value of the response.getStatusCode(). If the value does not equal 200,
the failure logic may be triggered. So if a user wants to simulate the faults with failure code, then
we need to find a way to change the state of response which will be returned from the
response.getStatusCode().

[0037] The way we achieved this is to add the instrumented code snippet to throw a
specific defined exception and let the exception carry the response code we need to simulate.
Meanwhile, we instrument the method by adding the try-catch block to the method to
specifically catch the exception we throw and return the code in the catch block. By doing so,

we’ve changed the method execution path to return the designated value.

11

WO 2024/119490 PCT/CN2022/137991

[0038] Referring now to Fig. 5 a value replacement instrumentation according to one of
the embodiments is depicted. In contrast to the example in Fig. 4, sometimes the method logic
will depend on the value of the parameters. So if you want to simulate a fault, then you need to
change the value of the input parameter. To change the value of the parameter, we need to know
the name of the parameter first and inject the code to replace the value for the parameter with its
name. This is not easy because the parameter name can only be known in the runtime. So we
leverage the Java reflection to get the names of the parameters in the runtime.

[0039] Referring now to Fig. 6 an example of instrumentation using a class loader that
instruments and annotates the code is depicted. To implement the above three types of
instrumentations, a Java agent may be created. According to one of the embodiments, the agent,
may implement and utilize a classloader which instruments the code of the methods that are
leveraged in the application code. In another embodiments, an annotation may be added to
indicate which method is instrumented and put the instrumentation logic in the methods that 1s
annotated as depicted in the Fig. 6.

[0040] Referring now to Fig. 7 depicts an instrumentation logic with a string literal
according to one of the embodiments is depicted. In the depicted code snippet, we’d like to
provide the instrumentation logic for

org.asynchtipclient.providers.netty.future. NettyResponse Future.done(). According to one of the
embodiments, a new method with the same signature may be created, that may be annotated by
(@Enforce which may be the user-defined Java annotation that may be used to indicate the
instrumentation logic for fault injection. The annotation may have two fields: value and type.
The value field is the class name of the method we want to instrument. (the type field is

discussed below). When the agent is loaded, the defined class loader may find all the methods

12

WO 2024/119490 PCT/CN2022/137991

annotated by (@FEnforce and inject the instrumentation logic defined in the methods to the
methods to be instrumented. The type field of (@Enforce may have the two values runtime
(default value) and static. In the above example, the instrumentation logic may be implemented
with the Java code. But there may be a need to provide the instrumentation logic with a string
literal as depicted in the Fig. 7.

[0041] Referring now to Fig. 8 depicts a timeout exception instrumentation according to
one of the embodiments is depicted. According to one of the embodiments, we may instrument
the timeout exception of

org.asynchttpclient.providers.netty.future. NettyResponseFuture.awaitUpdate (final int
lastVersion, final long timeoutMs). In the awaitUpdate, it leverages the fimeoutMs to calculate
the deadlineMs. So if we can change the value of the passed timeoutMs, we can simulate the
timeout exception for this method. As we discussed before, we will define a new method with
the same name of awaitUpdate and annotated by @Enforce with value =
org.asynchtipclient.providers.netty.future. NettyResponse Future and type = ‘static’. When we
specify the type = ‘static’, it means the instrumentation logic will be in the form of a string literal
instead of the Java code, as in the previous example. The reason to do so is that we are only able
to determine the name of method parameters in the runtime. To be more specific, we only know
the name of the second parameter of awaitUpdate in the runtime. What we do is to identify the
parameter names with Java reflection during class loading and pass it into the corresponding
method which provides instrumentation logic. So in the Fig. 8 example, the params =
‘lastVersion, timeoutM's’.

[0042] Referring now to Fig. 9 depicts a customized class loader diagram according to an

example embodiment is depicted. According to an example embodiment, the instrumentation

13

WO 2024/119490 PCT/CN2022/137991

may be implemented using instrumentation logic in the Java agent. However, we still need to
create a customized class loader to inject the instrumentation logic in the target methods of the
client libraries into which we want to inject faults. The class loader may leverages Javassist or
similar technology , and utilize the instrument library, which can manipulate the Java or other
programming language bytecode to transform the class files of the target methods to include the
defined faults.

[0043] With the above implementation described, we have injected the faults by
instrumentation for the below client libraries of the three resources we are depending on.

e Push Notification Endpoints:
o Client lib: async-http-client 1.8.3
o Fault types:
m Timeout
m Exception
m Response status code
® Message Queue:
o Client lib: kafka-client 2.5.1
o Fault types:
m Timeout
m Exception
e Distributed Store (built in-house by eBay):
o Client lib: monster-java-client 3.4 4. 2-RELEASE
o Fault types:
m Timeout
m Exception

[0044] Referring now to Fig. 10 a Graphical User Interface (GUI) of the fault injection
according to one of the embodiments is depicted. To dynamically change the configuration for
the fault injections in the runtime, we have implemented a configure management console in the
Java agent. As our service 1s a web application, we can instrument the

javax.servlet. http. HttpServlet.service(HttpServletRequest, HttpServletResponse) to expose the

14

WO 2024/119490 PCT/CN2022/137991

endpoints for the configure management. The endpoint will render a configuration page to let
developers configure the attributes of the fault injection in the runtime. For example, a developer
could globally enable or disable the fault injection and other subtypes of the faults; for example,
a timeout for AyncHttpClient.

[0045] We will expand the scope of the application-level fault injection in more client
libraries and fault categories to diversify the scenarios of experiments for our services under
different kinds of fault circumstances in the future applications. Meanwhile, as the configuration
of the faults setting through the configuration management console can only be triggered at the

instance level, we will find a way to broadcast the changes across the cluster.

APPENDIX

Background

It might sound paradoxical to deliberately break something we’re trying to fix, but sometimes,
that’s the most efficient method to do it. Fault injection is the process by which we deliberately
introduce faults into the system. We can observe the system behavior with the injected faults to
identify the weakness of the system. Within the industry, fault injection is a common practice as
a means to build fault-tolerant, resilient systems.

The eBay notification platform team practiced the idea of fault injection from a different
perspective in eBay’s notification platform. This platform is responsible for pushing platform
notifications to third party applications to provide the latest changes in item price, item stock
status, payment status and more. It is a highly distributed and large-scale system relying on
many external dependencies, including distributed store, message queue, push notification
endpoints and others. Any faults in these dependent services will directly impact the stability of
the system, so it's quite valuable to run experiments in the system containing the failures of
these dependencies, in order to understand the behaviors and mitigate any weaknesses.

To achieve this, the faults are injected by simulation in the application level by the code
instrumentation. As far as we know, we are the very first in the industry who practice this idea
officially and widely to experiment on the mission-critical system with different kinds of
deliberately designed faults.

15

WO 2024/119490 PCT/CN2022/137991

Application Level vs Infrastructure Level

There is no unified way to inject these faults. The most straightforward and ubiquitous way to do
so in the industry is to create real faults directly. For example, to introduce the http
disconnection or timeout error, one option is to turn off the network or shut down the
downstream services temporarily; to introduce the disk full error, one option is to create a bunch
of files in the file system. We can think of this as fault injection at the infrastructure level, and if
we think about it from this perspective, it will inevitably drive us to create the concrete faults for
the infrastructure resources. Creating faults will directly harm the infrastructure resources;
turning off the network obviously causes many issues, in the previous example. If the resource
is shared, this will introduce extra impacts and risks to other services depending on it. If the
resource is dedicated, it will increase the cost.

But there is a different way to approach this problem: Instead of creating faults at the
infrastructure level, what if we created them at the application level? This would allow us to
simulate the faults we’d like to use with the application API leveraged to talk with the
infrastructure resources. For example, to inject the http timeout fault, we add the latency in the
http client library; to simulate the internal service error, we simulate the response code with 500
http status code. The faults are restricted to the API level and do no harm to the underlying
infrastructure resources. In this way, we’ve found an affordable, secure and reusable way to do
fault injection.

As our service is a Java-based application, we’ve provided a Java agent. Within it, we
instrumented the class files of the client libraries for the dependent services to introduce
different kinds of faults we defined. The introduced faults are raised when our service
communicates with the underlying resource through the instrumented API. The faults do not
really happen in our dependent services, owing to the changed codes, but the effect is
simulated, enabling us to experiment without risk.

(See Fig. 2)

Instrumentation

e To simulate the faults for the client libraries by instrumentation is challenging. Our main
task is to force the invoked methods to experience failures. One method to do this is to
inject failure directly into the method, by, for example, throwing the exception in the
method body. The other method calls for changing the value or the state of the input
parameters to drive the method to go to the failure execution path. There are three
instrumentation patterns in our project.

16

WO 2024/119490 PCT/CN2022/137991

1. Block or Interrupt the method logic

This type of instrumentation is straightforward in that the API can throw exceptions or sleep for a
specific period of time to simulate the error or timeout.
(See Fig. 3)

2. Change the state of method parameters

Under some circumstances, the simulation of faults will depend on the specific state of the input
parameters. For example, the below method logic is depending on the retum value of the
response.getStatusCode(). If the value does not equal 200, the failure logic will be triggered. So
if we want to simulate the faults with failure code, then we need to find a way to change the
state of response which will be returned from the response.getStatusCode().

The way we achieved this is to add the instrumented code snippet to throw a specific defined
exception and let the exception carry the response code we need to simulate. Meanwhile, we
instrument the method by adding the try-catch block to the method to specifically catch the
exception we throw and return the code in the catch block. By doing so, we’ve changed the
method execution path to return the designated value.

(See Fig. 4)

3. Replace the value of method parameters

In contrast to the above example, sometimes the method logic will depend on the value of the
parameters. So if you want to simulate a fault, then you need to change the value of the input
parameter. To change the value of the parameter, we need to know the name of the parameter
first and inject the code to replace the value for the parameter with its name. This is not easy
because the parameter name can only be known in the runtime. So we leverage the Java
reflection to get the names of the parameters in the runtime.

(See Fig. 5)

To implement the above three types of instrumentation, we have created a Java agent. In the
agent, we have implemented a classloader which will instrument the code of the methods
leveraged in the application code. We also created an annotation to indicate which method will
be instrumented and put the instrumentation logic in the methods annotated. Here’s an example:
(See Fig. 6)

In the above code snippet, we’d like to provide the instrumentation logic for
org.asynchttpclient. providers. netty.future. NettyResponseFuture.done(). So what we do is to
create a new method with the same signature, and make it be annotated by @Enforce which is
the user-defined Java annotation used to indicate the instrumentation logic for fault injection.

17

WO 2024/119490 PCT/CN2022/137991

The annotation has two fields: value and type. The value field is the class name of the method
we want to instrument. (We'll discuss the type field shortly.) When the agent is loaded, the
defined class loader will find all the methods annotated by @Enforce and inject the
instrumentation logic defined in the methods to the methods to be instrumented. The type field
of @Enforce has the two values runtime(default value) and static. In the above example, we
implement the instrumentation logic with the Java code. But there remains a chance that we
might need to provide the instrumentation logic with a string literal. Here’s an example of that:
(See Fig. 7)

Let's say we want to instrument the timeout exception of

org.asynchttpclient.providers. netty.future. NettyResponseFuture.awaitUpdate(final int
lastVersion, final long timeoutMs). In the awaitUpdate, it leverages the timeoutMs to calculate
the deadlineMs. So if we can change the value of the passed timeoutMs, we can simulate the
timeout exception for this method. As we discussed before, we will define a new method with
the same name of awaitUpdate and annotated by @Enforce with value =
org.asynchttpclient.providers. netty.future. NettyResponseFuture and type = ‘static’. When we
specify the type = ‘static’, it means the instrumentation logic will be in the form of a string literal
instead of the Java code, as in the previous example. The reason to do so is that we are only
able to determine the name of method parameters in the runtime. To be more specific, we only
know the name of the second parameter of awaitUpdate in the runtime. What we do is to
identify the parameter names with Java reflection during class loading and pass it into the
corresponding method which provides instrumentation logic. So in the below example, the
params = ‘lastVersion,timeoutMs’.

(See Fig. 8)

Customized Class Loader

Now we have implemented the instrumentation logic in the Java agent. However, we still need
to create a customized class loader to inject the instrumentation logic in the target methods of
the client libraries into which we want to inject faults. The class loader leverages Javassist, the
instrument library, which can manipulate the Java bytecode to transform the class files of the
target methods to include the defined faults.

(See Fig. 9)

With the above implementation described, we have injected the faults by instrumentation for the
below client libraries of the three resources we are depending on.
e Push Notification Endpoints:
o Client lib: async-http-client 1.8.3
o Fault types:
m Timeout
m Exception

18

WO 2024/119490 PCT/CN2022/137991

m Response status code
e Message Queue:
o Client lib: kafka-client 2.5.1
o Fault types:
m Timeout
m Exception
e Distributed Store (built in-house by eBay):
o Client lib: monster-java-client 3.4.4.2-RELEASE
o Fault types:
m Timeout
m Exception

Configuration Management

To dynamically change the configuration for the fault injections in the runtime, we have
implemented a configure management console in the Java agent. As our service is a web
application, we can instrument the javax.serviet. http. HttpServiet.service (HttpServietRequest,
HttpServietResponse) to expose the endpoints for the configure management. The endpoint will
render a configuration page to let developers configure the attributes of the fault injection in the
runtime. For example, a developer could globally enable or disable the fault injection and other
subtypes of the faults; for example, a timeout for AyncHttpClient.

(See Fig. 10)

What's Next

We will expand the scope of the application level fault injection in more client libraries and fault
categories to diversify the scenarios of experiments for our services under different kinds of fault
circumstances. Meanwhile, as the configuration of the faults setting through the configuration
management console can only be triggered at the instance level, we will find a way to broadcast
the changes across the cluster.

19

WO 2024/119490 PCT/CN2022/137991

CLAIMS

What is claimed is:

1. A processor-implemented method for fault injection, the method comprising:
determining a code of an application,;
receiving one or more parameters from a GUI,
converting the one or more parameters to an instrumentation code in the code of
the application, wherein the instrumentation code simulates one or more faults in a
system and comprises annotation; and
executing the instrumentation code in the code of the application to identify

resilience of the application.

2. The method of claim 1, wherein the instrumentation code comprises a specific period of

time to simulate an error or timeout.

3. The method of claim 1, wherein the instrumentation code comprises a snippet with a

defined exception to carry a response code.

4, The method of claim 1, wherein the instrumentation code comprises a code to replace a

value of a parameter during runtime, wherein the parameter is identified using an agent.

5. A computer system for fault injection, the computer system comprising:

one or more processors, one or more computer-readable memories, one or more

computer-readable tangible storage medium, and program instructions stored on at least one of

20

WO 2024/119490 PCT/CN2022/137991

the one or more tangible storage medium for execution by at least one of the one or more
processors via at least one of the one or more memories, wherein the computer system is capable
of performing a method comprising;

determining a code of an application,;

receiving one or more parameters from a GUI;

converting the one or more parameters to an instrumentation code in the code of the
application, wherein the instrumentation code simulates one or more faults in a system and
comprises annotation; and

executing the instrumentation code in the code of the application to identify resilience of

the application.

6. The method of claim 5, wherein the instrumentation code comprises a specific period of

time to simulate an error or timeout.

7. The method of claim 5, wherein the instrumentation code comprises a snippet with a

defined exception to carry a response code.

8. The method of claim 5, wherein the instrumentation code comprises a code to replace a

value of a parameter during runtime, wherein the parameter is identified using an agent.

9. A computer program product for fault injection, the computer program product

comprising;

21

WO 2024/119490 PCT/CN2022/137991

one or more computer-readable tangible storage medium and program instructions stored on at
least one of the one or more tangible storage medium, the program instructions executable by a
processor, the program instructions comprising:

program instructions to determine a code of an application;

program instructions to receive one or more parameters from a GUI;

program instructions to convert the one or more parameters to an instrumentation code in
the code of the application, wherein the instrumentation code simulates one or more faults in a
system and comprises annotation; and

program instructions to execute the instrumentation code in the code of the application to

identify resilience of the application.

10. The computer program product of claim 9, wherein the instrumentation code comprises a

specific period of time to simulate an error or timeout.

11. The computer program product of claim 9, wherein the instrumentation code comprises a

snippet with a defined exception to carry a response code.

12. The computer program product of claim 9, wherein the instrumentation code comprises a
code to replace a value of a parameter during runtime, wherein the parameter is identified using

an agent.

22

WO 2024/119490 PCT/CN2022/137991
1/7

CLIENT COMPUTING DEVICE

PROCESSOR 102
104
A

\ 4

DATA STORAGE FAULT INJECTION PROGRAM
DEVICE 106
110A
SOFTWARE I
PROGRAM
108 NOTIFICATION PLATFORM 122

COMMUNICATION
NETWORK
114

SERVER 11

FAULT INJECTION PROGRAM
110B

< STORAGE DEV|0E>
116

FIG. 1

WO 2024/119490 PCT/CN2022/137991
2/7

.

fitronwng

Chent Lib Ul
L

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
i@

=
.
%*ﬁﬁﬁ?i

.
.

-
-
tion

o <
. e

. .
. o
. o

.
.
.
-
.

Taus

-

=
.
-
.
.
.
-
=
e
e
e
e
.
-
.

S

-

-

-
-

.

Loading agent during startup

-
.
-
-
-
.

-
-
-
.

-

-

.
-
o
.
.

.
e

-

-

-

-
-
.
-
-

..
...

.
.
-

-
-

-
.

o

-

-
.
.

-

-

.
.

-
e

.
i
-
.
-
-

. .
- .
- - -
...

.
. .
...
. -
. .

-

-
S

S

-
.
-
.
-

.

.
.
.
.
.
.
.
.
.
-
.
.
.
.
.

e

-
S

...

.

... .
-

... .
... .

.

-
-
-

-

4%
-
-
-

-
-

-
-
-
-

.
.

il

/\

FIG. 2

PCT/CN2022/137991

WO 2024/119490

3/7

F

% wm meEn

bR R R

i i S R

iy

¥ 'OId

ek G

B
LR W

LR g

Sy

s

B us A

e g

sl

-
.W

.

PCT/CN2022/137991

WO 2024/119490

9 'Old

{}
‘(4

Qsa:mmuxwguzﬁ
sunpdaarspean L
} AR
3} {0 < Aduanep) jn

‘Oinoawr ooy (Jeourisunad-aieigeqol) = Adune] 8uol
¥ (sdze [oalgn)auop proa oneis yjqnd
(pamnagasuodsayAnan ammngAnousiopacidiuarpdipudse Bio, = anjeajadiojuy®

4/7

il g

B0 piien

g 'Old

SR SOTRIERRE RER 0 0 i
W e s e

ek TR LR

L e hwmm«w S G

Dhnvatinapug

e

F.F
el RS
Pl Sl 1

(fr % = 1

o

WO 2024/119490 PCT/CN2022/137991
57

200

pbic synchromized void swaelUpdeet il bnt TastVersion, Taal Jong nmeom sl teows TnmrrupiedEscoption {
o corre Dhneds = e iliseconds()
long deadlineds 7 current Thneds + thimesieMs < 07 Loag MAX_VALUE » current Do s + simeouiMs;
ting wanblecttysy,) >
T hrow Batal oxcoptions, IF Sweve e iy Recoverable tepic eomorywill be Bandiod by the caile
maybe ThrowFatalbsceptiony;
return updateVersiond) » lesVWersion | Biosedly
¥, deadlie Ml
if st losedy)

Huow new Kilkabxooptioal"Hoguesiod waotad s uidate alter ¢lose™);

FIG. 7

oAU Ve B T oI B Bl R 0 el DI e Vi s e, e T TR

il sae Gilmelanee vt 4
Sl Y

TEER ORI S R B e L S g e e s e e

FIG. 8

PCT/CN2022/137991

WO 2024/119490

6/7

b

SHIBLERLE DO JRUPRA S BIRELIY

e

6 'Old

PR R

’ iy

S el

SR

St

T at

BB Ry i Dy

PCT/CN2022/137991

WO 2024/119490

717

0L '©Old

o amosuny Supess poapoid 1

SN Ty -

R wonhog

panhog s pondaoy

UL 10ISUORN -

sy wenny dusg

st panday

by sop sondareg

SuanHdRHOuASY -

g ooy adomg

T Paeeg

:3umas vqo[H

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2022/137991

A. CLASSIFICATION OF SUBJECT MATTER
GO6F11/36(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC:GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DWPLCNKLCNTXT,CNABS,ENTXT,ENTXTC: application, code, parameter, instrumentation, fault, resilience

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

(2015-08-12)
paragraphs 0023-0061 in the description

X CN 104834590 A (TENCENT TECHNOLOGY SHENZHEN CO., LTD.) 12 August 2015 1-12

CO., LTD.) 25 November 2015 (2015-11-25)
the whole document

A CN 105095087 A (WUHAN QIMING LIANCHUANG INFORMATION TECHNOLOGY 1-12

the whole document

A US 2008178044 A1 (SHOWALTER JAMES L ET AL.) 24 July 2008 (2008-07-24) 1-12

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

document cited by the applicant in the international application

earlier application or patent but published on or after the international

filing date

document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other

special reason (as specified)

«0” document referring to an oral disclosure, use, exhibition or other
means

«p>” document published prior to the international filing date but later than

the priority date claimed

«1> later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

«X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

«y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

22 August 2023(22.08.2023) 23 August 2023
Name and mailing address of the ISA/CN Authorized officer
CHINA NATIONAL INTELLECTUAL PROPERTY
ADMINISTRATION CULLiYan

Telephone No. (+86) 62411682

Form PCT/ISA/210 (second sheet) (July 2022)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members

PCT/CN2022/137991
. Patf‘/nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
CN 104834590 A 12 August 2015 CN 104834590 B 23 November 2018
CN 105095087 A 25 November 2015 None
Us 2008178044 Al 24 July 2008 us 8533679 B2 10 September 2013

Form PCT/ISA/210 (patent family annex) (July 2022)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

