
(12) United States Patent
McLamb

USOO8918562B1

(10) Patent No.: US 8,918,562 B1
(45) Date of Patent: *Dec. 23, 2014

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(63)

(51)

(52)

HARDWARE METHOD FOR DETECTING
TIMEOUT CONDITIONS IN A LARGE
NUMBER OF DATA CONNECTIONS

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventor: Jeffrey T. McLamb, Raleigh, NC (US)

Assignee: EMC Corporation, Hopkinton, MA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 13/907,315

Filed: May 31, 2013

Related U.S. Application Data
Continuation of application No. 13/247.364, filed on
Sep. 28, 2011, now Pat. No. 8,495,251.

Int. Cl.
G06F 3/00 (2006.01)
G06F5/00 (2006.01)
G06F 3/06 (2006.01)
U.S. C.
CPC G06F 3/0656 (2013.01)
USPC ... 710/55; 377/39

STEP

DETERMINING
STATUSPROPERTY

OFMEMORY LOCATION
OF MEMORY
POINTER

READINGLAST ACCESSED

OF MEMORYPOINTER

DETERMINING
FATIMEOUT
OCCURED

YES
412a

IS
MEMORY

LOCATION OF NEMORY
PONTERRECEWING

AWRITE

HANDLENCOMING
DATAPACKET

INCREMENT THE
MEMORYPOINTER

418 108

TIMESTAMPFROMMEMORY LOCATION

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,894,481 A
6,002,737 A 12, 1999
6,185,615 B1* 2/2001
8,037,332 B2 * 10/2011

2001/OO19556 A1* 9, 2001
2004/O193385 A1 9, 2004

4, 1999 Book
Devanagundy et al.
Labiaga et al. TO9,224
Haustein et al. ... T13,320
Morzano 370,395
Yutkowitz

* cited by examiner

Primary Examiner — Elias Mamo
(74) Attorney, Agent, or Firm — Hamilton, Brook, Smith &
Reynolds, P.C.

(57) ABSTRACT

Tracking several open data connections is difficult with a
large number of connections. Checking for timeouts in Soft
ware uses valuable processor resources. Employing a co
processor dedicated to checking timeouts uses valuable logic
resources and consumes extra space. In one embodiment, a
finite State machine implemented in hardware increases the
speed connections can be checked for timeouts. The finite
state machine stores a last accessed time stamp for each
connection in a memory, and loops through the memory to
compare each last accessed time stamp with a current time
stamp of the system minus a global timeout value. In this
manner, the finite state machine can efficiently find and react
to timed out connections.

16 Claims, 7 Drawing Sheets

A.02

NACTIVE
403b

414

UPDATESTATUSPROPERTY
OF MEMORY LOCATION
OF POINTERTOINACTIVE

| ?un61–

US 8,918,562 B1 U.S. Patent

US 8,918,562 B1 Sheet 2 of 7 Dec. 23, 2014 U.S. Patent

ZOZ

Z ?un61–

U.S. Patent Dec. 23, 2014 Sheet 4 of 7 US 8,918,562 B1

104

STEP ?
102

DETERMINING 402
STATUS PROPERTY

OF MEMORY LOCATION
OF MEMORY NEE
POINTER

ACTIVE
403a

READINGLAST ACCESSED
TIMESTAMP FROMMEMORY LOCATION

OF MEMORYPOINTER

DETERMINING
FATIMEOUT
OCCURED

IS
MEMORY

LOCATION OF MEMORY NOTIFY HOST
POINTER RECEIVING

AWRITE

UPDATESTATUS PROPERTY
OF MEMORY LOCATION
OF POINTERTO INACTIVE

HANDLENCOMING
DATAPACKET

108

INCREMENT THE
MEMORY POINTER

418

Figure 4

U.S. Patent Dec. 23, 2014 Sheet 5 Of 7 US 8,918,562 B1

STEP
104

PROCESSING DATAPACKET WITH 502
AN INCOMING DATA HANDLER

IS
PACKET

FROMA NEW
CONNECTION

504

STORE CONNECTION DATA
PACKET IN MEMORYBUFFER UPDATE TIMESTAMPIN
ATARBITRARY LOCATION MEMORYBUFFER 510

CORRESPONDING TO

UPDATE STATUS OF THE
LOCATION TO ACTIVE

DATAPACKET

104.

Figure 5

U.S. Patent

EXPRATION
TIMESTAMP

>

LAST ACCESSED
TIMESTAMP

TIMEOUT

Dec. 23, 2014 Sheet 6 of 7 US 8,918,562 B1

-0
EXPRATION TIMESTAMP
= CURRENT TIMESTAMP 602

- STORED TIMEOUT VALUE

COMPARE
EXPRATION TIMESTAMP

TO LAST ACCESSED TIMESTAMPAT
MEMORY LOCATION OF

POINTER

Figure 6

NOTIMEOUT

EXPRATION
TIMESTAMP

C

LAST ACCESSED
TIMESTAMP

608

U.S. Patent Dec. 23, 2014 Sheet 7 Of 7 US 8,918,562 B1

INCOMING DATA
HANDLER

HOST SYSTEM 702

MEMORY POINTER 706
REGISTER

716

SYSTEM TIMESTAMP
REGISTERS

708

Figure 7

US 8,918,562 B1
1.

HARDWARE METHOD FOR DETECTING
TIMEOUT CONDITIONS IN A LARGE
NUMBER OF DATA CONNECTIONS

RELATED APPLICATION

This application is a continuation of U.S. application Ser.
No. 13/247,364, filed Sep. 28, 2011. The entire teachings of
the above application(s) are incorporated herein by reference.

BACKGROUND

Tracking several open data connections is difficult with a
large number of connections. For example, Fibre Channel
uses a large number of frame sequences. Tracking these open
data connections or frame sequences in the case of Fibre
Channel requires monitoring the status of the data connec
tions. For example, a data connection is disrupted when a
frame is lost or dropped because of a data error, or when a
remote link partner is disconnected due to an error. Checking
a connection for a “timeout' indicates such a connection
disruption. A “timeout' is indicated by a connection not trans
mitting or receiving any packets in an excessive period of
time.

For example, considera connection with a timeout value of
2 seconds that receives a packet at time t-0s, and then sends
a reply at t=1 S. The connection “times out if it does not
receive or transmit another packet before t—3 s.
Some implementations of timeout monitoring use a micro

processor and Software to check each of the several connec
tions for a timeout. In this implementation, Software instructs
the processor to loop through the connections and access each
open connection's data structure to check for a timeout. The
processor loops through the connections indefinitely because
a connection can timeout at any time. In this implementation,
the processor is either embedded in the connection tracking
hardware, or an external processor is available to indefinitely
check for timeouts. Connecting an additional processor just
for timeout monitoring is undesirable in some systems, like a
high-throughput streaming system, because large logic elec
tronics used to connect the additional processor generally run
slower than the connection data rate. Such an implementation
is unnecessarily complex and costly.

BRIEF DESCRIPTION

The foregoing will be apparent from the following more
particular description of example embodiments of the inven
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating embodi
ments of the present invention.

FIG. 1 is a diagram illustrating the steps of a finite state
machine process for checking timeouts on a plurality of con
nections.

FIG. 2 is a diagram illustrating the initialization step of the
finite state machine.

FIG.3 is a diagram illustrating the time stamp analysis step
and handle incoming data step of the finite state machine.

FIG. 4 is a diagram illustrating a time stamp analysis step
in a finite state machine process.

FIG.5 is a diagram illustrating a handle incoming data step.
FIG. 6 is a diagram illustrating a time stamp comparison

process.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 7 is a diagram illustrating an implementation of a

finite state machine in hardware.

DETAILED DESCRIPTION

A description of example embodiments follows.
In one embodiment, a method includes first initializing a

finite state machine that includes an interface with multiple
connections, a memory buffer for storing a last accessed
timestamp, and a memory pointer. Locations in the memory
buffer are initialized by setting a status property of the loca
tions to inactive. The memory pointer is initialized by setting
it to point to one of the locations in the memory buffer. The
method then performs a timestamp analysis. First, the times
tamp analysis reads a last accessed timestamp corresponding
to the location of the memory pointer when the status property
of the location of the memory pointer is active. Second, the
timestamp analysis determines whether a timeout has
occurred based on the last accessed timestamp, a current
timestamp and a stored time out value. If a timeout has not
occurred or the location of the memory pointer is inactive, the
method increments the memory pointer. If a timeout has
occurred and the location of the memory pointer is active, the
method notifies a higher communication layer, updates the
status property of the location of the memory pointer to inac
tive. The method then increments the memory pointer.
The method includes, if an incoming data packet is

received, handling the packet by processing the incoming
data packet with an incoming data handler configured to
process the incoming data packet in the higher communica
tion layer. If the incoming data packet is part of a new con
nection, the new connection status of the incoming data
packet is indicated by a lack of an entry corresponding to the
connection of the incoming data packet in the plurality of
memory locations. The method stores the data packet's con
nection information in a location in the memory buffer. Last,
the method updates the status property of the location to
active and sets the last accessed timestamp in one of the
plurality of locations in the memory buffer before repeating
the timestamp analysis.

In one embodiment, a system includes a finite state
machine configured to initialize an interface with multiple
connections, initialize a memory buffer for storing a last
accessed timestamp, and initialize a memory pointer by set
ting it to point to one of the locations. Locations in the
memory buffer are initialized by setting a status property of
the locations to inactive.
The finite state machine performs a timestamp analysis.

When the status property of the location of the memory
pointer is active, the finite state machine reads a last accessed
timestamp corresponding to the location of the memory
pointer, and determines whether a timeout has occurred based
on the last accessed timestamp, a current timestamp and a
stored time out value. If a time out has not occurred or the
location of the memory pointer is inactive, the finite state
machine increments the memory pointer. If a timeout has
occurred and the location of the memory pointer is active, the
finite state machine notifies a higher communication layer
and updates the status property of the location of the memory
pointer to inactive. The finite state machine then increments
the memory pointer.

In one embodiment, if an incoming data packet is received,
the finite state machine handles the packet by processing the
incoming data packet with an incoming data handler config
ured to process the incoming data packet in the higher com
munication layer. If the incoming data packet is part of a new
connection, the new connection status of the incoming data

US 8,918,562 B1
3

packet is indicated by a lack of an entry corresponding to the
connection of the incoming data packet in the memory loca
tions, and the finite state machine stores the data packet in a
location in the memory buffer. The finite state machine then
updates the status property of the location to active and sets
the last accessed timestamp in the location in the memory
buffer. The finite state machine then repeats the timestamp
analysis step.

In one embodiment, the finite state machine determines
whether a timeout has occurred by calculating an expiration
timestamp based on the difference of the current timestamp
and the stored time out value and triggers a timeout if the
expiration timestamp is greater than the last accessed times
tamp.
In some embodiments, the finite state machine includes a
clock cycle, and increments the current timestamp on each
clock cycle.
In some embodiments, the memory buffer includes a connec
tion tracking memory buffer.

The incoming data handler processes data by detecting a
new frame on a receive buffer, reading the header of the new
frame to update or create timestamp data in a location in the
connection tracking memory buffer, and storing the new
frame in one of a plurality of data storing memory locations.
In some embodiments, the incoming data handler is Fibre
Channel. The stored timeout value is at least one of a global
timeout value based on a connection protocol and a local
timeout value based on an individual connection.

In one embodiment, a finite state machine, as a portion of a
larger finite state machine, and a timestamp comparison logic
continually search through a memory containing information
about when each of the open connections tracked in the
memory were last accessed. The finite state machine and
timestamp logic employ a comparator to compare the times
tamp of each entry in the memory against a continually
updating timeout value. The timeout value is defined as the
current time base of the system minus the configured timeout
value. If an active connection entry in the table has a “last
accessed timestamp' less than the timeout value, a timeout
condition is recognized, the finite state machine removes the
connection and alerts higher-level software of the timeout.
The finite state machine and timestamp comparison logic
continuously increment a memory pointer to check each
address in the connection tracking memory in sequence.
Upon reaching the end of the memory address range, the
memory pointer points to the initial address in the memory
and repeats scanning from the beginning The finite state
machine is incorporated as a part of a larger system which
also handles incoming data, so the memory pointer is main
tained in a register while incoming data is serviced. When
incoming data is serviced, the memory is updated with new
data and updated timestamps for connections accessed in
arbitrary memory locations. The finite state machine is also
guaranteed to check at least one of the next addresses in the
memory for timeout, even in high-load conditions where
incoming data arrives continuously and the memory is busy
handling data connections most of the time.

Implementing a timeout detector a finite state machine in
hardware efficiently uses resources and guarantees timeout
conditions are quickly recognized because even for a large
number of open connections, the entire memory can be
checked on an idle link in 2*n clock cycles, where n is the
number of entries in the connection tracking memory. For
example, in a system with an idle link with 2K memory
entries and a 100 MHz clock, the memory entries can be
checked for timeouts in approximately 40 microseconds. In a
system with a busy link, when large data frames are received

10

15

25

30

35

40

45

50

55

60

65

4
continuously, the entire memory can be checked in 271*n
clock cycles. In the example above with 2K memory entries
with a 100 Mhz, clock, the entire memory can be checked in
5-6 milliseconds, or 5K-6K microseconds. This maximum
delay is negligible because timeout values for connections in
most protocols are 2 seconds or greater. The finite State
machine outperforms the latency imposed by a processor and
Software searching for timeouts under similar load condi
tions.

FIG. 1 is a diagram illustrating the steps of a finite state
machine process 100 for checking timeouts on a plurality of
connections. The finite state machine process 100 begins with
an initialization step 102. The initialization step 102 initial
izes the connection interface and the finite state machine.
After the initialization step 102 has completed, the finite state
machine process 100 advances to the time stamp analysis step
104. The time stamp analysis step 104 determines whether a
connection has timed out. When no new data packet 106B
requires processing, the finite state machine process 100
remains in the perform time stamp analysis state and contin
ues checking Successive time stamps in a memory buffer.
When a new data packet 106A requires processing, the finite
state machine process 100 processes the incoming data
packet in a handle incoming data step 108 and then returns to
the time stamp analysis step 104.

FIG. 2 is a diagram illustrating the initialization step 102 of
the finite state machine 100. The initialization step 102 first
initializes an interface with a plurality of connections 202.
The initialization step 102 then initializes a memory buffer
204 with memory locations. Next, the initialization step 102
sets the state property of all memory locations to inactive 206.
Finally, the initialization step 102 initializes a memory
pointer by setting the memory pointer 208 to point to one of
the memory locations in the memory buffer. After step 208,
the finite state machine advances to the time stamp analysis
step 104.

FIG.3 is a diagram illustrating the time stamp analysis step
104 and handle incoming data step 108 of the finite state
machine 100. First, the finite state machine enters a read next
time stamp state 310. The finite state machine then enters a
check time stamp state 312. The check time stamp state 312
checks the current time, the last accessed time of a connection
and a global time out value to determine whether the connec
tion has timed out. If the connection has not timed out, the
check time stamp state returns to the read next time stamp
state 310. If the connection has timed out, the finite state
machine advances to a time out alert state 318.
The time out alert state 318 performs two steps. First, it

notifies software 322 that the connection timed out. Second, it
sets the memory to inactive 324 in the memory buffer. The
finite state machine then enters the reads next time stamp state
31 O.
The check time stamp state advances to the incoming data

handler state machine when data is available from an outside
connection. The incoming data handler finite state machine
328, in some embodiments, sends the data to a higher network
layer. When the incoming data handler finite state machine
328 completes processing the data from the connection, the
finite state machine returns to the read next time stamp state
31 O.

FIG. 4 is a diagram illustrating the time stamp analysis step
104 in the finite state machine process 100. The time stamp
analysis step 104 is entered after the completion of the ini
tialization step 102. The time stamp analysis step 104 begins
by reading the connection status 402. Reading the connection
status 402 includes determining the status property of the
memory location in the buffer where the memory pointer is

US 8,918,562 B1
5

pointing. If the memory location is active 403A, the time
stamp analysis step 104 advances to reading the last accessed
time stamp 404. The last accessed time stamp is read from the
memory location where the memory pointer is pointing.
Next, the time stamp analysis step 104 determines time out
status 406 by determining whether the connection has timed
out. The steps to determine whether a connection has timed
out are shown in more detail in FIG. 6 below.
When a connection has timed out, the time stamp analysis

step 104 advances along path 408A to the memory activity
step 410. The memory activity step 410 determines whether
the memory location where the memory pointer is pointing is
currently receiving a write. If the memory location is receiv
ing a write, then the time stamp analysis step 104 returns to
the determining time out status step 406. When the memory
location is not receiving a write 412B, the time stamp analysis
step 104 notifies a host or software in step 414 and then sets
the status property of the connection to inactive in step 416.
The connection is set to inactive by updating the status prop
erty of the memory location of the pointer to inactive. The
time stamp analysis step 104 increments the memory pointer
418 before handling any incoming data packets 108.

Returning to the determining time out status step 406,
when a connection has not timed out 408B, the time stamp
analysis step 104 advances to the incrementing the memory
pointer step 418. Similarly, when the reading connection
status step 402 determines that the status property of the
memory location of the memory pointer is inactive, the time
stamp analysis step 104 advances to the increment of memory
pointer step 418.

FIG. 5 is a diagram illustrating the handle incoming data
step 108. The handle incoming data step 108 is entered from
the time stamp analysis step 104. The handle incoming data
step 108 then enters the process incoming data packet step
502, which processes incoming data packets from a new or
existing connection. The new connection check step 504
determines whether the data packets are from a new or exist
ing connection. If the data packets are from a new connection,
the handle incoming data step 108 enters the store connection
step 508. The store connection step 508 stores the connection
data packet in the memory buffer at an arbitrary location and
enters the update connection status step 512. The update
connection status step 512 sets the connection status to active
by updating the status property of the location in memory to
active. When the data packet is not from a new connection,
and is therefore from an existing connection, the handle
incoming data step 108 enters into the update connection
information step 510. The updated connection information
step 510 updates the time stamp in the memory buffer corre
sponding to the data packet. The time stamp is updated 512
with the current time stamp of the system. Last, the handle
incoming data step 108 returns to the time stamp analysis step
104.

FIG. 6 is a diagram illustrating the time stamp comparison
process 404. The time stamp comparison process compares a
time stamp of a connection to the current time of the system
and a predetermined time out value. First, the time stamp
comparison process calculates an expiration time stamp 602.
The expiration time stamp is equal to the current time stamp
minus the stored time out value. Once the expiration times
tamp is calculated the time stamp comparison process 404
advances to the determine time out step 604. The determine
time out step 604 compares the expiration time stamp to a last
access time stamp stored in the memory location where the
memory pointer is pointing. When the expiration time stamp
is greater than the last access time stamp of the memory
pointer, the time stamp comparison process 404 returns that

10

15

25

30

35

40

45

50

55

60

65

6
there is a time out 606. When the expiration time stamp is less
than or equal to the last access time stamp of the memory
pointer, the time stamp comparison process 404 returns that
there is not a timeout 608.

FIG. 7 is a diagram illustrating an embodiment of a hard
ware implementation of the finite state machine 700. The
hardware implementation of the finite state machine 700
includes a host system 702 operatively coupled with a system
bus 722. The system bus 722 is also operatively coupled with
a incoming data handler 704, a memory pointer register 706,
a status memory buffer 714, a data memory buffer 718 and a
comparator 720. The incoming data handler 704 handles
incoming data packets as they arrive at the system. When the
incoming data handler 704 receives a data packet from a
connection, the status memory buffer 714 is updated. If the
data packet is from an existing connection, the memory entry
in the status memory buffer 714 is updated with the systems
current time stamp. If the data packet is from a new connec
tion, the new connection information is stored the status
memory buffer and the status property is updated to active. In
addition, the data packet from the incoming data handler 704
is stored in a corresponding location in data memory buffer
718, in some embodiments.
The memory pointer register 706 stores a memory pointer

712, which points to a memory location in the status memory
buffer 714. As the finite state machine process 100 checks
time stamps in the status memory buffer 714, the memory
pointer 712 is incremented until it reaches the end of status
memory buffer 714. When the memory pointer 712 reaches
the end of status memory buffer 714, the memory pointer is
reset to the beginning of the status memory buffer 714 and the
finite state machine process continues to increment the
memory pointer 712. In this manner, the entire status memory
buffer 714 is continually checked for the values of the last
accessed time stamp 716.
The comparator 720 compares the last accessed time stamp

716 to the system time stamp registers 708. The system time
stamp registers 708 include timeout value register 708A,
current timestamp register 708B and expiration time stamp
register 708C. The timeout value register 708A and current
timestamp register 708B are coupled with a subtractor 710.
The subtractor 710 subtracts the timeout value register 708A
from the current timestamp register 708B and outputs the
result to the expiration time stamp register 708C. The expi
ration time stamp register 708C is coupled with the compara
tor 720. The last access time stamp 716 is also coupled with
the comparator 720. The comparator does not signal a timeout
when it determines that the expiration time stamp is less than
or equal to the last accessed time stamp. The comparator does
signal a timeout when it determines the expiration time stamp
is greater than the last accessed time stamp. When the com
parator 720 signals a timeout, the host system notifies soft
ware and the status memory buffer 714 sets the memory
location where the memory pointer 712 is pointing to inac
tive.

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

What is claimed is:
1. A method comprising:
a) initializing a plurality of registers including

(i) an interface with a plurality of connections,

US 8,918,562 B1
7

(ii) a memory buffer including a plurality of locations for
storing a last accessed timestamp by setting a status
property of the locations to inactive, and

(iii) a memory pointer, the memory pointerinitialized by
setting it to point to one of the plurality of locations;

b) performing a timestamp analysis by:
i) when the status property of the location of the memory

pointer is active
A) reading a last accessed timestamp corresponding

to the location of the memory pointer;
B) determining whether a timeout has occurred based

on the last accessed timestamp, a current times
tamp and a stored time out value; and

C) if a timeout has occurred and the location of the
memory pointer is active, notifying a higher com
munication layer and updating the status property
of the location of the memory pointer to inactive:
and

ii) incrementing the memory pointer; and
c) if an incoming data packet is received, handling the

packet by:
i) processing the incoming data packet with an incoming

data handler configured to process the incoming data
packet in the higher communication layer;

ii) updating the status property of the location to active
and setting the last accessed timestamp in one of the
plurality of locations in the memory buffer.

2. The method of claim 1 further comprising determining
whether a timeout has occurred by calculating an expiration
timestamp based on the difference of the current timestamp
and the stored time out value and triggering a timeout if the
expiration timestamp is greater than the last accessed times
tamp.

3. The method of claim 1 further comprising incrementing
the current timestamp on a clock cycle.

4. The method of claim 1 wherein the incoming data han
dler is Fibre Channel.

5. The method of claim 1 wherein the memory buffer
includes a connection tracking memory buffer.

6. The method of claim 5 wherein the incoming data han
dler processes data by detecting a new frame on a receive
buffer, reading the header of the new frame to update or create
timestamp data in a location in the connection tracking
memory buffer, and storing the new frame in one of a plurality
of data storing memory locations.

7. The method of claim 1 wherein the stored timeout value
is at least one of a global timeout value based on a connection
protocol and a local timeout value based on an individual
connection.

8. The method of claim 1, wherein handling the packet
further includes:

if the incoming data packet is part of a new connection, a
new connection status of the incoming data packet indi
cated by a lack of an entry corresponding to a connection
of the incoming data packet in the plurality of memory
locations, storing the data packet in one of the locations
in the memory buffer.

9. A system comprising:
a plurality of registers, wherein the system is configured to:

a) initialize the plurality of registers by initializing:
(i) an interface with a plurality of connections,

10

15

25

30

35

40

45

50

55

60

8
(ii) a memory buffer including a plurality of locations

for storing a last accessed timestamp by setting a
status property of the locations to inactive, and

(iii) a memory pointer by setting it to point to one of
the locations;

b) perform a timestamp analysis by:
i) when the status property of the location of the
memory pointer is active;
A) reading a last accessed timestamp correspond

ing to the location of the memory pointer;
B) determining whether a timeout has occurred

based on the last accessed timestamp, a current
timestamp and a stored time out value; and

C) if a timeout has occurred and the location of the
memory pointer is active, notifying a higher
communication layer and updating the status
property of the location of the memory pointer to
inactive; and

ii) incrementing the memory pointer; and
c) if an incoming data packet is received, handle the

packet by:
i) processing the incoming data packet with an incom

ing data handler configured to process the incom
ing data packet in the higher communication layer;
and

iii) updating the status property of the location to
active and setting the last accessed timestamp in
one of the plurality of locations in the memory
buffer.

10. The system of claim 9, further comprising determining
whether a timeout has occurred by calculating an expiration
timestamp based on the difference of the current timestamp
and the stored timeout value and triggering a timeout if the
expiration timestamp is greater than the last accessed times
tamp.

11. The system of claim 9 further comprising a clock cycle,
wherein the state machine is further configured to increment
the current timestamp on each clock cycle.

12. The system of claim 9 wherein the incoming data
handler is Fibre Channel.

13. The system of claim 9 wherein the memory buffer
includes a connection tracking memory buffer.

14. The system of claim 9 wherein the incoming data
handler processes data by detecting a new frame on a receive
buffer, reading the header of the new frame to update or create
timestamp data in a location in the connection tracking
memory buffer, and storing the new frame in one of a plurality
of data storing memory locations.

15. The system of claim 9 wherein the stored timeout value
is at least one of a global timeout value based on a connection
protocol and a local timeout value based on an individual
connection.

16. The system of claim 9, wherein handling the packet
further includes:

if the incoming data packet is part of a new connection, a
new connection status of the incoming data packet indi
cated by a lack of an entry corresponding to a connection
of the incoming data packet in the plurality of memory
locations, storing the data packet in one of the locations
in the memory buffer.

