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COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all copyright

rights whatsoever.
CROSS REFERENCES

[0002]  This application claims priority U.S. Non-Provisional application 17/989,600 filed
on November 17, 2022, which claims priority and benefit of co-pending and commonly
owned U.S. Provisional Application Nos. 63/281,975, filed November 22, 2021, and
63/321,916, filed March 21, 2022, which are hereby expressly incorporated by reference

herein in their entirety.

TECHNICAL FIELD

[0003] The present disclosure relates generally to protein sequencing and generation
designs, and more specifically, to few-shot protein generation using knowledge learnt from

a protein family.
BACKGROUND

[0004] Proteins are composed of sequences of amino acid sequences. The unique amino
acid sequencing may determine or render a unique property of a protein, e.g.,, an antibody,
avirus, and/or the like. Protein sequencing is the practical process of determining the
amino acid sequence of all or part of a protein or peptide, which can be used to identify the
protein or characterize its post-translational modifications. On the other hand, designing

an amino acid sequence may be used to generate a protein with certain desired properties.
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However, the number of amino acids for protein sequencing is significantly large, resulting
in exponentially increased complexity in determining probable sequences for protein

generation.

[0005] Therefore, there is a need for an efficient mechanism to design protein

sequences.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1is a simplified diagram illustrating an overall architecture of few-shot
protein generation using a generative model, according to one or more embodiments

described herein.

[0007] FIG. 2Ais a simplified diagram illustrating an exemplary structure of the encoder

described in FIG. 1, according to one or more embodiments described herein.

[0008] FIG. 2B is a simplified pseudo-code segment illustrating an operation performed
by the transformer encoder with axial attention shown in FIG. 2A, according to one or more

embodiments described herein.

[0009] FIG. 3Ais a simplified diagram illustrating an exemplary structure of the decoder

described in FIG. 1, according to one or more embodiments described herein.

[0010] FIG. 3B is a simplified pseudo-code segment illustrating an operation performed
by the transformer decoder with cross attention shown in FIG. 3A, according to one or

more embodiments described herein.

[0011]  FIG. 4 is a simplified diagram illustrating an example of protein sequence
generation using an example MSA query matrix, according to one or more embodiments

described herein.

[0012] FIG. 5is a simplified logic flow diagram illustrating a method of few-shot protein
generation using the encoder and the decoder described in FIGS. 1-4, according to one or

more embodiments described herein.
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[0013] FIG. 6is a simplified diagram of a computing device for implementing the few

shot protein generation, according to some embodiments.

[0014]  FIGS. 7-14 provide various data results of data experiments to illustrate example

performance of the few shot protein generation model described in FIGS. 1-6.

[0015] In the figures and appendix, elements having the same designations have the

same or similar functions.

DETAILED DESCRIPTION

[0016]  Asused herein, the term “network” may comprise any hardware or software-
based framework that includes any artificial intelligence network or system, neural
network or system and/or any training or learning models implemented thereon or

therewith.

[0017]  Asused herein, the term “module” may comprise hardware or software-based
framework that performs one or more functions. In some embodiments, the module may

be implemented on one or more neural networks.

[0018]  Protein engineering is the task of mutating proteins in order to achieve a desired
function, and has numerous applications in medicine and sustainability. Designing such
mutations can often be challenging, because inferring protein functional impact from
protein structure is difficult, and the search space of possible sequence variants is
combinatorialy large. For example, a given mutation could cause a disproportionate effect
due to being positioned within an active site or long-range interactions with other amino
acids. In addition, introducing multiple mutations simultaneously can have complex non-

linear effects, called epistasis.

[0019] Machine learning systems have been adopted for protein sequencing analysis
and/or generation. For example, a machine learning system may be trained on a dataset of
protein properties and the corresponding protein structure of amino acid sequences. The

machine learning system can then be used to predict an amino acid sequence for protein
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generation, given one or more desired protein properties. The machine learning system

used for protein generation is herein referred to as a “generative model.”

[0020] In another aspect, supervised training data on the functional impact of protein
mutants is also limited. Acquiring supervised data means performing complicated and
costly deep mutational scanning experiments. Generally, these experiments characterize
the functional impact of point mutations, so experimental data on the impact of higher
order mutants can be even more scarce. On the other hand, the number of variants that can
be measured is limited by the assay throughput. For typical functional activity assays, this

can restrict the number of feasibly measurable variants to hundreds or less.

[0021] In contrast, sequence data is plentiful for natural proteins. The number of known
natural protein sequences has nearly tripled in the last 5 years, and continues to grow
rapidly due to the falling cost of DNA sequencing. However, one issue in biological
sequence analysis is to take a set of sequences representing a protein family, fita
generative model to those sequences, and then use the resulting model to search databases
and classify new proteins. In this setting, families are usually represented by sets of
sequences (e.g., in a multiple sequence alignment (MSA) query matrix), a protein structure,
and/or the like. Thus the task is to find the parameters of a generative model, given
protein information for a family that describes the family and generalizes to unseen
members. Existing sequence models used for this problem includes position-specific
scoring matrices (PSSMs) or profile Hidden Markov Models (pHMMs). For example, PSSMs
model each column in the MSA as independent distributions over amino acids. Profile
HMMs model each amino acid as being generated conditioned on a hidden state
corresponding to the column in the MSA, but this alignment is considered unobserved
when calculating the probability of a new sequence. The PSSM and HMM models are widely
used, because they can be inferred from relatively small sets of sequences (often only 10s
or 100s) and parameter inference needs to be performed for each set of proteins of

interest.

[0022] In view of the learning limitations in protein engineering, embodiments

described herein provide a system for building generative models of proteins based on
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sequence-to-sequence learning. Specifically, sequence modeling is formulated as a few-
shot learning problem such that a single encoder-decoder model is trained to receive and
encode information of a protein family. The information can take a form of an amino acid
sequence, a set of amino acid sequences that belong to the same protein family, a multiple
sequence alignment (MSA) matrix, a protein structure, and/or the like. The information of
a protein family may be used as input to an encoder which encodes the information into
protein representation, which is then decoded into a probability distribution over
sequences from that protein family. In other words, the encoder-decoder model outputs a
sequence that possibly represents a new protein for the protein family conditioned on
learned encoding of the input protein information of the protein family. In this way, the
encoder-decoder model may be trained to handle different protein families, circumventing

the need for fitting dedicated family models.

[0023] In one embodiment, the encoder-decoder model may be trained on tens of
thousands of protein sequencing information. In some implementations, the protein
sequencing information may be input in the form of sequences of tokens. In another
implementation, the protein sequencing information may be learnt in the form such as
MSAs representing known protein families and then may receive unseen families held out

from training at inference stage.

[0024] In this way, the generative encoder-decoder model learns to infer statistical
sequence models of proteins that are substantially more accurate (lower perplexity) than
PSSMs and pHMMs without requiring training on new protein families. Instead, the
proposed generative model extrapolates directly from the multiple sequence alignment

and learns how to infer evolutionary constraints from the training families.

[0025]  FIG. 1is a simplified diagram 100 illustrating an overall architecture of few-shot
protein generation using a generative model, according to one or more embodiments
described herein. Diagram 100 shows a set of protein sequences, such as 102a-n, may be
fed to a generative model 105 as an input. For example, the set of protein sequences 102a-
n may represent proteins from the same family, which may be input to the generative

model 105 in the form of a multiple sequence alignment (MSA) query 103. The MSA query
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103 may take the form of a NxM matrix, representing N protein sequences and M columns.

The MSA query matrix 103 includes a plurality of tokens xij,t€1,..N,je1 ..M, each of

which denotes the amino acid or gap token at the j'th position of the i’th sequence.

[0026] In one embodiment, the generative model 105 may generate, in response to the
input MSA query 103 (denoted by X), a probability distribution 125 over target protein
sequences (y’s), e.g., p(y/X). The target protein sequences are a set of possible protein
sequences in the same protein family of the input sequences 102a-n. Thus, the generative
model 105 is trained by a training set of (MSA, target protein) pairs (X*, y*) where k €

1, ..., K denotes the kth pair. For example, the target protein y* is a member of the same

family as the sequences in X* that does not comprise the same target protein sequence y*.

[0027] In one embodiment, the generative model 105 may be a transformer model that
comprises an MSA-encoder 110 and a sequence-to-sequence decoder 120 neural network
architecture. The detailed structures of the encoder 110 and the decoder 120 are

described in relation to FIGS. 2-3, respectively.

[0028] Itis noted that the example embodiment shown in FIG. 1 uses the MSA query
matrix as an example input structure to the protein generative model 105. Other forms of
protein information such as a set of amino acid sequencing, protein structures, and/or the

like, can be applied to a similar generative model structure shown in FIG. 1.

[0029] FIG. 2Ais a simplified diagram illustrating an exemplary structure of the encoder
110 described in FIG. 1, according to one or more embodiments described herein. In the
embodiment described in FIG. 2A, an input of MSA query matrix 103 is considered. The
MSA encoder 110 may be a transformer encoder that applies axial self-attention on the
rows (e.g, see the row attention layer 201) and columns (e.g., see the column attention
layer 202), into context-aware vector representations, z; ; (e.g, via a feed forward layer

203), for each token x; ; in the MSA query 103.

[0030] In one embodiment, the MSA encoder 110 accepts tokens x; ; in the MSA query

103 as input and returns a vector representation 119 for each position in the MSA query,

z; € R4, where d is the dimension of the learned embedding. The MSA encoder 110 is
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parameterized as a stack of transformer layers for axial attention over the rows 201, axial

attention over the columns of the MSA 202 and a feed forward layer 203.

[0031] Before being processed by the transformer stack, the input tokens x; ; are
preprocessed by an input embedding module 108 which embed the input tokens into
vectors in R4 and augmented with a random Fourier projection of the column index as a
positional embedding, also in R4. No positional embedding is used for the rows of the MSA
(the sequence index), because the ordering of sequences in an MSA is arbitrary and the
MSA encoder 110 is expected to be invariant to the specific ordering of sequences in the

input.

[0032]  Specifically, the input embedding module 108 forms the input embeddings by
adding a learned embedding for each amino acid to the random Fourier feature embedding
of the column index as follows. First, the amino acid token is embedded by learned

embeddings:

CEy R R S s 5 S o
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where W is a matrix of learnable amino acid embeddings of dimension d, K is the size of the

vocabulary (22 in the case of 20 amino acids plus gap and start/end tokens), and x; ;

indicates the amino acid at position i, j of the MSA. Next, the column index is embedded by:
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where Wros is a learnable matrix, r is a random vector drawn from Normal(0, 1), and b is a

random vector drawn from Uniform(0, 2m). The input embedding is then formed by:

[0033] The MSA encoder transformer layers comprise axial self-attention layers 201-202
along the rows and columns of the MSA matrix 103 followed by a fully connected feed
forward layer 203. The row-attention layer 201 comprises a normalization layer 111 and

an attention layer 112 such that the axial row attention is preceded by layer normalization
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and uses residual connections. Similarly, the column-attention layer 202 comprises a
normalization layer 113 and an attention layer 114 such that the axial column attention is
preceded by layer normalization and uses residual connections. The feed forward layer
203 comprises a normalization layer 115, a linear projection layer 116, a GeLu layer 117

and another linear projection layer 118.

[0034] FIG. 2B is a simplified pseudo-code segment illustrating an operation performed
by the transformer MSA encoder with axial attention shown in FIG. 2A, according to one or
more embodiments described herein. As shown in FIG. 2B, the attention within each row is
computed and accumulated. Then the attention within each column is computed and
accumulated. And finally, the feed forward layer applies a GeLU operation to accumulate

the output from the GeLu operation.

[0035] Therefore, within row and within column attention can be computed efficiently
by calculating the multi-headed attention operation over the rows or columns batch-wise.
For example, given a batch of intermediate MSA representations, Z, with dimensions
BxNxMxd, where B is the number of MSA queries in the batch, N is the number of rows in
each MSA query matrix, and M is the number of columns in each MSA query matrix, and d is
the size of the input embedding of the MSA query, per-row self-attention can be calculated
by treating rows as part of the batch dimension, BNxMxd, and then per column self-

attention can be calculated by treating columns as part of the batch dimension, BMxNxd.

[0036] FIG.3Ais a simplified diagram illustrating an exemplary structure of the decoder
120 described in FIG. 1, according to one or more embodiments described herein. In the
embodiment described in FIG. 2B, a MSA representation 119 encoded from an input of MSA
query matrix 103 is considered. The decoder 120 may comprise a set of sequence decoder
transformer layers, which apply causal self-attention to the target sequence 133, cross-
attention to the MSA representations 119, and then applies fully connected layers with
layer normalization and residual connection for each block. Specifically, the transformer
decoder is configured to apply a causal self-attention mask to ensure that the output
representation for each position of the sequence in the decoder is only a function of

previous positions in the target sequence 133 and the MSA representation 119.
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[0037] In one embodiment, before being passed into the decoder transformer layers, the
target sequence ax is embedded following the same scheme as the input embedding module
108 for the MSA along the column dimension. When decoding, the target sequence is
padded to begin with a start token and end with a stop token.

[0038] The embedded and padded target sequence axis then sent to a normalization
layer 121, followed by the causal self-attention layer 122 followed by another
normalization layer 124. Meanwhile, the MSA representations 119 are sent to a
normalization layer 123. The outputs from normalization layers 123 and 124 are then sent
to the MSA cross-attention layer 125, which generates cross-attentions between the self-
attentions of the target sequence and the MSA representations. Specifically, in the MSA
cross attention layer 125, each position of the target sequence attends over the complete
MSA representations for each attention head (i.e., LxNxMxH, where L is the number of
target sequences, and H is the number of heads). The cross-attentions can thus be
efficiently computed by flattening the MSA representations along the row and column
dimensions such that each MSA representation, z; ;, is a single key in the cross attention
layer 123. The cross-attentions are then sent to the feed forward layer, which in turn
applies a normalization layer 126, a linear projection 127, a GeLu operation 128, another

linear projection 129.

[0039] FIG. 3B is a simplified pseudo-code segment illustrating an operation performed
by the transformer MSA decoder 120 with cross attention shown in FIG. 34, according to
one or more embodiments described herein. As shown in FIG. 3B, the causal self-attention
within the target sequence is computed and accumulated for each token in the target
sequence. Then the cross attention against the MSA representations is computed and
accumulated. And finally, the feed forward layer applies a GeLU operation to accumulate

the output from the GeLu operation.

[0040] Decoding the target sequence is performed using the decoder representations by
learning a transformation from axto the probability distribution over the (k+1)th token.

This decoding process is formulated as a linear transformation of ax into a vector of
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dimension equal to the number of tokens, followed by softmax 131 to give the probability

of each token, p(yi+1lax) = P(}’k+1|}’1,...,k» X)-

[0041] The decoding process may be applied to yield different outputs. The decoder
may generate, based on the probability of each token, token by token, a new protein
sequence different from any of the plurality of amino acid sequences in the MSA query
matrix but belongs to the same protein family. For another example, given a specific
protein sequence, the decoder may determine a score indicating a likelihood level that the
given protein sequence belongs to the same protein family. In another example, give a
number of sampled protein sequences, the decoder may determine, based on the decoded
probabilities, a recommended protein sequence that has the highest likelihood to belong

the protein family among a number of given protein sequences.

[0042] In this way, the encoder-decoder model may be trained to generate predicted
protein sequence in a sequence-from-sequences manner. For example, the decoder may
generate predicted sequences in a protein family conditioned on previously generated

sequences that belong to the family.

[0043] FIG. 4 is a simplified diagram illustrating an example of protein sequence
generation using an example MSA query matrix 103, according to one or more
embodiments described herein. As shown in FIG. 4, the example MSA query matrix 103
may be applied with self-attentions at the encoder 110. Sequence row self-attention 201
may be applied within each row (e.g. the row of “A, L, M, K”), and residual column self-
attention 202 may be applied to each column (e.g., the column of “L, L, F”) of the MSA query

matrix 103 to result in MSA representations for each token in the matrix 103.

[0044] Atthe decoder 120, the target sequence may be padded with a start token <end>
and an end token <end>, and be applied with a causal self-attention. The self-attentions
137 (e.g, corresponding to token “A”) may then be applied with cross attention against the
MSA representations 119 to result in the output probability over the next token (e.g., “F”) in

the target sequence.
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[0045] Itis noted that the example embodiments described in relation to FIGS. 2A-4 use
the MSA query matrix as an example input structure to the protein generative model 105.
Other forms of protein information such as amino acid sequencing, protein structures,

and/or the like, can be applied to a similar generative model structure shown in FIGS. 2A-4.

[0046] FIG. 5 is a simplified logic flow diagram illustrating a method of few shot protein
generation using the encoder 110 and the decoder 120 described in FIGS. 1-4, according to
one or more embodiments described herein. One or more of the processes of method 500
may be implemented, at least in part, in the form of executable code stored on non-
transitory, tangible, machine-readable media that when run by one or more processors
may cause the one or more processors to perform one or more of the processes. In some
embodiments, method 500 corresponds to the operation of the protein generation module

630 (FIG. 6) to perform model training and few-shot protein generation.

[0047] Atstep 502, a training input pair of first information representing a first protein
belonging to a first protein family and a first target protein belonging to the first protein
family is received. In one implementation, the first information representing the first
protein may include an amino acid sequencing, a first multiple sequence alignment (MSA)
query matrix (e.g., 103 in FIG. 1) representing a plurality of amino acid sequences, a protein
structure, and/or the like. The training data may be received via a communication
interface (e.g., see data interface 615 in FIG. 6). The first target protein sequence is
different from any of the plurality of amino acid sequences but belongs to the first protein
family. For example, as shown in FIG. 4, the MSA query matrix 103 has a number of rows
representing the plurality of protein sequences, and each entry in the MSA query matrix

represents an amino acid token in a respective row of protein sequence.

[0048] In one implementation, high-performing mutants may be sampled from the first

protein family as the first target protein sequence for training the encoder and the decoder.

[0049] In one implementation, an input embedding of entries for the training data may
be generated. For example, when the training input includes an MDS query matrix, a first

embedding is generated for each amino acid token in the MSA query matrix, and a second
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embedding is generated based on a random feature embedding of a column index of the
MSA query matrix. The input embedding is then formulated by adding the first embedding

and the second embedding.

[0050] In another example, the training pair may be obtained from full Pfam family
alignments. In order to evaluate the performance of the model on unseen families, the Pfam
sequences at the family level may be split into 10,593 training, 563 validation, and 2,654

test families.

[0051] Atstep 504, an encoder (e.g, 110 in FIGS. 1 and 2A) of the machine learning
model may encode the first information representing the first protein (e.g.,, a MSA query
matrix 103 in FIG. 1) into a protein representation (e.g., MSA representation 119 in FIG. 2A)
based at least in part on applying attention within each row and each column of the first
MSA query matrix. For example, row attentions (e.g., 201 in FIG. 2A) may be generated
over a first set of amino acid tokens within each row of the MSA query matrix. Column
attentions (e.g., 202 in FIG. 2A) may be generated over a second set of amino acid tokens
within each column of the MSA query matrix. A feed-forward layer (e.g., 203 in FIG. 2A)
may generate a context-aware vector representation from the computed row attentions

and the computed column attentions.

[0052] Atstep 508, adecoder (e.g, 120 in FIGS. 1 and 3A) may decode a predicted
probability for each token in the first target protein sequence (e.g., 133 in FIG. 3A) based at
least in part on applying cross attention between the first target protein sequence and the
protein representation (e.g., MSA representation 119 in FIG. 3A). For example, causal self-
attentions may be generated within a set of amino acids in the target protein sequence.
Cross attentions may be generated between the generated causal self-attentions
corresponding to the target protein sequence and vector entries of the MSA representation.
A feed-forward layer may generate a probability for a next amino acid token conditioned

on previously decoded amino acid tokens in the target protein sequence.

[0053] Atstep 510, aloss function may be computed based on a log-likelihood of the

predicted probability of the first target protein sequence conditioned on the first
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information representing the first protein (e.g.,, MSA query matrix 103 in FIG. 1). In one
implementation, the parameters of the model are fit to minimize the negative log-likelihood
of the target sequences conditioned on their family MSAs. Given K MSA, target sequence
pairs, this loss is:
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[0054] Atstep 512, the machine learning model comprising the encoder and the decoder
may then be updated based on the computed loss function, e.g., via backpropagation. For
example, the machine learning model is trained with the following specific
hyperparameters: six encoder and decoder layers each with hidden dimension (d) of 768.

The MSA encoder uses 12 attention heads and the decoder uses 8 attention heads.

[0055] In one implementation, the training may adopt ADAM variant of stochastic
gradient descent using a linear ramp up, square root decay learning rate scheduler using a
learning rate of 0.0001 with 4,000 warmup steps. A total minibatch size of 256 spread over
16 GPUs using distributed training. Each GPU process minibatches of size 1 with gradient
accumulation over 16 steps to give the total effective minibatch size. In order to reduce
GPU RAM consumption, sequences and MSAs are randomly sampled to a maximum length
of 402 tokens during training. Furthermore, MSAs are randomly downsampled to contain
between 1 and 50 sequences. During training, the loss is monitored on a validation set of

MSAs and stop training when the validation loss stops decreasing.

[0056] Atstep 514, an input of second information (e.g, a second MSA query matrix)
representing a plurality of amino acid sequences corresponding to a second protein family

that is different from the first protein family may be received.

[0057] Atstep 516, the updated machine learning model may generate a second target
protein sequence in response to an input of a second protein that belongs to a second
protein family that is different from the first protein family. In this way, the trained

machine learning model may be used to predict the protein sequences in the second
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protein family without re-training using sequencing data corresponding to the second

protein family.

[0058] FIG. 6 is a simplified diagram of a computing device for implementing the few-
shot protein generation, according to some embodiments. As shown in FIG. 6, computing
device 600 includes a processor 610 coupled to memory 620. Operation of computing
device 600 is controlled by processor 610. And although computing device 600 is shown
with only one processor 610, it is understood that processor 610 may be representative of
one or more central processing units, multi-core processors, microprocessors,
microcontrollers, digital signal processors, field programmable gate arrays (FPGAs),
application specific integrated circuits (ASICs), graphics processing units (GPUs) and/or
the like in computing device 600. Computing device 600 may be implemented as a stand-

alone subsystem, as a board added to a computing device, and/or as a virtual machine.

[0059] Memory 620 may be used to store software executed by computing device 600
and/or one or more data structures used during operation of computing device 600.
Memory 620 may include one or more types of machine readable media. Some common
forms of machine readable media may include floppy disk, flexible disk, hard disk, magnetic
tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper
tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, and /or any other medium from which a

processor or computer is adapted to read.

[0060] Processor 610 and/or memory 620 may be arranged in any suitable physical
arrangement. In some embodiments, processor 610 and/or memory 620 may be
implemented on a same board, in a same package (e.g., system-in-package), on a same chip
(e.g., system-on-chip), and/or the like. In some embodiments, processor 610 and/or
memory 620 may include distributed, virtualized, and /or containerized computing
resources. Consistent with such embodiments, processor 610 and/or memory 620 may be

located in one or more data centers and/or cloud computing facilities.
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[0061] In some examples, memory 620 may include non-transitory, tangible, machine
readable media thatincludes executable code that when run by one or more processors (e.g.,
processor 610) may cause the one or more processors to perform the methods described in
further detail herein. For example, as shown, memory 620 includes instructions for a protein
generation module 630 that may be used to implement and/or emulate the systems and
models, and/or to implement any of the methods described further herein. In some
examples, the protein generation module 630, may receive an input 640, e.g.,, such as a set of
protein sequences belonging to a protein family, represented by an MSA query 103 via a data
interface 615. The protein generation module 630 may generate an output 650 (such as

predicted probabilities of tokens in a target protein sequence) in response to the input 640.

[0062] The protein generation module 630 may comprise an encoder 631 (e.g., simialr to
encoder 110 in FIGS. 1-4) and a decoder 632 (e.g., similar to decoder 120 in FIGS. 1-4). The
encoder 631 receives an input of a protein sequence and encoded it with axial self-attention
on the rows and columns into a context-aware vector representation. For example, when
the input is a MSA query matrix, the encoder 631 may include a stack of transformer layers

with axial attention over the rows and columns of the MSA query matrix.

[0063] The decoder 632 then decodes the target sequence from the representations by
attending to the learned representations in a decoder transformer with cross attention to
the encoded protein representation. For example, when the decoder 632 receives an MSA
representation from the encoder 631, the decoder 632 may comprise causal self-attention,

cross-attention layers to apply to the MSA representations.

[0064] Some examples of computing devices, such as computing device 600 may include
non-transitory, tangible, machine readable media that include executable code that when
run by one or more processors (e.g., processor 610) may cause the one or more processors
to perform the processes of method. Some common forms of machine readable media that
may include the processes of method are, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch

cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM,
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FLASH-EPROM, any other memory chip or cartridge, and/or any other medium from which

a processor or computer is adapted to read.

[0065]  FIGS. 7-14 provide various data results of data experiments to illustrate example
performance of the few shot protein generation model described in FIGS. 1-6. First, the
ability of the generative model to generate new proteins by generalizing from few protein
sequences representing a protein family to unseen members of the family is tested. The
perplexity of sequences in the validation set families is computed given an increasing
number of randomly selected observed members, not including the target sequence. This
allows to understand the ability of the model to extrapolate evolutionary landscapes from a
small number of observations. The model is then compared with two widely used protein
statistical sequence models: position-specific scoring matrices (PSSMs) and profile HMMs

(pHMMs).

[0066] As expected, it is observed that all models’ ability to generalize to unseen family
members improves as the number of observed family members increases as shown in FIG.
7. Furthermore, the model dramatically outperforms PSSMs and profile HMMs across all
MSA sizes. Remarkably, the model scales much better with additional data, even
outperforming PSSMs and pHMMs with 10x fewer sequences. This demonstrates that the
model learns how to extrapolate from small number of sequences by better capturing

evolutionary priors over sequences.

[0067] A major challenge in protein engineering is navigating the enormous search
space of possible sequence variants, because the space of sequence variants increases
exponentially with the number of sites. For example, if all 20 amino acids at 10 positions
are considered, the number of unique sequences is 2010 which is greater than ten trillion.
At 65 sites, the space of possible sequences exceeds the number of atoms in the universe.
However, the vast majority of these variants are not functional (<1% in typical mutagenesis
experiments). Therefore, homing in on only the space of viable protein variants is critical
for efficiently and feasibly searching sequence space. Perplexity represents the number of
amino acids that would need to be guessed from uniformly to find the correct amino acid,

therefore, it is the size of the reduced alphabet learned by the model. On this basis, the
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model can produce an enormous reduction in library size for protein engineering. Using the
10 sites example, the pHMM perplexity of 5.3 yields a library size of 18 million which the
model reduces to only 42,000, more than an order of magnitude reduction in library size
over the pHMM and about 8 orders of magnitude better than random search. This

improvement is even more extreme when considering more sites for mutation.

[0068] Compared to the masked language models described, the generative model
(denoted as “MSA2Prot”) offers exact sampling through the use of a decoder. This

sidesteps computationally intensive Gibbs sampling.

[0069]  FIGS. 8-9 show evaluation results of the model on the protein mutation datasets
developed by Riesselman et al.,, Deep generative models of genetic variation capture the
effects of mutations, Nat. Methods, 15(10):816-822, Oct. 2018. These datasets consist of
mostly single mutant deep mutational scans, and a few double mutant deep mutational
scans. As a baseline, the model is compared to an unconditional language model trained on
the same dataset and MSA2Prot predictions with only the wild-type sequence. The plot
further compared to state-of-art methods for protein fitness prediction, including PSSMs,
pHMMs, EVmutation, DeepSequence, ESM-1v, and MSATransformer. PSSMs estimate the
probability of each amino acid at a given position and assume independence between
different positions. EVmutation is a Potts model that estimates the pairwise interaction
terms between residues. pHMMs model amino acids as being generated conditioned on a
hidden state of the respective MSA column. DeepSequence trains a generative model on a
large multiple sequence alignment for a given protein. ESM-1v and MSATransformer are
masked language models, where ESM-1v models protein sequences whereas
MSATransformer models multiple sequence alignments. Compared to the above methods,
MSAZProt displays stateof- art performance. Comparisons with the unconditional language
model as well as the wild-type only MSAZProt predictions indicate that the inclusion of the
MSA is a key driver of this performance. The averages across the datasets are shown in FIG.

9, and a dataset-specific breakdown is shown in FIG. 8.

[0070] FIGS. 10-13 illustrate results of data experiments on higher order mutants. Given

that 37 of above 40 DMS datasets consist of single mutants, the model is evaluated on a
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dataset of chorismite mutase sequences (Russ et al., An evolution-based model for
designing chorismate mutase enzymes. Science, 369(6502):440-445, Jul. 2020). This
dataset is highly diverse, with sequence divergence in the test set ranging from 14 percent
to 82 percent. The model outperforms MSATransformer substantially, as shown in FIG. 10.
This is likely because MSATransformer uses additive scoring to assess the likelihood of

higher order mutants, whereas MSA2Prot’s decoder is able to exactly model epistasis.

[0071] In addition, MSAZProt is able to generalize from a distribution of high-performing
mutants, as shown in FIG. 11. Spearman rho on the test set dramatically improves after the
training MSA is filtered to include only afew hundred high-performing sequences. Lastly,
MSAZProt is able to harness low-performing variants to significantly improve accuracy.
Although these lowperforming variants have no predictive power on their own, they can be
used as negative samples by subtracting the likelihood of a sequence from the low-

performing MSA from the likelihood of a sequence from a standard MSA.

[0072]  Often, combing the literature for a given protein will yield a list of high and low
performing mutants. However, given that experimental setups differ, there may not be
consistent fitness measurements. MSAZ2Prot is an ideal candidate for this situation, given its
ability to harness both high and low performing variants without explicit functional
measurements. MSAZ2Prot also offers exact generation conditioned on multiple attributes.
Given a protein sequence, the probability distribution over the next residue can be
obtained by adding and re-normalizing the marginals of two MSAs, each representing

different attributes.

[0073] MSAZ2Protis further evaluated on the data set (Gonzalez et al., Fitness effects of
single amino acid insertions and deletions in tem-1 -lactamase. Journal of Molecular
Biology, 431(10):2320-2330, May 2019) of 262 deletions and 4422 insertions, and
benchmarked against (Riesselman et al, 2018) and an HMM. FIG. 12 indicates that
MSAZProt achieves comparable performance with (Riesselman et al., 2018), even though it

does not require retraining.
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[0074]  FIGS. 13-14 show example results of data experiments that adopt adaptive
sampling with the model. In addition to offering high predictive accuracy through its log-
likelihood, MSA2Prot is able to generatively extrapolate from high-performing mutants.
The highperforming sequences in the test set become several orders of magnitude more
likely as the training MSA is filtered to include higher performing variants. This result is

shown by FIG. 13.

[0075] MSAZ2Prot’s ability to adaptively sample high fitness variants given black-box
oracle, approximated by a Random Forest Regressor. For example, the system may
randomly sample 100 sequences from the training MSA to form an initial MSA. Sequences
are sampled, and update the MSA if the regressor predicts the sampled sequence has a
higher fitness than the minimum fitness sequence in the MSA. The results, shown in FIG. 14,
indicate that MSAZProt is able to effectively generate strong mutants. MSA2Prot initially
generated sequences with a fitness of 0.3, which is the 56t percentile of the training
distribution. After several thousand updates, MSAZ2Prot generated sequences with a fitness
of 0.9, which is in the 89th percentile of the training distribution. For comparison, Gibbs
sampling initially generated a sequence with a fitness of 0.03, which is in the 39th
percentile of the training distribution. After the same number of function evaluations, Gibbs
sampling generated a sequence with fitness 0.3, which is in the 56th percentile of the
training distribution. Thus, MSA2Prot displayed considerably stronger performance.
Compared to standard adaptive sampling methods, MSAZ2Prot offers the benefit of not
requiring training. Instead, MSAZProt relies on its few-shot generalization abilities. Thus,

MSAZProt offers a computationally efficient alternative for protein sequence design.

[0076] This description and the accompanying drawings that illustrate inventive aspects,
embodiments, implementations, or applications should notbe taken as limiting. Various
mechanical, compositional, structural, electrical, and operational changes may be made
without departing from the spirit and scope of this description and the claims. In some
instances, well-known circuits, structures, or techniques have not been shown or described
in detail in order not to obscure the embodiments of this disclosure. Like numbers in two

or more figures represent the same or similar elements.
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[0077] In this description, specific details are set forth describing some embodiments
consistent with the present disclosure. Numerous specific details are set forth in order to
provide a thorough understanding of the embodiments. It will be apparent, however, to one
skilled in the art that some embodiments may be practiced without some or all of these
specific details. The specific embodiments disclosed herein are meant to be illustrative but
not limiting. One skilled in the art may realize other elements that, although not specifically
described here, are within the scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and described in association with one
embodiment may be incorporated into other embodiments unless specifically described

otherwise or if the one or more features would make an embodiment non-functional.

[0078]  Although illustrative embodiments have been shown and described, a wide range
of modification, change and substitution is contemplated in the foregoing disclosure and in
some instances, some features of the embodiments may be employed without a
corresponding use of other features. One of ordinary skill in the art would recognize many
variations, alternatives, and modifications. Thus, the scope of the invention should be
limited only by the following claims, and it is appropriate that the claims be construed

broadly and in a manner consistent with the scope of the embodiments disclosed herein.
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WHAT IS CLAIMED IS:
1. A system for using a machine learning model of few-shot protein generation,
comprising:

a memory storing an encoder and a decoder, and a plurality of processor-

executable instructions; and
a processor executing the plurality of processor-executable instructions to:

obtain a multiple sequence alignment (MSA) query matrix representing a

plurality of amino acid sequences corresponding to a protein family;

transform, by the encoder, the MSA query matrix into a MSA representation
based at least in part on applying attention within each row and each column of the MSA

query matrix;

decode, by the decoder, a probability for each token in a protein sequence
belonging to the protein family based at least in part on applying cross attention between

the protein sequence and the MSA representation; and

transmitting, based on decoded probabilities, information relating to a

protein sequence to a protein synthesis module for synthesizing a target protein.

2. The system of claim 1, wherein the MSA query matrix has a number of rows
representing the plurality of protein sequences, and each entry in the MSA query matrix

represents an amino acid token in a respective row of protein sequence.

3. The system of claim 1, wherein the processor further executes the plurality of
processor-executable instructions to generate an input embedding of entries in the MSA

query matrix by:
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generating a first embedding for each amino acid token in the MSA query matrix;

generating a second embedding based on a random feature embedding of a

column index of the MSA query matrix; and

formulate the input embedding by adding the first embedding and the second
embedding.

4. The system of claim 1, wherein the encoding comprises:

generating row attentions over a first set of amino acid tokens within each row of

the MSA query matrix;

generating column attentions over a second set of amino acid tokens within each

column of the MSA query matrix; and

generating, via a feed-forward layer, a context-aware vector representation from

the computed row attentions and the computed column attentions.

5. The system of claim 1, wherein the row attentions or the column attentions are
computed by a multi-headed attention operation over respective rows or columns in a

batch.

6. The system of claim 1, wherein the decoding comprising:

generating causal self-attentions within a set of amino acids in the protein

sequence;

generating cross attentions between the generated causal self-attentions

corresponding to the protein sequence and vector entries of the MSA representation; and
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generating, via a feed-forward layer, a probability for a next amino acid token

conditioned on previously decoded amino acid tokens in the protein sequence.

7. The system of claim 1, wherein the processor further executes the plurality of

processor-executable instructions to:

generate, based on decoded probabilities, the protein sequence thatis a new
protein sequence different from any of the plurality of amino acid sequences but belongs to

the protein family.

8. The system of claim 1, wherein the processor further executes the plurality of

processor-executable instructions to:

determining, based on coded probabilities, a score indicating a likelihood level of

the protein sequence belonging to the protein family.

determining a likelihood that a given .

9. The system of claim 1, wherein the processor further executes the plurality of

processor-executable instructions to:

determining, based on coed probabilities, a recommended protein sequence that
has a highest likelihood to belong the protein family among a number of given protein

sequences. .

10. The system of claim 1, wherein the encoder and the decoder are trained based on
a set of MSA query matrices that belong to a first protein family, and wherein the processor

further executes the plurality of processor-executable instructions to generate, using the
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trained encoder and the trained decoder, a protein sequence based on a testing input
relating to protein sequences that belong to a second protein family without re-training the

encoder or the decoder using sequencing data corresponding to the second protein family.

11. A method of using a machine learning model for few-shot protein generation,

comprising:

receiving, via a communication interface, a training input pair of information
representing a first protein belonging to a first protein family and information representing

a first target protein belonging to the first protein family;

generating, via the machine learning model, a predicted probability of the first

target protein in response to an input of the information representing the first protein;

computing a loss function based on a log-likelihood of the predicted probability

of the first target protein conditioned on the first protein;
updating the machine learning model based on the computed loss function; and

generating, by the updated machine learning model, information representing a
second target protein belonging to a second protein family in response to an input of
information representing a second protein that belongs to the second protein family that is

different from the first protein family.

12. The method of claim 11, wherein the information representing the first protein

comprises any combination of:
an amino acid sequence;

a multiple sequence alignment (MSA) query matrix has a number of rows
representing a plurality of protein sequences, and each entry in the MSA query matrix

represents an amino acid token in a respective row of protein sequence; and
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a protein structure.

13. The method of claim 11, further comprising generating an input embedding of

the information representing the first protein by:

generating a first embedding for each amino acid token in the information

representing the first protein;

generating a second embedding based on a random feature embedding of the

information representing the first protein; and

formulate the input embedding by adding the first embedding and the second
embedding.

14. The method of claim 11, wherein the information representing the first protein is

a MSA query matrix, and wherein the method further comprising:

generating, via the machine learning model, the predicted probability comprises

encoding the MSA query matrix by:

generating row attentions over a first set of amino acid tokens within each row of

the MSA query matrix;

generating column attentions over a second set of amino acid tokens within each

column of the MSA query matrix; and

generating, via a feed-forward layer, a context-aware vector representation from

the computed row attentions and the computed column attentions.

15. The method of claim 14, wherein the row attentions or the column attentions are
computed by a multi-headed attention operation over respective rows or columns in a

batch.
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16. The method of claim 14, further comprising:

generating, via the machine learning model, the predicted probability comprises

decoding a probability for each token in a target protein sequence by:

generating causal self-attentions within a set of amino acids in the target protein

sequence;

generating cross attentions between the generated causal self-attentions
corresponding to the target protein sequence and vector entries of the MSA representation;

and

generating, via a feed-forward layer, a probability for a next amino acid token

conditioned on previously decoded amino acid tokens in the target protein sequence.

17. The method of claim 11, wherein the information representing the first protein
comprises an input of a multiple sequence alignment (MSA) query matrix and the target

protein sequence forming a training pair, and

wherein the target protein sequence is different from any of the plurality of

amino acid sequences but belongs to the first protein family.

18. The method of claim 11, further comprising:

sampling a high-performing mutant from the first protein family as the first

target protein for training the encoder and the decoder.
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19. The method of claim 11, wherein the updated machine learning model generates
the second target protein without re-training using sequencing data corresponding to the

second protein family.

20. A non-transitory processor-readable storage medium storing processor-
executable instructions of using a machine learning model for few-shot protein generation,
the processor-executable instructions being executed by one or more processors to

perform operations comprising:

receiving, via a communication interface, a training input pair of information
representing a first protein belonging to a first protein family and information representing

a first target protein belonging to the first protein family;

generating, via the machine learning model, a predicted probability of the first

target protein in response to an input of the information representing the first protein;

computing a loss function based on a log-likelihood of the predicted probability

of the first target protein conditioned on the first protein;
updating the machine learning model based on the computed loss function; and

generating, by the updated machine learning model, information representing a
second target protein belonging to a second protein family in response to an input of
information representing a second protein that belongs to the second protein family that is

different from the first protein family.
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Algorithm 1 Transformer MSA Encoder with Axial Attention

Input: MSA z; € RIi€1..Nje1..M

First, attention within each row

z' i= LayerNorm(z; j)

z'; j = RowAttention(z'; j)

Zjj=Zjj*+ Z};

Next, attention within each column
z'; ;= LayerNorm(z; j)

z' I ColumnAttention(z’; j)
Zjj=Zjj*+ Z};

Finally, the feed forward layer

z’,-’ i= LayerNorm(z,-’ j)

hi;= GeLU (Linear(z'; )), h; ;€ R4d
z' i= Linear(h; j)

Zij=2jj* Zij

Return: z; ;€ RY

FIG. 2B

SUBSTITUTE SHEET (RULE 26)
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Algorithm 2 Transformer Sequence Decoder with MSA
Cross Attention

Input: MSA representations z; ; € RAie1...N, je1..M,

and target sequence a; € R9,ke1...L

First, casual self-attention within the target sequence
a'y = LayerNorm(ay)

a'j = CausalSelfAttention(a’})

a, =a,tal

Next, cross attention against the MSA representations
z' i= LayerNorm(z; j)

a'j = LayerNorm(a,)

a'y = MSACrossAttention(a'y,z'; )

Finally, the feed forward layer

a'j = LayerNorm(a,)

hy = GeLU (Linear(a',)), h € R4

a'y = Linear(hy)

a, =a,tal

Return: a; € RY

FIG. 3B

SUBSTITUTE SHEET (RULE 26)
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500 ~__

Receive, via a communication interface, a training input pair of first
information representing a first protein corresponding to a first
protein family and a first target protein belonging to the first protein
family 502

l

Encode, by the encoder, the first information into a protein

representation based at least in part on applying attention 504

L

Decode, by the decoder, a predicted probability for each token in the

first target protein sequence based at least in part on applying cross

attention between the first target protein sequence and the protein
representation 508

)

Compute a loss function based on a log-likelihood of the predicted
probability of the first target protein sequence conditioned on the first
information representing the first protein 510

!

Update the machine learning model comprising the encoder and the
decoder based on the computed loss function 512

L

Receive an input of second information representing a plurality of
amino acid sequences corresponding to a second protein family that is
different from the first protein family 514

L

Generate, by the updated machine learning model, a second target
protein sequence in the second protein family in response to the input
516

FIG. 5
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