US 20230044758A1

asy United States

a2 Patent Application Publication o) Pub. No.: US 2023/0044758 A1

Yousaf et al.

43) Pub. Date: Feb. 9, 2023

(54

(71)

(72)

@n
(22)

(63)

(60)

SYSTEMS AND METHODS FOR
COLLABORATIVE DATA ENTRY AND
INTEGRATION

Applicant: Palantir Technologies Inc., Denver, CO
Us)
Inventors: Timothy Yousaf, New York, NY (US);
Jeffrey Martin, New York, NY (US);
Jasmine Peterson, Mountain View, CA
(US); Julie Tibshirani, Palo Alto, CA
(US); Kevin Ng, New York, NY (US);
Rhys Brett-Bowen, London (GB);
Yichen Xing, Washington, DC (US)
Appl. No.: 17/968,773
Filed: Oct. 18, 2022
Related U.S. Application Data

Continuation of application No. 17/385,844, filed on
Jul. 26, 2021, now Pat. No. 11,507,739, which is a
continuation of application No. 15/901,736, filed on
Feb. 21, 2018, now Pat. No. 11,087,080.

Provisional application No. 62/595,418, filed on Dec.

Components 208

I

6, 2017.

Publication Classification

(51) Int.CL
GOGF 40/18 (2006.01)
GOGF 3/0486 (2006.01)
(52) US.CL
CPC oo, GOGF 40/18 (2020.01);
GOGF 3/0486 (2013.01)
(57) ABSTRACT

A system and a method are provided for collaborative data
entry and integration. An operation performed by the system
and the method include causing a collaborative interface for
input to a spreadsheet to be provided via a user interface,
receiving a data entry to the spreadsheet via the collabora-
tive interface, validating the received data entry based on
one or more validity rules associated with the spreadsheet,
capturing a snapshot of the spreadsheet including the vali-
dated data entry, and causing at least the validated data entry
of the spreadsheet to be integrated into datasets for one or
more applications, at least based on the captured snapshot of
the spreadsheet.

(200

Spreadsheet
Application 220

& APl 202

Gl

Rest Server 204 P4 Data Sources 206

Application 218

L1490

1 L]

= L Old

2}

w

o~

=t

3

S giT

Q 2uBug uopnenddy

(=4

Q IPTT

wn it

= auiBul B GOM
07

° suiBu3 uonesyddy J0TT 321830 ¥3sn

s

— 0T ¥3AM3S

m NOILYOoNddyY oTT

= auiBul uoneaddy

PG it

S aufBug WsYD asm

=y

S 8077 3D1A30 ¥3sn

=

=

2 — p—

= ozt gTt

= au1dug uonedjddy andug uonenddy

< 1eayspeasdys S

= S 911

.m 201 WHG41¥id SUBUT B GSM

= NOILYYOEYTIOD

.m YO11 30IA30 H3Isn

2,

2,

«

~—

=

&

<

[~

00t

Patent Application Publication Feb. 9, 2023 Sheet 2 of 6 US 2023/0044758 A1l

f 200

e Rest Server 204 i Data Sources 206

FIG. 2

Components 208
AP 202

el

Spreadsheet
Application 220
Application 216

Patent Application Publication Feb. 9, 2023 Sheet 3 of 6 US 2023/0044758 A1l

Spreadsheet Application Engine 320

Interface Engine Log Management Engine

302 310
Rule Management Engine Template & Script

304 Generation Engine 312

Validation Engine Access Authentication
306 Engine 314

History Management . .
Engine 308 integration Engine 316

FIG. 3

Patent Application Publication Feb. 9, 2023 Sheet 4 of 6 US 2023/0044758 A1l

400A
¥

Establish synchronized state between spreadshest application and expansive
application
407

¥

Receive user input to add or modify entry of a spreadsheet
404

v

Validate the entry of the spreadshest
406

v

Update the spreadsheet based on the entry and validity thereof
408

v

Record log of modification to the spreadsheet
410

v

Capture a snapshot of the spreadshest
412

Y

Upon refresh of the expansive application, integrate the updated spreadsheet with
datasets of the expansive application based on the recorded logls) and/or the
captured snapshot{s}

414

FIG. 4A

Patent Application Publication Feb. 9, 2023 Sheet S of 6 US 2023/0044758 A1l

4008
Pl

Cause a ooliaborative interface for input to a spreadsheet to be provided via a user
interface
422

¥

Receive user input to add or modify entry of a spreadsheet
424

v

Validate the entry of the spreadshest
426

Y

Capture a snapshot of the spreadsheet
428

Y

Cause at least the validated data entry of the spreadsheet to be integrated into
datasets for one or more applications, at least based on the captured snapshot of the
spreadsheet
430

FIG. 4B

Patent Application Publication

Feb. 9, 2023 Sheet 6 of 6

FIG. 5

US 2023/0044758 A1

500
¥

|
| Network
Processoris)
| 504 Interfacels)
| - 218
| ! :
% 5 Bus
2082
| ! ; :
|
E Main Memaory ROM Storage
§ 506 208 510
E
E
fannay wanans Asaann acaany manans waAns AOAMIA INAAAY WMARNAT MAMGAV MMAAAAY WAAGMD AAMMAY MOAMY WNAGAAT GASAYY MAMMAY DANMAS OAMMAR ORAAY AMARAN wanf
pooc oo amomn oo o oo oo o amoow soowo owon daoo sooo ox 0w coowo comon smoow doowocomo Moo oo
5
8
Output input
oy Devicels) Device(s} Curso;fémtmi
é 512 514 e
E

US 2023/0044758 A1l

SYSTEMS AND METHODS FOR
COLLABORATIVE DATA ENTRY AND
INTEGRATION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. Pat.
Application Serial No. 17/385,844, filed Jul. 26, 2021,
which is a continuation of U.S. Pat. Application Serial No.
15/901,736, filed Feb. 21, 2018, now U.S. Pat. Application
No. 11,087,080 B1, which claims the benefit under 35
U.S.C. § 119(e) of U.S Provisional Application Serial No.
62/595,418, filed Dec. 6, 2017, the contents of which are
incorporated by reference in its entirety into the present
disclosure.

FIELD OF THE INVENTION

[0002] This disclosure relates to approaches for collabora-
tive data entry to a spreadsheet and integration of data entry
in a spreadsheet application to another application.

BACKGROUND

[0003] Entering and editing data stored in a system may be
difficult. For example, systems may contain various struc-
tured input forms that require data to be entered in a specific
way, or the interdependency on the data by multiple applica-
tions may cause one or more access controls associated with
the data to render it inaccessible to most users. Under con-
ventional approaches, traditional spreadsheet applications
may be employed as convenient tools for ad-hoc data-
entry. However, such traditional spreadsheet applications
may not be conducive for use in collaborative environments.
For example, with traditional spreadsheet tools it is difficult
for multiple users to collaborate on a single spreadsheet
because if one user has the spreadsheet open, other users
will be unable to open it. Additionally, data entered or edited
using traditional spreadsheet tools or other conventional
solutions may be difficult to integrate into data sources or
applications of different types. For example, a single dataset
may be difficult to seamlessly integrate into both a relational
database and an object-oriented database. These and other
drawbacks exist with conventional solutions.

SUMMARY

[0004] Various embodiments of the present disclosure can
include systems, methods, and non-transitory computer
readable media. In some embodiments, a system includes
one or more processors, and a memory storing instructions
that, when executed by the one or more processors, cause
the system to perform operations. In some embodiments, a
method includes the operations. In some embodiments, a
non-transitory computer readable medium includes instruc-
tions to perform the operations. The operations include
causing a collaborative interface for input to a spreadsheet
to be provided via a user interface, receiving a data entry to
the spreadsheet via the collaborative interface, validating
the received data entry based on one or more validity rules
associated with the spreadsheet, capturing a snapshot of the
spreadsheet including the validated data entry, and causing
at least the validated data entry of the spreadsheet to be inte-

Feb. 9, 2023

grated into datasets for one or more applications, at least
based on the captured snapshot of the spreadsheet.

[0005] In some embodiments, the data entry involves a
copy and paste operation to copy datasets from a spread-
sheet region of a second spreadsheet generated by a second
spreadsheet application and paste the copied datasets to a
spreadsheet region of the spreadsheet. In some embodi-
ments, the data entry involves a drag and drop operation to
drag a representation of an external content from a user
interface and drop the representation at a position of the
spreadsheet corresponding to a cell of the spreadsheet. In
some embodiments, upon validation of the received data
entry involving the drag and drop operation, the instructions
further cause the system to present a link to the external
content at the position of the spreadsheet corresponding to
the cell. In some embodiments, upon validation of the
received data entry involving the drag and drop operation,
the instructions further cause the system to present an repre-
sentative image of the external content at the position of the
spreadsheet corresponding to the cell.

[0006] In some embodiments, the instructions further
cause the system to generate a log of modification to the
spreadsheet upon reception of the data entry, and cause the
generated log to be also integrated with the datasets for the
one or more applications.

[0007] In some embodiments, said at least the validated
data entry of the spreadsheet is caused to be integrated into
the datasets for the one or more applications upon refresh of
at least one of the one or more applications. In some embo-
diments, said at least the validated data entry of the spread-
sheet is caused to be integrated into the datasets for the one
or more applications upon capturing of the snapshot. In
some embodiments, wherein said at least the validated data
entry of the spreadsheet is caused to be integrated into the
datasets for the one or more applications upon user input to
start integration.

[0008] In some embodiments, the instructions further
cause the system to generate a spreadsheet template based
on the spreadsheet and one or more validity rules associated
therewith, and generate a script to generate the spreadsheet
template based on schema describing the spreadsheet tem-
plate and the one or more validity rules.

[0009] These and other features of the systems, methods,
and non-transitory computer readable media disclosed
herein, as well as the methods of operation and functions
of the related elements of structure and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification,
wherein like reference numerals designate corresponding
parts in the various figures. It is to be expressly understood,
however, that the drawings are for purposes of illustration
and description only and are not intended as a definition of
the limits of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Certain features of various embodiments of the
present technology are set forth with particularity in the
appended claims. A better understanding of the features
and advantages of the technology will be obtained by refer-
ence to the following detailed description that sets forth
illustrative embodiments, in which the principles of the

US 2023/0044758 A1l

invention are utilized, and the accompanying drawings of
which:

[0011] FIG. 1 is a network diagram illustrating an example
of a network system according to some embodiments.
[0012] FIG. 2 is an architecture diagram illustrating a
structure of a network system according to some
embodiments.

[0013] FIG. 3 is a block diagram illustrating a configura-
tion of a spreadsheet application including various func-
tional components according to some embodiments.

[0014] FIGS. 4A and 4B are flowcharts of examples of a
method for integrating update of a spreadsheet generated on
a spreadsheet application into datasets managed on an
expansive application according to some embodiments.
[0015] FIG. 5 illustrates a block diagram of an example
computer system in which any of the embodiments
described herein may be implemented.

DETAILED DESCRIPTION

[0016] Various embodiments of the present disclosure
may include systems, methods, and non-transitory computer
readable media configured to enable collaborative data entry
and integrate the data across various applications and data
sources. Using spreadsheets, datasets included in one or
more data sources and/or utilized by one or more applica-
tions may be edited collaboratively. Based on one or more
integration rules associated with the one or more data
sources and/or applications, data entries entered or edited
into a spreadsheet may be integrated into the one or more
data sources and/or applications. In some implementations,
each spreadsheet and/or each type of operation capable of
being performed in each spreadsheet may be associated with
one or more access controls that restrict access to, modifica-
tion of, and/or integration of the data entries of the spread-
sheet based one or more defined security permissions. In
some embodiments, content items may be inserted into cor-
responding cells of one or more data entries of a spreadsheet
and integrated into one or more data sources and/or applica-
tions. For example, users can drag-and-drop files (or content
items) into cells. In some embodiments, rules may be
applied to cells of a spreadsheet to validate data entered
into those cells. In some embodiments, spreadsheets may
be associated with sheet-level permissions. For example,
users can be provided with permissions to open certain
spreadsheets, change cells, input data, and modify columns,
to name some examples. In some embodiments, a sheet his-
tory can be maintained for sheets. For example, sheet snap-
shots may be captured periodically or at every change to the
sheet. In such embodiments, users can revert back to pre-
vious versions of sheets. Through the use of the spread-
sheets and integration rules described herein, the data of a
system may be both collaboratively edited and seamlessly
integrated across multiple data sources and applications.

[0017] FIG. 1is anetwork diagram illustrating an example
of a network system 100 according to some embodiments.
In the example of FIG. 1, the network system 100 includes a
collaboration platform 102 including a spreadsheet applica-
tion engine 120, an application server 108 including a net-
work-based application engine 106, and user devices 110A-
C (hereinafter collectively referred to as user device 110), all
communicatively coupled to each other via a network 112.
In some embodiments, the collaboration platform 102 is
configured to integrate spreadsheet data 104 with a net-

Feb. 9, 2023

work-based application run by the network-based applica-
tion engine 106. As shown, the collaboration platform 102
shown in FIG. 1 employs a client-server architecture to
exchange data with the user devices 110A-C, although the
present inventive subject matter is, of course, not limited to
such an architecture, and could equally well find application
in an event-driven, distributed, or peer-to-peer architecture
system, for example. Moreover, it shall be appreciated that
although some of the functional components of the network
system 100 are discussed in the singular sense, multiple
instances of one or more of the various functional compo-
nents may be employed.

[0018] In some embodiments, users 114A-C shown in
FIG. 1 may be human users (e.g., human beings), machine
users (e.g., computers configured by a software program to
interact with the device 110), or any suitable combination
thereof (e.g., a human assisted by a machine or a machine
supervised by a human). The users 114A-C are respectively
associated with the user devices 110A-C and may be users
of such devices.

[0019] In some embodiments, the user devices 110A-C is
any one of a desktop computer, a tablet computer, a smart
phone, or a wearable device (e.g., a smart watch or smart
glasses) belonging to any one of the users 114A-C. In
some embodiments, the user devices 110A-C include one
or more of a web client engine 116 (e.g., a web browser
engine) and an application engine 118 configured to run an
application to facilitate communication and interaction
between the user device 110 and the collaboration platform
102. In various embodiments, information communicated
between the collaboration platform 102 and the user device
110 include user-selected functions available through one or
more user interfaces (Uls). Accordingly, during a commu-
nication session with any one of the user devices 110A-C,
the collaboration platform 102 may provide a set of
machine-readable instructions that, when interpreted by the
user devices 110A-C using the web client engine 116 or the
application engine 118, cause the user devices 110A-C to
present the Ul, and transmit user input received through
such a Ul back to the collaboration platform 102.

[0020] In some embodiments, the collaboration platform
102 is implemented in a special-purpose (e.g., specialized)
computer system, in whole or in part, as described below. In
some embodiments, the collaboration platform 102 includes
the spreadsheet application engine 120 designed for contin-
ual collection of human-created data. More specifically, the
spreadsheet application engine 120 includes a front end that
allows the users 114A-C to interact with a spreadsheet 122
using either the web client engine 116 or the application
engine 118, and a backend that drives a view of the spread-
sheet 122 and maintains a canonical version of the spread-
sheet data 104 that is created. In this example, the spread-
sheet 122 is a live representation of the spreadsheet data 104
maintained by the spreadsheet application engine 120. The
spreadsheet data 104 is stored in a datastore (e.g., a compu-
ter-readable storage device) that forms part of, or is commu-
nicatively coupled to, the collaboration platform 102. In
some embodiments, the collaboration platform 102 may
further maintain one or more historical versions of the
spreadsheet data 104 to enable the users 114A-C to restore
the spreadsheet 122 to a prior version.

[0021] In some embodiments, the spreadsheet application
engine 120 also allows the users 114A-C to create validation
rules associated with the spreadsheet 122. Each validation

US 2023/0044758 A1l

rule includes a constraint that limits or controls what the
users 114 can enter into at least one cell of the spreadsheets
122, and each is typically, but not necessarily always, asso-
ciated with entire columns in the spreadsheet 122.

[0022] In some embodiments, the spreadsheet application
engine 120 is also responsible for synchronizing the spread-
sheet data 104 with application data 124 consumed (e.g.,
used) by the application engine 106 of the application server
108 for running an expansive application, such as database
application, database analysis application, and database
visualization application. In some embodiments, the appli-
cation engine 106 causes the application server 108 to pro-
vide an applicable number of network-based services that
consume application data 124 to provide data manipulation,
presentation, communication, or other capabilities to the
users 114A-C or other users. For example, the network-
based services include a database service of managing data-
sets and providing analysis of the datasets (e.g., relation-
ships among the datasets, a visual presentation of relation-
ships among the datasets such as graph, map, etc.).

[0023] In some embodiments, a dataset can contain any
applicable contents and be in an any applicable format. For
example, the dataset is a text file in a format such as HTML,
PDF, Microsoft Office, etc., an image fil in a format such as
JPEG, GIF, TIFF, etc., an audio file in a format such as MP3,
WAV, WMA, etc., a video file in a format such as AVI
MPEG, MP4, etc., a compressed file in a format such as
ZIP, an object file in a format such as exe, and so on. A
dataset is, for example, generated by an external application
running on a computer system(s) and/or on the user
device(s) 110.

[0024] In some embodiments, the network 112 may be any
applicable network that enables communication between or
among systems, machines, databases, and devices (e.g.,
between collaboration platform 102 and the devices 110A-
(). For example, the network 112 is a wired network, a wire-
less network (e.g., a mobile or cellular network), or any sui-
table combination thereof. The network 112 may include
one or more portions that constitute a private network, a
public network (e.g., the Internet), or any suitable combina-
tion thereof. Accordingly, the network 112 may include one
or more portions that incorporate a local area network
(LAN), a wide area network (WAN), the Internet, a mobile
telephone network (e.g., a cellular network), a wired tele-
phone network (e.g., a plain old telephone system (POTS)
network), a wireless data network (e.g., a WiFi network or
WIMAX network), or any suitable combination thereof.
Any one or more portions of the network 112 may commu-
nicate information via a transmission medium. As used
herein, “transmission medium” refers to any intangible
(e.g., transitory) medium that is capable of communicating
(e.g., transmitting) instructions for execution by a machine
(e.g., by one or more processors of such a machine), and
includes digital or analog communication signals or other
intangible media to facilitate communication of such
software.

[0025] In some embodiments, database described herein
may be, include, or interface to, for example, an Oracle™
relational database sold commercially by Oracle Corpora-
tion. Other databases, such as Informix™, DB2 (Database
2) or other data storage, including file-based, or query for-
mats, platforms, or resources such as OLAP (On Line Ana-
Iytical Processing), SQL (Structured Query Language), a
SAN (storage area network), Microsoft Access™ or others

Feb. 9, 2023

may also be used, incorporated, or accessed. The databases
may comprise one or more such databases that reside in one
or more physical devices and in one or more physical loca-
tions. The database may store a plurality of types of data
and/or files and associated data or file descriptions, admin-
istrative information, or any other data.

[0026] FIG. 2 is an architecture diagram illustrating a
structure of a network system 200 according to some embo-
diments. In the network system 200 shown in FIG. 2, a
spreadsheet application engine 220 and an application
engine 216 interact via an application programming inter-
face (API) 202, with a representational state transfer
(REST) server 204 to synchronize spreadsheet data (e.g.,
the spreadsheet data 104 in FIG. 1) with application data
(e.g., the application data 124 in FIG. 1) consumed by the
application engine 216. That is, in some embodiments, the
spreadsheet application engine 220 and the application
engine 216 correspond to the spreadsheet application engine
120 and the application engine 106 in FIG. 1, respectively.
For example, the spreadsheet application engine 220 may
communicate, via the API 202, with the REST server 204
to integrate the spreadsheet data with data sources 206 that
include one or more data repositories (e.g., databases) that
provide data to the application engine 216. Likewise, the
application engine 216 may communicate, via the API
202, with the REST server 204 to integrate changes to the
application data with the data sources 206, which may, in
turn, be consumed by the spreadsheet application engine
220. Additionally, a collaboration platform (e.g., the colla-
boration platform 102 in FIG. 1) and the application engine
216 are in communication with one or more components
208 that provide additional functionality to the collaboration
platform and the application engine 216 related to data
included in the data sources 206. For example, the one or
more components 208 may provide a data object viewer, a
document viewer, search templates, ontology chooser, or an
investigation bar to users (e.g., the users 114A-C) of either
the spreadsheet application engine 220 or the application
engine 216.

[0027] FIG. 3 is a block diagram illustrating a configura-
tion of a spreadsheet application including various func-
tional components according to some embodiments. To
avoid obscuring the subject matter with unnecessary detail,
various functional components (e.g., modules, engines, and
databases) that are not germane to conveying an understand-
ing of the inventive subject matter have been omitted from
FIG. 3. However, a skilled artisan will readily recognize that
various additional functional components may be supported
by the spreadsheet application to facilitate additional func-
tionality that is not specifically described herein. In the
example shown in FIG. 3, a spreadsheet application engine
320 includes an interface engine 302; a rule management
engine 304, a validation engine 306, a history management
308, a log management engine 310, a template & script gen-
eration engine 312, an access authentication engine 314, and
an integration engine 316. Each of the above referenced
functional components of the spreadsheet application engine
320 are configured to communicate with each other (e.g., via
a bus, shared memory, a switch, or application programming
interfaces (APIs) (e.g., AP1 202 in FIG. 2). In some embodi-
ments, the spreadsheet application engine 320 corresponds
to the spreadsheet application engine 120 in FIG. 1.

[0028] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the interface engine 302 is

US 2023/0044758 A1l

intended to represent a computing system configured to
receive user inputs (e.g., requests) from user devices (e.g.,
the user devices 110A-C in FIG. 1), and communicate
appropriate responses to the user devices. In some embodi-
ments, the interface engine 302 receives requests from
devices in the form of hypertext transfer protocol (HTTP)
requests or other web-based, API requests. For example, the
interface engine 302 is configured to provide a number of
interfaces (e.g., APIs 202) that allow data to be exchanged
between the user devices and a collaboration platform (the
collaboration platform 102 in FIG. 1).

[0029] In some embodiments, the interface engine 302 is
also configured to provide collaborative Uls to the user
devices 110A-C that allow users (e.g., the users 114A-C in
FIG. 1) to view and interact with a spreadsheet (e.g., the
spreadsheet 122 in FIG. 1). To provide a collaborative UL
to one or more user devices, the interface engine 302 is con-
figured to transmit a set of machine-readable instructions to
the user device(s) that causes the user device(s) to present
the collaborative Ul on a display of the user device(s). The
set of machine-readable instructions may, for example,
include presentation data (e.g., representing various ele-
ments of the collaborative UI), spreadsheet data (the spread-
sheet data 104 in FIG. 1), and a set of instructions to display
the presentation data. The receiving device (e.g., one of the
user devices 110A-C in FIG. 1) may temporarily store the
presentation data and the spreadsheet data to enable display
of the collaborative Ul and interaction with the spreadsheet
from within the collaborative UL

[0030] The collaborative Uls provided by the interface
engine 302 may also include various input control elements
(e.g., sliders, buttons, drop-down menus, checkboxes, and
data entry fields) that allow the users to specify various
inputs such as updates to cells of a spreadsheet or validation
rules associated with the spreadsheet. The interface engine
302 is configured to receive and process user input received
through such input control elements, and in some instances,
the interface engine 302 is configured to update the spread-
sheet data in accordance with the received input (e.g., the
interface engine 302 updates the spreadsheet data in accor-
dance with edits made to the spreadsheet by one of the
users). Specific examples of collaborative Uls and other
details for data entry are described in U.S. Application No.
15/258918 filed on Sep. 7, 2016, the entire content of which
are incorporated herein by reference.

[0031] In some embodiments, the collaborative Uls and/or
a synchronized spreadsheet (e.g., the spreadsheet 122 in
FIG. 1) is simultaneously provided to multiple user devices,
and the interface engine 302 is configured to receive user
inputs from multiple user devices and reflect the user inputs
from the multiple user devices on the synchronized spread-
sheet. For example, the interface engine 302 enables a link
(e.g., URL) to the synchronized spreadsheet to be available
to a user, and multiple users accessing the link can manip-
ulate the synchronized spreadsheet simultaneously through
a web browser. When a user is manipulating a cell of the
synchronized spreadsheet, for example, the interface engine
302 is configured to present an indication that the cell is
manipulated by the user, on one or more spreadsheets pre-
sented to other users.

[0032] In some embodiments, the user inputs include var-
ious applicable inputs. For example, a direct input (by text,
selection, etc.) into a cell of a spreadsheet managed by the
spreadsheet application engine 320, a copy and paste from a

Feb. 9, 2023

spreadsheet region (one or more columns and one or more
rows) of a spreadsheet of an external application (e.g.,
Microsoft Excel) to a spreadsheet region of the spreadsheet
managed by the spreadsheet application engine 320, and a
drag and drop of an external content (e.g., a file, a spread-
sheet region, etc.) into positions corresponding to one or
more cells (e.g., in the cells) of the spreadsheet managed
by the spreadsheet application engine 320. In a more speci-
fic implementation, when a file (e.g., an image file) is
dragged and dropped to a position corresponding to a cell
of the spreadsheet managed by the spreadsheet application
engine 320, the interface engine 302 is configured to cause a
link to the file and/or a representative image (e.g., a thumb-
nail) of the file to be presented in the cell, depending on a
specific format setting of the cell, the column of the cell,
and/or the row of the cell. In this case, contents of the file
may be downloaded to and stored in a backend repository of
the spreadsheet application engine 320.

[0033] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the rule management engine
304 is intended to represent a computing system configured
to manage validation rules associated with a spreadsheet
managed by the spreadsheet application engine 320. In
some embodiments, the validation rules include a constraint
on data entered into at least one cell of the spreadsheet, and
in many cases, on all cells of an entire column and/or row.
For example, a validation rule may constrain data entered
into a column specifically to an applicable parameter format
such as dates, geographical location coordinates, and so on.
When a validation rule constrains data entry to dates, any
non-date entry entered into a cell of the spreadsheet will
not conform to the validation rule.

[0034] In some embodiments, the rule management
engine 304 is configured to allow the users to add, edit, or
delete validation rules associated with the spreadsheet. To
this end, the rule management engine 304 is configured to
work in conjunction with the interface engine 302 to provide
a rule management interface that allows users to view, add,
edit, or delete validation rules. Further, the rule management
engine 304 is configured to store validation rules as part of a
spreadsheet artifact, which corresponds to spreadsheet data
(e.g., the spreadsheet data 104 in FIG. 1).

[0035] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the validation engine 306 is
intended to represent a computing system configured to vali-
date data in cells of a spreadsheet according to one or more
validation rules associated with the spreadsheet. In validat-
ing data in the cells of the spreadsheet, the validation engine
306 is configured to compare information entered into each
of the cells with any validation rules associated with the cell
to determine whether the information entered into the cell
conforms to the associated validation rules. In an example,
validation rule(s) associated with the spreadsheet specifies
that only dates should be entered into a particular column. In
this example, the validation engine 306 is configured to
check whether the information entered into each cell of the
column is a date.

[0036] Cells with entries that conform to the validation
rules are considered to include valid entries, whereas cells
with entries that do not conform to the validation rules are
considered to include invalid entries. In response to deter-
mining that a cell includes an invalid entry, the validation
engine 306 is configured to work in conjunction with the
interface engine 302 to cause the cell with the invalid

US 2023/0044758 A1l

entry to be visually distinguished from cells with valid
entries. For example, the cell with the invalid entry may be
highlighted or otherwise displayed differently (e.g., in a dif-
ferent color, font, format, or style) from entries in the
spreadsheet that include valid entries.

[0037] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the history management engine
308 is intended to represent a computing system configured
to store and manage snapshots of a spreadsheet managed by
the spreadsheet application engine 320. In some embodi-
ments, the history management engine 308 is configured to
capture a snapshot of a spreadsheet at applicable timings.
For example, the history management engine 308 is config-
ured to capture the snapshot at every change of the spread-
sheet. In another example, the history management engine
308 is configured to capture the snapshot periodically every
predetermined time period (e.g., several ten seconds). When
the history management engine 308 captures the snapshot
periodically, the interval of storing snapshots may become
longer as the captured time becomes older, such as one day
over a past week, one week for a past month, and one month
over a past year. In this case, the history management engine
308 may discard some of captured snapshots that do not
meet the criteria to maintain snapshots. In some embodi-
ments, a snapshot includes spreadsheet data (e.g., the
spreadsheet data 104 in FIG. 1) corresponding to a spread-
sheet (e.g., the spreadsheet 122 in FIG. 1) managed by the
spreadsheet application engine 320 at the time of capturing
the snapshot. Depending on a specific implementation of
embodiments, the snapshot may or may not include logs of
changes to the spreadsheet that have been made up to the
time.

[0038] In some embodiments, the history management
engine 308 is also configured to generate a snapshot table
based on snapshots that have been captured, such that an
application engine (e.g., the application engine 106 in FIG.
1) for an expansive application can consume data of the
snapshots. When the history management engine 308 gen-
erates a snapshot table, the history management engine 308
may be further configured to work in conjunction with the
interface engine 302 to provide a table management inter-
face that allows users to view, add, edit, or delete the snap-
shot table. Further, the history management engine 308 may
be configured to work in conjunction with the interface
engine 302 to provide a visual presentation of a snapshot
that allows users to view the snapshot.

[0039] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the log management engine
310 is intended to represent a computing system configured
to generate and maintain a log with regard to changes made
to a spreadsheet managed by the spreadsheet application
engine 320, such that an application engine (e.g., the appli-
cation engine 106 in FIG. 1) for an expansive application
can consume data of the logs. In some embodiments, the log
management engine 310 is configured to generate a log of
changes at every change of the spreadsheet. In some embo-
diments, a log includes one or more of an identifier (e.g.,
user name, user 1D, etc.) of a user who made a change, con-
tent of the change, a cell at which the change was made, a
time and date of the change. When data in a spreadsheet is
evaluated (or analyzed), piece of data that have been edited
by users (e.g., human users) are more likely to be valuable as
opposed to machine entered data or large quantities of data.
By maintaining logs of changes made to a spreadsheet, the

Feb. 9, 2023

log management engine 310 is capable of providing valu-
able information to analyze data in the spreadsheet when
spreadsheet data is integrated with application data (e.g.,
the application data 124 in FIG. 1) of an expansive
application.

[0040] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the template & script genera-
tion engine 312 is intended to represent a computing system
configured to generate an editable template from a spread-
sheet region of a spreadsheet managed by the spreadsheet
application engine 320, and also generate an editable script
of the generated template. In some embodiments, in gener-
ating an editable template, the template & script generation
engine 312 is configured to allow a user to create a new
spreadsheet, add description to a template to be generated
from the new spreadsheet, create column names, set valida-
tion rules to columns, and select an option to create a new
template. Then, the template & script generation engine 312
is configured to obtain database schema of the new spread-
sheet (a spreadsheet region thereof) from which the template
is to be generated, and generate the template by transform-
ing the obtained database schema. Once an editable template
is generated, one or more users can choose the editable tem-
plate and quickly enter data into the editable template to
create a new spreadsheet.

[0041] In some embodiments, the template & script gen-
eration engine 312 is configured to enable the new spread-
sheet created from an editable template to be automatically
integrated with application data (e.g., the application data
124 in FIG. 1) of an expansive application, depending on a
specific setting for auto-integration that can be made
through an integration interface generated by the template
& script generation engine 312 working in conjunction
with the interface engine 302.

[0042] In some embodiments, in generating a script of a
generated editable template, the template & script genera-
tion engine 312 is configured to generate a selectable object
representing the generated editable template by working in
conjunction with the interface engine 302. Upon selection of
the selectable object representing the generated editable
template, the template & script generation engine 312 gen-
erates an auto-generated type-safe script of the generated
editable template, in which applicable object fields, such
as object type and property mapping, can be edited. When
the script of the generated editable template completes edits,
the template & script generation engine 312 is configured to
update the generated editable template based on edits made
on the script.

[0043] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the access authentication
engine 314 is intended to represent a computing system con-
figured to manage access authentication for users to access
(and further edit and save) a spreadsheet managed by the
spreadsheet application engine 320. In some embodiments,
the access authentication engine 314 is configured to selec-
tively allow authenticated user(s) to access (e.g., view) the
spreadsheet, and further selectively allow authenticated
user(s), which are different from the accessible users, to
edit the spreadsheet. Depending on a specific implementa-
tion of embodiments, the access authentication engine 314
may limit edits to a spreadsheet, with respect to one or more
specific cells of the spreadsheet, one or more specific col-
umns and/or rows of the spreadsheet, more specific titles of
one or more columns and/or rows of the spreadsheets.

US 2023/0044758 A1l

[0044] In the example of the spreadsheet application
engine 320 shown in FIG. 3, the integration engine 316 is
intended to represent a computing system configured to inte-
grate spreadsheet data of a spreadsheet managed by the
spreadsheet application engine 320 with application data
(e.g., the application data 124 in FIG. 1) of an expansive
application. That is, the integration engine 316 is responsi-
ble for ensuring that changes made to the spreadsheet data
are reflected in the application data, and that changes made
to the application data are reflected in the spreadsheet data.
In integrating the spreadsheet data with the application data,
the integration engine 316 is configured to communicate, via
an API (e.g., the API 202 in FIG. 2), one or more requests to
a server (e.g., the REST server 204 in FIG. 2) to integrate the
spreadsheet data and any subsequent changes made thereto
with data sources (e.g., the data sources 208 in FIG. 2) that
supply the application data to the expansive application.
[0045] In many instances, the expansive application
employs a particular application data schema that includes
a set of constraints on the application data. For example, the
application data schema for a map application may specify
that the application data be in the form of geo-coordinates
(e.g., latitude and longitude, or military grid reference sys-
tem (MGRS)). In these instances, the integration engine 316
is configured to ensure that the validation rules associated
with the spreadsheet match the application data schema for
the expansive application prior to integrating the spread-
sheet data with the application data. In other words, the inte-
gration engine 316 is configured to compare the validation
rules associated with the spreadsheet to the application data
schema to determine whether the validation rules include
the set of constraints that are included in the application
data schema. In this way, the integration engine ensures
that the expansive application is not provided with invalid
values that may lead to errors or other issues. In some embo-
diments, the integration engine 316 is configured to selec-
tively integrate data of valid cells with the application data,
without integrating data of invalid cells.

[0046] In some embodiments, the integration engine 316
is configured to work in conjunction with the interface
engine 302 to generate an export interface to integrate
spreadsheet data of a spreadsheet with application data of
an expansive application. Depending on a specific imple-
mentation of the embodiments, the export interface may
include one or more selectable object to select an expansive
application with which the spreadsheet data is integrated.
When an expansive application is selected through the
export interface, the integration engine 316 exports the
most recent snapshot generated by the history management
engine 308 and/or the logs generated by the log management
engine 310 to the database application, and an application
engine (e.g., the application engine 106 in FIG. 1) executing
the expansive application perform application operations
according to the snapshot and/or the logs. For example,
when the expansive application is a database application,
the application engine generates a database sheet corre-
sponding to the spreadsheet based on the snapshot and/or
the logs. In another example, when the expansive applica-
tion is a database analysis application, the application
engine performs analysis of relationships among data in
the cells of the spreadsheets based on the snapshot and/or
the logs. In still another example, when the expansive appli-
cation is a database visualization application, the application
engine generates a visual presentation of datasets (e.g., a

Feb. 9, 2023

geographical location map, a correlation diagram, etc.) in
cells of the spreadsheet.

[0047] In some embodiments, when a link or a representa-
tion image of external content is presented in a cell of the
spreadsheet and the external content is stored in a backend
of the spreadsheet application engine 320, the integration
engine 316 is configured to also integrate the external con-
tent stored in the backend with the application data of the
expansive application. Depending on a specific configura-
tion of the expansive application, the link or the representa-
tion image may not be compatible with the expansive appli-
cation. In such a case, the expansive application may instead
use the external content for processing therein.

[0048] In some embodiments, the integration engine 316
is configured to automatically and/or manually integrate
spreadsheet data of a spreadsheet managed by the spread-
sheet application engine 320 with application data of an
expansive application, depending on a specific integration
setting. When the integration engine 316 is set to automati-
cally perform integration, the integration engine 316 may be
configured to perform integration at applicable timing, such
as every change to the spreadsheet and/or every predeter-
mined period of time. When the integration engine 316 is
set to manually perform integration, the integration engine
316 may be configured to perform integration upon user
input to perform integration. In some embodiments, the inte-
gration engine 316 is configured to disable automatic inte-
gration when a size of the spreadsheet (e.g., the number of
rows) is larger than a threshold. In this case, a schema to
import to the spreadsheet of the large size may need to be
set in the expansive application.

[0049] In some embodiments, the integration engine 316
is configured to enable an expansive application to autono-
mously import spreadsheet data of a spreadsheet managed
by the spreadsheet application engine 320. For example,
when the integration engine 316 receives a request to export
spreadsheet data of a spreadsheet from an expansive appli-
cation, the integration engine 316 is configured to export the
spreadsheet data of the spreadsheet to the expansive appli-
cation that sent the request, such that that the expansive
application can import and consume the spreadsheet data
for integration. Similarly, in some embodiments, the inte-
gration engine 316 is configured to enable an expansive
application to autonomously export datasets of the expan-
sive application to a spreadsheet managed by the spread-
sheet application engine 320. For example, when the inte-
gration engine 316 receives a request to integrate datasets of
an expansive application from an application engine, the
integration engine 316 is configured to import the datasets
of the expansive application and integrate the imported data-
sets to the spreadsheet.

[0050] As is understood by skilled artisans in the relevant
computer and Internet-related arts, each functional compo-
nent (e.g., engine, module, or database) illustrated in FIG. 3
may be implemented using hardware (e.g., a processor of a
machine) or a combination of logic (e.g., executable soft-
ware instructions) and hardware (e.g., memory and proces-
sor of a machine) for executing the logic. Furthermore, the
various functional components depicted in FIG. 3 may
reside on a single machine (e.g., a server) or may be distrib-
uted across several machines in various arrangements such
as cloud-based architectures. Moreover, any two or more of
these components may be combined into a single compo-
nent (e.g., a single module), and the functions described

US 2023/0044758 A1l

herein for a single component may be subdivided among
multiple engines. Specific hardware structure of the func-
tional components illustrated in FIG. 3 is exemplified with
reference to FIG. 5.

[0051] FIG. 4A is a flowchart 400A of an example of a
method for integrating update of a spreadsheet generated
on a spreadsheet application into datasets managed on an
expansive application according to some embodiments.
This flowchart described in this paper illustrate modules
(and potentially decision points) organized in a fashion
that is conducive to understanding. It should be recognized,
however, that the modules can be reorganized for parallel
execution, reordered, modified (changed, removed, or aug-
mented), where circumstances permit.

[0052] In module 402 of FIG. 4A, a synchronized state is
established between a spreadsheet application and an expan-
sive application. Applicable engines for executing an
spreadsheet application and an expansive application, such
as the spreadsheet application engine 120 and the applica-
tion engine 106 in FIG. 1, respectively, executes the spread-
sheet application and the expansive application; and an
applicable engine for establishing a synchronized state,
such as the integration engine 216 in FIG. 3 stablishes the
synchronized state. In a specific implementation, when the
synchronized state is established, a change made to a
spreadsheet managed by the spreadsheet application is syn-
chronized to datasets managed by the expansive application,
and vice versa.

[0053] In module 404 of FIG. 4A, user input to add or
modify an entry (e.g., one or more cells in a row) of a
spreadsheet is received. An applicable engine for receiving
user input such as the interface engine 302 in FIG. 3 receives
the user input to add or modify an entry of a spreadsheet. In
a specific implementation, a Ul to add or modify an entry of
a spreadsheet is generated for the user input. In another spe-
cific implementation, a drag and drop operation is enabled
such that an object (or metadata thereof, link, and/or thumb-
nail) can be directly inserted into a cell of the spreadsheet.

[0054] In module 406 of FIG. 4A, the entry of the spread-
sheet is validated according to validation rules. An applic-
able engine for managing validation rules, such as the rule
management engine 304 in FIG. 3, manages the validation
rules, and an applicable engine for validating an entry of a
spreadsheet, such as the validation engine 306 in FIG. 3,
validates the entry of the spreadsheet. In a specific imple-
mentation, it is determined whether or not the entry caused a
cell with an invalid value according to the validation rules.
[0055] In module 408 of FIG. 4A, the spreadsheet is
updated based on the entry received in module 404 and the
validity of the entry determined in module 406. An applic-
able engine for updating a spreadsheet based on an entry,
such as the interface engine 302 in FIG. 3, updates the
spreadsheet based on the entry and the determined validity
of the entry. In a specific implementation, when a drag and
drop operation of a file is carried out with respect to a cell of
the spreadsheet, a link or a thumbnail representing the file is
presented in the cell of the spreadsheet. In another specific
implementation, when it is determined that the entry caused
a cell with an invalid value in module 406, the cell with the
invalid value is caused to be visually distinguished (e.g.,
highlight) compared to the of remainder of cells included
in the spreadsheet.

[0056] In module 410 of FIG. 4A, a log of modification to
the spreadsheet caused by the entry received in module 404

Feb. 9, 2023

is recorded in a repository for maintaining logs. An applic-
able engine for recording a log, such as the log management
engine 310 in FIG. 3, records the log of the modification to
the spreadsheet. In a specific implementation, a log includes
one or more of an identifier (e.g., user name, user ID, etc.) of
a user who made a change, content of the change, a cell at
which the change was made, a time and date of the change.
[0057] In module 412 of FIG. 4A, a snapshot of the
spreadsheet is captured. An applicable engine for capturing
a snapshot of a spreadsheet, such as the history management
engine 308 in FIG. 3, captures the snapshot of the spread-
sheet. In a specific implementation, capture of the snapshot
is triggered by the update of the spreadsheet in module 408.
In another specific implementation, capture of the snapshot
is triggered at a predetermined timing. In some embodi-
ments, a sequence of process from module 404 through
module 412 is carried out repeatedly, so that more than
one logs of modification to the spreadsheet and more than
one snapshots of the spreadsheet are generated and stored.
[0058] In module 414 of FIG. 4A, upon refresh of the
expansive application, the updated spreadsheet is integrated
with datasets of the expansive application based on the
recorded log(s) and/or the captured snapshot(s). An applic-
able engine for integrating an updated spreadsheet with
datasets of an expansive application, such as the integration
engine 316 in FIG. 3, integrates the updated spreadsheet
with the datasets of the expansive application, based on the
recorded log(s) and/or the captured snapshot(s). In a specific
implementation, when multiple snapshots are generated
since the last integration of the spreadsheet, the most recent
snapshot is used for the integration, and the other snap-
shot(s) are disregarded. In another specific implementation,
one or more logs that have been generated for the spread-
sheet are integrated with the datasets of the expansive appli-
cation, which is a database analysis application, such that
the database analysis application performs analysis of the
datasets based on the logs of the modifications to the
spreadsheet.

[0059] FIG. 4B is a flowchart 400B of another example of
the method for integrating update of a spreadsheet generated
on a spreadsheet application into datasets managed on an
expansive application according to some embodiments.
[0060] Inmodule 422 of FIG. 4B, a collaborative interface
for input to a spreadsheet is caused to be provided via a user
interface. An applicable engine for causing a collaborative
interface for input to a spreadsheet to be provided via a user
interface, such as the interface engine 302 in FIG. 3, causes
the collaborative interface for input to the spreadsheet to be
provided via the user interface.

[0061] In module 424 of FIG. 4B, user input to add or
modify an entry (e.g., one or more cells in a row) of a
spreadsheet is received. In module 426 of FIG. 4B, the
entry of the spreadsheet is validated according to validation
rules. In module 428 of FIG. 4B, a snapshot of the spread-
sheet is captured. In some embodiments, modules 424, 426,
and 428 can be carried out in the same or similar manner as
modules 404, 406, and 412 of FIG. 4A.

[0062] In module 430 of FIG. 4B, at least the validated
data entry of the spreadsheet is caused to be integrated into
datasets for one or more applications, at least based on the
captured snapshot of the spreadsheet. An applicable engine
for causing a validated data entry of a spreadsheet to be
integrated into datasets for one or more applications, such
as the integration engine 316 in FIG. 3, causes at least the

US 2023/0044758 A1l

validated data entry of the spreadsheet is caused to be inte-
grated into datasets for one or more applications, at least
based on the captured snapshot of the spreadsheet.

Hardware Implementation

[0063] The techniques described herein are implemented
by one or more special-purpose computing devices. The
special-purpose computing devices may be hard-wired to
perform the techniques, or may include circuitry or digital
electronic devices such as one or more application-specific
integrated circuits (ASICs) or field programmable gate
arrays (FPGAs) that are persistently programmed to perform
the techniques, or may include one or more hardware pro-
cessors programmed to perform the techniques pursuant to
program instructions in firmware, memory, other storage, or
a combination. Such special-purpose computing devices
may also combine custom hard-wired logic, ASICs, or
FPGAs with custom programming to accomplish the tech-
niques. The special-purpose computing devices may be
desktop computer systems, server computer systems, porta-
ble computer systems, handheld devices, networking
devices or any other device or combination of devices that
incorporate hard-wired and/or program logic to implement
the techniques.

[0064] Computing device(s) are generally controlled and
coordinated by operating system software, such as 10S,
Android, Chrome OS, Windows XP, Windows Vista, Win-
dows 7, Windows 8, Windows Server, Windows CE, Unix,
Linux, SunOS, Solaris, i0S, Blackberry OS, VxWorks, or
other compatible operating systems. In other embodiments,
the computing device may be controlled by a proprietary
operating system. Conventional operating systems control
and schedule computer processes for execution, perform
memory management, provide file system, networking, /O
services, and provide a user interface functionality, such as a
graphical user interface (“GUI”), among other things.
[0065] FIG. § is a block diagram that illustrates a compu-
ter system 500 upon which any of the embodiments
described herein may be implemented. The computer sys-
tem 500 includes a bus 502 or other communication
mechanism for communicating information, one or more
hardware processors 504 coupled with bus 502 for proces-
sing information. Hardware processor(s) 504 may be, for
example, one or more general purpose microprocessors.
[0066] The computer system 500 also includes a main
memory 506, such as a random access memory (RAM),
cache and/or other dynamic storage devices, coupled to
bus 502 for storing information and instructions to be exe-
cuted by processor 504. Main memory 506 also may be used
for storing temporary variables or other intermediate infor-
mation during execution of instructions to be executed by
processor 504. Such instructions, when stored in storage
media accessible to processor 504, render computer system
500 into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[0067] The computer system 500 further includes a read
only memory (ROM) 508 or other static storage device
coupled to bus 502 for storing static information and
instructions for processor 504. A storage device 510, such
as a magnetic disk, optical disk, or USB thumb drive (Flash
drive), etc., is provided and coupled to bus 502 for storing
information and instructions.

Feb. 9, 2023

[0068] The computer system S00 may be coupled via bus
502 to a display 512, such as a cathode ray tube (CRT) or
LCD display (or touch screen), for displaying information to
a computer user. An input device 514, including alphanu-
meric and other keys, is coupled to bus 502 for communicat-
ing information and command selections to processor 504.
Another type of user input device is cursor control 516, such
as a mouse, a trackball, or cursor direction keys for commu-
nicating direction information and command selections to
processor 504 and for controlling cursor movement on dis-
play 512. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., x) and a second axis
(e.g., y), that allows the device to specify positions in a
plane. In some embodiments, the same direction informa-
tion and command selections as cursor control may be
implemented via receiving touches on a touch screen with-
out a cursor.

[0069] The computing system 500 may include a user
interface module to implement a GUI that may be stored
in a mass storage device as executable software codes that
are executed by the computing device(s). This and other
modules may include, by way of example, components,
such as software components, object-oriented software
components, class components and task components, pro-
cesses, functions, attributes, procedures, subroutines, seg-
ments of program code, drivers, firmware, microcode, cir-
cuitry, data, databases, data structures, tables, arrays, and
variables.

[0070] In general, the word "module," as used herein,
refers to logic embodied in hardware or firmware, or to a
collection of software instructions, possibly having entry
and exit points, written in a programming language, such
as, for example, Java, C or C++. A software module may
be compiled and linked into an executable program,
installed in a dynamic link library, or may be written in an
interpreted programming language such as, for example,
BASIC, Perl, or Python. It will be appreciated that software
modules may be callable from other modules or from them-
selves, and/or may be invoked in response to detected events
or interrupts. Software modules configured for execution on
computing devices may be provided on a computer readable
medium, such as a compact disc, digital video disc, flash
drive, magnetic disc, or any other tangible medium, or as a
digital download (and may be originally stored in a com-
pressed or installable format that requires installation,
decompression or decryption prior to execution). Such soft-
ware code may be stored, partially or fully, on a memory
device of the executing computing device, for execution
by the computing device. Software instructions may be
embedded in firmware, such as an EPROM. It will be further
appreciated that hardware modules may be comprised of
connected logic units, such as gates and flip-flops, and/or
may be comprised of programmable units, such as program-
mable gate arrays or processors. The modules or computing
device functionality described herein are preferably imple-
mented as software modules, but may be represented in
hardware or firmware. Generally, the modules described
herein refer to logical modules that may be combined with
other modules or divided into sub-modules despite their
physical organization or storage.

[0071] The computer system 500 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system

US 2023/0044758 A1l

causes or programs computer system 500 to be a special-
purpose machine. According to one embodiment, the tech-
niques herein are performed by computer system 500 in
response to processor(s) 504 executing one or more
sequences of one or more instructions contained in main
memory 506. Such instructions may be read into main mem-
ory 506 from another storage medium, such as storage
device 510. Execution of the sequences of instructions con-
tained in main memory 506 causes processor(s) 504 to per-
form the process steps described herein. In alternative
embodiments, hard-wired circuitry may be used in place of
or in combination with software instructions.

[0072] The term “non-transitory media,” and similar
terms, as used herein refers to any media that store data
and/or instructions that cause a machine to operate in a spe-
cific fashion. Such non-transitory media may comprise non-
volatile media and/or volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 510. Volatile media includes dynamic mem-
ory, such as main memory 506. Common forms of non-tran-
sitory media include, for example, a floppy disk, a flexible
disk, hard disk, solid state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other opti-
cal data storage medium, any physical medium with patterns
of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge,
and networked versions of the same.

[0073] Non-transitory media is distinct from but may be
used in conjunction with transmission media. Transmission
media participates in transferring information between non-
transitory media. For example, transmission media includes
coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 502. Transmission media can also
take the form of acoustic or light waves, such as those gen-
erated during radio-wave and infrared data
communications.

[0074] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 504 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A
modem local to computer system 500 can receive the data
on the telephone line and use an infra-red transmitter to con-
vert the data to an infra-red signal. An infra-red detector can
receive the data carried in the infra-red signal and appropri-
ate circuitry can place the data on bus 502. Bus 502 carries
the data to main memory 506, from which processor 504
retrieves and executes the instructions. The instructions
received by main memory 506 may retrieves and executes
the instructions. The instructions received by main memory
506 may optionally be stored on storage device 510 either
before or after execution by processor 504.

[0075] The computer system 500 also includes a commu-
nication interface 518 coupled to bus 502. Communication
interface 518 provides a two-way data communication cou-
pling to one or more network links that are connected to one
or more local networks. For example, communication inter-
face 518 may be an integrated services digital network
(ISDN) card, cable modem, satellite modem, or a modem
to provide a data communication connection to a corre-
sponding type of telephone line. As another example, com-
munication interface 518 may be a local area network

Feb. 9, 2023

(LAN) card to provide a data communication connection
to a compatible LAN (or WAN component to communicated
with a WAN). Wireless links may also be implemented. In
any such implementation, communication interface 518
sends and receives electrical, electromagnetic or optical sig-
nals that carry digital data streams representing various
types of information.

[0076] A network link typically provides data communi-
cation through one or more networks to other data devices.
For example, a network link may provide a connection
through local network to a host computer or to data equip-
ment operated by an Internet Service Provider (ISP). The
ISP in turn provides data communication services through
the world wide packet data communication network now
commonly referred to as the “Internet”. Local network and
Internet both use electrical, electromagnetic or optical sig-
nals that carry digital data streams. The signals through the
various networks and the signals on network link and
through communication interface 518, which carry the digi-
tal data to and from computer system 500, are example
forms of transmission media.

[0077] The computer system 500 can send messages and
receive data, including program code, through the net-
work(s), network link and communication interface 518. In
the Internet example, a server might transmit a requested
code for an application program through the Internet, the
ISP, the local network and the communication interface 518.
[0078] The received code may be executed by processor
504 as it is received, and/or stored in storage device 510, or
other non-volatile storage for later execution.

[0079] Each of the processes, methods, and algorithms
described in the preceding sections may be embodied in,
and fully or partially automated by, code modules executed
by one or more computer systems or computer processors
comprising computer hardware. The processes and algo-
rithms may be implemented partially or wholly in applica-
tion-specific circuitry.

[0080] The various features and processes described
above may be used independently of one another, or may
be combined in various ways. All possible combinations
and sub-combinations are intended to fall within the scope
of this disclosure. In addition, certain method or process
blocks may be omitted in some implementations. The meth-
ods and processes described herein are also not limited to
any particular sequence, and the blocks or states relating
thereto can be performed in other sequences that are appro-
priate. For example, described blocks or states may be per-
formed in an order other than that specifically disclosed, or
multiple blocks or states may be combined in a single block
or state. The example blocks or states may be performed in
serial, in parallel, or in some other manner. Blocks or states
may be added to or removed from the disclosed example
embodiments. The example systems and components
described herein may be configured differently than
described. For example, elements may be added to, removed
from, or rearranged compared to the disclosed example
embodiments.

[0081] Conditional language, such as, among others,
“can,” “could,” “might,” or “may,” unless specifically stated
otherwise, or otherwise understood within the context as
used, is generally intended to convey that certain embodi-
ments include, while other embodiments do not include, cer-
tain features, elements and/or steps. Thus, such conditional
language is not generally intended to imply that features,

US 2023/0044758 A1l

elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments neces-
sarily include logic for deciding, with or without user input
or prompting, whether these features, elements and/or steps
are included or are to be performed in any particular
embodiment.

[0082] Any process descriptions, elements, or blocks in
the flow diagrams described herein and/or depicted in the
attached figures should be understood as potentially repre-
senting modules, segments, or portions of code which
include one or more executable instructions for implement-
ing specific logical functions or steps in the process. Alter-
nate implementations are included within the scope of the
embodiments described herein in which elements or func-
tions may be deleted, executed out of order from that
shown or discussed, including substantially concurrently or
in reverse order, depending on the functionality involved, as
would be understood by those skilled in the art.

[0083] 1t should be emphasized that many variations and
modifications may be made to the above-described embodi-
ments, the elements of which are to be understood as being
among other acceptable examples. All such modifications
and variations are intended to be included herein within
the scope of this disclosure. The foregoing description
details certain embodiments of the invention. It will be
appreciated, however, that no matter how detailed the fore-
going appears in text, the invention can be practiced in many
ways. As is also stated above, it should be noted that the use
of particular terminology when describing certain features
or aspects of the invention should not be taken to imply
that the terminology is being re-defined herein to be
restricted to including any specific characteristics of the fea-
tures or aspects of the invention with which that terminol-
ogy is associated. The scope of the invention should there-
fore be construed in accordance with the appended claims
and any equivalents thereof.

Engines, Components, and Logic

[0084] Certain embodiments are described herein as
including logic or a number of components, engines, or
mechanisms. Engines may constitute either software
engines (e.g., code embodied on a machine-readable med-
ium) or hardware engines. A “hardware engine” is a tangible
unit capable of performing certain operations and may be
configured or arranged in a certain physical manner. In var-
ious example embodiments, one or more computer systems
(e.g., a standalone computer system, a client computer sys-
tem, or a server computer system) or one or more hardware
engines of a computer system (e.g., a processor or a group of
processors) may be configured by software (e.g., an applica-
tion or application portion) as a hardware engine that oper-
ates to perform certain operations as described herein.

[0085] In some embodiments, a hardware engine may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware engine may
include dedicated circuitry or logic that is permanently con-
figured to perform certain operations. For example, a hard-
ware engine may be a special-purpose processor, such as a
Field-Programmable Gate Array (FPGA) or an Application
Specific Integrated Circuit (ASIC). A hardware engine may
also include programmable logic or circuitry that is tem-
porarily configured by software to perform certain opera-
tions. For example, a hardware engine may include software

Feb. 9, 2023

executed by a general-purpose processor or other program-
mable processor. Once configured by such software, hard-
ware engines become specific machines (or specific compo-
nents of a machine) uniquely tailored to perform the
configured functions and are no longer general-purpose pro-
cessors. [t will be appreciated that the decision to implement
a hardware engine mechanically, in dedicated and perma-
nently configured circuitry, or in temporarily configured cir-
cuitry (e.g., configured by software) may be driven by cost
and time considerations.

[0086] Accordingly, the phrase “hardware engine” should
be understood to encompass a tangible entity, be that an
entity that is physically constructed, permanently configured
(e.g., hardwired), or temporarily configured (e.g., pro-
grammed) to operate in a certain manner or to perform cer-
tain operations described herein. As used herein, “hardware-
implemented engine” refers to a hardware engine. Consider-
ing embodiments in which hardware engines are tempora-
rily configured (e.g., programmed), each of the hardware
engines need not be configured or instantiated at any one
instance in time. For example, where a hardware engine
comprises a general-purpose processor configured by soft-
ware to become a special-purpose processor, the general-
purpose processor may be configured as respectively differ-
ent special-purpose processors (e.g., comprising different
hardware engines) at different times. Software accordingly
configures a particular processor or processors, for example,
to constitute a particular hardware engine at one instance of
time and to constitute a different hardware engine at a dif-
ferent instance of time.

[0087] Hardware engines can provide information to, and
receive information from, other hardware engines. Accord-
ingly, the described hardware engines may be regarded as
being communicatively coupled. Where multiple hardware
engines exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware engines. In embodiments in which multiple hard-
ware engines are configured or instantiated at different
times, communications between such hardware engines
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware engines have access. For example, one
hardware engine may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware engine may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware engines may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).
[0088] The wvarious operations of example methods
described herein may be performed, at least partially, by
one or more processors that are temporarily configured
(e.g., by software) or permanently configured to perform
the relevant operations. Whether temporarily or perma-
nently configured, such processors may constitute proces-
sor-implemented engines that operate to perform one or
more operations or functions described herein. As used
herein, “processor-implemented engine” refers to a hard-
ware engine implemented using one or more processors.
[0089] Similarly, the methods described herein may be at
least partially processor-implemented, with a particular pro-
cessor or processors being an example of hardware. For
example, at least some of the operations of a method may

US 2023/0044758 A1l

be performed by one or more processors or processor-imple-
mented engines. Moreover, the one or more processors may
also operate to support performance of the relevant opera-
tions in a “cloud computing” environment or as a “software
as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., an Applica-
tion Program Interface (API)).

[0090] The performance of certain of the operations may
be distributed among the processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the processors or
processor-implemented engines may be located in a single
geographic location (e.g., within a home environment, an
office environment, or a server farm). In other example
embodiments, the processors or processor-implemented
engines may be distributed across a number of geographic
locations.

Language

[0091] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may
be performed concurrently, and nothing requires that the
operations be performed in the order illustrated. Structures
and functionality presented as separate components in
example configurations may be implemented as a combined
structure or component. Similarly, structures and function-
ality presented as a single component may be implemented
as separate components. These and other variations, modifi-
cations, additions, and improvements fall within the scope
of the subject matter herein.

[0092] Although an overview of the subject matter has
been described with reference to specific example embodi-
ments, various modifications and changes may be made to
these embodiments without departing from the broader
scope of embodiments of the present disclosure. Such embo-
diments of the subject matter may be referred to herein, indi-
vidually or collectively, by the term “invention” merely for
convenience and without intending to voluntarily limit the
scope of this application to any single disclosure or concept
if more than one is, in fact, disclosed.

[0093] The embodiments illustrated herein are described
in sufficient detail to enable those skilled in the art to prac-
tice the teachings disclosed. Other embodiments may be
used and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. The Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

[0094] Tt will be appreciated that an “engine,” “system,”
“data store,” and/or “database” may comprise software,
hardware, firmware, and/or circuitry. In one example, one
or more software programs comprising instructions capable
of being executable by a processor may perform one or more
of the functions of the engines, data stores, databases, or
systems described herein. In another example, circuitry

2 <

Feb. 9, 2023

may perform the same or similar functions. Alternative
embodiments may comprise more, less, or functionally
equivalent engines, systems, data stores, or databases, and
still be within the scope of present embodiments. For exam-
ple, the functionality of the various systems, engines, data
stores, and/or databases may be combined or divided
differently.

[0095] “Open source” software is defined herein to be
source code that allows distribution as source code as well
as compiled form, with a well-publicized and indexed
means of obtaining the source, optionally with a license
that allows modifications and derived works.

[0096] The data stores described herein may be any suita-
ble structure (e.g., an active database, a relational database,
a self-referential database, a table, a matrix, an array, a flat
file, a documented-oriented storage system, a non-relational
No-SQL system, and the like), and may be cloud-based or
otherwise.

[0097] As used herein, the term “or” may be construed in
either an inclusive or exclusive sense. Moreover, plural
instances may be provided for resources, operations, or
structures described herein as a single instance. Addition-
ally, boundaries between various resources, operations,
engines, engines, and data stores are somewhat arbitrary,
and particular operations are illustrated in a context of spe-
cific illustrative configurations. Other allocations of func-
tionality are envisioned and may fall within a scope of var-
ious embodiments of the present disclosure. In general,
structures and functionality presented as separate resources
in the example configurations may be implemented as a
combined structure or resource. Similarly, structures and
functionality presented as a single resource may be imple-
mented as separate resources. These and other variations,
modifications, additions, and improvements fall within a
scope of embodiments of the present disclosure as repre-
sented by the appended claims. The specification and draw-
ings are, accordingly, to be regarded in an illustrative rather
than a restrictive sense.

[0098] Conditional language, such as, among others,
“can,” “could,” “might,” or “may,” unless specifically stated
otherwise, or otherwise understood within the context as
used, is generally intended to convey that certain embodi-
ments include, while other embodiments do not include, cer-
tain features, elements and/or steps. Thus, such conditional
language is not generally intended to imply that features,
elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments neces-
sarily include logic for deciding, with or without user input
or prompting, whether these features, elements and/or steps
are included or are to be performed in any particular
embodiment.

[0099] Although the invention has been described in detail
for the purpose of illustration based on what is currently
considered to be the most practical and preferred implemen-
tations, it is to be understood that such detail is solely for
that purpose and that the invention is not limited to the dis-
closed implementations, but, on the contrary, is intended to
cover modifications and equivalent arrangements that are
within the spirit and scope of the appended claims. For
example, it is to be understood that the present invention
contemplates that, to the extent possible, one or more fea-
tures of any embodiment can be combined with one or more
features of any other embodiment.

US 2023/0044758 A1l

1. A system for collaborative data entry and integration,
comprising:

one or more processors; and

memory storing instructions for a spreadsheet application

that, when executed by the one or more processors, cause
the system to:
receive a spreadsheet, the spreadsheet comprising data
and one or more validation rules, the validation rules
assigning specific constraints to at least a portion of
cells of the spreadsheet; and
integrate the spreadsheet into an application, the inte-
grating comprising:
comparing the one or more validation rules with an
application data schema of the application, the
application data schema comprising one or more
particular constraints;
based on the comparing, identifying any cells in which
any associated constraints thereof fail to include
each of the one or more particular constraints of
the application data schema; and
inresponse to the comparing, refraining from integrat-
ing, into data for the application, second data corre-
sponding to the second cells of the spreadsheet.

2. The system of claim 1, wherein the integration of the
spreadsheet into the application comprises capturing a most
recent snapshot, the capturing being implemented at a vari-
able frequency that depends on a duration of time since the
most recent snapshot was first captured.

3. The system of claim 1, wherein the instructions further
cause the system to:

receive changes at the spreadsheet; and

generate a log of the changes at the spreadsheet, the log

comprising respective cells, times, and dates of the
changes.

4. The system of claim 3, wherein the instructions further
cause the system to:

integrate the log of the changes into the application.

5. The system of claim 3, wherein the instructions further
cause the system to:

synchronize the changes with the data for the application.

6. The system of claim 5, wherein the synchronization
comprises:

receiving anindication that an entry has been added or mod-

ified in the spreadsheet; and validating the added or mod-
ified entry according to the one or more validation rules.
7. The system of claim 3, wherein the receiving of the
changes comprises permitting an insertion of an object, meta-
data, and a link directly into a cell of the spreadsheet.
8. The system of claim 1, wherein the integrating of the
spreadsheet into the application comprises:
if the application comprises an analysis application, ana-
lyzing one or more relationships among the data in the
cells of the spreadsheet and importing a result of the ana-
lyzed one or more relationships into the application; or

if the application comprises a visualization application,
generating a visual presentation of the data in the cells
of'the spreadsheet and importing aresult of the generated
visual presentation into the application.

9. The system of claim 1, wherein the instructions further
cause the system to:

integrate, into the data for the application, any data within

the cells besides the second data.

10. A method comprising:

receiving a spreadsheet, the spreadsheet comprising data

and one or more validation rules, the validation rules

Feb. 9, 2023

assigning specific constraints to at least a portion of
cells of the spreadsheet; and

integrating the spreadsheet into an application, the integrat-

ing comprising:

comparing the one ormore validation rules with an appli-
cation data schema of the application, the application
data schema comprising one or more particular
constraints;

based on the comparing, identifying any cells in which
any associated constraints thereof fail to include each
of'the one or more particular constraints of the applica-
tion data schema; and

in response to the comparing, refraining from integrat-
ing, into data for the application, second data corre-
sponding to the second cells of the spreadsheet.

11. The method of claim 10, wherein the integration of the
spreadsheet into the application comprises capturing a most
recent snapshot, the capturing being implemented at a vari-
able frequency that depends on a duration of time since the
most recent snapshot was first captured.

12. The method of claim 10, further comprising:

receiving changes at the spreadsheet; and

generating a log of the changes at the spreadsheet, the log

comprising respective cells, times, and dates of the
changes.

13. The method of claim 12, further comprising:

integrating the log of the changes into the application.

14. The method of claim 12, further comprising:

synchronizing the changes with the data for the application.

15. The method of claim 14, wherein the synchronization
comprises:

receiving anindication thatan entry has been added or mod-

ified in the spreadsheet; and validating the added or mod-
ified entry according to the one or more validation rules.
16. The method of claim 12, wherein the receiving of the
changes comprises permitting an insertion of an object, meta-
data, and a link directly into a cell of the spreadsheet.
17. The method of claim 10, wherein the integrating of the
spreadsheet into the application comprises:
if the application comprises an analysis application, ana-
lyzing one or more relationships among the data in the
cells of the spreadsheet and importing a result of the ana-
lyzed one or more relationships into the application; or

if the application comprises a visualization application,
generating a visual presentation of the data in the cells
of'the spreadsheet and importing a result of the generated
visual presentation into the application.

18. The method of claim 10, further comprising:

integrating, into the data for the application, any data within

the cells besides the second data.

19. A non-transitory computer readable medium compris-
ing instructions that, when executed, cause one or more pro-
cessors to perform:

receiving a spreadsheet, the spreadsheet comprising data

and one or more validation rules, the validation rules
assigning specific constraints to at least a portion of
cells of the spreadsheet; and

integrating the spreadsheet into an application, the integrat-

ing comprising:

comparing the one ormore validation rules with an appli-
cation data schema of the application, the application
data schema comprising one or more particular
constraints;

based on the comparing, identifying any cells in which
any associated constraints thereof fail to include each

US 2023/0044758 A1l Feb. 9, 2023
13

of'the one or more particular constraints of the applica-
tion data schema; and

in response to the comparing, refraining from integrat-
ing, into data for the application, second data corre-
sponding to the second cells of the spreadsheet.

20. The non-transitory computer readable medium of
claim 19, wherein the integration of the spreadsheet into the
application comprises capturing a most recent snapshot, the
capturing being implemented at a variable frequency that
depends on a duration of time since the most recent snapshot
was first captured.

* % % % W

