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(57) ABSTRACT

A method for predicting conditions ahead of a drill bit while
drilling a well involves performing, using a machine learn-
ing model, a classification of formation properties ahead of
the drill bit, based on data that includes logging-while-

18/162,599 drilling (LWD) data obtained while drilling the well.
100~
260
144
110 3l |
M S 118

112 [ 1 119

114 | I £
115\2 { % 116

il
123~f= 122
121
120

124




Patent Application Publication  Aug. 11,2024 Sheet 1 of 4 US 2024/0254874 A1
100~
( 4,
\ 260
144
110 113
L~
1M1 & 118
112 [] 1 119
\ 114 | I 4
: |
115\§ ; } 116
{17
o7
123 ' 122
121 1%
120<
124
\

FIG. 1



Patent Application Publication  Aug. 11,2024 Sheet 2 of 4 US 2024/0254874 A1

200~
( Start )
202~ v
Obtain data (e.g., logging while drilling (LWD)
and/or other data)
204~ v
Process data to remove outliers and/or other
inconsistencies
206~ v
Reconcile data
208~ 4
Set up machine learning model €« - - -,
|
210~ ! i
Train machine learning model < '
212~ v
Evaluate performance of machine learning model

Performance acceptable
?

FIG. 2



Patent Application Publication  Aug. 11,2024 Sheet 3 of 4 US 2024/0254874 A1

300~

( Start )

302~ v

Obtain data (e.g., logging while drilling (LWD), EM,
and seismic data) drilling

304~ !
Process data to remove outliers and/or other
inconsistencies
306~ v

Reconcile data

308~ 4

Perform classification of formation properties,
using machine learning model

310~ v
Apply classification to perform geosteering of drill bit

A 4

End
FIG. 3



Patent Application Publication  Aug. 1,2024 Sheet 4 of 4 US 2024/0254874 A1

R

402
Ijnte‘rface Computer
405~ 404
Processor [«
407~
Application [« —
412~
3 AP ) »  Memory
N
Service Layer |« \ 46
403 —-——

FIG. 4



US 2024/0254874 Al

METHODS AND SYSTEMS FOR
PREDICTING CONDITIONS AHEAD OF A
DRILL BIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to co-pending applica-
tion Ser. No. , titled “Geosteering using improved
data conditioning” (attorney docket number 18733-
1065001) filed on the same date as the present application
and co-pending application Ser. No. , titled “Geo-
steering using reconciled subsurface physical parameters”
(attorney docket number 18733-1075001) filed on the same
date as the present application. These co-pending patent
applications are hereby incorporated by reference herein in
their entirety.

BACKGROUND

[0002] Geosteering may enable an optimal placement of a
wellbore based on the results of real-time downhole geo-
logical and geophysical logging measurements rather than
three-dimensional targets in space. For example, geosteering
may be used to keep a directional wellbore within a hydro-
carbon pay zone, to keep a wellbore in a particular section
of a reservoir to minimize gas or water breakthrough and
maximize economic production from the well, etc. When
drilling a borehole, geosteering provides adjustment of the
borehole position on the fly to reach one or more geological
targets. The adjustments may be based on various data
gathered while drilling.

SUMMARY

[0003] This summary is provided to introduce a selection
of concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

[0004] In general, in one aspect, embodiments relate to a
method for predicting conditions ahead of a drill bit while
drilling a well, the method comprising: performing, using a
machine learning model, a classification of formation prop-
erties ahead of the drill bit, based on data comprising
logging-while-drilling (LWD) data obtained while drilling
the well.

[0005] In general, in one aspect, embodiments relate to a
system for predicting conditions ahead of a drill bit while
drilling a well, the system comprising: a drilling system for
drilling the well, the drilling system comprising the drill bit
and a drill bit logging tool; and a control system configured
to: perform, using a machine learning model, a classification
of formation properties ahead of the drill bit, based on data
comprising logging-while-drilling (LWD) data obtained
from the drill bit logging tool while drilling the well using
the drill bit.

[0006] In general, in one aspect, embodiments relate to a
non-transitory machine-readable medium comprising a plu-
rality of machine-readable instructions executed by one or
more processors, the plurality of machine-readable instruc-
tions causing the one or more processors to perform opera-
tions comprising: performing, using a machine learning
model, a classification of formation properties ahead of a
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drill bit while drilling a well, based on data comprising
logging-while-drilling (LWD) data obtained while drilling
the well.

[0007] Other aspects and advantages of the claimed sub-
ject matter will be apparent from the following description
and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

[0008] Specific embodiments of the disclosed technology
will now be described in detail with reference to the accom-
panying figures. Like elements in the various figures are
denoted by like reference numerals for consistency.

[0009] FIG. 1 shows a system in accordance with one or
more embodiments.

[0010] FIG. 2 shows a flowchart of a method for predict-
ing conditions ahead of a drill bit, in accordance with one or
more embodiments.

[0011] FIG. 3 shows a flowchart of a method for predicting
conditions ahead of a drill bit, in accordance with one or
more embodiments.

[0012] FIG. 4 shows a computer system in accordance
with one or more embodiments.

DETAILED DESCRIPTION

[0013] In the following detailed description of embodi-
ments of the disclosure, numerous specific details are set
forth in order to provide a more thorough understanding of
the disclosure. However, it will be apparent to one of
ordinary skill in the art that the disclosure may be practiced
without these specific details. In other instances, well-known
features have not been described in detail to avoid unnec-
essarily complicating the description.

[0014] Throughout the application, ordinal numbers (e.g.,
first, second, third, etc.) may be used as an adjective for an
element (i.e., any noun in the application). The use of ordinal
numbers is not to imply or create any particular ordering of
the elements nor to limit any element to being only a single
element unless expressly disclosed, such as using the terms
“before”, “after”, “single”, and other such terminology.
Rather, the use of ordinal numbers is to distinguish between
the elements. By way of an example, a first element is
distinct from a second element, and the first element may
encompass more than one element and succeed (or precede)
the second element in an ordering of elements.

[0015] In general, embodiments of the disclosure include
systems and methods for predicting conditions ahead of a
drill bit.

[0016] During drilling, real-time data may be acquired
from multiple different sources. For example, surface drill-
ing parameters may be obtained from the sensors attached to
the drilling framework; logging while drilling (LWD) data
may be obtained from the sensors attached to the drill pipe
in the wellbore. Additional data may be obtained from other
data sources.

[0017] Using at least some of these data, embodiments of
the disclosure enable a looking ahead of the bit, which may
allow determination of formation properties including lithol-
ogy and saturation patterns ahead of the bit for geosteering
purposes. The lithology of a rock unit is a description of its
physical characteristics. These physical characteristics may
include, but are not limited to, texture, grain size, and
composition which may affect porosity, permeability, etc.
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The saturation may reflect the presence and extent of a fluid
phase within the rock unit and may further identify the type
of the fluid phase.

[0018] The formation properties may be classified based
on reconciled looking ahead of the bit data. The looking
ahead of the bit data, in one or more embodiments, produces
a prediction of the formation properties (such as saturation,
boundaries and other impediments) ahead of the bit rather
than at the bit. In other words, for a forward-moving a, the
prediction is for formation properties that will be relevant in
the future, as the drill bit is moving forward. For example,
the looking ahead of bit data may reach up to 60-90 feet in
vertical wells to 45-75 feet in high angle (horizontal wells).
[0019] In one or more embodiments, a deep learning
neural network is used for the classification of the lithology
and saturation patterns ahead of the bit. The classification
may be performed in real-time and may be used for geo-
steering. The deep learning neural network may be based on
restricted Boltzmann machines. A detailed description is
subsequently provided.

[0020] FIG. 1 shows a drilling system (100) that may
include a top drive drilling rig (110) arranged around the
setup of a drill bit logging tool (120) in a logging-while-
drilling (LWD) configuration. The drilling system (100) may
include geosteering functionality, further discussed below. A
top drive drilling rig (110) may include a top drive (111) that
may be suspended in a derrick (112) by a travelling block
(113). In the center of the top drive (111), a drive shaft (114)
may be coupled to a top pipe of a drill string (115), for
example, by threads. The top drive (111) may rotate the drive
shaft (114), so that the drill string (115) and a drill bit
logging tool (120) cut the rock at the bottom of a wellbore
(116). A power cable (117) supplying electric power to the
top drive (111) may be protected inside one or more service
loops (118) coupled to a control system (144). As such,
drilling mud may be pumped into the wellbore (116) through
a mud line (119), the drive shaft (114), and/or the drill string
(115).

[0021] The control system (144) may include one or more
programmable logic controllers (PLCs) that include hard-
ware and/or software with functionality to control one or
more processes performed by the drilling system (100).
Specifically, a programmable logic controller may control
valve states, fluid levels, pipe pressures, warning alarms,
and/or pressure releases throughout a drilling rig. In par-
ticular, a programmable logic controller may be a rugge-
dized computer system with functionality to withstand
vibrations, extreme temperatures, wet conditions, and/or
dusty conditions, for example, around a drilling rig. For
example, the control system (144) may be coupled to the
sensor assembly (123) in order to perform various program
functions for up-down steering and left-right steering of the
drill bit (124) through the wellbore (116). While one control
system is shown in FIG. 1, the drilling system (100) may
include multiple control systems for managing various well
drilling operations, maintenance operations, well comple-
tion operations, and/or well intervention operations. The
control system (144) may be based on a computer system as
shown in FIG. 4.

[0022] The wellbore (116) may include a bored hole that
extends from the surface into a target zone of the hydrocar-
bon-bearing formation, such as the reservoir. An upper end
of'the wellbore (116), terminating at or near the surface, may
be referred to as the “up-hole” end of the wellbore (116), and
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a lower end of the wellbore, terminating in the hydrocarbon-
bearing formation, may be referred to as the “down-hole”
end of the wellbore (116). The wellbore (116) may facilitate
the circulation of drilling fluids during well drilling opera-
tions, the flow of hydrocarbon production (“production”)
(e.g., oil and gas) from the reservoir to the surface during
production operations, the injection of substances (e.g.,
water) into the hydrocarbon-bearing formation or the reser-
voir during injection operations, or the communication of
monitoring devices (e.g., logging tools) into the hydrocar-
bon-bearing formation or the reservoir during monitoring
operations (e.g., during in situ logging operations).

[0023] As further shown in FIG. 1, sensors (121) may be
included in a sensor assembly (123), which is positioned
adjacent to a drill bit (124) and coupled to the drill string
(115). Sensors (121) may also be coupled to a processor
assembly (123) that includes a processor, memory, and an
analog-to-digital converter (122) for processing sensor mea-
surements. For example, the sensors (121) may include
acoustic sensors, such as accelerometers, measurement
microphones, contact microphones, and hydrophones. Like-
wise, the sensors (121) may include other types of sensors,
such as transmitters and receivers to measure resistivity
(obtained through electromagnetic (EM) measurements and/
or sonic measurements), gamma ray detectors, nuclear mag-
netic resonance (NMR) imaging devices, neutron detectors,
gamma ray detectors, etc. The sensors (121) may include
hardware and/or software for generating different types of
well logs (such as acoustic logs or sonic logs) that may
provide well data about a wellbore, including porosity of
wellbore sections, gas saturation, bed boundaries in a geo-
logic formation, fractures in the wellbore or completion
cement, and many other pieces of information about a
formation. If such well data are acquired during well drilling
operations (i.e., logging-while-drilling (LWD)), then the
information may be used to make adjustments to drilling
operations in real-time in a geosteering configuration of the
drill bit (124). Such adjustments may include rate of pen-
etration (ROP), weight on bit (WOB), torque, revolutions
per minute (RPM), hook load, mud flow rate, D-exponent,
mud density/weight, standpipe pressure, mud temperature,
drilling direction, and many others drilling parameters.
[0024] The signals obtained from the sensors (121) may be
processed and analyzed to determine well data, such as
lithological and petrophysical properties of the rock forma-
tion, including saturation range. These well data may be
used in various applications, such as steering a drill bit using
geosteering, casing shoe positioning, etc.

[0025] One or more components of the drilling system
(100) may form a system for predicting conditions ahead of
the drill bit. The system for predicting conditions ahead of
the drill bit may include a computing system such as the
computing system shown in FIG. 4. The computing system
may be the control system (144) or any other computing
system. The computing system, in one or more embodiments
performs a method for predicting conditions ahead of the
drill bit, as shown in FIGS. 2 and 3. The system for
predicting conditions ahead of the drill bit may include other
components, in addition to the computing system. For
example, the system for predicting conditions ahead of the
drill bit may include data sources other than the previously
described sensors (121).

[0026] Keeping with FIG. 1, when completing a well, one
or more well completion operations may be performed prior
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to delivering the well to the party responsible for production
or injection. Well completion operations may include casing
operations, cementing operations, perforating the well,
gravel packing, directional drilling, hydraulic and acid
stimulation of a reservoir region, and/or installing a produc-
tion tree or wellhead assembly at the wellbore (116). Like-
wise, well operations may include open-hole completions or
cased-hole completions. For example, an open-hole comple-
tion may refer to a well that is drilled to the top of the
hydrocarbon reservoir. Thus, the well is cased at the top of
the reservoir, and left open at the bottom of a wellbore. In
contrast, cased-hole completions may include running cas-
ing into a reservoir region. Cased-hole completions are
discussed further below with respect to perforation opera-
tions.

[0027] In one well operation example, the sides of the
wellbore (116) may require support, and thus casing may be
inserted into the wellbore (116) to provide such support.
After a well has been drilled, casing may ensure that the
wellbore (116) does not close in upon itself, while also
protecting the well stream from outside incumbents, like
water or sand. Likewise, if the formation is firm, casing may
include a solid string of steel pipe that is run on the well and
will remain that way during the life of the well. In some
embodiments, the casing includes a wire screen liner that
blocks loose sand from entering the wellbore (116).

[0028] In another well operation example, a space
between the casing and the untreated sides of the wellbore
(116) may be cemented to hold a casing in place. This well
operation may include pumping cement slurry into the
wellbore (116) to displace existing drilling fluid and fill in
this space between the casing and the untreated sides of the
wellbore (116). Cement slurry may include a mixture of
various additives and cement. After the cement slurry is left
to harden, cement may seal the wellbore (116) from non-
hydrocarbons that attempt to enter the well stream. In some
embodiments, the cement slurry is forced through a lower
end of the casing and into an annulus between the casing and
a wall of the wellbore (116). More specifically, a cementing
plug may be used for pushing the cement slurry from the
casing. For example, the cementing plug may be a rubber
plug used to separate cement slurry from other fluids,
reducing contamination and maintaining predictable slurry
performance. A displacement fluid, such as water, or an
appropriately weighted drilling fluid, may be pumped into
the casing above the cementing plug. This displacement
fluid may be pressurized fluid that serves to urge the
cementing plug downward through the casing to extrude the
cement from the casing outlet and back up into the annulus.
[0029] Keeping with well operations, some embodiments
include perforation operations. More specifically, a perfora-
tion operation may include perforating casing and cement at
different locations in the wellbore (116) to enable hydrocar-
bons to enter a well stream from the resulting holes. For
example, some perforation operations include using a per-
foration gun at different reservoir levels to produce holed
sections through the casing, cement, and sides of the well-
bore (116). Hydrocarbons may then enter the well stream
through these holed sections. In some embodiments, perfo-
ration operations are performed using discharging jets or
shaped explosive charges to penetrate the casing around the
wellbore (116).

[0030] In another well operation, a filtration system may
be installed in the wellbore (116) in order to prevent sand
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and other debris from entering the well stream. For example,
a gravel packing operation may be performed using a
gravel-packing slurry of appropriately sized pieces of coarse
sand or gravel. As such, the gravel-packing slurry may be
pumped into the wellbore (116) between a casing’s slotted
liner and the sides of the wellbore (116). The slotted liner
and the gravel pack may filter sand and other debris that
might have otherwise entered the well stream with hydro-
carbons.

[0031] Insome embodiments, well intervention operations
may include various operations carried out by one or more
service entities for an oil or gas well during its productive
life (e.g., fracking operations, CT, flow back, separator,
pumping, wellhead and Christmas tree maintenance, slick-
line, wireline, well maintenance, stimulation, braded line,
coiled tubing, snubbing, workover, subsea well intervention,
etc.). For example, well intervention activities may be
similar to well completion operations, well delivery opera-
tions, and/or drilling operations in order to modify the state
of a well or well geometry. In some embodiments, well
intervention operations provide well diagnostics, and/or
manage the production of the well. With respect to service
entities, a service entity may be a company or other actor
that performs one or more types of oil field services, such as
well operations, at a well site. For example, one or more
service entities may be responsible for performing a cement-
ing operation in the wellbore (116) prior to delivering the
well to a producing entity.

[0032] While FIG. 1 shows various configurations of
components, other configurations may be used without
departing from the scope of the disclosure. For example,
various components in FIG. 1 may be combined to create a
single component. As another example, the functionality
performed by a single component may be performed by two
or more components.

[0033] FIGS. 2 and 3 show flowcharts in accordance with
one or more embodiments. The flowchart of FIG. 2 relates
to a method (200) for predicting conditions ahead of a drill
bit and includes steps for training a machine learning model.
The flowchart of FIG. 3 relates to a method (300) for
predicting conditions ahead of a drill bit and includes steps
for executing the machine learning model to make the
predictions.

[0034] The methods (200, 300) provide a classification of
formation properties from reconciled looking ahead of the
bit data. The methods, in one embodiment, use a deep
learning neural network based on restricted Boltzmann
machines for the classification of the lithology and satura-
tion patterns for geosteering in real-time.

[0035] One or more steps in FIGS. 2 and 3 may be
performed by one or more components introduced in FIG. 1,
on a computer system, e.g., as shown in FIG. 4. While the
various steps in FIGS. 2 and 3 are presented and described
sequentially, one of ordinary skill in the art will appreciate
that some or all of the blocks may be executed in different
orders, may be combined or omitted, and some or all of the
blocks may be executed in parallel. Furthermore, the blocks
may be performed actively or passively.

[0036] Turning to FIG. 2, in Step 202 data are obtained.
The data may include logging while drilling (LWD) data.
The logs of the LWD may include sonic data, deep azimuthal
resistivity data, porosity data, density data, pressure data,
and/or temperature data. Any data that may be collected
during drilling may be included in the data. The data may
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further include electromagnetic (EM) data, e.g., in the form
of resistivity cubes. The data may also include seismic data,
e.g., in the form of acoustic impedance profiles derived from
the seismic traces.

[0037] Each of these data may be used to characterize the
rock or sediment in a borehole. In one or more embodiments,
the obtained data are automatically categorized in terms of
their data quality. This may be achieved by analyzing the
signal to noise ratio, followed by categorizing the data into
several categories based on their data quality (e.g., from 1 to
5, where 1 is poor data quality and 5 is best data quality).
The data may also be categorized based on the resolution
they can attain. The data undergoing this characterization is
not limited to LWD data. For example, conventional elec-
tromagnetics and seismic data that may be derived from
surface EM or seismic surveys, or borehole to surface
structures may also be considered in this manner. Some or
all these data in combination, including their categorization
may be used for the subsequently discussed steps in order to
train the machine learning model. The data may be obtained
from the well currently being drilled, an offset well within
a reservoir formation or other reservoirs.

[0038] In Step 204, the data are processed to remove
outliers and/or other inconsistencies. Moving windows and/
or z-score techniques may be used to perform Step 204. The
associated thresholds may be set by a user.

[0039] In Step 206, the data are reconciled. The reconcil-
ing may involve analyzing and processing the LWD data
and/or other data (e.g., EM data, seismic data, etc.) to ensure
that the different types of data (e.g., different types of LWD
data that are collected) are consistent with each other. The
reconciliation of the data utilizes a deep learning approach
to check for the consistency of the data in the interpretation.
The reconciliation step takes as input different types of
logged data (e.g., the different types of available LWD data
EM data, seismic data, etc.), and determines whether they
lead to similar or deviating estimates using the classification
framework discussed below. Types of data that result in
deviating estimates are eliminated from further consider-
ation.

In Step 208, a machine learning model is set up.

[0040] The machine learning model may be based on any
type of machine learning technique. For example, percep-
trons, convolutional neural networks, deep neural networks,
recurrent neural networks, support vector machines, deci-
sion trees, inductive learning models, deductive learning
models, reinforcement learning models, etc. may be used. In
some embodiments, two or more different types of machine-
learning models are integrated into a single machine-learn-
ing architecture, e.g., a machine-learning model may include
support vector machines and neural networks.

[0041] In some embodiments, various types of machine
learning algorithms, e.g., backpropagation algorithms, may
be used to train the machine learning models. In a back-
propagation algorithm, gradients are computed for each
hidden layer of a neural network in reverse from the layer
closest to the output layer proceeding to the layer closest to
the input layer. As such, a gradient may be calculated using
the transpose of the weights of a respective hidden layer
based on an error function (also called a “loss function”).
The error function may be based on various criteria, such as
mean squared error function, a similarity function, etc.,
where the error function may be used as a feedback mecha-
nism for tuning weights in the machine-learning model. In
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some embodiments, historical data, e.g., production data
recorded over time may be augmented to generate synthetic
data for training a machine learning model.

[0042] With respect to neural networks, for example, a
neural network may include one or more hidden layers,
where a hidden layer includes one or more neurons. A
neuron may be a modelling node or object that is loosely
patterned on a neuron of the human brain. In particular, a
neuron may combine data inputs with a set of coefficients,
i.e., a set of network weights for adjusting the data inputs.
These network weights may amplify or reduce the value of
a particular data input, thereby assigning an amount of
significance to various data inputs for a task being modeled.
Through machine learning, a neural network may determine
which data inputs should receive greater priority in deter-
mining one or more specified outputs of the neural network.
Likewise, these weighted data inputs may be summed such
that this sum is communicated through a neuron’s activation
function to other hidden layers within the neural network. As
such, the activation function may determine whether and to
what extent an output of a neuron progresses to other
neurons where the output may be weighted again for use as
an input to the next hidden layer.

[0043] Turning to recurrent neural networks, a recurrent
neural network (RNN) may perform a particular task repeat-
edly for multiple data elements in an input sequence (e.g., a
sequence of maintenance data or inspection data), with the
output of the recurrent neural network being dependent on
past computations (e.g., failure to perform maintenance or
address an unsafe condition may produce one or more
hazard incidents). As such, a recurrent neural network may
operate with a memory or hidden cell state, which provides
information for use by the current cell computation with
respect to the current data input. For example, a recurrent
neural network may resemble a chain-like structure of RNN
cells, where different types of recurrent neural networks may
have different types of repeating RNN cells. Likewise, the
input sequence may be time-series data, where hidden cell
states may have different values at different time steps
during a prediction or training operation. For example,
where a deep neural network may use different parameters
at each hidden layer, a recurrent neural network may have
common parameters in an RNN cell, which may be per-
formed across multiple time steps. To train a recurrent neural
network, a supervised learning algorithm such as a back-
propagation algorithm may also be used. In some embodi-
ments, the backpropagation algorithm is a backpropagation
through time (BPTT) algorithm. Likewise, a BPTT algo-
rithm may determine gradients to update various hidden
layers and neurons within a recurrent neural network in a
similar manner as used to train various deep neural net-
works. In some embodiments, a recurrent neural network is
trained using a reinforcement learning algorithm such as a
deep reinforcement learning algorithm. For more informa-
tion on reinforcement learning algorithms, see the discus-
sion below.

[0044] Embodiments are contemplated with different
types of RNNs. For example, classic RNNs, long short-term
memory (LSTM) networks, a gated recurrent unit (GRU), a
stacked LSTM that includes multiple hidden LSTM layers
(i.e., each LSTM layer includes multiple RNN cells), recur-
rent neural networks with attention (i.e., the machine-learn-
ing model may focus attention on specific elements in an
input sequence), bidirectional recurrent neural networks
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(e.g., a machine-learning model that may be trained in both
time directions simultaneously, with separate hidden layers,
such as forward layers and backward layers), as well as
multidimensional LSTM networks, graph recurrent neural
networks, grid recurrent neural networks, etc., may be used.
With regard to LSTM networks, an LSTM cell may include
various output lines that carry vectors of information, e.g.,
from the output of one LSTM cell to the input of another
LSTM cell. Thus, an LSTM cell may include multiple
hidden layers as well as various pointwise operation units
that perform computations such as vector addition.

[0045] In some embodiments, one or more ensemble
learning methods may be used in connection to the machine-
learning models. For example, an ensemble learning method
may use multiple types of machine-learning models to
obtain better predictive performance than available with a
single machine-learning model. In some embodiments, for
example, an ensemble architecture may combine multiple
base models to produce a single machine-learning model.
One example of an ensemble learning method is a BAGGing
model (i.e., BAGGing refers to a model that performs
Bootstrapping and Aggregation operations) that combines
predictions from multiple neural networks to add a bias that
reduces variance of a single trained neural network model.
Another ensemble learning method includes a stacking
method, which may involve fitting many different model
types on the same data and using another machine-learning
model to combine various predictions.

[0046] The selection of the machine learning model in
Step 208 may involve selecting the machine learning model
with the best performance based on the training of the
method (200). The machine learning model with the best
performance may be identified through repeated execution
of steps of the method (200) using different machine learn-
ing models, until the best-performing machine learning
model is identified. In one embodiment of the disclosure, a
deep learning neural network structure incorporating
Restricted Boltzmann Machines (RBM) is used. The RBMs
use a forward and backward pass. The RBMs first take the
input, which are the reconciled data from the drilling pro-
cess. The data are translated and encoded in the forward
pass. This combines the inputs with the weights, which are
then passed over to the hidden layers. The subsequent
backward pass then takes the output and reconstructs the
input data. The RBMs combine the weights with individual
activations. Next, the input is reconstructed from the output.
Subsequently, the original input is compared to the recon-
struction utilizing the RBMs in order to assess the result’s
quality.

[0047] In one or more embodiments, the architecture of
the deep learning neural network is in the form of a
supervised network for the classification of the geological
parameters. In one embodiment, a deep belief network
(DBN) that incorporates RBMs is used. The classification is
for the formation properties of the different geological layers
being encountered while drilling (e.g., porosity, permeabil-
ity, rock type structures, saturation, etc.). The DBN may
include any number of hidden layers (e.g., 10-30 hidden
layers) that are based on RBMs. The final layer may be
connected to a logistic regression layer for the classification
of the formation properties.

[0048] In one or more embodiments, Step 208 involves
selecting hyperparameters of the machine learning model,
e.g., the complexity of the machine learning model (number
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of layers, number of neurons, activation functions, etc.).
Expert information may be incorporated. In one or more
embodiments, expert information is incorporated into the
machine learning model in order to optimize the data
weighting in the network. Expert information may include,
for example, user-provided information such as constraints
on the categorization to be performed, as well as adaptation
to the input weighting of the parameters (e.g., based on a
known level of quality of the input parameters, as previously
determined in Step 202).

[0049] In Step 210, the machine learning model is trained.
The training may involve preparing the previously obtained
data for the training. For example, the data may be scaled
such that each parameter is in the same range (typically
between 0 and 1) to improve the performance of the machine
learning model. Further, the data may be split into training,
testing and validation sets. Training data may subsequently
be used for training the machine learning model. Validation
data may be used in order to decide whether enough learning
has been achieved and training may be stopped. Testing data
may be used to test the performance of the machine learning
model after training in order to determine determines how
well the machine learning model performs. In one example,
70% of the data may be used as training data and 30% of the
data may be used as validation data.

[0050] The feature set at the input of the machine learning
model may include all types of available input data such as
different types of LWD data and may further include any
type of other data such as, for example, EM data (e.g., in the
form of conductivity reservoir maps), seismic data such as
structural geological data information, and drilling-derived
data such as the rate of penetration (ROP), weight on bit
(WOB), etc. The output data corresponding to the input data
used for the training may include classifications of the
lithology of the formation (e.g., porosity, permeability, rock
type structures, etc.), and/or saturation levels (e.g., in the
form of categories from low to high water saturation). For
the purpose of training the machine learning model, in the
pairing of input data and output data, the output data may be
“ahead” of the input data. In other words, for input data
associated with a current position of the drill bit, output data
associated with a future position of the drill bit may be used.
In one embodiment, the various types of input data for the
LWD, seismic, and/or EM data are weighted according to
their data quality as previously determined in Step 202.
Poorly categorized data quality types are weighted less as
compared to well categorized data quality types.

[0051] The training of the DBN may include a pre-training
using a greedy learning algorithm, followed by several steps
of Gibbs sampling are utilized for the top hidden layers.
Ancestral sampling may be utilized for the rest of the layers,
and finally backpropagation may be utilized for the classi-
fication task.

[0052] In Step 212, the performance of the machine learn-
ing model is evaluated. The evaluation may be performed by
applying the trained machine learning model to a volume of
test data. The resulting classifications of formation proper-
ties such as lithology, saturation may be compared to known
classifications (e.g., previously performed by an expert, or
otherwise obtained) in the test data. In one or more embodi-
ments, evaluating the performance of the machine learning
model further includes evaluating the feature set of the
machine learning model. Each feature in the feature set may
be analyzed on its impact on the estimate produced by the
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machine learning model. The impact may be assessed, for
example, using Shapley values. Less relevant features may
be eliminated from the feature set. Accordingly, one or more
parameters maybe dropped from the input data, as the
training is being performed.

[0053] In Step 214, based on the evaluation performed in
Step 212, a test is performed to determine the performance
of the trained machine learning model. The validation data
may be used for the test. If a certain accuracy, e.g., at least
80%, 85%, or any other desired accuracy is achieved, the
method may terminate the training. Alternatively, if the
accuracy is considered insufficient, the method may proceed
by repeating either Step 208 with a different machine
learning model or a different parameterization of the
machine learning model, or by repeating Step 210 using
different training data.

[0054] Turning to FIG. 3, the execution of the method
(300) for predicting conditions ahead of a drill bit begins
with the obtaining of data, in Step 302. The data may include
logging while drilling (LWD) data, collected in real-time as
the drilling is progressing. Additional details regarding Step
302 may be found in the description of Step 202 of FIG. 2.
[0055] In Step 304, the data are processed to remove
outliers and/or other inconsistencies. Step 304 may be
performed analogous to Step 204 of FIG. 2.

[0056] In Step 306, the LWD data are reconciled. The
reconciliation may be performed analogous to the reconcili-
ation performed in Step 206 of FIG. 2. In other words, types
of data that, in Step 206, were found to result in deviating
estimates are eliminated from further consideration.

[0057] In Step 308, a classification of formation properties
is performed (e.g., based on lithology and/or saturation),
using the machine learning model after training using the
method (200). In one or more embodiments, the classifica-
tion is ahead-of-the-bit, and may be obtained in real-time,
while drilling. The output may further include an uncertainty
associated with the classification. The uncertainty may be
assessed based on a change in the classification result due to
randomly perturbed input data. The degree of uncertainty for
each of the classifications is linked to the data quality as well
as perceived degree of uncertainty.

[0058] In Step 310, the classification of Step 308 may be
used in an application. One such application is geosteering
the drill bit in an LWD scenario. Adjustments of the rate of
penetration (ROP), weight on bit (WOB), torque, revolu-
tions per minute (RPM), hook load, mud flow rate, D-ex-
ponent, mud density/weight, standpipe pressure, mud tem-
perature, drilling direction, and many others drilling
parameters may be made. The adjustments may be made in
an automated manner. However, when uncertainty is high, a
geosteering decision maker may ultimately decide on the
geosteering parameters.

[0059] While geosteering is described as an application of
the classification, the classification may be used for other
applications without departing from the disclosure.

[0060] Embodiments of the disclosure have one or more of
the following benefits. Embodiments of the disclosure pro-
vide methods to automatically provide a classification of
formation properties in a look-ahead-of-the-bit manner. The
methods may automatically process LWD data in real-time.
The methods may further automatically process EM and
seismic data generated from the drill bit. The methods may
automatically remove outliers and/or other inconsistencies.
The method may further set up a deep neural network for the
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classification of the reservoir formation properties and to
assess uncertainty of the obtained classifications of forma-
tion properties.

[0061] Embodiments may be implemented on a computer
system. FIG. 4 is a block diagram of a computer system
(402) used to provide computational functionalities associ-
ated with described algorithms, methods, functions, pro-
cesses, flows, and procedures as described in the instant
disclosure, according to an implementation. The illustrated
computer (402) is intended to encompass any computing
device such as a high performance computing (HPC) device,
a server, desktop computer, laptop/notebook computer, wire-
less data port, smart phone, personal data assistant (PDA),
tablet computing device, one or more processors within
these devices, or any other suitable processing device,
including both physical or virtual instances (or both) of the
computing device. Additionally, the computer (402) may
include a computer that includes an input device, such as a
keypad, keyboard, touch screen, or other device that can
accept user information, and an output device that conveys
information associated with the operation of the computer
(402), including digital data, visual, or audio information (or
a combination of information), or a GUIL

[0062] The computer (402) can serve in a role as a client,
network component, a server, a database or other persis-
tency, or any other component (or a combination of roles) of
a computer system for performing the subject matter
described in the instant disclosure. The illustrated computer
(402) is communicably coupled with a network (430). In
some implementations, one or more components of the
computer (402) may be configured to operate within envi-
ronments, including cloud-computing-based, local, global,
or other environment (or a combination of environments).

[0063] At ahigh level, the computer (402) is an electronic
computing device operable to receive, transmit, process,
store, or manage data and information associated with the
described subject matter. According to some implementa-
tions, the computer (402) may also include or be commu-
nicably coupled with an application server, e-mail server,
web server, caching server, streaming data server, business
intelligence (BI) server, or other server (or a combination of
servers).

[0064] The computer (402) can receive requests over
network (430) from a client application (for example,
executing on another computer (402)) and responding to the
received requests by processing the said requests in an
appropriate software application. In addition, requests may
also be sent to the computer (402) from internal users (for
example, from a command console or by other appropriate
access method), external or third-parties, other automated
applications, as well as any other appropriate entities, indi-
viduals, systems, or computers.

[0065] Each of the components of the computer (402) can
communicate using a system bus (403). In some implemen-
tations, any or all of the components of the computer (402),
both hardware or software (or a combination of hardware
and software), may interface with each other or the interface
(404) (or a combination of both) over the system bus (403)
using an application programming interface (API) (412) or
a service layer (413) (or a combination of the API (412) and
service layer (413). The API (412) may include specifica-
tions for routines, data structures, and object classes. The
API (412) may be either computer-language independent or
dependent and refer to a complete interface, a single func-



US 2024/0254874 Al

tion, or even a set of APIs. The service layer (413) provides
software services to the computer (402) or other components
(whether or not illustrated) that are communicably coupled
to the computer (402). The functionality of the computer
(402) may be accessible for all service consumers using this
service layer. Software services, such as those provided by
the service layer (413), provide reusable, defined business
functionalities through a defined interface. For example, the
interface may be software written in JAVA, C++, or other
suitable language providing data in extensible markup lan-
guage (XML) format or other suitable format. While illus-
trated as an integrated component of the computer (402),
alternative implementations may illustrate the API (412) or
the service layer (413) as stand-alone components in relation
to other components of the computer (402) or other com-
ponents (whether or not illustrated) that are communicably
coupled to the computer (402). Moreover, any or all parts of
the API (412) or the service layer (413) may be implemented
as child or sub-modules of another software module, enter-
prise application, or hardware module without departing
from the scope of this disclosure.

[0066] The computer (402) includes an interface (404).
Although illustrated as a single interface (404) in FIG. 4, two
or more interfaces (404) may be used according to particular
needs, desires, or particular implementations of the com-
puter (402). The interface (404) is used by the computer
(402) for communicating with other systems in a distributed
environment that are connected to the network (430). Gen-
erally, the interface (404 includes logic encoded in software
or hardware (or a combination of software and hardware)
and operable to communicate with the network (430). More
specifically, the interface (404) may include software sup-
porting one or more communication protocols associated
with communications such that the network (430) or inter-
face’s hardware is operable to communicate physical signals
within and outside of the illustrated computer (402).
[0067] The computer (402) includes at least one computer
processor (405). Although illustrated as a single computer
processor (405) in FIG. 4, two or more processors may be
used according to particular needs, desires, or particular
implementations of the computer (402). Generally, the com-
puter processor (405) executes instructions and manipulates
data to perform the operations of the computer (402) and any
algorithms, methods, functions, processes, flows, and pro-
cedures as described in the instant disclosure.

[0068] The computer (402) also includes a memory (406)
that holds data for the computer (402) or other components
(or a combination of both) that can be connected to the
network (430). For example, memory (406) can be a data-
base storing data consistent with this disclosure. Although
illustrated as a single memory (406) in FIG. 4, two or more
memories may be used according to particular needs,
desires, or particular implementations of the computer (402)
and the described functionality. While memory (406) is
illustrated as an integral component of the computer (402),
in alternative implementations, memory (406) can be exter-
nal to the computer (402).

[0069] The application (407) is an algorithmic software
engine providing functionality according to particular needs,
desires, or particular implementations of the computer (402),
particularly with respect to functionality described in this
disclosure. For example, application (407) can serve as one
or more components, modules, applications, etc. Further,
although illustrated as a single application (407), the appli-
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cation (407) may be implemented as multiple applications
(407) on the computer (402). In addition, although illus-
trated as integral to the computer (402), in alternative
implementations, the application (407) can be external to the
computer (402).

[0070] There may be any number of computers (402)
associated with, or external to, a computer system contain-
ing computer (402), each computer (402) communicating
over network (430). Further, the term “client,” “user,” and
other appropriate terminology may be used interchangeably
as appropriate without departing from the scope of this
disclosure. Moreover, this disclosure contemplates that
many users may use one computer (402), or that one user
may use multiple computers (402).

[0071] In some embodiments, the computer (402) is
implemented as part of a cloud computing system. For
example, a cloud computing system may include one or
more remote servers along with various other cloud com-
ponents, such as cloud storage units and edge servers. In
particular, a cloud computing system may perform one or
more computing operations without direct active manage-
ment by a user device or local computer system. As such, a
cloud computing system may have different functions dis-
tributed over multiple locations from a central server, which
may be performed using one or more Internet connections.
More specifically, a cloud computing system may operate
according to one or more service models, such as infrastruc-
ture as a service (laaS), platform as a service (PaaS),
software as a service (Saas), mobile “backend” as a service
(MBaaS8), serverless computing, artificial intelligence (Al)
as a service (AlaaS), and/or function as a service (FaaS).
[0072] Although only a few example embodiments have
been described in detail above, those skilled in the art will
readily appreciate that many modifications are possible in
the example embodiments without materially departing
from this invention. Accordingly, all such modifications are
intended to be included within the scope of this disclosure as
defined in the following claims.

What is claimed:

1. A method for predicting conditions ahead of a drill bit
while drilling a well, the method comprising:

performing, using a machine learning model, a classifi-

cation of formation properties ahead of the drill bit,
based on data comprising logging-while-drilling
(LWD) data obtained while drilling the well.

2. The method of claim 1, wherein the classification is
performed in real-time, while drilling the well.

3. The method of claim 1, further comprising applying the
classification of the formation properties to perform a geo-
steering of the drill bit.

4. The method of claim 1, wherein the classification of the
formation properties comprises a classification of at least
one selected from a group consisting of lithology and
saturation.

5. The method of claim 1, wherein the classification of the
formation properties comprises a quantification of an uncer-
tainty of the classification.

6. The method of claim 1, wherein the data further
comprise at least one selected from a group consisting of
electromagnetic data and seismic data.

7. The method of claim 1, wherein the LWD data com-
prise at least one selected from a group consisting of sonic
data, deep azimuthal resistivity data, porosity data, density
data, pressure data, and temperature data.
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8. The method of claim 1, further comprising, prior to
performing the classification:

reconciling the data to eliminate inconsistencies between

different types of data in the data.

9. The method of claim 1, further comprising, prior to
performing the classification:

removing outliers from the data.

10. The method of claim 1, wherein the machine learning
model is a deep belief network based on Restricted Boltz-
mann Machines.

11. The method of claim 1, further comprising, prior to
performing the classification:

training the machine learning model.

12. The method of claim 11, further comprising, prior to
training the machine learning model:

weighting, in training data used for the training, different

types of data based on quality.

13. The method of claim 12, wherein the quality is
assessed using a signal-to-noise ratio.

14. The method of claim 11, wherein training data used
for the training originates from one selected from a group
consisting of an offset well and the well.

15. The method of claim 11, further comprising after
training the machine learning model:

evaluating the machine learning model; and

retraining the machine learning model when performance

is considered insufficient, based on the evaluation of the
machine learning model.

16. A system for predicting conditions ahead of a drill bit
while drilling a well, the system comprising:
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a drilling system for drilling the well, the drilling system

comprising the drill bit and a drill bit logging tool; and

a control system configured to:

perform, using a machine learning model, a classification

of formation properties ahead of the drill bit, based on
data comprising logging-while-drilling (LWD) data
obtained from the drill bit logging tool while drilling
the well using the drill bit.

17. The system of claim 16, wherein the classification is
performed in real-time, while drilling the well.

18. The system of claim 16, wherein the control system is
further configured to:

apply the classification of the formation properties to

perform a geosteering of the drill bit.

19. A non-transitory machine-readable medium compris-
ing a plurality of machine-readable instructions executed by
one or more processors, the plurality of machine-readable
instructions causing the one or more processors to perform
operations comprising:

performing, using a machine learning model, a classifi-

cation of formation properties ahead of a drill bit while
drilling a well, based on data comprising logging-
while-drilling (LWD) data obtained while drilling the
well.

20. The non-transitory machine-readable medium of
claim 19, wherein the operations further comprise:

applying the classification of the formation properties to

perform a geosteering of the drill bit.
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