a2 United States Patent

US012045284B2

a0y Patent No.: US 12,045,284 B2

Zou 45) Date of Patent: Jul. 23, 2024
(54) GEOMETRY-BASED DESIGN DATA SEARCH 2014/0129543 Al* 5/2014 Solheim GO6F 16/951
TOOL 707/711
2016/0147843 Al* 5/2016 Haley GOGF 16/9032
(71) Applicant: Autodesk, Inc., San Rafael, CA (US) 707/722
2016/0371876 Al* 12/2016 McCombe ... GO6T 17/00
. . . 2020/0050710 Al* 2/2020 Shayani GO6N 20/00
(72) Inventor: Ping Zou, Shanghai (CN) 2020/0410003 Al* 12/2020 Simhadri ... GOGF 16/9035
2022/0222208 Al* 7/2022 Sawyer GOG6F 16/156
(73) Assignee: AUTODESK, INC., San Francisco, CA awyet
US
US) OTHER PUBLICATIONS
(*) Notice: Subject. to any dlsclalmer,. the term of this Bokeloh, M., et al., “S etry Detection Using Feature Lines”,
patent is extended or adjusted under 35 E hics 2009 }697 706. vol. 28. No. 2
U.S.C. 154(b) by 216 days. Urographics » Pp. 62772780, VOl £8, NO. 2.
(21) Appl. No.: 17/564,555 * cited by examiner
(22) Filed: Dec. 29, 2021 Primary Examiner — Y1 Wang
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Gates & Cooper LLP
US 2023/0205820 Al Jun. 29, 2023
57 ABSTRACT
(51) Imt.CL
GO6F 16/901 (2019.01) A method and system provide for searching a computer-
GO6F 16/25 (2019.01) aided design (CAD) drawing. A CAD drawing is obtained
GOGF 16/53 (2019.01) and includes vector based geometric entities. For each entity,
GOGF 30/20 (2020.01) primitives are extracted and held in a graph with graph nodes
GO6F 111/20 (2020.01) that record entity paths. A feature coordinate system is
(52) US. CL created for each of the entities using the primitives. The
cPC ... GOG6F 16/9024 (2019.01); GO6F 16/258 primitives are transformed from a world coordinate system
(2019.01); G06.F 16/53 (2019.01); GO6F to feature coordinates of the feature coordinate system.
. 30/. 2.0 (20.20'01)’ GOG6F 2111/20 (2020.01) Geometry data of the transformed entities is encoded into
(58) Field of Classification Search index codes that are utilized in an index table as keys with
None o) the graph nodes as values. A target geometric entity is
See application file for complete search history. identified and a target index code is determined and used to
. query the index table to identify instances of the target
(56) References Cited geometric entity in the CAD drawing. Found instances in the
U.S. PATENT DOCUMENTS CAD drawing are displayed in a visually distinguishable
manner.
10,296,626 B2 5/2019 Haley et al.
2012/0020528 Al* 1/2012 Yamada GO6T 7/194
382/106 22 Claims, 11 Drawing Sheets

EXTRACT PRIMITIVES AND
CREATE GRAPH

NEATE INDEX TABLE AND |
SPATIAL TREE Netor2

MINE TARGET INDEX CODE i

AND SEARCH PATH Nego18

U.S. Patent Jul. 23, 2024 Sheet 1 of 11 US 12,045,284 B2

104

108
102
106

FIG. 1A

110
110

110

110

110 110

110
110

110

110
110

FIG. 1B

U.S. Patent Jul. 23, 2024 Sheet 2 of 11 US 12,045,284 B2

202

FIG. 2A

204

204

204

204

U.S. Patent Jul. 23, 2024 Sheet 3 of 11 US 12,045,284 B2

FIG. 7 FIG. 8

FIG. 9

U.S. Patent Jul. 23, 2024 Sheet 4 of 11 US 12,045,284 B2

416 418

414

FIG. 4

400

404

402

US 12,045,284 B2

Sheet 5 of 11

Jul. 23, 2024

U.S. Patent

090% 0205

9 Old

g905 9204

045,284 B2

b

12

Sheet 6 of 11 US

. 23,2024

Jul

U.S. Patent

TEIETRE

3001

L

old

Y004

P
EIn

U.S. Patent Jul. 23, 2024 Sheet 7 of 11 US 12,045,284 B2

FIG. 13C

FIG. 12
FIG. 13B

FIG. 13A

U.S. Patent Jul. 23, 2024 Sheet 8 of 11 US 12,045,284 B2

FIG. 14
FIG. 15

'

Thyead 2

Thread 1
Thread 3

U.S. Patent Jul. 23, 2024 Sheet 9 of 11 US 12,045,284 B2

OBTAIN CAD DRAWING
N 1602

/

EXTRACT PRIMITIVES AND
CREATE GRAPH 1604

4
CREATE FEATURE COORDINATE

SYSTEM 1606
y
TRANSFORM PRIMITIVES
1608
FIG. 16 ‘ |
. ENCODE GEOMETRY &
E 1610

Y
GENEATE INDEX TABLE AND
SPATIAL TREE 1612

Y
IDENTIFY TARGET ENTITY
N 1674

/
DETERMINE TARGET INDEX CODE
AND SEARCH PATH 1676

SEARCH DRAWING

1618

DISTINGUISH INSTANCES

1620

U.S. Patent

Jul. 23, 2024

Sheet 10 of 11

1702
/

1700

/

US 12,045,284 B2

1730

DATA COMM.
DEVICE

1706

1720

STORAGE

/1724

1714
/

COMPUTER
/ 1704A /7 7048
HARDWARE SPECIAL PURPOSE
PROCESSOR PROCESSOR
MEMORY
/ 1708 /1 710 .l
0S COMPUTER
PROGRAM
GUI
MODULE COMPILER
\ 1718 \ 1712
/ 1722 / 1716
CURSOR
DISPLAY CONTROL KEYBOARD

FIG. 17

PRINTER

k 1728

1732

US 12,045,284 B2

Sheet 11 of 11

Jul. 23, 2024

U.S. Patent

9i81
Isvaviva

81 Old

vigl
swaa

Zi8i

NOLLYOI TddV
1dVSH40 JSY

0181
HINYFS GIM

9084
HIAMES

0084

US 12,045,284 B2

1
GEOMETRY-BASED DESIGN DATA SEARCH
TOOL

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates generally to computer-aided
design (CAD) applications, and in particular, to a method,
apparatus, system, and article of manufacture for searching
a drawing (or set of drawings) based on a specified set of
geometries.

2. Description of the Related Art

When designing and working on projects (e.g., in archi-
tectural, engineering, construction, landscaping, etc.), it is
often desirable to search for geometry within a CAD draw-
ing. However, prior art systems fail to provide an effective
geometry-based search method. Most of the existing search
methods are based on entity properties or types. For
example, to search or find matching geometry, prior art users
are required to specify/define a well-defined block rather
than native entities, and the same block is then searched.
Such an approach is not flexible and has some obvious
limitations. For example, a block that has the same geometry
but a different name will be missed and non-block cases
cannot be searched. In addition, prior art search targets that
are a combination of blocks cannot be searched. Further to
the above, alternative prior art systems may require a user to
perform a manual search (to find all of the same geometric
entities) by plotting out the drawing to paper.

In view of the above, it is desirable to provide an efficient,
fast, and automated mechanism for searching geometric
entities within one (or multiple) CAD drawings that is
flexible enough to accommodate native entities, multiple
blocks, and is not limited by a specified property/type/
attribute.

SUMMARY OF THE INVENTION

Embodiments of the invention provide a new geometry-
based search method that encodes geometry (i.e., geometric
entities) into unique 64-bit codes that can be searched by
leveraging the PCA (Principal Component Analysis)
method.

Embodiments of the invention provide various novel
aspects including:

a unique and novel application of PCA to a collection of
geometry primitives independent of orientation to gen-
erate a signature;

a technique that is general to all 2D and 3D primitives
based on point sampling;

an index representation that is constructed for efficient
matching;

a parallelized algorithm for matching; and

search capability across documents.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIGS. 1A, 1B, 2A, and 2B illustrate exemplary searches
that may be performed in accordance with one or more
embodiments of the invention;

10

15

20

25

30

40

45

50

55

60

65

2

FIGS. 3A and 3B illustrate exemplary index codes of
polylines with different shapes in accordance with one or
more embodiments of the invention;

FIG. 4 illustrates an exemplary graph generated for a
sample drawing that contains a polyline and a block in
accordance with one or more embodiments of the invention;

FIGS. 5A-5C illustrate different feature coordinates for
different geometries in accordance with one or more
embodiments of the invention;

FIG. 6 illustrates a feature coordinate for the same geom-
etry with different transformations in accordance with one or
more embodiments of the invention;

FIG. 7 illustrates vertices identified/determined on/from
an exemplary polyline in accordance with one or more
embodiments of the invention;

FIG. 8 shows a minimum bounding sphere that is created
from the vertices of an exemplary polyline in accordance
with one or more embodiments of the invention;

FIG. 9 illustrates a feature coordinate system that is
created from vertices of an exemplary polyline based on a
minimum bounding sphere and a PCA method in accordance
with one or more embodiments of the invention;

FIG. 10 shows how an index code is generated for an
exemplary polyline in accordance with one or more embodi-
ments of the invention;

FIG. 11 shows an example of a search path for a chair
block which contains eighteen (18) steps in accordance with
one or more embodiments of the invention;

FIG. 12 illustrates an exemplary arc entity (the back of a
chair) that is found as the first entity of a potential result that
meets the criteria of the search path in accordance with one
or more embodiments of the invention;

FIGS. 13A-C demonstrates how to locate the potential
candidate of the next entity on the search path in accordance
with one or more embodiments of the invention;

FIG. 14 shows an example of which vertices of compos-
ited entities are collected for calculating the feature code in
accordance with one or more embodiments of the invention;

FIG. 15 shows the concept of a parallel search with
multipotential results in accordance with one or more
embodiments of the invention;

FIG. 16 illustrates the logical flow for searching a CAD
drawing for a geometric entity in accordance with one or
more embodiments of the invention;

FIG. 17 is an exemplary hardware and software environ-
ment used to implement one or more embodiments of the
invention; and

FIG. 18 schematically illustrates a typical distributed/
cloud-based computer system in accordance with one or
more embodiments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description, reference is made to the
accompanying drawings which form a part hereof, and
which is shown, by way of illustration, several embodiments
of the present invention. It is understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.
Overview

Embodiments of the invention enable users to use entity
geometry as a condition for an exact match search. The
entities of search results have the same shape as the target
entity but can have different scale, location, orientation, and
mirror. The target may not only be a single entity, such as
lines, curves, multi-segment lines, and so on, but may also

US 12,045,284 B2

3

be a composited entity, such as a group of selected entities,
or a block that consists of multiple entities. Accordingly, the
search result can be a single entity or a collection of entities
existing anywhere in the drawing as long as they have the
same shape as the target. A search target does not have to
respect any entity grouping or structural constraints, for
example, the search result can be a part of a block or may
be a nested block. Furthermore, the search scope does not
have to be limited to a single drawing but can be extended
across drawings. An algorithm of embodiments of the inven-
tion is general for both two-dimensional (2D) and three-
dimensional (3D) primitives as long as they can be point
sampled uniquely. Further, an algorithm of embodiments of
the invention is efficient and may be parallelizable. A search
tool built in accordance with the invention may be high
performance—usually only taking milliseconds to complete
a search task.

FIGS. 1A, 1B, 2A, and 2B illustrate exemplary searches
that may be performed in accordance with one or more
embodiments of the invention. In FIG. 1A, the user has
elected to search for the combination of a table 102, chair
104, computer 106, and phone 108 within a given layout.
FIG. 1B illustrates the result of the search with the instances
110 of the combination of entities 102-108 displayed in a
visually distinguishable manner.

FIG. 2A illustrates the identification/selection of a part
202 of a tree/tree trunk to be used as the target of the search.
FIG. 2B illustrates the results of the search with the found
instances 204 displayed in a visually distinguishable man-
ner.

In addition, or as an alternative to initiating a search and
or finding results of a search in a visual manner, embodiment
of the invention may also enable a search based on a
count/number of found instances of a target geometry/entity.
For example, in FIGS. 2A and 2B, the count would reveal
that there are eight (8) found instances of the target geometry
202. Such a count may be displayed or presented to a user
initiating the search.

Workflow Details

In embodiments of the invention, a geometry-based index
table is generated and utilized to conduct the search of the
drawing for an identified entity. Such an index table consists
of a 64-bit binary code (a.k.a. an index code) that uniquely
represents the geometry of the entity. The index code is
generated by leveraging the PCA (Principal Component
Analysis) method. The index code is only related to the
geometry itself and is not dependent on a transformation,
like scale, location, orientation, and mirror. In other words,
the same index code corresponds to and has the same shape.

Based on the index table, embodiments of the invention
enable a search of the CAD drawing (or a set of CAD
drawings). There are at least two types of searches that may
be conducted in accordance with embodiments of the inven-
tion: a search for a single entity and a search for a compos-
ited entity.

A search for a single entity may be performed by querying
the table with the index code that comes from the single
entity’s geometry. FIGS. 3A and 3B illustrate exemplary
index codes of polylines with different shapes in accordance
with one or more embodiments of the invention. The text
below the geometric entity lists the index code for each
geometric entity in FIGS. 3A and 3B.

To search for a composited entity, a spatial tree is created
for recording the relative positional relationship between
entities in the space of the drawing. In that spatial tree, each
entity is represented as a point that is placed at the local
origin of the entity. With the spatial tree and the index table,

10

15

20

25

30

35

40

45

50

55

60

65

4

the search algorithm finds out the entity that meets the
criterion of geometry and position defined in the target
collection. By looking for the entity one by one, the search
algorithm achieves the ability to search composited entities
(eventually).

The detailed implementation of the above-described
workflow follows.

Extracting Geometric Information

To enable the search, geometric information for all enti-
ties in the drawing are extracted. No matter how complex the
geometry shape of the entity, the entity will eventually be
decomposed as a combination of basic primitives. These
primitives are point, line, circle, ellipse, arc, curve, etc. In
this stage, a graph is created to hold all primitives and their
owner entity. That graph is used to determine the final search
result by using the recorded entity path.

FIG. 4 illustrates an exemplary graph generated for a
sample drawing that contains a polyline and a block in
accordance with one or more embodiments of the invention.
As illustrated, the drawing 400 contains a polyline 402 and
a block 404. The graph 406 includes the graph root node 408
that owns entity node 1 410 (for the polyline 402) and entity
node 2 412 (for the block 404). The graph further reflects the
children of block node 412 by nodes representing the
geometric primitives of block 412. Thus, block node 412 has
children nodes 414-418: node 414 for the circle, node 416
for the text “Block Reference”, and node 418 for the
polyline. Thus, the drawing 400 is represented by graph 406
with nodes for each of the basic geometric primitives (i.e.,
nodes 410 and 414-418) and the owner/parent entity (i.e.,
nodes 412 and 408) for each entity in the graph 406. Thus,
the graph 406 provides a hierarchical graph tree structure
with nodes having parents and children.

Creating a Feature Coordinate System

A feature coordinate system is created for each entity by
using the extracted primitives. The origin and axis direction
of the feature coordinate is determined by the geometry of
the primitives, but independent of the transformation they
have (i.e., transformations include scales, locations, orien-
tations, and mirrors). FIGS. 5A-5C illustrate different fea-
ture coordinates for different geometries 502 (consisting of
geometries 502A-502C) in accordance with one or more
embodiments of the invention. The different feature coordi-
nates consist of the x-axis 504 (i.e., axis 504A-504C), y-axis
506 (i.e., axis 506A-506C) and z-axis (not shown as the
direction is directly out towards the viewer).

FIG. 6 illustrates the same feature coordinate 604 for the
same geometry 602 with different transformations. As illus-
trated, the geometry 602 is the same but may have different
transformations via rotation and sizing. Nonetheless, the
same feature coordinate 604 is used throughout.

The following steps describe the creation of a feature
coordinate in more detail.

Determine Vertices

The vertices of all primitives extracted from the entity are
determined/identified and put into the same collection. For
primitives such as circles, arcs, and curves, the number of
vertices are sampled at equal intervals (e.g., instead of
merely retrieving the vertices).

FIG. 7 illustrates the vertices 702 identified/determined
on/from an exemplary polyline 704 in accordance with one
or more embodiments of the invention.

Create Bounding Sphere

A minimum bounding sphere is created from the vertex
collection. The center point of the sphere will be the origin
of the feature coordinate, and the radius will be the scaling
factor that is used for a transformation to normalize/make

US 12,045,284 B2

5

the size of primitives uniform for generating the index code.
FIG. 8 shows the minimum bounding sphere 802 that is
created from the vertices 702 of the exemplary polyline 704
(of FIG. 7) in accordance with one or more embodiments of
the invention.

Determine Axis

The axis of the feature coordinate is determined by using
the PCA (Principal Component Analysis) method. More
specifically, the eigenvector of a covariance matrix of the
vertex collection is determined and defines two directions
for the feature coordinate. In this regard, the PCA method
can provide the axis of the feature coordinates but may not
be able to determine the axis direction independent of
orientation. Consequently, different orientations may result
in opposite axis directions even though the axis is the same.
To determine a consistent axis direction, embodiments of the
invention utilize a vector from the centroid of the vertex
collection to the origin of the feature coordinate as a
reference, which is independent of the orientation of the
vertex collection. The x and y-axis directions are on the
same side of that reference vector. Concretely, the dot
product of the x and y-axis and the reference vector is a
positive.

FIG. 9 illustrates the feature coordinate system 902 that is
created from the vertices 702 of the exemplary polyline 704
(of FIG. 7) based on the minimum bounding sphere 802 (of
FIG. 8) and a PCA method in accordance with one or more
embodiments of the invention. FIG. 9 also shows the rela-
tion between the reference vector 904, the x-axis 906, and
the y-axis 908.

Transform Primitives to Feature Coordinates

With the feature coordinate system determined, all primi-
tives of the entity are transformed from the world coordinate
system to the feature coordinates. Further, the size is made
uniform using the scaling factor (the radius of the minimum
bounding sphere). After the transformation in this step, the
primitives from the different entities with the same geometry
will become the same, regardless of scale, location, orien-
tation, and mirror. The geometry data of the transformed
primitives are then encoded into 64-bit binary code, and
combined to generate the index code.

FIG. 10 shows how the index code is generated for an
exemplary polyline in accordance with one or more embodi-
ments of the invention. As illustrated, e.g., segment 1002
(i.e., segments 1002A-1002E) of the polyline has a binary
code 1004 (i.e., binary codes 1004A-1004E). To create the
index code 1006 representative of the entire polyline, a
simple addition of each binary code 1002 is conducted.

To compute each binary code, various hash functions may
be utilized. In one or more embodiments the hash function
utilizes is dependent on the parameters of each geometry
primitive. The following provide various exemplary hash
functions. Different or additional hash functions may be
utilized in accordance with embodiments of the invention.
For each hash function, a primitive type code is described
and comprises an enum value for the unique identification of
geometric types (e.g., eSegment, ePolyline, etc.). The
parameters are transformed into the feature coordinate first,
and are then hashed (e.g., pursuant the hash functions
described below) and combined to generate the index code.

Segment

The parameters used for a segment primitive include the
primitive type code of segment, start point and end point.
The hash function for the index code may comprise:

Index Code=Combine(Hash(eSegment),Combine

(Hash(Start Point), Hash(End Point))+Combine
(Hash(End Point),Hash(Start Point)))

20

30

35

40

45

65

6

Polyline

The parameters used for the polyline primitive include the
primitive type code of polyline and the collection of vertices
(e.g., Vertex 0, Vertex 1, . . ., Vertex n). The hash function
for the index code may comprise:

Index Code=Combine(Hash(ePolyline),Combine
(Hash(Vertex 1), Hash(Vertex 0))+Combine
(Hash(Vertex 0),Hash(Vertex 1))+ . .. +Com-
bine(Hash(Vertex #),Hash(Vertex n—1))+
Combine(Hash(Vertex #—1), Hash(Vertex #)))

Circle

The parameters used for the circle primitive include the
primitive type code of circle, the center, and the radius. The
hash function for the index code may comprise:

Index Code=Combine(Hash(eCircle),Hash(Center),
Hash(Radius))

Circular Arc

The parameters used for the circular primitive include the
primitive type code of circular arc, the start point, the middle
point, the end point, and the radius. The hash function for the
index code may comprise:

Index Code=Combine(Hash(eCircularArc),Hash(Ra-
dius), Combine(Hash(Start Point),Hash(Middle
Point),Hash(End Point))+Combine(Hash(End
Point),Hash(Middle Point),Hash(Start Point)))

Ellipse
The parameters used for the ellipse primitive include the
primitive type code of ellipse, the center, the major radius,
and the minor radius. The hash function for the index code
may comprise:
Index Code=Combine(Hash(eEllipse),Hash(Center),
Hash(Major Radius), Hash(Minor Radius))

Elliptic Arc

The parameters used for the elliptic arc primitive include
the primitive type code of elliptic arc, the start point, the
middle point, the end point, the major radius, and the minor
radius. The hash function for the index code may comprise:

Index Code=Combine(Hash(eEllipticArc),Hash(Ma-
jor Radius),Hash(Minor Radius),Combine(Hash
(Start Point),Hash(Middle Point),Hash(End
Point))+Combine(Hash(End Point),Hash(Middle
Point),Hash(Start Point)))

Point

The parameters used for the point primitive include the
primitive type code of point and the point of itself. The hash
function for the index code may comprise:

Index Code=Combine(Hash(ePoint),Hash(Point))

Curve (for Splines)

The parameters used for the curve primitive include the
primitive type code of curve, and 17 uniformly sampled
points (i.e., Point 0, Point 1, . . . , Point 16). The hash
function for the index code may comprise:

Index Code=Combine(Hash(eCurve),Combine(Hash
(Point 1),Hash(Point 0))+Combine(Hash(Point
0),Hash(Point 1))+ . . . +Combine(Hash(Point
16), Hash(Point 15))+Combine(Hash(Point 15),
Hash(Point 16)))

Polygon (for Faces)

The parameters used for the polygon primitive include the
primitive type code of polygon and the collection of vertices
(i.e., Vertex 0, Vertex 1, . . ., Vertex n). The hash function
for the index code may comprise:

Index Code=Combine(Hash(ePolygon),Combine
(Hash(Vertex 1), Hash(Vertex 0))+Combine

US 12,045,284 B2

7

(Hash(Vertex 0),Hash(Vertex 1))+ . . . +Com-
bine(Hash(Vertex 0),Hash(Vertex #))+Combine
(Hash(Vertex #),Hash(Vertex 0)))

Create Index Table

An index table is created that consists of the index codes
generated above as keys and the graph nodes created above
as values.

Search for Geometric Entity

With the index table, searching a single entity based on
geometry is conducted by querying the index table for graph
nodes with the index code acquired/generated from the
target entity. The search result is the entity path that is
recorded in the graph node.

To search a composited entity, like a block that consists of
multiple entities, the search process is broken down into
multiple steps per entity. In that process, a search path
determines the search sequence of the entity. FIG. 11 shows
an example of the search path for a chair block that contains
eighteen (18) steps (looking for one geometric entity per
step). As illustrated, each step (traversing horizontally first
and then proceeding to the second row) adds an additional
geometric entity to the search. For example, the search
begins at 1102 for a circular arc, and proceeds to 1104 for a
segment/line, to 1106 for an additional circular arc, to 1108
for another circular arc, etc.

Each step on the search path is to find the entity that meets
the criteria of geometry, position, size, and rotation. The
search process returns success only when all entities on the
search path are found. The following steps describe how to
quickly find the matched entity for each step in the search
path:

Find Initial Matching Geometry

The index table is queried/searched to find all entities that
match with the geometry of the first target entity in the
search path. Each found entity will be the beginning of a
potential result path. FIG. 12 illustrates an exemplary arc
entity (the back of a chair) that is found as the first entity of
a potential result that meets the criteria of the search path.

Find Candidate Entities in Search Path

The process continues by finding the candidate entity that
matches with the entity in the next step along the search
path. To quickly find the potential candidate entity, the
search algorithm calculates the possible range based on the
current entity’s origin and queries a spatial tree to find all
entities that meet the criteria of distance and geometry of the
entity in the next step. FIGS. 13A-C demonstrate how to
locate the potential candidate of the next entity on the search
path in accordance with one or more embodiments of the
invention. As illustrated, the entity’s origin 1302 is identified
and a range 1304 is determined (e.g., based on a radius from
the origin 1302). All entities that meet the criteria of distance
and geometry of the entity are identified (i.e., resulting in
identifying entity 1306 as its origin is on the circle 1304
meaning that it meets the criteria of distance, and its index
code matches the target entity as well).

Verify Size and Rotation Criteria

Given the potential candidate entity (i.e., entity 1306) that
has been found which meets the criteria of distance and
geometry for the next entity, the potential candidate entity
still needs to be verified that it meets the criteria of size and
rotation. To make that verification, a 64-bit binary code
called “feature code” (also referred to as binary code herein)
is calculated out by leveraging the PCA method with the
vertices from both the candidate entity and the current entity
that has been determined in the previous step. The value of
feature code is the eigenvalue of the covariance matrix of the
vertex collection that multiplies the square of scaling, which

10

15

20

25

30

35

40

45

50

55

60

8

is used to determine if the shape of composited entities
match with the target shape in the search path. FIG. 14
shows an example of which vertices 1402 of composited
entities are collected for calculating the feature code in
accordance with one or more embodiments of the invention.

Determine all Entities on Search Path

The (i) search/finding of candidate entities and (ii) veri-
fication of size and rotation criteria steps above are repeated
until all entities on the search path have been determined.
Each step is based on the success of the previous step. Once
any step cannot find the satisfied entity, the search process
will be aborted.

In addition, the number of initial candidate entities found
may determine the number of search jobs that can be
processed in parallel. Each search job can run in its working
thread independently of other search jobs. FIG. 15 shows the
concept of a parallel search with multipotential results in
accordance with one or more embodiments of the invention.
As illustrated each thread (i.e., thread 1, thread 2, thread 3,
etc.) may begin with the initial candidate entity that has been
identified and continues until all entities on the search path
have been identified/found (or until an entity on the search
path is not found at which time the search thread will be
aborted). Further parallel threads may be executed for each
candidate entity along a search path.

Logical Flow

FIG. 16 illustrates the logical flow for searching a CAD
drawing for a geometric entity in accordance with one or
more embodiments of the invention.

At step 1602, the CAD drawing is obtained. The CAD
drawing includes one or more geometric entities that are
vector based geometric entities.

At step 1604, for each of the one or more geometric
entities, one or more primitives are extracted and a graph is
created. The graph holds the geometric entity and all of the
one or more primitives owned by that geometric entity.
Further, each graph node of the graph records an entity path.
The one or more primitives may consist of a point, a line, a
circle, an ellipse, an arc, polyline, curve (spline), polygon
(faces), etc.

At step 1606, a feature coordinate system is created for
each of the one or more geometric entities using the one or
more primitives. An origin and axis direction of the feature
coordinate system may be determined by a geometry of the
one or more primitives. Further, each feature coordinate
system may be independent of a transformation of the one or
more primitives.

To create the feature coordinate system, various steps may
be performed for each of the one or more geometric entities.
Such steps may include acquiring vertices for all of the one
or more primitives extracted from the geometric entity,
placing the vertices into a vertex collection, creating a
minimum bounding sphere from the vertex collection, and
determining an x/y/z axis of the feature coordinate system.
In this regard, in acquiring the vertices for each primitive
that is a circle, arc or curve, a number of vertices may be
sampled at equal intervals. In one or more embodiments, for
the bounding sphere, the center point of the minimum
bounding sphere may be an origin of the feature coordinate
system, and the radius of the minimum bounding sphere may
be a scaling factor that is used during the transforming. In
one or more embodiments the axis of the feature coordinate
system may be determined using principal component analy-
sis (PCA) that is based on an eigenvector of a covariance
matrix of the vertex collection. Further, in such embodi-
ments, the PCA may use a vector as a reference that is

US 12,045,284 B2

9

created from a centroid of the vertex collection to an origin
of the feature coordinate to decide an axis direction.

At step 1608, all of the one or more primitives, for all of
the one or more geometric entities, are transformed from a
world coordinate system to feature coordinates of the feature
coordinate system. The transforming includes making a size
of all of the one or more primitives uniform.

At step 1610, for each of the one or more geometric
entities, geometry data of the transformed one or more
primitives that are owned by a respective geometric entity
are encoded into an index code for the respective geometric
entity. Such encoding may include encoding the geometry
data into a 64-bit binary feature code. Thereafter, the
encoded geometry data (i.e., the binary feature codes) may
be combined (e.g., added together) to generate the index
code.

At step 1612, an index table is generated and includes the
index codes as keys and graph nodes of the graph as values.
In addition, a spatial tree may be created to record the
relative positional relationship between entities in the draw-
ing space. Such a spatial tree accelerates the search of the
composited entity.

At step 1614, a target geometric entity of the one or more
geometric entities is identified.

At step 1616, a target index code (of the index codes) is
determined for the target geometric entity. In addition, a
search path may be determined for the search sequence of
the target entities.

At step 1618, the CAD drawing is searched to identify
instances of the target geometric entity by querying the
index table based on the target index code. The searching
may be for a single entity or a multiple/composited entity. If
searching for a single geometric entity, the index table may
be queried using the target index code to identify relevant
graph nodes. Thereafter, the query search results are pro-
vided and may consist of the entity paths recorded in the
relevant graph nodes.

If the search is for a composited target geometric entity
(consisting of multiple target geometric entities), multiple
steps may be required to perform the search. In a first step,
a search path is determined that consists of multiple steps
that define a search sequence of the composited target
geometric entity. Next, each of the multiple steps searches
(in parallel threads if desired) for one of the multiple target
geometric entities of the composited target geometric entity.
For a current geometric entity of the multiple target geo-
metric entities, each of the multiple steps searches by:

(A) Querying the index table to find all instances of the
current geometric entity (i.e., the first geometric entity
in the search path), wherein each found instance pro-
vides a beginning of a potential result path;

(B) Searching for potential candidate geometric entities
that match the target geometric entity in the next step
of the potential result path. The searching for the
potential candidate geometric entities may include cal-
culating a range based on an origin of the current
geometric entity, and querying a spatial tree to find all
geometric entities that meet criteria of distance and
geometry of the target geometric entity in the next step
(wherein all geometric entities that meet the criteria are
considered potential candidate geometric entities);

(C) For each of the potential candidate geometric entities,
verifying whether it meets criteria of size and rotation
(e.g., by calculating a feature code that is based on
principal component analysis (PCA) and vertices from
both the potential candidate geometric entity and the
current geometric entity); and

5

40

45

10
(D) Repeating steps (B) and (C) until all geometric
entities on the search path and all potential result paths
have been determined. In one or more embodiments,
the searching aborts and a potential result path is
considered nonviable when a potential candidate geo-
metric entity that satisfies the criteria cannot be found.

At step 1620, the identified instances of the target geo-
metric entity are visually distinguished within the CAD
drawing (e.g., highlighted, displayed in a different color,
bolded, etc.).

Hardware Environment

FIG. 17 is an exemplary hardware and software environ-
ment 1700 (referred to as a computer-implemented system
and/or computer-implemented method) used to implement
one or more embodiments of the invention. The hardware
and software environment includes a computer 1702 and
may include peripherals. Computer 1702 may be a user/
client computer, server computer, or may be a database
computer. The computer 1702 comprises a hardware pro-
cessor 1704 A and/or a special purpose hardware processor
1704B (hereinafter alternatively collectively referred to as
processor 1704) and a memory 1706, such as random access
memory (RAM). The computer 1702 may be coupled to,
and/or integrated with, other devices, including input/output
(I/0) devices such as a keyboard 1714, a cursor control
device 1716 (e.g., a mouse, a pointing device, pen and tablet,
touch screen, multi-touch device, etc.) and a printer 1728. In
one or more embodiments, computer 1702 may be coupled
to, or may comprise, a portable or media viewing/listening
device 1732 (e.g., an MP3 player, IPOD, NOOK, portable
digital video player, cellular device, personal digital assis-
tant, etc.). In yet another embodiment, the computer 1702
may comprise a multi-touch device, mobile phone, gaming
system, internet enabled television, television set top box, or
other internet enabled device executing on various platforms
and operating systems.

In one embodiment, the computer 1702 operates by the
hardware processor 1704A performing instructions defined
by the computer program 1710 (e.g., a computer-aided
design [CAD] application) under control of an operating
system 1708. The computer program 1710 and/or the oper-
ating system 1708 may be stored in the memory 1706 and
may interface with the user and/or other devices to accept
input and commands and, based on such input and com-
mands and the instructions defined by the computer program
1710 and operating system 1708, to provide output and
results.

Output/results may be presented on the display 1722 or
provided to another device for presentation or further pro-
cessing or action. In one embodiment, the display 1722
comprises a liquid crystal display (LCD) having a plurality
of separately addressable liquid crystals. Alternatively, the
display 1722 may comprise a light emitting diode (LED)
display having clusters of red, green and blue diodes driven
together to form full-color pixels. Each liquid crystal or
pixel of the display 1722 changes to an opaque or translucent
state to form a part of the image on the display in response
to the data or information generated by the processor 1704
from the application of the instructions of the computer
program 1710 and/or operating system 1708 to the input and
commands. The image may be provided through a graphical
user interface (GUI) module 1718. Although the GUI mod-
ule 1718 is depicted as a separate module, the instructions
performing the GUI functions can be resident or distributed
in the operating system 1708, the computer program 1710,
or implemented with special purpose memory and proces-
SOIS.

US 12,045,284 B2

11

In one or more embodiments, the display 1722 is inte-
grated with/into the computer 1702 and comprises a multi-
touch device having a touch sensing surface (e.g., track pod
or touch screen) with the ability to recognize the presence of
two or more points of contact with the surface. Examples of
multi-touch devices include mobile devices (e.g., [IPHONE,
NEXUS S, DROID devices, etc.), tablet computers (e.g.,
IPAD, HP TOUCHPAD, SURFACE Devices, etc.), portable/
handheld game/music/video player/console devices (e.g.,
IPOD TOUCH, MP3 players, NINTENDO SWITCH,
PLAYSTATION PORTABLE, etc.), touch tables, and walls
(e.g., where an image is projected through acrylic and/or
glass, and the image is then backlit with LEDs).

Some or all of the operations performed by the computer
1702 according to the computer program 1710 instructions
may be implemented in a special purpose processor 1704B.
In this embodiment, some or all of the computer program
1710 instructions may be implemented via firmware instruc-
tions stored in a read only memory (ROM), a programmable
read only memory (PROM) or flash memory within the
special purpose processor 1704B or in memory 1706. The
special purpose processor 1704B may also be hardwired
through circuit design to perform some or all of the opera-
tions to implement the present invention. Further, the special
purpose processor 1704B may be a hybrid processor, which
includes dedicated circuitry for performing a subset of
functions, and other circuits for performing more functions
such as responding to computer program 1710 instructions.
In one embodiment, the special purpose processor 1704B is
an application specific integrated circuit (ASIC).

The computer 1702 may also implement a compiler 1712
that allows an application or computer program 1710 written
in a programming language such as C, C++, Assembly, SQL,
PYTHON, PROLOG, MATLAB, RUBY, RAILS,
HASKELL, or other language to be translated into processor
1704 readable code. Alternatively, the compiler 1712 may be
an interpreter that executes instructions/source code directly,
translates source code into an intermediate representation
that is executed, or that executes stored precompiled code.
Such source code may be written in a variety of program-
ming languages such as JAVA, JAVASCRIPT, PERL,
BASIC, etc. After completion, the application or computer
program 1710 accesses and manipulates data accepted from
1/0 devices and stored in the memory 1706 of the computer
1702 using the relationships and logic that were generated
using the compiler 1712.

The computer 1702 also optionally comprises an external
communication device such as a modem, satellite link,
Ethernet card, or other device for accepting input from, and
providing output to, other computers 1702.

In one embodiment, instructions implementing the oper-
ating system 1708, the computer program 1710, and the
compiler 1712 are tangibly embodied in a non-transitory
computer-readable medium, e.g., data storage device 1720,
which could include one or more fixed or removable data
storage devices, such as a zip drive, floppy disc drive 1724,
hard drive, CD-ROM drive, tape drive, etc. Further, the
operating system 1708 and the computer program 1710 are
comprised of computer program 1710 instructions which,
when accessed, read and executed by the computer 1702,
cause the computer 1702 to perform the steps necessary to
implement and/or use the present invention or to load the
program of instructions into a memory 1706, thus creating
a special purpose data structure causing the computer 1702
to operate as a specially programmed computer executing
the method steps described herein. Computer program 1710
and/or operating instructions may also be tangibly embodied

5

10

15

20

25

30

35

40

45

50

55

60

65

12

in memory 1706 and/or data communications devices 1730,
thereby making a computer program product or article of
manufacture according to the invention. As such, the terms
“article of manufacture,” “program storage device,” and
“computer program product,” as used herein, are intended to
encompass a computer program accessible from any com-
puter readable device or media.

Of course, those skilled in the art will recognize that any
combination of the above components, or any number of
different components, peripherals, and other devices, may be
used with the computer 1702.

FIG. 18 schematically illustrates a typical distributed/
cloud-based computer system 1800 using a network 1804 to
connect client computers 1802 to server computers 1806. A
typical combination of resources may include a network
1804 comprising the Internet, LANs (local area networks),
WANs (wide area networks), SNA (systems network archi-
tecture) networks, or the like, clients 1802 that are personal
computers or workstations (as set forth in FIG. 17), and
servers 1806 that are personal computers, workstations,
minicomputers, or mainframes (as set forth in FIG. 17).
However, it may be noted that different networks such as a
cellular network (e.g., GSM [global system for mobile
communications] or otherwise), a satellite based network, or
any other type of network may be used to connect clients
1802 and servers 1806 in accordance with embodiments of
the invention.

A network 1804 such as the Internet connects clients 1802
to server computers 1806. Network 1804 may utilize ether-
net, coaxial cable, wireless communications, radio fre-
quency (RF), etc. to connect and provide the communication
between clients 1802 and servers 1806. Further, in a cloud-
based computing system, resources (e.g., storage, proces-
sors, applications, memory, infrastructure, etc.) in clients
1802 and server computers 1806 may be shared by clients
1802, server computers 1806, and users across one or more
networks. Resources may be shared by multiple users and
can be dynamically reallocated per demand. In this regard,
cloud computing may be referred to as a model for enabling
access to a shared pool of configurable computing resources.

Clients 1802 may execute a client application or web
browser and communicate with server computers 1806
executing web servers 1810. Such a web browser is typically
a program such as MICROSOFT INTERNET EXPLORER/
EDGE, MOZILLA FIREFOX, OPERA, APPLE SAFARI,
GOOGLE CHROME, etc. Further, the software executing
on clients 1802 may be downloaded from server computer
1806 to client computers 1802 and installed as a plug-in or
ACTIVEX control of a web browser. Accordingly, clients
1802 may utilize ACTIVEX components/component object
model (COM) or distributed COM (DCOM) components to
provide a user interface on a display of client 1802. The web
server 1810 is typically a program such as MICROSOFT’S
INTERNET INFORMATION SERVER.

Web server 1810 may host an Active Server Page (ASP)
or Internet Server Application Programming Interface
(ISAPI) application 1812, which may be executing scripts.
The scripts invoke objects that execute business logic (re-
ferred to as business objects). The business objects then
manipulate data in database 1816 through a database man-
agement system (DBMS) 1814. Alternatively, database 1816
may be part of, or connected directly to, client 1802 instead
of communicating/obtaining the information from database
1816 across network 1804. When a developer encapsulates
the business functionality into objects, the system may be
referred to as a component object model (COM) system.
Accordingly, the scripts executing on web server 1810

US 12,045,284 B2

13

(and/or application 1812) invoke COM objects that imple-
ment the business logic. Further, server 1806 may utilize
MICROSOFT’S TRANSACTION SERVER (MTS) to
access required data stored in database 1816 via an interface
such as ADO (Active Data Objects), OLE DB (Object
Linking and Embedding DataBase), or ODBC (Open Data-
Base Connectivity).

Generally, these components 1800-1816 all comprise
logic and/or data that is embodied in/or retrievable from
device, medium, signal, or carrier, e.g., a data storage
device, a data communications device, a remote computer or
device coupled to the computer via a network or via another
data communications device, etc. Moreover, this logic and/
or data, when read, executed, and/or interpreted, results in
the steps necessary to implement and/or use the present
invention being performed.

Although the terms “user computer”, “client computer”,
and/or “server computer” are referred to herein, it is under-
stood that such computers 1802 and 1806 may be inter-
changeable and may further include thin client devices with
limited or full processing capabilities, portable devices such
as cell phones, notebook computers, pocket computers,
multi-touch devices, and/or any other devices with suitable
processing, communication, and input/output capability.

Of course, those skilled in the art will recognize that any
combination of the above components, or any number of
different components, peripherals, and other devices, may be
used with computers 1802 and 1806. Embodiments of the
invention are implemented as a software/CAD application
on a client 1802 or server computer 1806. Further, as
described above, the client 1802 or server computer 1806
may comprise a thin client device or a portable device that
has a multi-touch-based display.

CONCLUSION

This concludes the description of the preferred embodi-
ment of the invention. The following describes some alter-
native embodiments for accomplishing the present inven-
tion. For example, any type of computer, such as a
mainframe, minicomputer, or personal computer, or com-
puter configuration, such as a timesharing mainframe, local
area network, or standalone personal computer, could be
used with the present invention.

In view of the above, embodiments of the invention find
all matched objects in a drawing (or across drawings) that
contain the object that have the same geometry as the target
object. Furthermore, embodiments of the invention support
searching composited objects. In addition, as a geometry
support tool, embodiments of the invention supports mul-
tiple characteristics of geometry data, including rotation,
scale, and mirror, as options for searching for the matched
object including such transformations that have been applied
to such matched objects. Further to the above, embodiments
of the invention encode geometry data into a unique 64-bit
code by leverage PCA and a minimum enclosing sphere. In
this regard, two codes can simply be compared to detect
duplicates and there is no need to utilize KNN (K-nearest
neighbors algorithm) to accelerate detection.

Embodiments of the invention also process and compare
low-level primitive objects thereby enabling the ability to
cross the boundary of a component to search elements
inside, such as within blocks, nested or separated blocks.
Accordingly, the search of embodiments of the invention
enables the ability to find a matched group of (multiple)
geometry(ies) with a given pattern. To enable such a capa-
bility, embodiments of the invention utilize a search path

10

15

20

25

30

35

40

45

50

55

60

65

14

that determines the search sequence of geometry (and find-
ing all matching groupings along this search path). To
accelerate processing, embodiments of the invention may
utilize a spatial tree that is used to find the geometry of the
next step (in the search path) with very low delays. In
addition, a feature code is calculated for the geometries that
come from the adjacent two steps. This feature code may
then be used to measure if the geometries meet the criteria
of rotation, scale, and mirror within the search path. It may
be noted in that in one or more embodiments, the search
criteria can be disabled for scale and mirror images. How-
ever, in one or more alternative embodiments, the criteria of
orientation and location may not be disabled (because it is
the exact same shape/geometry).

Further to the above, embodiments of the invention are
efficient and parallelizable. By enabling the use of multiple
threads, very low search delays in a very big drawing are
supported and delays are usually at the milliseconds level
and can support real-time searching while a drawing is being
edited. In this regard, all of the steps described herein can be
performed dynamically in real-time as the drawing is being
edited (with many of the steps being performed autono-
mously (i.e., without additional user input)).

The foregoing description of the preferred embodiment of
the invention has been presented for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It is intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What is claimed is:

1. A computer-implemented method for searching a com-

puter-aided design (CAD) drawing, comprising:

(a) obtaining the CAD drawing, wherein:

(1) the CAD drawing comprises one or more geometric
entities; and

(ii) the one or more geometric entities comprise vector
based geometric entities;

(b) for each of the one or more geometric entities:

(1) extracting one or more primitives;

(ii) creating a graph that holds the geometric entity and
all of the one or more primitives owned by that
geometric entity, wherein each graph node of the
graph records an entity path;

(c) creating a feature coordinate system for each of the
one or more geometric entities using the one or more
primitives;

(d) transforming all of the one or more primitives, for all
of the one or more geometric entities, from a world
coordinate system to feature coordinates of the feature
coordinate system, wherein the transforming further
comprises making a size of all of the one or more
primitives uniform;

(e) encoding, for each of the one or more geometric
entities, geometry data of the transformed one or more
primitives that are owned by a respective geometric
entity, into an index code for the respective geometric
entity;

() generating an index table comprising the index codes
as keys and graph nodes of the graph as values;

(g) identifying a target geometric entity of the one or more
geometric entities;

(h) determining, for the target geometric entity, a target
index code of the index codes;

US 12,045,284 B2

15

(1) searching the CAD drawing to identify instances of the
target geometric entity by querying the index table

based on the target index code; and

(j) visually distinguishing the identified instances of the

target geometric entity in the CAD drawing.

2. The computer-implemented method of claim 1,

wherein the one or more primitives comprise:

a point;

a line;

a circle;

an ellipse;

an arc;

a polyline;

a curve; or

a polygon.

3. The computer-implemented method of claim 1,

wherein:

an origin and axis direction of the feature coordinate
system is determined by a geometry of the one or more

primitives; and

each feature coordinate system is independent of a trans-

formation of the one or more primitives.

4. The computer-implemented method of claim 1,
wherein the creating the feature coordinate system com-

prises, for each of the one or more geometric entities:

acquiring vertices for all of the one or more primitives

extracted from the geometric entity;
placing the vertices into a vertex collection;

creating a minimum bounding sphere from the vertex

collection; and
determining an axis of the feature coordinate system.

5. The computer-implemented method of claim 4,

wherein the acquiring the vertices comprises:

for each primitive that is a circle, arc or curve, sampling

a number of vertices at equal intervals.

6. The computer-implemented method of claim 4,

wherein:

a center point of the minimum bounding sphere is an

origin of the feature coordinate system; and

a radius of the minimum bounding sphere is a scaling

factor that is used during the transforming.

7. The computer-implemented method of claim 4,

wherein

the axis is determined using principal component analysis

(PCA);

the PCA is based on an eigenvector of a covariance matrix

of the vertex collection; and

the PCA uses a vector as a reference that is created from
a centroid of the vertex collection to an origin of the

feature coordinate to decide an axis direction.

8. The computer-implemented method of claim 1,

wherein the encoding comprises:

encoding the geometry data into a 64-bit binary feature

code; and

combining the encoded geometry data to generate the

index code.

9. The computer-implemented method of claim 1,
wherein the target geometric entity comprises a single

geometric entity and the searching comprises:

querying the index table using the target index code to

identify relevant graph nodes; and

providing query search results comprising the entity paths

recorded in the relevant graph nodes.

10. The computer-implemented method of claim 1,
wherein the target geometric entity comprises a composited
target geometric entity comprising multiple target geometric

entities, and the searching comprises:

10

20

25

30

]

5

50

55

60

65

16

(1) determining a search path comprising multiple steps

that define a search sequence of the composited target
geometric entity;

(i) each of the multiple steps searches for one of the

multiple target geometric entities of the composited

target geometric entity, wherein for a current geometric

entity of the multiple target geometric entities, each of
the multiple steps searches by:

(A) querying the index table to find all instances of the
current geometric entity, wherein each found
instance provides a beginning of a potential result
path;

(B) searching for potential candidate geometric entities
that match the target geometric entity in the next step
of the potential result path, wherein the searching for
the potential candidate geometric entities comprises:
(1) calculating a range based on an origin of the

current geometric entity;

(2) querying a spatial tree to find all geometric
entities that meet criteria of distance and geometry
of the target geometric entity in the next step,
wherein all geometric entities that meet the criteria
are considered potential candidate geometric enti-
ties;

(C) for each of the potential candidate geometric enti-
ties, verifying whether it meets criteria of size and
rotation; and

(D) repeating steps (i1)(B) and (ii)(C) until all geomet-
ric entities on the search path and all potential result
paths have been determined, wherein the searching
aborts and a potential result path is considered non-
viable when a potential candidate geometric entity
that satisfies the criteria cannot be found.

11. The computer-implemented method of claim 10,
wherein the verifying whether it meets criteria of size and
rotation comprises:

calculating a feature code that is based on principal

component analysis (PCA) and vertices from both the
potential candidate geometric entity and the current
geometric entity.

12. A computer-implemented system for searching a com-
puter aided design (CAD) drawing, comprising:

(a) a computer having a memory;

(b) a processor executing on the computer;

(c) the memory storing a set of instructions, wherein the

set of instructions, when executed by the processor

cause the processor to perform operations comprising:

(1) obtaining the CAD drawing, wherein
(A) the CAD drawing comprises one or more geo-

metric entities; and

(B) the one or more geometric entities comprise
vector based geometric entities;

(ii) for each of the one or more geometric entities:
(A) extracting one or more primitives;

(B) creating a graph that holds the geometric entity
and all of the one or more primitives owned by
that geometric entity, wherein each graph node of
the graph records an entity path;

(iii) creating a feature coordinate system for each of the
one or more geometric entities using the one or more
primitives;

(iv) transforming all of the one or more primitives, for
all of the one or more geometric entities, from a
world coordinate system to feature coordinates of the
feature coordinate system, wherein the transforming
further comprises making a size of all of the one or
more primitives uniform;

US 12,045,284 B2

17

(v) encoding, for each of the one or more geometric
entities, geometry data of the transformed one or
more primitives that are owned by a respective
geometric entity, into an index code for the respec-
tive geometric entity;

(vi) generating an index table comprising the index
codes as keys and graph nodes of the graph as values;

(vii) identifying a target geometric entity of the one or
more geometric entities;

(viii) determining, for the target geometric entity, a
target index code of the index codes;

(ix) searching the CAD drawing to identify instances of
the target geometric entity by querying the index
table based on the target index code; and

(x) visually distinguishing the identified instances of
the target geometric entity in the CAD drawing.

13. The computer-implemented system of claim 12,
wherein the one or more primitives comprise:

a point;

a line;

a circle;

an ellipse;

an arc;

a polyline;

a curve; or

a polygon.

14. The computer-implemented system of claim 12,
wherein:

an origin and axis direction of the feature coordinate

system is determined by a geometry of the one or more

primitives; and

each feature coordinate system is independent of a trans-

formation of the one or more primitives.

15. The computer-implemented system of claim 12,
wherein the creating the feature coordinate system com-
prises, for each of the one or more geometric entities:

acquiring vertices for all of the one or more primitives

extracted from the geometric entity;

placing the vertices into a vertex collection;

creating a minimum bounding sphere from the vertex

collection; and

determining an axis of the feature coordinate system.

16. The computer-implemented system of claim 15,
wherein the acquiring the vertices comprises:

for each primitive that is a circle, arc or curve, sampling

a number of vertices at equal intervals.

17. The computer-implemented system of claim 15,
wherein:

a center point of the minimum bounding sphere is an

origin of the feature coordinate system; and

a radius of the minimum bounding sphere is a scaling

factor that is used during the transforming.

18. The computer-implemented system of claim 15,
wherein

the axis is determined using principal component analysis

(PCA);

the PCA is based on an eigenvector of a covariance matrix

of the vertex collection; and

the PCA uses a vector as a reference that is created from

a centroid of the vertex collection to an origin of the

feature coordinate to decide an axis direction.

5

25

30

35

40

45

50

18

19. The computer-implemented system of claim 12,
wherein the encoding comprises:

encoding the geometry data into a 64-bit binary feature
code; and

combining the encoded geometry data to generate the
index code.

20. The computer-implemented system of claim 12,
wherein the target geometric entity comprises a single
geometric entity and the searching comprises:

querying the index table using the target index code to
identify relevant graph nodes; and

providing query search results comprising the entity paths
recorded in the relevant graph nodes.

21. The computer-implemented system of claim 12,
wherein the target geometric entity comprises a composited
target geometric entity comprising multiple target geometric
entities, and the searching comprises:

(1) determining a search path comprising multiple steps
that define a search sequence of the composited target
geometric entity;

(i) each of the multiple steps searches for one of the
multiple target geometric entities of the composited
target geometric entity, wherein for a current geometric
entity of the multiple target geometric entities, each of
the multiple steps searches by:

(A) querying the index table to find all instances of the
current geometric entity, wherein each found
instance provides a beginning of a potential result
path;

(B) searching for potential candidate geometric entities
that match the target geometric entity in the next step
of the potential result path, wherein the searching for
the potential candidate geometric entities comprises:
(1) calculating a range based on an origin of the

current geometric entity;

(2) querying a spatial tree to find all geometric
entities that meet criteria of distance and geometry
of the target geometric entity in the next step,
wherein all geometric entities that meet the criteria
are considered potential candidate geometric enti-
ties;

(C) for each of the potential candidate geometric enti-
ties, verifying whether it meets criteria of size and
rotation; and

(D) repeating steps (i1)(B) and (ii)(C) until all geomet-
ric entities on the search path and all potential result
paths have been determined, wherein the searching
aborts and a potential result path is considered non-
viable when a potential candidate geometric entity
that satisfies the criteria cannot be found.

22. The computer-implemented system of claim 21,
wherein the verifying whether it meets criteria of size and
rotation comprises:

calculating a feature code that is based on principal
component analysis (PCA) and vertices from both the
potential candidate geometric entity and the current
geometric entity.

#* #* #* #* #*

