US 20230337988A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0337988 A1

Wariar et al.

43) Pub. Date: Oct. 26, 2023

(54)

(71)

(72)

@

(22)

(60)

AI-BASED DETECTION OF PHYSIOLOGIC
EVENTS USING AMBULATORY
ELECTROGRAMS

Applicant: Cardiac Pacemakers, Inc., St. Paul,
MN (US)

Inventors: Ramesh Wariar, Blaine, MN (US);
Viktoria A. Averina, Shoreview, MN
(US); Deepa Mahajan, North Oaks,
MN (US); Keith R. Maile, New
Brighton, MN (US); Bin Mi, Arden
Hills, MN (US); Craig Stolen, New
Brighton, MN (US); Scott R.
Vanderlinde, Plymouth, MN (US)

Appl. No.: 18/136,194
Filed: Apr. 18, 2023

Related U.S. Application Data

Provisional application No. 63/334,239, filed on Apr.
25, 2022.

Publication Classification

(51) Int. CL
AGIB 5/00 (2006.01)
(52) US.CL
CPC ... AGIB 5/7267 (2013.01); A6IB 5/7278
(2013.01)
(57) ABSTRACT

Systems and methods for detecting a physiological event or
estimating a physiological parameter using ambulatory elec-
trograms of a subject are discussed. An exemplary system
includes a computing device that can receive ambulatory
electrograms collected by an ambulatory medical device
(AMD) associated with a subject, and apply the ambulatory
electrograms to a trained machine learning model to esti-
mate a physiological parameter or to detect a physiological
event in the subject. The same or a different machine
learning model can be trained to detect an operating status
of'the AMD using the ambulatory electrograms. The system
comprises an output device to output the estimated physi-
ological parameter, the detected physiological event, or the
detected device operating status a user or a process such as
to initiate or titrate a therapy.
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AI-BASED DETECTION OF PHYSIOLOGIC
EVENTS USING AMBULATORY
ELECTROGRAMS

CLAIM OF PRIORITY

[0001] This application claims the benefit of U.S. patent
application Ser. No. 63/334,239, filed on Apr. 25, 2022,
which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] This document relates generally to medical
devices, and more particularly, to systems, devices and
methods for artificial intelligence (Al)-based detection of
physiological events using ambulatory electrograms.

BACKGROUND

[0003] Ambulatory medical devices (AMD), such as
implantable medical devices (IMDs), have been used for
monitoring patient health condition or disease states and
delivering therapies. For example, implantable cardioverter-
defibrillators (ICDs) may be used to monitor for certain
abnormal heart rhythms and to deliver electrical energy to
the heart to correct the abnormal rhythms. Some IMDs may
be used to monitor for chronic worsening of cardiac hemo-
dynamic performance, such as due to congestive heart
failure (CHF), and to provide cardiac stimulation therapies,
including cardiac resynchronization therapy (CRT) to cor-
rect cardiac dyssynchrony within a ventricle or between
ventricles.

[0004] Some AMDs have sensors that are capable of
sensing physiological information from a patient, such as
electrocardiograms (ECGs) or electrograms (EGMs) repre-
senting cardiac electrical activities. For example, a Holter
monitor is a wearable device with skin electrodes to monitor
ambulatory ECG. ECG has been used to diagnose and
monitor various cardiac conditions or diseases, such as
cardiac arrhythmias, coronary heart disease, heart attacks,
cardiomyopathy, left ventricular systolic dysfunction,
among others. The ECG has also been used to investigate
symptoms such as chest pain, palpitations, dizziness, and
shortness breach, among other heart-related problems.

OVERVIEW

[0005] Artificial intelligence (Al) can be used to interpret
ECG and to assist in detecting cardiac diseases such as
cardia arrhythmias. Machine learning (ML) models that
mimic the function of brain neurons using a series of
interconnected computational statistical algorithms or nodes
can be trained on a large data set of ECGs to recognize a
particular cardiac disease or diagnosis. Al-based analysis of
ECGs may also provide valuable insights into some non-
cardiac conditions and seemingly unrelated or indirect bio-
logical parameters such as cardiac ejection fraction or blood
potassium.

[0006] Electrocardiograms are typically measured using a
12-lead system in a clinical setting. This may be inconve-
nient for some patients especially those who require con-
tinuous or frequent ECG monitoring for an extended period
of time. Ambulatory monitoring via devices such as implant-
able cardiac devices, insertable cardiac monitors (ICM),
subcutaneous ICDs (S-ICDs), wearable or holdable devices,
among other ambulatory monitors, may also allow for ECG
or EGM (e.g., intracardiac or epicardiac EGMs) data col-
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lection, analysis, and detection of cardiac events. Compared
to the in-clinic 12-lead ECG, wearable or implantable
devices can acquire ambulatory ECGs or EGMs with greater
frequency or even continuously without the changes of
electrode configurations typically seen in a clinic. The
ambulatory ECGs or EGMs can be analyzed to produce
repeated measurements of physiological parameters. The
measurements can be trended over time, and used to provide
more accurate early detection or prediction of cardiac or
other physiological events.

[0007] The present disclosure describes Al-based systems,
devices, and methods for estimating physiological param-
eters or detecting physiological events in a subject using
ambulatory EGMs. In accordance with one embodiment, a
system includes a computing device configured to receive
ambulatory EGMs collected by an AMD worn or implanted
in the body of the subject, and to apply the received
ambulatory EGMs to a trained machine learning (ML)
model to estimate a physiological parameter or to detect a
physiological event in the subject. The trained ML model is
trained using a training dataset comprising EGMs collected
from a patient population and assessments of physiological
parameters or physiological events in the patient population.
In some examples, the same or a different ML model can be
trained to detect, from the ambulatory EGMs of the subject,
an operating status of the AMD. The estimated physiological
parameter, the detected physiological event, or the detected
operating status of the AMD can be provided to a user, or to
a process such as to initiate or titrate a therapy. In some
examples, the estimated physiological parameter, when sat-
isfying a condition, can be used to trigger a sensor to directly
measure the physiological parameter. The direct measure-
ment can be used to adjust the trained ML model to improve
its performance of parameter estimation.

[0008] Example 1 is a system for detecting physiological
events in a subject, the system comprising: a computing
device configured to: receive ambulatory electrograms of the
subject collected by an ambulatory medical device (AMD);
and apply the received ambulatory electrograms to a trained
machine learning model to estimate a physiological param-
eter or to detect a physiological event in the subject; and an
output unit configured to output the estimated physiological
parameter or the detected physiological event to a user or a
process.

[0009] In Example 2, the subject matter of Example 1
optionally includes the computing device that can be further
configured to: determine or confirm a physical characteristic
of at least one sensor using the ambulatory electrograms;
and detect a physiological event or estimate a physiological
parameter in the subject using the ambulatory electrograms
and the determined or confirmed physical characteristic of
the at least one sensor, wherein to detect the physiological
event, the computing device is configured to apply the
received ambulatory electrograms to a trained machine
learning model to estimate the physiological parameter or to
detect the physiological event in the subject using the
ambulatory electrograms sensed by the at least one sensor,
and wherein the physical characteristic is a sensor type or a
form factor of the at least one sensor.

[0010] In Example 3, the subject matter of Example 2
optionally includes the computing device that can include a
training module configured to generate the trained machine
learning model, including: constructing a training dataset
including ambulatory electrograms collected from a patient
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population and assessments of physiological parameters or
physiological events in the patient population; and training
a machine learning model using the constructed training
dataset until a convergence or training stopping criterion is
satisfied, the trained machine learning model representing a
correspondence between the ambulatory electrograms of the
patient population and the physiological parameters or the
physiological events in the patient population.

[0011] In Example 4, the subject matter of Example 3
optionally includes the at least one sensor that can be
configured to sense from the subject physiological informa-
tion different than the ambulatory electrogram, and wherein
the training module is configured to train the machine
learning model using a deep learning algorithm comprising
a deep neural network.

[0012] In Example 5, the subject matter of any one or
more of Examples 2-4 optionally includes the computing
device that can be configured to apply the received ambu-
latory electrograms to the trained machine learning model to
estimate the physiological parameter including at least one
of: a cardiac parameter; a respiratory parameter; a circulat-
ing biomarker; or a systemic or local fluid status.

[0013] In Example 6, the subject matter of any one or
more of Examples 2-5 optionally includes the computing
device that can be configured to apply the received ambu-
latory electrograms to the trained machine learning model to
detect the physiological event including at least one of: a
cardiac arrhythmia; a worsening heart failure event; a heart
failure comorbidity condition; a neurological condition; or a
response to medication.

[0014] In Example 7, the subject matter of any one or
more of Examples 2-6 optionally includes the computing
device that can be further configured to apply the received
ambulatory electrograms to the trained machine learning
model to detect an operating status of the AMD.

[0015] In Example 8, the subject matter of Example 7
optionally includes the operating status of the AMD that
indicate at least one of: a change in position, posture, or
orientation of the AMD; or a change in an device-tissue
interface the AMD.

[0016] In Example 9, the subject matter of any one or
more of Examples 1-8 optionally includes the AMD that can
be configured to collect the ambulatory electrograms of the
subject continuously or periodically via one or more attach-
able or implantable electrodes.

[0017] In Example 10, the subject matter of any one or
more of Examples 1-9 optionally includes the AMD that can
include at least one of: an insertable cardiac monitor; a
subcutaneous implantable cardioverter-defibrillator; or a
wearable or holdable cardiac monitor.

[0018] In Example 11, the subject matter of any one or
more of Examples 1-10 optionally includes the AMD that
can include a therapy circuit configured to initiate or adjust
a therapy to the subject based on the estimated physiological
parameter or the detected physiological event.

[0019] In Example 12, the subject matter of any one or
more of Examples 2-11 optionally includes the computing
device that can be configured to: apply the received ambu-
latory electrograms to the trained machine learning model to
estimate the physiological parameter; and in response to the
estimated physiological parameter satisfying a condition,
trigger at least one of the at least one sensor to directly
measure the physiological parameter.
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[0020] In Example 13, the subject matter of Example 12
optionally includes the computing device that can include a
calibration circuit configured to adjust the trained machine
learning model based at least on the directly measured
physiological parameter.

[0021] In Example 14, the subject matter of any one or
more of Examples 1-13 optionally includes the computing
device that can be configured to perform parallel computing
to estimate multiple physiological parameters or to detect
multiple physiological events substantially concurrently.
[0022] In Example 15, the subject matter of Example 14
optionally includes the computing device that can include
multiple processors or a multi-core processor comprising
multiple computing units, each of the multiple processors or
the multiple computing units configured to apply a portion
of the ambulatory electrograms of the subject to a respec-
tively trained machine learning model to estimate a respec-
tive physiological parameter or to detect a respective physi-
ological event in the subject.

[0023] Example 16 is a method for detecting physiological
events in a subject, the method comprising: receiving ambu-
latory electrograms of the subject collected by an ambula-
tory medical device (AMD); determining, via a computing
device, a form factor of at least one sensor using the
ambulatory electrograms, the at least one sensor configured
to sense from the subject physiological information different
than the ambulatory electrograms; serially detecting a physi-
ological event or estimating a physiological parameter in the
subject using the ambulatory electrograms and the physi-
ological information sensed by the at least one sensor; and
providing the estimated physiological parameter or the
detected physiological event to a user or a process.

[0024] In Example 17, the subject matter of Example 16
optionally includes serially detecting the physiological event
that can include applying the received ambulatory electro-
grams to a trained machine learning model to estimate the
physiological parameter or to detect the physiological event
in the subject.

[0025] In Example 18, the subject matter of Example 17
optionally includes: constructing a training dataset including
ambulatory electrograms collected from a patient population
and assessments of physiological parameters or physiologi-
cal events in the patient population; and training a machine
learning model using the constructed training dataset until a
convergence or training stopping criterion is satisfied, the
trained machine learning model representing a correspon-
dence between the ambulatory electrograms of the patient
population and the physiological parameters or the physi-
ological events in the patient population.

[0026] In Example 19, the subject matter of any one or
more of Examples 17-18 optionally includes applying the
received ambulatory electrograms to the trained machine
learning model and detecting an operating status of the
AMD.

[0027] In Example 20, the subject matter of any one or
more of Examples 16-19 optionally includes initiating or
adjusting a therapy via the AMD to the subject based on the
estimated physiological parameter or the detected physi-
ological event.

[0028] In Example 21, the subject matter of any one or
more of Examples 16-20 optionally includes, in response to
the estimated physiological parameter satisfying a condi-
tion: triggering direct measurement of the physiological
parameter using at least one of the at least one sensor; and
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adjusting the trained machine learning model based at least
on the direct measurement of the physiological parameter.
[0029] This Overview is an overview of some of the
teachings of the present application and not intended to be
an exclusive or exhaustive treatment of the present subject
matter. Further details about the present subject matter are
found in the detailed description and appended claims. Other
aspects of the disclosure will be apparent to persons skilled
in the art upon reading and understanding the following
detailed description and viewing the drawings that form a
part thereof, each of which are not to be taken in a limiting
sense. The scope of the present disclosure is defined by the
appended claims and their legal equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] Various embodiments are illustrated by way of
example in the figures of the accompanying drawings. Such
embodiments are demonstrative and not intended to be
exhaustive or exclusive embodiments of the present subject
matter.

[0031] FIG. 1 illustrates generally an example of a patient
management system and portions of an environment in
which the system may operate.

[0032] FIG. 2 illustrates an example system including an
ambulatory medical device configured to sense or detect
physiological information from a patient via one or more
Sensors.

[0033] FIG. 3 is a block diagram illustrating a portion of
an exemplary Al-based physiological event detection system
configured to detect a physiological event or to estimate a
physiological parameter using ambulatory EGMs.

[0034] FIGS. 4A-4B are diagrams illustrating an example
of training a machine learning (ML) model and using the
trained ML model to estimate a physiological parameter, to
detect a physiological event, or to detect a device operating
status.

[0035] FIG. 5 is a flowchart illustrating an example of a
method for detecting a physiological event or to estimate a
physiological parameter using ambulatory EGMs.

[0036] FIG. 6 illustrates generally a block diagram of an
example machine upon which any one or more of the
techniques (e.g., methodologies) discussed herein may per-
form.

DETAILED DESCRIPTION

[0037] Disclosed herein are Al-based systems, devices,
and methods for detecting a physiological event or estimat-
ing a physiological parameter using ambulatory EGMs. An
exemplary system includes a computing device configured
to receive ambulatory EGMs collected by an ambulator
medical device (AMD) associated with a subject, and apply
the ambulatory EGMs to a trained machine learning (ML)
model to estimate a physiological parameter or to detect a
physiological event in the subject. The same or a different
machine learning model can be trained to detect an operating
status of the AMD using the ambulatory electrograms. The
system comprises an output device to output the estimated
physiological parameter, the detected physiological event, or
the detected device operating status to a user or a process
such as to initiate or titrate a therapy.

[0038] The systems, devices, and methods discussed in
this document may improve prediction or early detection of
various physiological events, such as cardiovascular or
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respiratory disorders, systemic or local fluid status, circu-
lating biomarkers, or neurological disorders. Although alter-
native solutions such as direct measurement using applica-
tion-specific sensors can provide desired detection
performance, operation of the application-specific sensors
are generally associated with higher system complexity and
implementation cost, and some sensors may not be sensitive
enough to provide early indications of an event. The present
disclosure describes early physiological event detection
using ambulatory ECGs or EGMs, which can be acquired
rapidly using lower cost, simpler, or less obtrusive systems,
apparatus, and methods. The availability of a large volume
of ECG or EGM data makes them suitable for Al-based
application, including training and validating an ML model
for estimating physiological parameters and detecting physi-
ological events. Early detection of physiological events may
be used to pre-screen patients for further evaluation using,
for example, more sophisticated and expensive tests, or for
medical intervention or therapy optimization (e.g., drug
titration or timing, etc.).

[0039] In certain examples, the systems, apparatus, and
methods discussed herein can provide additional use for
existing sensors, reduce sensor cost, enable earlier interven-
tion, improve patient outcomes, and reduce overall medical
system costs. The systems and methods described herein, in
certain examples, represent an improved form of physiologi-
cal event detection and patient intervention over existing
techniques. In certain examples, patients can be monitored,
and the patient, caregiver, clinician, or one or more other
system or user can be alerted to a change in patient condi-
tion. In other examples, the systems and methods described
herein can provide intervention or therapy optimization
recommendation, or can directly provide or alter a therapy
to the patient.

[0040] FIG. 1 illustrates an example patient management
system 100 and portions of an environment in which the
patient management system 100 may operate. The patient
management system 100 can perform a range of activities,
including remote patient monitoring and diagnosis of a
disease condition. Such activities can be performed proxi-
mal to a patient 101, such as in a patient home or office,
through a centralized server, such as in a hospital, clinic, or
physician office, or through a remote workstation, such as a
secure wireless mobile computing device.

[0041] The patient management system 100 can include
one or more ambulatory medical devices, an external system
105, and a communication link 111 providing for commu-
nication between the one or more ambulatory medical
devices and the external system 105. The one or more
ambulatory medical devices can include an implantable
medical device (IMD) 102, a wearable medical device 103,
or one or more other implantable, leadless, subcutaneous,
external, wearable, or ambulatory medical devices config-
ured to monitor, sense, or detect information from, deter-
mine physiological information about, or provide one or
more therapies to treat various conditions of the patient 101,
such as one or more cardiac or non-cardiac conditions (e.g.,
dehydration, sleep disordered breathing, etc.).

[0042] Inan example, the implantable medical device 102
can include one or more traditional cardiac rhythm manage-
ment devices implanted in a chest of a patient, such as
pacemakers, pacemaker/defibrillators, cardiac resynchroni-
zation therapy (CRT) devices, cardiac remodeling control
therapy (RCT) devices, among others. The implantable
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medical device 102 can have a lead system including one or
more transvenous, subcutaneous, or non-invasive leads or
catheters to position one or more electrodes or other sensors
(e.g., a heart sound sensor) in, on, or about a heart or one or
more other position in a thorax, abdomen, or neck of the
patient 101. By way of example and not limitation, the lead
system may be transvenously inserted into, or positioned on
a surface of, a portion of the heart such as a right atrium
(RA), a right ventricle (RV), a left atrium (LA), or a left
ventricle (LV), or any tissue between or near the heart
portions. In another example, the implantable medical
device 102 can include a monitor implanted, for example,
subcutaneously in the chest of patient 101. Examples of such
subcutaneous devices can include insertable cardiac moni-
tors (ICM), subcutaneous ICDs (S-ICDs), among others.
The implantable medical device 102 including a housing
containing circuitry and, in certain examples, one or more
sensors, such as a temperature sensor, an accelerometer for
sensing heart sounds, etc.

[0043] The implantable medical device 102 can include
sensing circuitry configured to sense cardiac electrical activ-
ity using the electrodes on the lead system. The sensed
cardiac electrical activity is generally referred to as electro-
grams (EGMs). In an example, the sensing circuit can sense
the EGMs continuously or periodically as specified fre-
quency. The implantable medical device 102 can further
include an assessment circuit configured to detect or deter-
mine specific physiological information of the patient 101,
or to determine one or more physiological conditions, or
provide information or an alert to a user, such as the patient
101 (e.g., a patient), a clinician, or one or more other
caregivers or processes.

[0044] The implantable medical device 102 can alterna-
tively or additionally be configured as a therapeutic device
configured to treat one or more medical conditions of the
patient 101. The therapy can be delivered to the patient 101
via the lead system and associated electrodes or using one or
more other delivery mechanisms. The therapy can include
delivery of one or more drugs to the patient 101, such as
using the implantable medical device 102 or one or more of
the other ambulatory medical devices, etc. In some
examples, therapy can include cardiac resynchronization
therapy for rectifying dyssynchrony and improving cardiac
function in heart failure patients. In other examples, the
implantable medical device 102 can include a drug delivery
system, such as a drug infusion pump to deliver drugs to the
patient for managing arrhythmias or complications from
arrhythmias, hypertension, or one or more other physiologic
conditions. In other examples, the implantable medical
device 102 can include one or more electrodes configured to
stimulate the nervous system of the patient or to provide
stimulation to the muscles of the patient airway, etc.

[0045] The wearable medical device 103 can include one
or more wearable or external medical sensors or devices
(e.g., automatic external defibrillators (AEDs), Holter moni-
tors, patch-based devices, smart watches, smart accessories,
wrist- or finger-worn medical devices, such as a finger-based
photoplethysmography sensor, etc.). The wearable medical
device 103 can include sensing circuitry coupled on one or
more electrodes or sensors. In an example, the sensing
circuitry of the wearable medical device 103 can be config-
ured to sense cardiac electrical activity, such as ambulatory
ECGs, via electrodes electrically coupled to the sensing
circuitry.
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[0046] The external system 105 can include a dedicated
hardware/software system, such as a programmer, a remote
server-based patient management system, or alternatively a
system defined predominantly by software running on a
standard personal computer. The external system 105 can
manage the patient 101 through the implantable medical
device 102 or one or more other ambulatory medical devices
connected to the external system 105 via a communication
link 111. In other examples, the implantable medical device
102 can be connected to the wearable medical device 103,
or the wearable medical device 103 can be connected to the
external system 105, via the communication link 111. This
can include, for example, programming the implantable
medical device 102 to perform one or more of acquiring
physiologic data, performing at least one self-diagnostic test
(such as for a device operating status), analyzing the physi-
ologic data, or optionally delivering or adjusting a therapy
for the patient 101. Additionally, the external system 105 can
send information to, or receive information from, the
implantable medical device 102 or the wearable medical
device 103 via the communication link 111. Examples of the
information can include real-time or stored physiologic data
from the patient 101, diagnostic data, such as detection of
patient hydration status, hospitalizations, responses to thera-
pies delivered to the patient 101, or device operating status
of the implantable medical device 102 or the wearable
medical device 103 (e.g., battery status, lead impedance,
etc.). The communication link 111 can be an inductive
telemetry link, a capacitive telemetry link, or a radio-
frequency (RF) telemetry link, or wireless telemetry based
on, for example, “strong” Bluetooth or IEEE 802.11 wireless
fidelity “Wi-Fi” interfacing standards. Other configurations
and combinations of patient data source interfacing are
possible.

[0047] The external system 105 can include an external
device 106 in proximity of the one or more ambulatory
medical devices, and a remote device 108 in a location
relatively distant from the one or more ambulatory medical
devices, in communication with the external device 106 via
a communication network 107. Examples of the external
device 106 can include a medical device programmer. The
remote device 108 can be configured to evaluate collected
patient or patient information and provide alert notifications,
among other possible functions. In an example, the remote
device 108 can include a centralized server acting as a
central hub for collected data storage and analysis. The
server can be configured as a uni-, multi-, or distributed
computing and processing system. The remote device 108
can receive data from multiple patients. The data can be
collected by the one or more ambulatory medical devices,
among other data acquisition sensors or devices associated
with the patient 101. The server can include a memory
device to store the data in a patient database. The server can
include an alert analyzer circuit to evaluate the collected
data to determine if specific alert condition is satisfied.
Satisfaction of the alert condition may trigger a generation
of alert notifications, such to be provided by one or more
human-perceptible user interfaces. In some examples, the
alert conditions may alternatively or additionally be evalu-
ated by the one or more ambulatory medical devices, such
as the implantable medical device. By way of example, alert
notifications can include a Web page update, phone or pager
call, E-mail, SMS, text or “Instant” message, as well as a
message to the patient and a simultaneous direct notification
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to emergency services and to the clinician. Other alert
notifications are possible. The server can include an alert
prioritizer circuit configured to prioritize the alert notifica-
tions. For example, an alert of a detected medical event can
be prioritized using a similarity metric between the physi-
ologic data associated with the detected medical event to
physiologic data associated with the historical alerts.
[0048] The remote device 108 may additionally include
one or more locally configured clients or remote clients
securely connected over the communication network 107 to
the server. Examples of the clients can include personal
desktops, notebook computers, mobile devices, or other
computing devices. System users, such as clinicians or other
qualified medical specialists, may use the clients to securely
access stored patient data assembled in the database in the
server, and to select and prioritize patients and alerts for
health care provisioning. In addition to generating alert
notifications, the remote device 108, including the server
and the interconnected clients, may also execute a follow-up
scheme by sending follow-up requests to the one or more
ambulatory medical devices, or by sending a message or
other communication to the patient 101 (e.g., the patient),
clinician or authorized third party as a compliance notifica-
tion.

[0049] The communication network 107 can provide
wired or wireless interconnectivity. In an example, the
communication network 107 can be based on the Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) network
communication specification, although other types or com-
binations of networking implementations are possible. Simi-
larly, other network topologies and arrangements are pos-
sible.

[0050] One or more of the external device 106 or the
remote device 108 can estimate physiological parameters,
detect a physiological event, or detect an operating status of
the IMD 102 or the wearable medical device 103 using
information collected from the IMD 102 or the wearable
medical device 103, such as ambulatory EGMs or ambula-
tory ECGs collected from the patient 101. In various
examples, artificial intelligence (AI) or machine learning
(ML) can be used to assist in estimating physiological
parameters, or detecting physiological events or device
operating status. For example, one or more of the external
device 106 or the remote device 108 can include an ML
engine that uses a trained ML, model to assess and identify
different physiological events or physiological parameters.
In some examples, one or more of the external device 106
or the remote device 108 can include a computing platform
utilizing a parallel processing with interconnected process-
ing nodes and queues that form a workflow for estimating
multiple physiological parameters or detecting multiple
physiological events substantially concurrently.

[0051] In some examples, the IMD 102 or the wearable
medical device 103 may collect other sensor signals differ-
ent than the ambulatory ECGs or EGMs, as described below
with reference to FIG. 2. Such sensors may have different
physical characteristics, such as different form factors or
sensor types. For example, different sensors may have form
factors suitable for wearing on different body parts (e.g.,
helmet, glasses, earpieces, necklace, chest band, belt, wrist-
watch, bracelet, gloves, ring, ankle band, shoes, socks,
detachable patches, or garment), or for implanting at differ-
ent body locations. In addition, specific sensors designed for
specific locations or general use can have different profiles,
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surface areas, or forms that can impact the received signals
in different ways. Such sensor signals may also be used to
estimate physiological parameters, detect physiological
events, or detect a device operating status. In an example,
physiological events can be serially detected using ambula-
tory ECGs or EGMs, and one or more other sensors with
respective types and form factors. The serial detection may
involve estimating a physiological parameter or generating
an initial detection of a physiological event using ambula-
tory ECGs or EGMs, and when the estimated physiological
parameter or the initial detection of the physiological event
satisfies a specific condition, triggering one or more other
application-specific sensors to directly measure the physi-
ological parameter or to detect the physiological event. The
ECG- or EGM-based parameter estimation event detection
can be confirmed, rejected, or modified by the direct mea-
surement or detection by the one or more application-
specific sensors. In some examples, the direct measurement
or detection by the application-specific sensors can be used
to calibrate the ECG- or EGM-based physiological param-
eter estimation or physiological event detection. Examples
of Al-based physiological parameter estimation and physi-
ological event detection using ambulatory EGMs are dis-
cussed below with reference to FIG. 3.

[0052] One or more of the external device 106 or the
remote device 108 can output the detected medical events to
a system user, such as the patient or a clinician, or to a
process including, for example, an instance of a computer
program executable in a microprocessor. In an example, the
process can include an automated generation of recommen-
dations for anti-arrhythmic therapy, or a recommendation
for further diagnostic test or treatment. In an example, the
external device 106 or the remote device 108 can include a
respective display unit for displaying the physiologic or
functional signals, or alerts, alarms, emergency calls, or
other forms of warnings to signal the detection of arrhyth-
mias. In some examples, the external system 105 can include
an external data processor configured to analyze the physi-
ologic or functional signals received by the one or more
ambulatory medical devices, and to confirm or reject the
detection of arrhythmias. Computationally intensive algo-
rithms, such as machine learning algorithms, can be imple-
mented in the external data processor to process the data
retrospectively to detect cardia arrhythmias.

[0053] Portions of the one or more ambulatory medical
devices or the external system 105 can be implemented
using hardware, software, firmware, or combinations
thereof. Portions of the one or more ambulatory medical
devices or the external system 105 can be implemented
using an application-specific circuit that can be constructed
or configured to perform one or more functions or can be
implemented using a general-purpose circuit that can be
programmed or otherwise configured to perform one or
more functions. Such a general-purpose circuit can include
a microprocessor or a portion thereof, a microcontroller or
aportion thereof, or a programmable logic circuit, a memory
circuit, a network interface, and various components for
interconnecting these components. For example, a “com-
parator” can include, among other things, an electronic
circuit comparator that can be constructed to perform the
specific function of a comparison between two signals or the
comparator can be implemented as a portion of a general-
purpose circuit that can be driven by a code instructing a
portion of the general-purpose circuit to perform a compari-



US 2023/0337988 Al

son between the two signals. “Sensors” can include elec-
tronic circuits configured to receive information and provide
an electronic output representative of such received infor-
mation.

[0054] The therapy device 110 can be configured to send
information to or receive information from one or more of
the ambulatory medical devices or the external system 105
using the communication link 111. In an example, the one or
more ambulatory medical devices, the external device 106,
or the remote device 108 can be configured to control one or
more parameters of the therapy device 110. The external
system 105 can allow for programming the one or more
ambulatory medical devices and can receives information
about one or more signals acquired by the one or more
ambulatory medical devices, such as can be received via a
communication link 111. The external system 105 can
include a local external implantable medical device pro-
grammer. The external system 105 can include a remote
patient management system that can monitor patient status
or adjust one or more therapies such as from a remote
location.

[0055] FIG. 2 illustrates an example system 200 including
an ambulatory medical device (AMD) 202 configured to
sense or detect physiological information from a patient 101
via one or more sensors. The AMD 202 can be a single
device, or a plurality of medical devices or monitors. The
AMD 202 can be an example of one or more of the
implantable medical device 102 or the wearable medical
device 103, and configured to estimate physiological param-
eters, detect physiological events, or detect a device oper-
ating status using ambulatory physiological information of a
patient.

[0056] The AMD 202 can include one or more physiologi-
cal sensors configured to sense respective physiological
information of a patient 101. Examples of the physiological
information can include cardiac or respiratory parameters,
circulating biomarkers, systemic or local fluid status, neu-
rological conditions, and patient responses to medication or
other treatment regimens, among others. The AMD 202 may
include circuitry, or a microprocessor, that can estimate
physiological parameters, detect physiological events, or
detect a device operating status using at least some of the
sensor data, such as ambulatory ECGs or EGMs collected by
the cardiac sensor 210. In an example of Al-based physi-
ological parameter estimation and physiological event
detection system, the sensor data can be used to establish a
training dataset for training and validating an ML model. In
some examples, a ML, model trained for estimating a physi-
ological parameter using ECGs or EGMs can be updated or
refined using direct measurements of the physiological
parameter by an application-specific sensors, as described
further below with reference to FIG. 3.

[0057] By way of example and not limitation, the sensors
can include one or more of a respiration sensor 204, a heart
sound sensor 206, an impedance sensor 208, a cardiac sensor
210, an activity sensor 212, a posture sensor 214, a pressure
sensor 216, a temperature sensor 218, a blood oxygen sensor
220, or a chemical sensor 222. The respiration sensor 204
can be configured to receive respiration information, includ-
ing but not limited to a respiration rate (RR), a respiration
volume (tidal volume), an RSBI, indicators of dyspnea,
tachypnea, etc. Such respiration information may be used to
detect respiratory events such as pulmonary edema, dysp-
nea, and pneumonitis, among others.
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[0058] The heart sound sensor 206 may take a form of an
accelerometer or a microphone sensor, and can be config-
ured to receive heart sound information, including but not
limited to intensity (e.g., amplitudes) one or more of S1, S2,
S3, or S4 heart sound components, and timing parameters
such as systolic timing intervals measured using the heart
sound components. Such heart sounds information may be
used to detect deterioration in cardiac function (e.g., reduced
contractility, reduced ejection fraction, reduced systolic
blood pressure, increased end-diastolic volume, and reduced
cardiac output), diastolic abnormalities, myocardial depres-
sion, ischemia and microvascular dysfunction, cardiac
arrhythmias, and WHF, among others. For example, a
decrease in S1 amplitude may indicate a reduced myocardial
contractility, a decrease in S2 amplitude may indicate a
reduced arterial blood pressure and cardiac output, and an
increase in S3, S4, or S4/S3 ratio may indicate worsened
diastolic function.

[0059] The microphone or accelerometer sensor may
sense physiological information other than heart sounds. In
an example, a microphone may be used to sense information
of patient voice, which can be further analyzed to detect
patient signs or symptoms associated with a particular
physiological event. The microphone sensor may sense
respiration such as respiratory rate, which may be used to
detect tachypnea or other disordered breathing. An acceler-
ometer sensor may be used to sense physical activity which
may indicate fatigue, or neurologic disorders such as tremor,
altered gait, or seizure, or to sense body shaking which may
indicate rigor.

[0060] The impedance sensor 208 can be configured to
receive impedance information (e.g., intracardiac, intratho-
racic, or transthoracic impedance). A decrease in body
impedance may be indicative of body fluid accumulation,
such as in the lungs known as pulmonary edema. In an
example, the impedance sensor 208 may detect pulmonary
edema based on a decrease in thoracic impedance. In some
examples, the impedance sensor 208 may detect an increase
in body impedance indicative of dehydration.

[0061] The cardiac sensor 210 can be configured to
receive cardiac electrical information, such as ECGs or
EGMs as described above with reference to FIG. 1. The
ECGs or EGMs may be used to detect cardiac parameters or
cardiac events such as heart rate, heart rate variability,
cardiac synchrony, or various cardiac arrhythmias.

[0062] The activity sensor 212 can be configured to
receive information about a physical motion (e.g., activity,
steps, etc.), and the posture sensor 214 can be configured to
receive posture or position information. Changes in physical
activity or changes in posture may be indicative of devel-
opment or worsening of heart failure. The physical activity
or motion information and the posture or position informa-
tion may additionally or alternatively be used to trigger one
or more other physiologic sensors, such as heart sounds,
impedance, or pressure data acquired under a specified
physical activity level or a specified posture.

[0063] The pressure sensor 216 may be configured to
receive pressure information. In an example, the pressure
sensor 216 is a blood pressure sensor configured to sense
blood pressure, which may further be used to detect hypo-
tension. In another example, the pressure sensor 216 is
configured to sense abdominal pressure.

[0064] The temperature sensor 218 may be configured to
receive body temperature information. Examples of the
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body temperature sensor may include a thermal couple, a
thermistor, an infrared sensor, or a temperature sense inte-
grated circuit. As fever is one of adverse systemic inflam-
matory responses to various medical conditions, a high body
temperature (e.g., above 38° C.), along with other sensor
information, may be used to detect a physiological event, or
to calibrate a physiological event detector based on other
physiological information such as ambulatory ECGs or
EGMs.

[0065] The blood oxygen sensor 220 may be configured to
receive information about blood oxygen saturation. In an
example, the blood oxygen sensor 220 is a pulse oximeter.
Patient with certain medical conditions may develop hyp-
oxia, a condition where the body or a body region is
deprived of adequate oxygen supply at the tissue level. A
low arterial blood oxygen saturation (e.g., less than 92%),
along with other sensor information, may be used to detect
a physiological event, or to calibrate a physiological event
detector based on other physiological information such as
ambulatory ECGs or EGMs.

[0066] The chemical sensor 222 may be configured to
receive information of one or more blood chemicals or
circulating biomarkers. Circulating biomarkers are generally
nucleic acids, extracellular vesicles, proteins and metabo-
lites from all metastatic sites as well as normal organ
physiologic turn over or impact of systemic drug treatment.
Examples of the biomarkers can include plasma glucose;
biomarkers of kidney injury such as blood urea nitrogen
(BUN) and creatinine; cardiac biomarkers such as natriuretic
peptides, myoglobin, troponin and creatine kinase, among
others. Circulating biomarkers may additionally include
blood electrolyte levels such as potassium, sodium, or
calcium levels. Data from the chemical sensors 222 can be
used to detect various types of physiological events such as
cardiac arrhythmias, heart failure, renal dysfunctions, to
control conditions such as electrolyte imbalance such as
hyper- or hypokalemia (abnormally high or low blood
potassium level), or hyper- or hypoglycemia (abnormally
high or low blood glucose level), either as intrinsic physi-
ologic reactions or in response to medical treatment (e.g.,
side effects, inappropriate treatment, or inadequate dosage).

[0067] FIG. 3 is a block diagram illustrating a portion of
an exemplary Al-based physiological event detection system
300 that can be configured to detect a physiological event or
to estimate a physiological parameter using patient data such
as ambulatory ECGs or EGMs. At least a part of the system
300 can be implemented in one or more of the implantable
medical device 102, the wearable medical device 103, or the
AMD 202. Additionally or alternatively, at least a part of the
system 300 can be implemented in a device in a remote
patient management system, such as the external device 106
or the remote device 108.

[0068] The system 300 can include a patient data receive
310, a processor 320, a user interface 330, and a device
controller 340. In some examples, the system 300 can
include or be communicatively coupled to a database 350.
The patient data receiver 310 can be configured to receive
patient information, such as physiological information of a
patient (or a group of patients) from one or more of the
physiologic sensors, such as sensors 204-222 as discussed
above with reference to FIG. 2. In an example, the patient
data receiver 310 can be included in a wearable or implant-
able device, and collect ambulatory patient data, such as
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ambulatory ECGs or EGMs, continuously or periodically or
at a specified frequency such as daily, weekly, biweekly, or
monthly.

[0069] The processor 320 can include one or more of a
physiological parameter estimator 322, a physiological
event detector 324, or a device operating state detector 326.
The physiological parameter estimator 322 can estimate a
physiological parameter using at least a portion of the
receive patient information, such as ambulatory ECGs or
EGMs. In an example, the estimated physiological param-
eter can include one or more cardiac parameters, such as
ECG parameters (e.g., QT prolongation, ST segment eleva-
tion indicative of acute myocardial infarction, T wave inver-
sion, heart rate, heart rate variability, premature atrial con-
tractions (PACs), premature ventricular contractions
(PVCs), cardiac timing intervals, etc.). The cardiac param-
eters may also include cardiac systolic parameters (e.g., left
ventricular ejection fraction, right ventricular ejection frac-
tion, stroke volume, cardiac wall thickness indicative of
hypertrophy, cardiac wall motion or change of wall motion,
ejection time, pre-ejection period, etc.), cardiac diastolic
parameters such as obtained from transthoracic Doppler
echocardiographic analysis (e.g., E and A peak velocities
and their ratio E/A, E-wave deceleration time, Isovolumic
relaxation time), and valvular function parameters (e.g.,
stenosis or regurgitation associated with one or more of
aortic, mitral, pulmonary, or tricuspid values). In another
example, the estimated physiological parameter can include
one or more respiratory parameters, such as a indicators of
chronic obstructive pulmonary disease (COPD), central
sleep apnea, or obstructive sleep apnea, among other respi-
ratory disorders. In another example, the estimated physi-
ological parameter can include a systemic or local fluid
status, such as fluid accumulation in lungs or other organs or
tissues. Fluid overload is related to increased mortality and
also lead to several complications like pulmonary edema. In
yet another example, the estimated physiological parameter
can include one or more circulating biomarkers, such as
plasma glucose levels, various kidney injury biomarkers,
cardia arrhythmia and heart failure biomarkers, or blood
electrolyte levels.

[0070] The physiological event detector 324 can detect a
physiological event using at least a portion of the receive
patient information, such as ambulatory ECGs or EGMs. In
some examples, the physiological event detector 324 can
detect the physiological event using the estimated physi-
ological parameter provided by the physiological parameter
estimator 322. The detection physiological event can
include, for example, a cardiac arrhythmia, such as atrial
fibrillation (AF), atrial flutter, supra-ventricular tachycardia,
ventricular tachycardia, ventricular fibrillation, Wolff-Par-
kinson-White (WPW) syndrome, reentry arrhythmia, among
others. In an example, the detected physiological event can
include an arrhythmia burden indicating frequency or time
spent on a particular type of arrhythmia, such as an AF
burden represented by a proportion (e.g., percentage) of time
an individual is in AF during a monitoring period. In an
example, the detected physiological event can include a
worsening heart failure (WHF) event, or a heart failure
comorbidity such as renal insufficiency, diabetes mellitus,
chronic obstructive pulmonary disease (COPD), sleeping
disorders like obstructive and central sleep apnea, anemia,
liver diseases such as cirrhosis or other diseases of volume
regulation. In another example, the detected physiological
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event can include a neurological condition, such as an
sympathovagal imbalance syndrome, orthostatic hypoten-
sion, pain, migraine, and emotional disorder, among others.
In another example, the detected physiological event can
include patient response to medication or other treatment
regimens, such as side effects experienced by patients. In yet
another example, the detected physiological event can
include cardiotoxicity or cardiopulmonary toxicity of immu-
notherapy, which can be represented by deterioration in
cardiac function (e.g., reduced contractility, reduced ejection
fraction, reduced systolic blood pressure, increased end-
diastolic volume, and reduced cardiac output), diastolic
abnormalities, myocardial depression, ischemia and micro-
vascular dysfunction, cardiac arrhythmias, and WHF, among
others.

[0071] The device operating state detector 326 can detect
an operating status of an ambulatory device, such as one or
more of the implantable medical device 102, the wearable
medical device 103, or the AMD 202. In an example, the
device operating status can include a change in position,
posture, or orientation of an ambulatory medical device on
the subject, such as flipping of an implantable device (e.g.,
the implantable medical device 102) in the skin pocket, or a
twiddler syndrome associated with unintentional or deliber-
ate manipulation of the implantable device within its skin
pocket by the patient. The flipping or twiddler of the
implantable device can cause coiling of the lead or its
dislodgement, resulting in failure of providing therapy or
inappropriately delivered therapy. In another example, the
device operating status can include a change in the device-
tissue interface, such as air presence in the skin pocket for
the implantable device. In yet another example, the device
operating status can include a state of its operating environ-
ment, such as presence of noise or interferences or co-
implant of another device.

[0072] Insome examples, the patient data receiver 310 can
collect ambulatory patient data, such as ambulatory ECGs or
EGMs, continuously or periodically. Accordingly, one or
more of the physiological parameter estimator 322, the
physiological event detector 324, or the device operating
state detector 326 can perform their respective tasks con-
tinuously or periodically at specific frequency such as daily,
weekly, biweekly, or monthly. In some examples, the patient
data receiver 310 can collect ambulatory patient data at
variable frequencies, such as changing from daily to weekly
to biweekly then to monthly. The serially estimated param-
eters and detected events can be trended over time to provide
more accurate assessment of disease progression and patient
health.

[0073] One or more of the physiological parameter esti-
mator 322, the physiological event detector 324, or the
device operating state detector 326 can perform their respec-
tive tasks of parameter estimation or event detection based
on an analysis of ambulatory ECGs or EGMs. Although the
ambulatory ECGs or EGMs do not provide direct measure-
ments of certain physiological parameters (e.g., respiratory
parameters, circulating biomarkers, and certain cardiac
parameters) that could otherwise be measured directly using
application-specific sensors, operation of the application-
specific sensors are generally associated with higher system
complexity and implementation cost, and some sensors are
not sensitive to provide early indications of an event. In
contrast, ambulatory ECGs or EGMs can be acquired rap-
idly using lower cost, simpler, or less obtrusive systems,
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apparatus, and methods, and can provide an estimation of
the physiological parameters and an earlier detection of
physiological events or device operating status.

[0074] Artificial intelligence (AI) or machine learning
(ML) can be used to improve ECG- or EGM-based physi-
ological parameter estimation or physiological event detec-
tion. As illustrated in FIG. 3, one or more of the physiologi-
cal parameter estimator 322, the physiological event
detector 324, or the device operating state detector 326 can
perform their respective tasks of parameter estimation or
event detection using one or more trained machine learning
(ML) model(s) 321. The trained ML model(s) 321 can have
a neural network structure comprising an input layer, one or
more hidden layers, and an output layer. Patient information
received by the patient data receiver 310, such as ambulatory
ECGs or EGMs, or trends of signal metrics of the ECGs or
EGMs, can be provided to the input layer of the ML
model(s) 321. The ML model(s) 321 can propagate the input
data or data trends through one or more hidden layers to the
output layer. The ML model(s) 321 can provide the system
300 with the ability to perform tasks, without explicitly
being programmed, by making inferences based on patterns
found in the analysis of data. The ML model(s) 321 explores
the study and construction of algorithms (e.g., ML algo-
rithms) that may learn from existing data and make predic-
tions about new data. Such algorithms operate by building
the ML model(s) 321 from training data in order to make
data-driven predictions or decisions expressed as outputs or
assessments.

[0075] The ML model(s) 321 may be trained using super-
vised learning or unsupervised learning. Supervised learning
uses prior knowledge (e.g., examples that correlate inputs to
outputs or outcomes) to learn the relationships between the
inputs and the outputs. The goal of supervised learning is to
learn a function that, given some training data, best approxi-
mates the relationship between the training inputs and
outputs so that the ML model can implement the same
relationships when given inputs to generate the correspond-
ing outputs. Unsupervised learning is the training of an ML
algorithm using information that is neither classified nor
labeled, and allowing the algorithm to act on that informa-
tion without guidance. Unsupervised learning is useful in
exploratory analysis because it can automatically identify
structure in data.

[0076] Some common tasks for unsupervised learning
include clustering, representation learning, and density esti-
mation. Some examples of commonly used unsupervised
learning algorithms are K-means clustering, principal com-
ponent analysis, and autoencoders. Some common tasks for
supervised learning are classification problems and regres-
sion problems. Classification problems, also referred to as
categorization problems, aim at classifying items into one of
several category values. Regression algorithms aim at quan-
tifying some items (for example, by providing a score to the
value of some input). Some examples of commonly used
supervised-ML algorithms are Logistic Regression (LR),
Naive-Bayes, Random Forest (RF), neural networks (NN),
deep neural networks (DNN), matrix factorization, and
Support Vector Machines (SVM).

[0077] In an example, the ML model can be trained using
deep learning. The ML model has an architecture of a deep
neural network Examples of DNN include a convolutional
neural network (CNN), a recurrent neural network (RNN), a
deep belief network (DBN), long-term and short-term
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memory (LSTM) network, a transfer learning network, or a
hybrid neural network comprising two or more neural net-
work models of different types or different model configu-
rations.

[0078] Another type of ML is collaborative learning that
trains an algorithm across multiple decentralized devices
holding local data, without exchanging the data. This
approach stands in contrast to traditional centralized
machine learning techniques where all the local datasets are
uploaded to one server, as well as to more classical decen-
tralized approaches which often assume that local data
samples are identically distributed. Collaborative learning
enables multiple actors to build a common, robust machine
learning model without sharing data, thus allowing to
address critical issues such as data privacy, data security,
data access rights and access to heterogeneous data.
[0079] As illustrated in FIG. 3, the trained ML model(s)
321 may be generated by a training module 328. The training
module 328 can be included in the processor 320 as shown
in FIG. 3, or alternatively be implemented in a separate unit.
To train an ML model, a training dataset can be constructed
using patient information collected from a patient population
each having respective AMDs of the same or similar type
(e.g., implantable devices or wearable devices). The infor-
mation of the patient population can be stored in the data-
base 350. The training data may include patient physiologi-
cal data collected by their respective AMDs, and
assessments of specific physiological parameters, physi-
ological events, or operating status of the respective AMDs.
The assessments can be provided by a user (e.g., a clinician),
and include characterization of the physiological parameter
or the detected events (e.g., onset, offset, duration, rate,
rhythm, and cardiac timing and synchrony for a cardiac
arrhythmic episode). In some examples, the assessment can
be made based on diagnostic tests using application-specific
sensors or instruments (e.g., echocardiograms or other diag-
nostic imaging tests, electrical mapping for diagnosing
cardiac arrhythmias, invasive glucose test via finger prick,
glucose strip, or continuous glucose monitors). The training
data may additionally include patient demographics, medi-
cal history and health conditions, treatment and outcome,
etc.

[0080] Inan example of training a EGM-based ML model,
the training data can include, among other patient informa-
tion, EGMs or data trends of signal metrics generated from
the EGMs collected from the patient population, and assess-
ment of physiological parameters or identification of physi-
ological events, which can be provided by human experts as
output labels. The training of the ML model may be per-
formed continuously or periodically, or in near real time as
additional patient information are received by the patient
data receiver 310. The training involves algorithmically
adjusting one or more ML model parameters, until the ML
model being trained satisfies a specified training conver-
gence criterion, such as the model outputs being as close as
possible (within a specific margin) to the output labels.
[0081] Insome examples, a plurality of ML models can be
separately trained and applied in different applications. For
example, a first ML model (or a first set of ML. models) may
be trained to establish a correspondence between EGMs
collected from a population (optionally along with other
information) and assessments of physiological parameters.
The physiological parameter estimator 322 can apply EGMs
collected from a patient to the trained first ML, model(s) to
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estimate one or more physiological parameters. In another
example, a second ML model (or a second set of ML
models) may be trained to establish a correspondence
between EGMs collected from a population (optionally
along with other information) and an assessment of physi-
ological events. The physiological event detector 324 can
apply EGMs sensed from a patient to the trained second ML
model(s) to detect one or more physiological events. In
another example, a third ML model (or a third set of ML
models) may be trained to establish a correspondence
between EGMs collected from a population (optionally
along with other information) and an assessment of device
operating status. The device operating state detector 326 can
apply EGMs sensed from a patient to the trained third ML
model(s) to detect a device operating status. In some
examples, the trained third ML model(s) may detect device
operating status (e.g., air pocket/tissue contact, or device
flipping or twiddler) based on signal features extracted from
the input EGMs, such as EGM noise or low amplitudes
EGMs. Examples of training an ML model and using the
trained ML model to estimate physiological parameters or to
detect physiological events using patient EGMs are dis-
cussed below such as with reference to FIGS. 4A-4B.

[0082] In some examples, the processor 320 can be con-
figured to perform parallel computing where multiple com-
puting resources are used to perform respective computing
tasks such as estimating multiple physiological parameters,
or detecting multiple physiological events, substantially
concurrently or simultaneously. In an example, the processor
320 can be a multi-core processor comprising multiple
computing units each configured to apply a respective
portion of the ambulatory EGMs of the subject to a respec-
tively trained ML model to estimate a respective physiologi-
cal parameter or to detect a respective physiological event in
the subject. In some examples, multiple processors, each
resembling the processor 320 or a portion thereof, can
perform substantially concurrent computations such as esti-
mating multiple physiological parameters, or detecting mul-
tiple physiological events.

[0083] The user interface 330 can include an output unit
configured to output one or more of the estimated physi-
ological parameter, the detected physiological event, or the
detected device operating status to a user (e.g., a patient, a
caregiver, or a clinician), such as to a display or one or more
other user interface. The output can include a score, a trend,
or other indication. The output may include recommenda-
tions for taking further diagnostic tests, consulting with
caregiver, taking or adjusting medication, lifestyle manage-
ment, comorbidity assessment, management or prevention
of major adverse cardiovascular events and/or cardiovascu-
lar mortality, among other standards of medical care depend-
ing on the type of the physiological events. In other
examples, the assessment circuit 304 can be configured to
provide an output to another circuit, machine, or process.

[0084] The device controller 340 can control, adjust, or
cease a therapy of a medical device, a drug delivery system,
etc. based on the estimated physiological parameter, the
detected physiological event, or the detected device operat-
ing status. In some examples, the device controller 340 can
trigger an application-specific sensor to directly measure a
physiological parameter when the estimated physiological
parameter satisfies a specific condition. An application-
specific sensor of a particular type and/or of a particular
form factor can be determined or information about a
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specific sensor can be confirmed (e.g., a received sensor type
or form can be confirmed using sensed information) based
on the ECG- or EGM-based physiological parameter esti-
mation or physiological event detection. Such determination
or confirmation can improve system performance with dif-
ferent sensors, or enable the device controller to be used
with different sensors or information from different sensors
or sources. For example, if the trained ML model estimates,
based on the input EGMs, an abnormal level of a biomarker
(e.g., plasma glucose level), then a glucose sensor can be
triggered to perform direct measurement of the glucose
level. The ambulatory EGMs and the application-specific
sensor signals can be collected continuously or periodically
at respective frequencies, such as daily, weekly, biweekly, or
monthly. In some examples, the ambulatory EGMs and the
sensor signals can be collected at variable frequencies, such
as changing from daily to weekly to biweekly then to
monthly. The ECG- or EGM-based physiological parameter
estimation or physiological event detection can be con-
firmed, rejected, or modified by the direct measurement or
detection by the application-specific sensor. Such serial
detection involving an ECG- or EGM-based initial param-
eter estimation and event detection followed by a confirma-
tive detection using an application-specific sensor can
improve the efficiency and accuracy of physiological event
detection, reduce system complexity, and save system and
implementation cost.

[0085] In some examples, the device controller 340 can
use the direct measurements of physiological parameters by
the application-specific sensors to calibrate one or more of
the physiological parameter estimator 322, the physiological
event detector 324, or the device operating state detector
326. For examples, if an trained ML model detects, based on
the input EGMs, an abnormal kidney injury biomarker level,
then direct measurement of kidney injury biomarker level
can be made and used to adjust EGM acquisition (e.g.,
timing, sampling rate, duration) and analysis. In some
examples, the direct measurements by the application-spe-
cific sensors can be used to update the trained ML model(s)
321 (e.g., by adjusting weights assigned to one or more
nodes of the neural network), or to retrain the ML model(s)
321.

[0086] In some examples, the processor 320 can detect
from the received patient data (e.g., ambulatory ECGs or
EGMs) information about device interference from a co-
implant or an external noise source. Examples of the device
interference may include pacing pulses from a co-implant,
electromagnetic noises, optical sensing noise, or accelerom-
eter interferences, among others. Based on the detected
interference information, the device controller 340 can cali-
brate one or more of the physiological parameter estimator
322, the physiological event detector 324, or the device
operating state detector 326, or adjust the trained ML
model(s) 321. In some examples, the device controller 340
can adjust the EGM sensing configuration or settings of
other ambulatory sensors to avoid or reduce interference and
improve signal quality.

[0087] Portions of the system 300, such as one or more of
the processor 320 (or a portion thereof, such as one or more
of the physiological parameter estimator 322, the physi-
ological event detector 324, the device operating state detec-
tor 326, or the training module 328) or the device controller
340, may include respective circuit sets comprising one or
more other circuits or sub-circuits. The circuits or sub-
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circuits may, alone or in combination, perform the functions,
methods, or techniques described herein. In an example,
hardware of the circuit set may be immutably designed to
carry out a specific operation (e.g., hardwired). In an
example, the hardware of the circuit set may include vari-
ably connected physical components (e.g., execution units,
transistors, simple circuits, etc.) including a computer read-
able medium physically modified (e.g., magnetically, elec-
trically, moveable placement of invariant massed particles,
etc.) to encode instructions of the specific operation. In
connecting the physical components, the underlying electri-
cal properties of a hardware constituent are changed, for
example, from an insulator to a conductor or vice versa. The
instructions enable embedded hardware (e.g., the execution
units or a loading mechanism) to create members of the
circuit set in hardware via the variable connections to carry
out portions of the specific operation when in operation.
Accordingly, the computer readable medium is communi-
catively coupled to the other components of the circuit set
member when the device is operating. In an example, any of
the physical components may be used in more than one
member of more than one circuit set. For example, under
operation, execution units may be used in a first circuit of a
first circuit set at one point in time and reused by a second
circuit in the first circuit set, or by a third circuit in a second
circuit set at a different time.

[0088] Portions of the system 300, such as one or more of
the processor 320 (or a portion thereof) or the device
controller 340, may be implemented as a part of a micro-
processor circuit. The microprocessor circuit may be a
dedicated processor such as a digital signal processor, appli-
cation specific integrated circuit (ASIC), microprocessor, or
other type of processor for processing information including
the physiologic signals received from the patient data
receiver 310. Alternatively, the microprocessor circuit may
be a general-purpose processor that may receive and execute
a set of instructions of performing the functions, methods, or
techniques described herein.

[0089] In some examples, portions of the system 300 can
be implemented in a cloud-based computing platform (the
“cloud”) that provides cloud-based services including, for
example, data storage, computing services, and provisioning
of customer services, among others. For example, the data-
base 350 can reside in a cloud storage device. Additionally
or alternatively, the cloud may provide computing services
for one or more of the physiological parameter estimator
322, the physiological event detector 324, the device oper-
ating state detector 326, or the training module 328 to fulfil
their respective objectives. An authorized user can remotely
access the cloud storage device to retrieve physiological
information from the database 350, or to use the computing
services therein to perform data analysis such as estimating
physiological parameters or detecting physiological events
in a patient, or detecting an operating status of the AMD of
the patient.

[0090] FIGS. 4A-4B are diagrams illustrating an example
of training an EGM-based ML model, and using the trained
model to estimate a physiological parameter, to detect a
physiological event, or to detect a device operating status
based on an input EGM sensed from a patient. FIG. 4A
illustrates an ML model training (or learning) phase during
which an ML model 420 may be trained using training data
comprising EGMs 410 collected from a population. The
training data may also include, for each of the EGMs,
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respective annotated data 415 comprising assessment of
physiological parameters, physiological events, or device
operating status for corresponding EGMs. The assessment
can be provided by a user, such as based on direct measure-
ments of physiological parameters by application-specific
sensors, or diagnostic tests using application-specific instru-
ments (e.g., echocardiograms or other diagnostic imaging
tests, electrical mapping for diagnosing cardiac arrhythmias,
invasive glucose test via finger prick, glucose strip, or
continuous glucose monitors). The ML model 740 can be
trained using supervised learning, unsupervised learning, or
reinforcement leaning. Examples of ML, model architectures
and algorithms may include, for example, decision trees,
neural networks, support vector machines, or a deep neural
networks, etc. Examples of deep neural network can include
a convolutional neural network (CNN), a recurrent neural
network (RNN), a deep belief network (DBN), a long-term
and short-term memory (LSTM) network, a transfer learning
network, or a hybrid neural network comprising two or more
neural network models of different types or different model
configurations. The training of the ML model may be
performed continuously or periodically, or in near real time
as additional patient data are made available. The training
involves algorithmically adjusting one or more ML model
parameters, until the ML model being trained satisfies a
specified training convergence criterion. The trained ML
model 420 can establish a correspondence between EGMs
and one or more of a physiological parameter, a physiologi-
cal event, or a device operating status.

[0091] FIG. 4B illustrates an inference phase during which
an EGM 430 sensed from a patient can be applied to the
trained ML model 420 to automatically estimate one or more
physiological parameters, to detect a physiological event, or
to detect a device operating status. The estimated parameters
and/or the detected events 450 can be provided to the user
(e.g., a patient, a caregiver, or a clinician), such as to a
display or one or more other user interface. Additionally or
alternatively, the estimated parameters and/or the detected
events 450 can be output to another circuit, machine, or
process, such as to control, adjust, or cease a therapy of a
medical device, a drug delivery system, etc. In some
examples, the estimated parameters and/or the detected
events 450 can be used to trigger direct measurement of a
physiological parameter using an application-specific sen-
sor, or to calibrate one or more of a physiological parameter
estimator 322, a physiological event detector 324, or a
device operating state detector 326, or to update the trained
ML model 420 such as by adjusting weights assigned to one
or more nodes of a neural network.

[0092] FIG. 5 is a flowchart illustrating an example of a
method 500 for detecting a physiological event or to esti-
mate a physiological parameter using patient information
such as ambulatory electrograms (EGMs). The method 500
may be implemented in and executed by a computing
device, such as one or more of the implantable medical
device 102, the wearable medical device 103, or the AMD
202. Alternatively, the method 500 may be implemented in
and executed by a device in a remote patient management
system, such as the external device 106, the remote device
108, or a cloud-based computing platform.

[0093] The method 500 commences at 510, where physi-
ological information may be received from the patient using
an ambulatory medical device (AMD), such as the implant-
able medical device 102, the wearable medical device 103,
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or the AMD 202. Various physiological information can be
received using respective sensors or electrodes, such as
sensors 204-222 as discussed above with reference to FIG.
2. In an example, the received physiological information
includes ambulatory EGMs. Ambulatory EGMs, optionally
along with other physiological information, can be collected
continuously or periodically at a specific frequency such as
daily, weekly, biweekly, or monthly.

[0094] At 520, the received ambulatory EGMs can be
analyzed using the computing device, or a portion thereof
such as the processor 320 of the Al-based physiological
event detection system 300. The analysis can include apply-
ing the received ambulatory EGMs to one or more trained
machine learning (ML) models, such as the trained ML
model(s) 321. As discussed above with respect to FIGS. 3
and 4A, the ML, models may be trained using a training
dataset including ambulatory EGMs collected from a patient
population and assessments of physiological parameters or
physiological events in the patient population. The ML
model can be trained using supervised learning or unsuper-
vised learning. In an example, the ML model can be trained
using deep learning. The ML, model has an architecture of a
deep neural network (DNN). The training of the ML, model
may be performed continuously or periodically, or in near
real time as additional patient information are received. The
training involves algorithmically adjusting one or more ML
model parameters, until the ML, model being trained satisfies
a specified training convergence criterion. The trained ML
model represents a correspondence between the ambulatory
EGMs of the patient population and the physiological
parameters or the physiological events in the patient popu-
lation. Such a trained ML model is also referred to as an
EGM-based ML model.

[0095] At 530, a physiological parameter can be esti-
mated, and/or or a physiological event can be detected,
based on the analysis of the EGMs using the trained ML
model(s). The physiological parameter estimation and the
physiological event detection can be carried out using the
physiological parameter estimator 322 and the physiological
event detector 324, respectively, as discussed above with
referenced to FIG. 3. Examples of the estimated physiologi-
cal parameters can include a cardiac parameter, a respiratory
parameter, a circulating biomarker, or a systemic or local
fluid status, among others. Examples of the detected physi-
ological event including a cardiac arrhythmia, a worsening
heart failure event, a heart failure comorbidity condition, a
neurological condition, or a response to medication, among
others.

[0096] In some examples, at step 520, the ML model (or
a separate ML, model other than the ML model trained for
estimating physiological parameters or for detecting a physi-
ological event) may be trained to establish a correspondence
between EGMs collected from a population and an assess-
ment of device operating status, such as a change in position,
posture, or orientation of the AMD, or a change in an
device-tissue interface the AMD. Ambulatory EGMs
received from a subject can be applied to the trained model,
and an operating status of the AMD can be detected at 530,
such as using the device operating state detector 326.
[0097] At 540, the estimated physiological parameter or
the detected physiological event can be provided to a user or
a process, such as to a display or one or more other user
interface. The output may include recommendations or
alerts to clinicians of any adverse events. The estimated
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physiological parameter, the detected physiological event, or
the detected device operating status may alternatively or
additionally to be used to control, adjust, or cease a therapy
of a medical device, a drug delivery system, etc. In some
examples, Additionally or alternatively, when the estimated
physiological parameter satisfies a specific condition, an
application-specific sensor can be triggered to directly mea-
sure a physiological parameter. The direct measurements of
physiological parameters can be used to calibrate the process
of estimating physiological parameters or detecting physi-
ological events or device operating status. In some
examples, the direct measurements of physiological param-
eters can be used for adjusting the trained ML, model, or in
a process of re-training the ML model.

[0098] FIG. 6 illustrates generally a block diagram of an
example machine 600 upon which any one or more of the
techniques (e.g., methodologies) discussed herein may per-
form. Portions of this description may apply to the comput-
ing framework of various portions of the Al-based physi-
ological event detection system 300.

[0099] In alternative embodiments, the machine 600 may
operate as a standalone device or may be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine 600 may operate in the capacity of a server
machine, a client machine, or both in server-client network
environments. In an example, the machine 600 may act as a
peer machine in peer-to-peer (P2P) (or other distributed)
network environment. The machine 600 may be a personal
computer (PC), a tablet PC, a set-top box (STB), a personal
digital assistant (PDA), a mobile telephone, a web appli-
ance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein, such as cloud comput-
ing, software as a service (SaaS), other computer cluster
configurations.

[0100] Examples, as described herein, may include, or
may operate by, logic or a number of components, or
mechanisms. Circuit sets are a collection of circuits imple-
mented in tangible entities that include hardware (e.g.,
simple circuits, gates, logic, etc.). Circuit set membership
may be flexible over time and underlying hardware vari-
ability. Circuit sets include members that may, alone or in
combination, perform specified operations when operating.
In an example, hardware of the circuit set may be immutably
designed to carry out a specific operation (e.g., hardwired).
In an example, the hardware of the circuit set may include
variably connected physical components (e.g., execution
units, transistors, simple circuits, etc.) including a computer
readable medium physically modified (e.g., magnetically,
electrically, moveable placement of invariant massed par-
ticles, etc.) to encode instructions of the specific operation.
In connecting the physical components, the underlying
electrical properties of a hardware constituent are changed,
for example, from an insulator to a conductor or vice versa.
The instructions enable embedded hardware (e.g., the execu-
tion units or a loading mechanism) to create members of the
circuit set in hardware via the variable connections to carry
out portions of the specific operation when in operation.
Accordingly, the computer readable medium is communi-
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catively coupled to the other components of the circuit set
member when the device is operating. In an example, any of
the physical components may be used in more than one
member of more than one circuit set. For example, under
operation, execution units may be used in a first circuit of a
first circuit set at one point in time and reused by a second
circuit in the first circuit set, or by a third circuit in a second
circuit set at a different time.

[0101] Machine (e.g., computer system) 600 may include
a hardware processor 602 (e.g., a central processing unit
(CPU), a graphics processing unit (GPU), a hardware pro-
cessor core, or any combination thereof), a main memory
604 and a static memory 606, some or all of which may
communicate with each other via an interlink (e.g., bus) 608.
The machine 600 may further include a display unit 610
(e.g., a raster display, vector display, holographic display,
etc.), an alphanumeric input device 612 (e.g., a keyboard),
and a user interface (UI) navigation device 614 (e.g., a
mouse). In an example, the display unit 610, input device
612 and UI navigation device 614 may be a touch screen
display. The machine 600 may additionally include a storage
device (e.g., drive unit) 616, a signal generation device 618
(e.g., a speaker), a network interface device 620, and one or
more sensors 621, such as a global positioning system (GPS)
sensor, compass, accelerometer, or other sensors. The
machine 600 may include an output controller 628, such as
a serial (e.g., universal serial bus (USB), parallel, or other
wired or wireless (e.g., infrared (IR), near field communi-
cation (NFC), etc.) connection to communicate or control
one or more peripheral devices (e.g., a printer, card reader,
etc.).

[0102] The storage device 616 may include a machine-
readable medium 622 on which is stored one or more sets of
data structures or instructions 624 (e.g., software) embody-
ing or utilized by any one or more of the techniques or
functions described herein. The instructions 624 may also
reside, completely or at least partially, within the main
memory 604, within static memory 606, or within the
hardware processor 602 during execution thereof by the
machine 600. In an example, one or any combination of the
hardware processor 602, the main memory 604, the static
memory 606, or the storage device 616 may constitute
machine-readable media.

[0103] While the machine-readable medium 622 is illus-
trated as a single medium, the term “machine-readable
medium” may include a single medium or multiple media
(e.g., a centralized or distributed database, and/or associated
caches and servers) configured to store the one or more
instructions 624.

[0104] The term “machine-readable medium” may include
any medium that is capable of storing, encoding, or carrying
instructions for execution by the machine 600 and that cause
the machine 600 to perform any one or more of the tech-
niques of the present disclosure, or that is capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine-readable
medium examples may include solid-state memories, and
optical and magnetic media. In an example, a massed
machine-readable medium comprises a machine-readable
medium with a plurality of particles having invariant (e.g.,
rest) mass. Accordingly, massed machine-readable media
are not transitory propagating signals. Specific examples of
massed machine-readable media may include: non-volatile
memory, such as semiconductor memory devices (e.g.,
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Electrically Programmable Read-Only Memory (EPROM),
Electrically Erasable Programmable Read-Only Memory
(EEPROM)) and flash memory devices; magnetic disks,
such as internal hard disks and removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

[0105] The instructions 624 may further be transmitted or
received over a communications network 626 using a trans-
mission medium via the network interface device 620 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transfer
protocol (HTTP), etc.). Example communication networks
may include a local area network (LAN), a wide area
network (WAN), a packet data network (e.g., the Internet),
mobile telephone networks (e.g., cellular networks), Plain
Old Telephone (POTS) networks, and wireless data net-
works (e.g., Institute of Electrical and Electronics Engineers
(IEEE) 802. 11 family of standards known as WiFi®, IEEE
802. 16 family of standards known as WiMax®), IEEE 802.
15. 4 family of standards, peer-to-peer (P2P) networks,
among others. In an example, the network interface device
620 may include one or more physical jacks (e.g., Ethernet,
coaxial, or phone jacks) or one or more antennas to connect
to the communications network 626. In an example, the
network interface device 620 may include a plurality of
antennas to wirelessly communicate using at least one of
single-input multiple-output (SIMO), multiple-input mul-
tiple-output (MIMO), or multiple-input single-output
(MISO) techniques. The term “transmission medium” shall
be taken to include any intangible medium that is capable of
storing, encoding or carrying instructions for execution by
the machine 600, and includes digital or analog communi-
cations signals or other intangible medium to facilitate
communication of such software.

[0106] Various embodiments are illustrated in the figures
above. One or more features from one or more of these
embodiments may be combined to form other embodiments.

[0107] The method examples described herein can be
machine or computer-implemented at least in part. Some
examples may include a computer-readable medium or
machine-readable medium encoded with instructions oper-
able to configure an electronic device or system to perform
methods as described in the above examples. An implemen-
tation of such methods may include code, such as micro-
code, assembly language code, a higher-level language
code, or the like. Such code may include computer readable
instructions for performing various methods. The code can
form portions of computer program products. Further, the
code can be tangibly stored on one or more volatile or
non-volatile computer-readable media during execution or at
other times.

[0108] The above detailed description is intended to be
illustrative, and not restrictive. The scope of the disclosure
should, therefore, be determined with references to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:

1. A system for detecting physiological events in a sub-
ject, the system comprising:

a computing device configured to:

receive ambulatory electrograms of the subject col-
lected by an ambulatory medical device (AMD);
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determine or confirm a physical characteristic of at
least one sensor using the ambulatory electrograms,;
and

detect a physiological event or estimate a physiological
parameter in the subject using the ambulatory elec-
trograms and the determined or confirmed physical
characteristic of the at least one sensor; and

an output unit configured to output the estimated physi-

ological parameter or the detected physiological event
to a user or a process.

2. The system of claim 1, wherein the at least one sensor
is configured to sense from the subject physiological infor-
mation different than the ambulatory electrogram,

wherein to detect the physiological event, the computing

device is configured to apply the received ambulatory
electrograms to a trained machine learning model to
estimate the physiological parameter or to detect the
physiological event in the subject using the ambulatory
electrograms and the physiologic information sensed
by the at least one sensor, and

wherein the physical characteristic is a sensor type or a

form factor of the at least one sensor.

3. The system of claim 2, wherein the computing device
includes a training module configured to generate the trained
machine learning model, including:

constructing a training dataset including ambulatory elec-

trograms collected from a patient population and
assessments of physiological parameters or physiologi-
cal events in the patient population; and

training a machine learning model using the constructed

training dataset until a convergence or training slopping
criterion is satisfied, the trained machine learning
model representing a correspondence between the
ambulatory electrograms of the patient population and
the physiological parameters or the physiological
events in the patient population.

4. The system of claim 3, wherein the training module is
configured to train the machine learning model using a deep
learning algorithm comprising a deep neural network.

5. The system of claim 2, wherein the computing device
is configured to apply the received ambulatory electrograms
to the trained machine learning model to estimate the
physiological parameter including at least one of:

a cardiac parameter;

a respiratory parameter;

a circulating biomarker; or

a systemic or local fluid status.

6. The system of claim 2, wherein the computing device
is configured to apply the received ambulatory electrograms
to the trained machine learning model to detect the physi-
ological event including at least one of:

a cardiac arrhythmia;

a worsening heart failure event;

a heart failure comorbidity condition;

a neurological condition; or

a response to medication.

7. The system of claim 2, wherein the computing device
is further configured to apply the received ambulatory
electrograms to the trained machine learning model to detect
an operating status of the AMD.

8. The system of claim 7, wherein the operating status of
the AMD indicates at least one of:

a change in position, posture, or orientation of the AMD;

or

a change in an device-tissue interface the AMD.
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9. The system of claim 1, comprising the AMD configured
to collect the ambulatory electrograms of the subject con-
tinuously or periodically via one or more attachable or
implantable electrodes, the AMD including at least one of:

an insertable cardiac monitor;

a subcutaneous implantable cardioverter-defibrillator; or

a wearable or holdable cardiac monitor.

10. The system of claim 1, wherein the AMD includes a
therapy circuit configured to initiate or adjust a therapy to
the subject based on the estimated physiological parameter
or the detected physiological event.

11. The system of claim 2, wherein the computing device
is configured to:

apply the received ambulatory electrograms to the trained

machine learning model to estimate the physiological
parameter; and

in response to the estimated physiological parameter

satisfying a condition, trigger at least one of the at least
one sensor to directly measure the physiological param-
eter.

12. The system of claim 11, wherein the computing device
includes a calibration circuit configured to adjust the trained
machine learning model based at least on the directly
measured physiological parameter.

13. The system of claim 1, wherein the computing device
is configured to perform parallel computing to estimate
multiple physiological parameters or to detect multiple
physiological events substantially concurrently.

14. The system of claim 13, wherein the computing device
includes multiple processors or a multi-core processor com-
prising multiple computing units, each of the multiple pro-
cessors or the multiple computing units configured to apply
a portion of the ambulatory electrograms of the subject to a
respectively trained machine learning model to estimate a
respective physiological parameter or to detect a respective
physiological event in the subject.

15. A method for detecting physiological events in a
subject, the method comprising:

receiving ambulatory electrograms of the subject col-

lected by an ambulatory medical device (AMD);
determining, via a computing device, a form factor of at
least one sensor using the ambulatory electrograms, the
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at least one sensor configured to sense from the subject
physiological information different than the ambulatory
electrograms;

serially detecting a physiological event or estimating a

physiological parameter in the subject using the ambu-
latory electrograms and the physiological information
sensed by the at least one sensor; and

providing the estimated physiological parameter or the

detected physiological event to a user or a process.

16. The method of claim 15, wherein serially detecting the
physiological event includes applying the received ambula-
tory electrograms to a trained machine learning model to
estimate the physiological parameter or to detect the physi-
ological event in the subject.

17. The method of claim 16, comprising:

constructing a training dataset including ambulatory elec-

trograms collected from a patient population and
assessments of physiological parameters or physiologi-
cal events in the patient population; and

training a machine learning model using the constructed

training dataset until a convergence or training slopping
criterion is satisfied, the trained machine learning
model representing a correspondence between the
ambulatory electrograms of the patient population and
the physiological parameters or the physiological
events in the patient population.

18. The method of claim 16, further comprising applying
the received ambulatory electrograms to the trained machine
learning model and detecting an operating status of the
AMD.

19. The method of claim 15, further comprising initiating
or adjusting a therapy via the AMD to the subject based on
the estimated physiological parameter or the detected physi-
ological event.

20. The method of claim 16, further comprising, in
response to the estimated physiological parameter satistying
a condition:

triggering direct measurement of the physiological

parameter using at least one of the at least one sensor;
and

adjusting the trained machine learning model based at

least on the direct measurement of the physiological
parameter.



