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DEPTH-GUIDED
STRUCTURE-FROM-MOTION TECHNIQUES

BACKGROUND

Estimating camera motion and 3D scene geometry in
movies and TV shows is a standard task in video production.
Existing Structure from Motion (SfM) approaches for 3D
scene reconstruction produce high-quality results especially
for images, but require large parallax to be accurate. On the
other hand, however, creating engaging viewing experience
in movies and TV shows often constrains the amount of
camera movement while filming a shot. This often leads to
insufficient parallax compared to standard SfM datasets
captured specifically for the aforementioned 3D reconstruc-
tion techniques.

Insufficient parallax is one of the challenges that limits the
effectiveness of existing geometry-based SfM techniques
that recover camera motion and geometry based on the
principle of motion-parallax. Algebraic methods for two-
view reconstruction are numerically unstable in shots that
lack sufficient motion-parallax. Conventional SfM pipelines
(e.g., COLMAP) use various heuristics to handle small-
parallax data, but these heuristics have shortcomings. For
example, inlier ratio may be used to decide the two-view
motion type to prevent two-view reconstruction from using
panoramic image pairs, and filtering out points with small
triangulation angles. These heuristics however require care-
ful tuning and can fail completely when using data that has
no image pairs with sufficient parallax. In contrast, learning-
based approaches are able to handle data with small parallax
more effectively as they can learn to predict depth and pose
from large-scale labelled datasets. However, as these meth-
ods do not incorporate geometric-consistency constraints
between images, their pose and depth estimates are not as
accurate. Furthermore, the generalizability of these
approaches heavily depends on the scale of labeled data used
for their training.

Hybrid approaches have achieved more accurate results
than learning-based approaches by employing learned depth
priors as implicit constraints for geometric consistency.
However, these approaches do not use robust estimators thus
making them heavily dependent on the quality of used
optical flow that can adversely affect their robustness. More-
over, these approaches require heavy compute and memory
resources that prevents such models from scaling to larger
problems.

Accordingly, existing techniques typically are less effec-
tive with small parallax. For example, the amount by which
a camera can be moved while filming a particular shot for a
movie or television show is often limited. In such contexts,
the resulting small-motion parallax in video-frames makes
standard geometry-based StM approaches not as effective.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an environment depicting a pipeline for
implementing depth guided structure from motion, in accor-
dance with one or more example embodiments of the present
disclosure.

FIG. 2 depicts a graph showing the parallax distribution
for ETH3D that is plotted with StudioSFM datasets.

FIG. 3 illustrates a diagram depicting depth regularized
optimization, in accordance with one or more example
embodiments of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 illustrates evaluation of camera pose on Stu-
dioSFM dataset, in accordance with one or more example
embodiments of the present disclosure.

FIG. 5 illustrates graphs of camera pose estimation using
StudioSFM dataset under various settings, in accordance
with one or more example embodiments of the present
disclosure.

FIG. 6 illustrates graphs of ablation study using Stu-
dioSFM dataset, according to at least one embodiment of the
present disclosure.

FIG. 7 illustrates graphs of ablation study of depth esti-
mators for StudioSFM dataset, according to at least one
embodiment of the present disclosure.

FIG. 8 shows an illustrative example of a process 800 for
3-D reconstruction using depth guided structure from
motion (SfM) techniques, in accordance with one or more
example embodiments of the present disclosure.

FIG. 9 illustrates a block diagram of an example machine
upon which any of one or more techniques (e.g., methods)
may be performed, in accordance with one or more example
embodiments of the present disclosure.

Certain implementations will now be described more fully
below with reference to the accompanying drawings, in
which various implementations and/or aspects are shown.
However, various aspects may be implemented in many
different forms and should not be construed as limited to the
implementations set forth herein; rather, these implementa-
tions are provided so that this disclosure will be thorough
and complete, and will fully convey the scope of the
disclosure to those skilled in the art. Like numbers in the
figures refer to like elements throughout. Hence, if a feature
is used across several drawings, the number used to identify
the feature in the drawing where the feature first appeared
will be used in later drawings.

DETAILED DESCRIPTION

Example embodiments described herein provide certain
systems, methods, and devices for depth-guided structure-
from-motion techniques that may be used for 3D-reconstruc-
tion. As described in greater detail below, techniques
described herein may be utilized in small-parallax settings,
but is not necessarily limited to such environments. In
various embodiments, a pretrained network is used to obtain
a single-frame depth-prior to improve geometry-based struc-
ture-from-motion (SfM). First, keypoints may be detected
and then depth-estimates of the detected keypoints may be
used to reconstruct a point cloud and camera-pose for an
initial two-view reconstruction. Then, depth-regularized
optimization may be performed to register new images and
triangulate new points during incremental reconstruction.
Various techniques described herein may be applied to
computer system to improve the quality (e.g., accuracy) of
the estimated camera poses and scene geometry for small-
parallax setting, does not cause any degradation for data
with large-parallax, and/or maintain the generalizability and
scalability of geometry-based sparse SfM. In general, exist-
ing techniques for Structure-from-Motion fail to perform
well in small-parallax settings, which is prevalent in the
context of various types of media, including television and
movies.

In various embodiments, hybrid techniques as described
in greater detail below combine the strengths of a geometry-
based SfM to achieve high-accuracy without requiring addi-
tional labelled data and learning-based SfM to effectively
handle data with insufficient parallax. In various embodi-
ments, instead of using epipolar geometry for initial two-
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view reconstruction, the hybrid approach directly utilizes
monocular depth obtained from a pretrained model to accu-
rately recover the initial camera pose and point cloud.
During the incremental reconstruction step, a depth-prior
regularized objective function is used to accurately register
and triangulate new images and points. These techniques are
robust to a variety of pretrained networks used to obtain the
depth-prior, and maintain the generalizability and scalability
of geometry-based SfM pipeline. For example, existing
implementations (e.g. COLMAP) may be used.

The above descriptions are for purposes of illustration and
are not meant to be limiting. Numerous other examples,
configurations, processes, etc., may exist, some of which are
described in greater detail below. Example embodiments
will now be described with reference to the accompanying
figures.

COLMAP is an open-source geometry-based SfM pipe-
line that can be used as a preliminary step for state-of-the-art
dense reconstruction approaches. Like most geometry-based
approaches, however, it requires images with sufficiently
large baselines. Techniques described herein may be used to
improve upon the approach of geometry-based SfM
approaches such as COLMAP to perform more robustly for
small-parallax settings often found in movies and TV shows.
COLMAP is described in greater detail in “Structure-from-
motion revisited”, CVPR, 2016 by Johannes L. Schonberger
and Jan-Michael Frahm, which is hereby incorporated by
reference.

Geometry-based SFM has been attempted in a variety of
previous approaches geared for videos with small motion to
simplify the rotation matrix and parameterize bundle adjust-
ment using inverse depth of reference image. Previous
approaches have made the similar simplification and param-
eterizations as described above, but assume that camera
intrinsics are unknown and optimize them in bundle adjust-
ment. These works have generally only shown improved
results for videos with very small accidental motion and do
not generalize to data with relatively larger motion as is the
case in movies and TV shows. Unlike prior approaches that
have used priors for camera motion, at least one embodiment
described herein utilizes priors for scene geometry that are
robust to both narrow as well as wide baseline data.

Learning-based SfM has been attempted in a variety of
previous approaches that were geared towards jointly esti-
mating motion and depth in an end-to-end fashion. Previous
works stacked multiple encoder-decoder networks for their
iterative estimation. To improve the robustness of pose
estimation, some prior works construct pose-cost volume
similar to depth-cost volume used in stereo matching to
predict camera pose iteratively. Unlike prior approaches that
rely on ground truth labels for training, at least one embodi-
ment described herein utilizes pre-trained depth estimators
without the need of labels from target data. This greatly
reduces the computational resources needed, as the time and
effort involved in obtaining labeled training data and/or
training of appropriate models may be computationally
difficult and/or require dedicated computing resources in
order to perform the training process efficiently.

Hybrid approaches have been attempted in a variety of
previous approaches to optimize camera pose and depth by
using geometry-consistency constraints. Depth has been
represented as a linear combination of depth basis maps, and
camera motion and depth has been computed by aligning
deep features using differentiable gradient descent. Previous
attempts have used dense optical flow to build dense corre-
spondences, and iterate between learning based depth esti-
mation and optimization based motion estimation. Previous
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attempts have optimized the reprojection loss by allowing
depth to deform as splines for low-frequency alignment.
Depth filters are used for high-frequency alignment to
recover the details. In various embodiments described
herein, optical flow is not required and the removal of this
limitation allows for the approaches described herein to
work well on enables techniques described herein to work
on both videos as well as un-ordered image-sets.

FIG. 1 illustrates an environment 100 depicting a pipeline
for implementing depth guided structure from motion, in
accordance with one or more example embodiments of the
present disclosure.

Deep networks and the availability of large-scale depth-
data have contributed to progress in the field of monocular
depth-estimation. A depth estimation network may be
trained in a self-supervised manner using monocular videos.
Multiple datasets for training using multiple objectives that
are invariant to depth scale and range may be mixed. Depth
may be divided into bins whose centers are estimated
adaptively per-image, and can be linearly combined to
predict the final depth value. In various embodiments, a
pre-trained monocular depth estimator is utilized to generate
depth-priors for sparse keypoints. Although monocular
depth estimates are inconsistent across frames, as is made
clear through techniques described in this disclosure, they
can be utilized as priors in SfM pipeline to help the recon-
struction process to converge to a better solution.

Input images 102 may refer to image frames of a movie
or TV show. In general, movies and TV shows tend to have
less camera motion to create an engaging viewing experi-
ence, as compared to ETH3D dataset and others. A digital
content item may be segmented into scenes, and the input
image frames for each scene may be processed together.

Various embodiments described herein build on incre-
mental STM. An incremental SfM pipeline may be divided
into three components: (i) correspondence search 104, (ii)
initialization 106, and (iii) incremental reconstruction 108.
These components may be implemented, according to at
least one embodiment, in the following manner:

With respect to (i) correspondence search 104, and
according to at least one embodiment, for each image [ in a
given set of N images 7, their 2-D keypoints pEf 2 and
respective appearance-based descriptors are extracted and
used to match image-pairs (I; [,)E7, using a similarity-
metric based on their keypoint-descriptors. A robust estima-
tor such as RANSAC can be used to perform robust geo-
metric verification of the matched image-pairs in order to
estimate the geometric transformation between them.

With respect to (ii) initialization 106, based on epipolar
geometry of the corresponding 2-D keypoints in a matched
image-pair (I,; I,), two-view reconstruction can be per-
formed to estimate the initial camera pose (R,,,,; t,,..,)ESE(3)
and 3-D point cloud PEj . Recall that good initialization is
important for incremental SfM pipelines as later steps may
not be able to recover from a poor initialization. To this end,
heuristics such as number of keypoint matches, triangulation
angles and geometric-transformation types may be used to
select a good image-pair likely to result in high-quality
initialization.

With respect to (iii) incremental reconstruction 108, new
images from the remaining image-set are incrementally
incorporated into the reconstruction process by iterating
through a three-step process. The three-step process may
include an image registration step, in which a new image is
registered to the current 3D scene by first solving the
Perspective-n-Point (PnP) problem using RANSAC on 2D
to 3D correspondences, and then refining the pose of the new



US 12,046,002 B1

5

image by minimizing its reprojection error. The three-step
process may include a triangulation step in which scene
points of the new image are triangulated and added to the
existing scene The three-step process may include a bundle
adjustment step in which the camera pose and 3-D point
cloud are jointly refined by minimizing the total reprojection
error of the currently registered images.

Under small-parallax settings, existing (ii) initialization
techniques struggle to produce good initial two-view recon-
struction due to unstable epipolar geometry, while incre-
mental reconstruction tends to cover bad solutions due to
large triangulation variation. In at least one embodiment of
the present disclosure, keypoints with depth-prior 116
obtained from a pretrained network is used to improve
initialization techniques under small-parallax settings.

Keypoint depth may be determined according to various
techniques described in greater detail below. In at least one
embodiment, given an image-set such as input images 102,
a process as described herein uses a COLMAP pipeline for
2-D keypoints detection and matching. A pretrained depth
estimator 110 may be used to obtain dense depth maps 112
for each input image. Moreover, the process may use a
pretrained monocular depth-estimator to predict the dense
depth map D, for each image I,. The depth of keypoint p, in
1, is extracted from D, using bilinear interpolation as D,[p,].
The process may incorporate these keypoints with depth
priors 116 in the initialization step to get a more accurate
estimate of the initial camera pose and 3D point cloud, and
regularize the optimization process of image registration and
triangulation to guide the incremental reconstruction
towards a better solution. By using the sparse keypoints-
depth instead of dense depth map computation and memory
efficiency may be maintained for large scale reconstruction.
Various techniques described herein are agnostic to the
choice of depth estimation model, which is evidenced by the
empirical findings discussed below in relation to the ablation
study.

The first step of incremental SFM is initialization. Its goal
is to find a pair of images (I, 1,), estimate the relative
camera pose between them (R, ; t,,)ESE(3) and triangulate
an initial 3D point cloud PER " for the scene observed by
both images. The initialization chosen by used in subsequent
steps, and it is important to have good quality initialization,
as subsequent steps may not be able to correct errors from
a low quality initialization.

In various embodiments, initialization techniques are
described in greater detail below for projecting 2-D key-
points into 3-D. Instead of computing the essential matrix
from 2-D to 2-D correspondences between the initial image-
pair (I, 1,), and decomposing it into rotation and translation
matrices as done in COLMAP, keypoint-depth information
is incorporated to formulate the initialization step as a
Perspective-n-Point (PnP) problem. In at least one embodi-
ment, a process comprises a step to create an initial point
cloud P, by projecting the 2-D keypoints in I, into 3-D as
follows:

Pa=Do[p K hp)Vp,ET Eq 1)

where D_[p,] is the depth of p,, K & *** is the intrinsic
matrix of the camera that captured [ ,, h(¢) converts euclidean
coordinates to homogeneous coordinates, and 7 , is the set of
2-D keypoints in I,,. This results in an initial 3-D point cloud
created from keypoints in I ..

The relative pose between [, and I, is then estimated using
geometric relationship between 2-D keypoints in [, and their
corresponding 3-D points in the point cloud (2-D to 3-D
correspondences), which is the goal of the PnP problem.
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Instead of estimating the relative pose using 2D to 2-D
correspondences with epipolar geometry that is unstable
under small baseline, using 2-D to 3-D correspondences
with PnP approach in an initialization method according to
at least one embodiment results in initialization that is much
more robust to small baseline since PnP naturally prefers
small baseline data.

Note that unlike COLMAP, which selects the initial
image-pair by considering both triangulation angle and the
number of matched keypoints, as described herein, a process
may select the image pair which has the largest number of
matched keypoints with valid depth. Valid depth may be
considered as all values except O or infinity. In some cases,
the valid depth is defined as a range of real numbers within
the range of O to infinity In various embodiments, the
number of matched keypoints used to generate the initial
point cloud is determined based on the range of acceptable
depth values. For example, if there are a large range of
acceptable depth, more matched keypoints are used to
generate the initial point cloud with larger scene-coverage,
making subsequent reconstruction steps more robust and
accurate.

In at least one embodiment, at least one implementation
of depth guided SfM as described in this disclosure finds a
pair of images for initialization using the number of key-
points as the metric. The pair of images which has the largest
number of correspondences are selected for initialization.
Larger number of correspondences means more redundancy
for PnP which likely leads to more accurate camera pose
estimation and also an initial 3D point cloud with.

FIG. 2 depicts a graph 200 showing the parallax distri-
bution for ETH3D that is plotted with StudioSFM datasets.
The x-axis of graph 200 is plotted against parallax, and the
y-axis of graph 200 is plotted against the number of scenes
as a percentage. Parallax may be computed as the ratio
between maximum camera translation and the distance
between the camera and a 3-D point. Accordingly, it may be
appreciated that small-parallax may be a result of small
movements at a close distance, translational camera move-
ments from a long distance away, and so forth. These are
provided as non-limiting examples of how small-parallax
scenes may be shot, and should not be construed to limit the
techniques for measuring parallax values.

To underscore the prevalence of small-baseline in studio-
produced video-content, parallax-distribution is compared
between StudioSfM dataset and a large-scale SfM dataset of
ETH3D (shown in FIG. 2). Parallax may be computed as the
ratio between the maximum translation of camera motion
and the median distance of 3-D point cloud to all cameras.
FIG. 2 shows that most videos of StudioSfM have small
parallax because the shots in movies and TV shows tend to
have less camera motion to create an engaging viewing
experience. In contrast, ETH3D has a much larger parallax
since it is captured specifically for the purposes of 3-D
reconstruction using standard approaches. As can be seen in
FIG. 2, a majority of the image frames in StudioSFM
dataset, which includes typical shots from movies and TV
shows, tend to have less camera motion. In various embodi-
ments, digital content items such as TV shows and movies
have a majority of shots with parallax that is under 0.25, 0.5,
1.0, 1.5, or 2.0.

FIG. 3 illustrates a diagram 300 depicting depth regular-
ized optimization, in accordance with one or more example
embodiments of the present disclosure. In at least one
embodiment, diagram 300 depicts a depth-regularized opti-
mization that incorporates both reprojection error 306 and
depth consistency error 308 as regularizers for optimizing
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loss functions for image registration (Equation 2) and/or
triangulation (Equation 5), according to various embodi-
ments contemplated with the scope of this disclosure.

FIG. 3 depicts a camera 302 or other capture device that
is used to capture a scene. A camera pose of an image [,
captured by camera 302 may be defined as (R;; t;)e SE(3)
where R,e ;¥ a rotation matrix, t,€ >': a translation
vector.

In various embodiments, a process comprises an initial-
ization step that is followed by: (a) image registration, which
registers a new image to the existing scene and (b) triangu-
lation, which triangulates the new points. In various embodi-
ments, a novel depth-regularized objective is used to
improve these two steps. The intuition of this approach is
illustrated in FIG. 3 and its details are explained below.

In at least one embodiment, a process as described herein
performs an image registration step that follows the proce-
dure used in COLMAP to select next image I;, and estimate
its initial camera pose using PnP problem formulation with
RANSAC. In at least one embodiment, this initial camera
pose is further refined by minimizing the following objective
function:

R 6, 7i Bi = arngTrli% Z Epr(pi) + AEpc(pi, vis Bi) (Ea. 2)

picy;

Here, @, is the set of inliers keypoints obtained from
RANSAC of initial pose estimation, while E is the repro-
jection loss and E,, is the depth consistency loss. A is the
weight to balance the two losses. Ep, is defined as:

Epr(p)=|TRPr+t)—p|| (Eq. 3)

where II represents the projection from 3-D points to
image plane. Similarly E . is defined as:

Epc(pi v B = D WRP; + ). = vDilpi] = Bl (Ba. )

Picy;

where D,[p,] is the depth of keypoints p;, [x].€ F, x€ §  is
the third element of the 3-D point x. 7,, B, are the scale and
shift to align the depth-prior 304 of I, with the projected
depth from 3-D points.

In at least one embodiment, a process as described herein
perform a triangulation step that follows the image regis-
tration step. In at least one embodiment, once image I, is
registered (e.g., as described above), the newly observed
scene points are added to the existing point cloud via
triangulation. DLT and RANSAC may be used to estimate
the initial 3-D position and refine it using the following
objective function:

P; = argmin > Em(pp)+ AEpc(p), vir B) (Ea. 5)

T peN(PreY)

where P;*" is the new set of 3-D points observed in I,
N(P;/**}) is the set of 2-D keypoints corresponding to P,*",
and Ep; and E - are the reprojection and depth consistency
errors as defined above. v, B, are computed from image
registration and are kept fixed here. Note that the 3-D point
estimated from triangulation based only on reprojection loss
has large variance when the triangulation angle is small,
resulting in poor performance in small parallax settings. The
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objective function described above addresses this challenge
by regularizing the position of the 3-D point using the depth
consistency error while keeping the reprojection error low.

FIG. 4 illustrates evaluation of camera pose on Stu-
dioSFM dataset, in accordance with one or more example
embodiments of the present disclosure. In at least one
embodiment, FIG. 4 depicts graphs 400 of the recall-curves
of multiple methods for ATE (absolute trajectory error),
T-RPE (relative pose error for translation), and R-RPE
(relative pose error for rotation) for various existing methods
in relation to an implementation of depth guided SfM as
described in this disclosure. An implementation of depth
guided structure from motion as described herein, labeled
“Ours” is shown to perform significantly better than
COLAMP, COLMAP++, DeepV2D, DfUSMC, and RCVD
along ATE, T-RPE, and R-RPE evaluation metrics.

In various embodiments, SfM techniques described herein
were comprehensively evaluated using a new dataset. In at
least one embodiment, a new dataset (StudioSfM) of 133
shots with 21K frames from 15 TV-episodes was collected,
as depicted in FIG. 4. While TV-episodes are described as
being included in StudioSfM dataset, other types of digital
content such as movies and videos may be included in the
dataset in various suitable combinations. The ground truth
camera pose and point clouds may be created manually by
professionals using commercial computer graphics soft-
ware. The StudioSfM dataset may be used to demonstrate
that the SfM approaches described herein result in signifi-
cantly more accurate camera poses and scene geometry over
existing state-of-the-art approaches under small-parallax
settings in studio-produced video-content. Additionally, it
may be shown that the approaches described herein do not
cause any degradation on standard SfM datasets with large
parallax, and maintains the generalizability and scalability
of standard SfM pipelines.

Techniques for evaluating SfM performance are described
herein. For example, in at least one embodiment, for each
full-length TV episode, shot segmentation is run to split the
content into a set of constituent shots and then sparsely
sampled these shots in a uniform manner. For each sampled
shot, professional visual effects artists generated the ground-
truth camera poses and 3-D point clouds through commer-
cial CG software. Other ways of generating ground-truth
data may include using computer vision techniques or
machine learning models to produce the ground-truth data
programmatically. The scale was determined based on ref-
erence objects in the scene such as actors and furniture. In
some embodiments, shots are selectively removed when
they were determined to be too challenging to be annotated
due to factors such as heavy motion-blur and/or fully static
camera.

SfM models according to techniques described herein
were presented with ETH3D dataset to validate that the
approach does not result in any accuracy-loss for data with
large parallax. ETH3D is a standard SfM dataset with 13
indoor and outdoor scenes. Each scene contains a set of
unordered images where precise camera poses and dense
point cloud from a laser scan are provided. Other suitable
canonical or reference dataset may be used to baseline the
performance of the SfM models described herein.

In at least one embodiment, an approach described herein
builds on the codebase of COLMAP. In at least one embodi-
ment, an approach described herein uses DPT-large as a
default depth estimator for producing depth-priors. The
influence of using different depth models on methods
described herein is analyzed in the ablation study described
below. Input image height is resized to 384 while maintain-
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ing the original aspect ratio, according to at least one
embodiment. The dense depth map is resized to the original
image size using nearest neighbor interpolation. The weight
A for depth regularized optimization is always kept fixed at
6. Mask-RCNN is used to create binary masks of humans
which are used as input for all compared approaches.

Unlike comparisons provided by previous approaches that
only use original COLMAP on videos with small camera-
motion, hyper-parameters are tuned for small-parallax set-
tings to make it much less likely to fail on small-parallax
data in order to have a fairer comparison. This version of
COLMAP may be referred to as COLMAP++, and repre-
sentative models described herein may be compared against
the original COLMAP, COLMAP++, DeepV2D, RCVD and
DfUSMC.

In at least one embodiment, camera pose is evaluated by
computing three commonly used metrics: absolute trajectory
error (ATE), relative pose error for translation (T-RPE) and
rotation (R-RPE). For evaluate 3-D point cloud, point cloud
is projected to each frame using estimated camera-pose and
measure the accuracy of relative depth d=max(y,*/y,, y,/v,%,
and absolute depth O=ly,—y,*| under different thresholds
where y, and y,* are the estimated and ground truth depth.

The quality of the estimated camera pose on StudioSFM
dataset may be evaluated, as described in greater detail

10

FIG. 5 illustrates graphs 500 of camera pose estimation
using StudioSFM dataset under various settings, in accor-
dance with one or more example embodiments of the present
disclosure. In at least one embodiment, FIG. 5 depicts upper
graphs under (a) large-parallax setting and lower graphs
under (b) small-parallax setting. As can be seen, an imple-
mentation of depth guided structure from motion (labeled as
“ours”) performs significantly better than COLMAP++ on
small-parallax data and performs similarly to COLMAP++
on large-parallax data. FIG. 5 shows the significantly better
performance of depth guided SFM approach described
herein on small-parallax set, highlighting the importance of
using depth-priors in geometry-based SfM for small-paral-
lax settings.

Depicted below is Table 1, which provides camera pose
evaluation on StudioSfM dataset using AUCs for absolute
trajectory error (ATE), relative pose error for translation
(T-RPE) and rotation (R-RPE) to evaluate performance of
RCVD, DIUSMC, DeepV2D, COLMAP, COLMAP++, and
an implementation of a depth guided SfM approach, accord-
ing to at least one embodiment of the present disclosure. As
can be seen in Table 1, the depth guided SfM approach
outperforms existing models with respect to ATE, T-RPE,
and R-RPE metrics. The relative performance increase is
included in parentheses:

TABLE 1

Camera Pose Evaluation

ATE AUC T-RPE AUC R-RPE AUC
Method 0.2 (cm) 2.0 (ecm) 0.1 (cm) 0.5 (cm) 0.02 (%) 0.1 (®)
RCVD 4.2 28.0 5.0 17.5 44 23.1
DfUSMC 22.1 45.8 23.8 43.0 14.5 257
DeepV2D 15.2 43.8 5.6 19.2 4.6 15.8
COLMAP 20.0 49.6 23.1 45.8 25.8 46.7
COLMAP++ 24.7 59.1 343 60.1 39.7 66.0

Depth Guided

SFM  31.8 (+7.1) 65.3 (+6.2) 41.6 (+7.3) 69.8 (+9.7) 48.7 (+9.0) 74.8 (+8.8)

below. The predicted camera poses are aligned with the
ground truth camera pose using similarity transformation
before computing the metrics. FIG. 4 shows the plot of recall
against three error metrics and Table 1 shows the area-under-
curve (AUC) for each curve. As can be seen, depth guided
SfM techniques described herein significantly outperform
other approaches across all three metrics. COLMAP++
performs much better than original COLMAP showing the
importance of tuning it to work with small parallax datasets.
DfUSMC does not work well on StudioSFM which indicates
that their assumptions about camera-motion do not gener-
alize to this dataset. DeepV2D also shows low performance
on StudioSFM likely due to their lack of outliers handling
mechanisms. To further clarify the benefit of depth guided
SfM approach for small parallax settings, videos in Stu-
dioSfM dataset were sorted according to their parallax in
descending order, and the top 30% of dataset was used as the
large-parallax set and bottom 30% as the small-parallax set.
Estimated camera poses generated by an implementation of
depth guided SfM was compared with COLMAP++ using
these two sets.

45

50

To evaluate the quality of estimated point clouds, project
point clouds are projected into each frame using the esti-
mated camera-pose and then compare depths of the pro-
jected points with ground truth depths. Besides computing
the accuracy using relative depth error as done in DeepV2D,
the accuracy is also computed using absolute depth error as
the ground truth point clouds are annotated using real-world
scale. Table 2 shows that an implementation of depth guided
SfM described herein outperforms all other approaches that
were tested on both relative and absolute depth error.
Directly applying DPT-large does not produce accurate
depths even though they can visually look good. In contrast,
using the output of DPT-large as depth-priors in geometry-
based SfM substantially improves the quality of estimated
depth.

Depicted in table 2 below, recall is measured using

relative depth and absolute depths. Additionally, results for
DPT-large are presented as a reference:
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TABLE 2

Depth Estimation Evaluation

Relative Depth Accuracy (%) Absolute Depth Accuracy (%)

Method 8<1.25 §<1.252 8<125% 9<35cm O<10cm 6<25cm
DPT-large* 33.5 53.6 64.9 3.8 7.4 145
RCVD 437 66.5 79.4 5.2 9.1 187
DIUSMC 27.6 39.6 46.4 2.4 45 8.9
Deep V2D 63.4 80.1 87.5 8.9 155 28.8
COLMAP 50.8 55.1 56.9 20.7 27.3 38.3
COLMAP++ 729 81.4 85.0 22.8 32.6 50.6
Depth Guided SFM  80.0 86.0 89.3 27.1 39.0 57.3
. . . 15 . . . .

To demonstrate the effectiveness of an implementation of in graph 600, a full implementation of depth guided structure
depth guided SfM described herein on standard SfM data- from motion—for example, as described in connection with
sets, it was assessed on ETH3D where motion-parallax is FIGS. 1 and 8—is referenced as “ours full” whereas those

significantly larger than StudioSfM. Estimated camera pose  that utilize depth-guided SFM only for initialization is
were compared with original COLMAP which is already 5o labeled as “initialization only” and where only depth-regu-
tuned for large-parallax.. ) larized optimization is used is labeled as “optimization
Camera pose comparisons presented in Table 3 shows that only.”
Wh,ﬂe both CO,LM{A‘P and. an 1mp1ementat10n. of depth Several variants of depth guided SfM were considered
guided StM achieve impressive performance, the implemen- and compared with COLMAP++ on StudioSfM dataset
tation of depth guided SfM is still able to slightly outperform 25 FIG. 6 compares the recall curves for ATE and R-RPE
COLMAP. The comparison of depth is shown in Table 4 in ) P . .
. . between COLMAP++, depth guided SfM with only
which better absolute depth accuracy than COLMAP is . s e g ORI .
improved initialization (initialization only), depth guided

achieved. Overall better performance by the implementation . . L L o

of depth guided SfM on ETH3D demonstrates that this SfM with only depth-regulanzed optimization (optimization

approach does not show any degradation on large-parallax only) and ﬁlePFh gulded SfM (fulh). It can be seen that .the
proposed initialization using depth-prior of keypoints

data while offering significant gains for small-parallax set-

tings. achieves substantial improvement over COLMAP++ show-
As depicted in Table 3 below, AUCs for absolute trajec- ing the contribution of the initialization techniques described
tory error (ATE), relative pose error for translation (T-RPE) for SfM pipeline to converge to a good solution. With both
and rotation (R-RPE) are provided for COLMAP and an . improved initialization and depth regularized optimization,

implementation of depth guided SfM according to the pres- the full approach performs the best.
ent disclosure. To assess the robustness of depth guided SfM approaches
to the choice of depth-estimator, camera pose estimation was
TABLE 3 evaluated using several off-the-shelf pretrained depth esti-
40 Mmation models based on various network architectures and
trained with different datasets. Specifically, a comparison

30

Camera-pose Evaluation on ETH3D Using AUC

ATE AUC T-RPE AUC R-RPE AUC involving five monocular depth estimation models, includ-

ing MiDaS small which is designed for mobile devices,

Method 02 fem) 2.0 {em) 0.1 (em) 0.5 (em) 0.02 () 01 () DPThybrid and DPT-large which are based on Transformers,

COLMAP 957 994 967 987 272 706 45 AdaBins which is the latest approach for monocular depth

Depth 995 999 971 991 277 698 estimation and MC which focuses on human depth estima-
Guided SfM tion.

FIG. 7 illustrates graphs 700 of ablation study of depth

As depicted in Table 4 below, accuracy of depth estima- estimators for StudioSFM dataset, according to at least one

tion on ETH3D dataset by COLMAP and an implementation 50 embodiment of the present disclosure. FIG. 7 shows that
of depth guided SfM according to the present disclosure are depth guided approach significantly outperforms COL-
compared using both relative depth and absolute depth. MAP++ using depth priors provided by any of the five

TABLE 4

Evaluation of Depth Estimation on ETH3D Dataset

Relative Depth Accuracy (%) Absolute Depth Accuracy (%)

Method 0<1.05 8<1.052 98<1.053 O6<lcm 6<2cm 6<5cm
COLMAP 96.9 98.1 98.5 58.7 72.9 86.0
Depth Guided SFM 96.8 98.0 98.4 61.2 75.7 88.1

FIG. 6 illustrates graphs 600 of ablation study using different pretrained depth estimation models. The small
StudioSFM dataset, according to at least one embodiment of 65 performance variation among those depth estimators dem-
the present disclosure. Recall of translation error and relative onstrates that depth guided SfM approaches does not rely on
rotation error are plotted for different variants. As depicted a particular depth estimator and is robust to diverse network
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architectures and training datasets. Different implementa-
tions of depth guided SfM may utilize different depth-
estimator implementations.

In addition to evaluating the use of various depth estima-
tors the robustness of depth guided SfM approaches were
tested under different amounts of synthetic noise. For each
keypoint depth d, random Gaussian noise with 0 mean and
o.-d standard deviation with different values of o was added.
As shown in Table 5, the performance degradation of an
implementation of depth guided SfM approach is only
within 5% under the largest added noise level 0.4 which
demonstrates that depth guided SfM pipelines can tolerant
sizable amounts of errors in the estimated depth-priors.

As depicted below, Table 5 depicts depth noise analysis
findings for camera pose estimation. Gaussian noise with 0
mean and o-d standard deviation with different values of a
were added to each keypoint with depth d for an implemen-
tation of depth guided SfM as described in this disclosure.
The performance degradation is within 5% for a of 0.4,
which demonstrates that the approach is robust to errors in
estimated depth-priors.

TABLE 5
Depth Noise Analysis For Camera Pose Estimation

ATE AUC T-RPE AUC R-RPE AUC
[¢3 02 (cm) 20 (m) 0.1 (m) 05 @cm) 0.02(") 01()
0.0 31.8 65.3 41.6 69.8 48.7 74.8
0.1 31.1 63.9 39.4 67.6 47.1 73.0
0.2 30.3 62.8 39.2 67.5 47.0 73.5
0.4 28.5 62.7 38.5 67.0 44.6 71.9

FIG. 8 shows an illustrative example of a process 800 for
3-D reconstruction using depth guided structure from
motion (SfM) techniques, in accordance with one or more
example embodiments of the present disclosure. In at least
one embodiment, some or all of the process 800 (or any
other processes described herein, or variations and/or com-
binations thereof) is performed under the control of one or
more computer systems that store computer-executable
instructions and may be implemented as code (e.g., com-
puter-executable instructions, one or more computer pro-
grams, or one or more applications) executing collectively
on one or more processors, by hardware, software, or
combinations thereof. The code, in at least one embodiment,
is stored on a computer-readable storage medium in the form
of' a computer program comprising a plurality of computer-
readable instructions executable by one or more processors.
The computer-readable storage medium, in at least one
embodiment, is a non-transitory computer-readable
medium. In at least one embodiment, at least some of the
computer-readable instructions usable to perform the pro-
cess 800 are not stored solely using transitory signals (e.g.,
a propagating transient electric or electromagnetic transmis-
sion). A non-transitory computer-readable medium does not
necessarily include non-transitory data storage circuitry
(e.g., buffers, caches, and queues) within transceivers of
transitory signals. Process 800 may be implemented in the
context of various systems and methods described elsewhere
in this disclosure, such as those discussed in connection with
FIGS. 1 and 9. In at least one embodiment, process 800 or
a portion thereof is implemented by a computing resource
service provider.

In at least one embodiment, process 800 comprises a step
to obtain a plurality of image frames from a digital content

25

30

35

40

45

65

14

item that corresponds to a scene 802. A digital content item
may refer to a movie, TV show, or other videos. In general,
real-world content tends to include a higher proportion of
scenes with small-parallax, as depicted in the comparison
between StudioSFM and ETH3D dataset in FIG. 2. In
various embodiments, the plurality of image frames are
extracted from a scene of a movie, TV show, etc. and
provided to a system performing process 800 for 3-D
reconstruction of the scene that is depicted in the digital
content item.

In at least one embodiment, process 800 comprises a step
to determine, based at least in part on a correspondence
search, a set of 2-D keypoints for the plurality of image
frames 804. According to at least one embodiment, for each
image [ in a given set of N images 7, their 2-D keypoints p&
5> and respective appearance-based descriptors are
extracted and used to match image-pairs (I; I,)E7, using a
similarity-metric based on their keypoint-descriptors. A
robust estimator such as RANSAC can be used to perform
robust geometric verification of the matched image-pairs in
order to estimate the geometric transformation between
them.

In at least one embodiment, process 800 comprises a step
to obtain a depth estimator 806. The depth estimator may be
a pre-trained monocular depth estimator that is utilized to
generate depth-priors for sparse keypoints. Although mon-
ocular depth estimates are inconsistent across frames, as is
made clear through techniques described in this disclosure,
they can be utilized as priors in SfM pipeline to help the
reconstruction process to converge to a better solution.

In at least one embodiment, process 800 comprises a step
to determine, based at least in part on the depth estimator, a
plurality of dense depth maps for the plurality of image
frames 808. A pretrained depth estimator may be used to
obtain dense depth maps for each input image. Moreover,
the process may use a pretrained monocular depth-estimator
to predict the dense depth map D, for each image I,.

In at least one embodiment, process 800 comprises a step
to determine, based at least in part on the set of 2-D
keypoints and the plurality of dense depth maps, a corre-
sponding set of depth priors 810. In at least one embodiment,
depth prior of keypoint p, in I, is extracted from its dense
depth map D, using bilinear interpolation as D,[p,]. The
process may incorporate these keypoints with depth priors in
the initialization step to get a more accurate estimate of the
initial camera pose and 3D point cloud, and regularize the
optimization process of image registration and triangulation
to guide the incremental reconstruction towards a better
solution. By using the sparse keypoints-depth instead of
dense depth map computation and memory efficiency may
be maintained for large scale reconstruction. Various tech-
niques described herein are agnostic to the choice of depth
estimation model, which is evidenced by the empirical
findings discussed below in relation to the ablation study.

In at least one embodiment, process 800 comprises a step
to perform an initialization based at least in part on the set
of 2-D keypoints and the corresponding set of depth priors
to determine an initial image pair, the initial image pair
comprises a first image frame and second image frame of the
plurality of images 812. Initialization may be performed in
any suitable manner described herein, including techniques
described in connection with FIGS. 1 and 3.

In at least one embodiment, initialization comprises find-
ing a pair of images using the number of keypoints as the
metric. The pair of images that has the largest number of
correspondences are selected for initialization, according to
at least one embodiment. Image frames with larger number
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of correspondences may be suitable for use as the initial
image pair because larger numbers of correspondences
provide for more redundancy for PnP, which tends to lead to
more accurate camera pose estimation and also an initial 3-D
cloud with larger coverage of the scene.

In at least one embodiment, process 800 comprises a step
to perform a depth-constrained optimization based at least in
part on the initial image pair, the set of 2-D keypoints, and
the corresponding set of depth priors 814. Depth-constrained
optimization may be performed in any suitable manner
described herein, including techniques described in connec-
tion with FIGS. 1 and 3.

In at least one embodiment, after initialization of a 3-D
point cloud and initial camera pose (e.g., from the initial
image pair), the remaining images of the scene are registered
incrementally. In some embodiments, all images of a scene
are registered. In some embodiments, some image frames
are omitted, for example, where there is motion blur or other
factors that make the image frames unsuitable for depth-
constrained optimization. Depth-constrained optimization
may involve depth-constrained pose refinement and/or
depth-constrained triangulation, according to at least one
embodiment.

In at least one embodiment, each time an image is
registered to a 3-D point cloud, the camera pose is refined by
minimizing a first objective function that includes a repro-
jection error for a set of keypoints and a depth consistency
error for the set of keypoints.

In at least one embodiment, after an image is registered,
3-D points are added to the point cloud via triangulation.
Given a correspondence, triangulation aims to estimate the
location of a 3-D point by minimizing loss of a second
objective function that includes a reprojection loss for pairs
of points and depth consistency errors for the pairs of points.

One or more operations of the methods, process flows, or
use cases of FIGS. 1-9 may have been described above as
being performed by a user device, or more specifically, by
one or more program module(s), applications, or the like
executing on a device. It should be appreciated, however,
that any of the operations of the methods, process flows, or
use cases of FIGS. 1-9 may be performed, at least in part, in
a distributed manner by one or more other devices, or more
specifically, by one or more program module(s), applica-
tions, or the like executing on such devices. In addition, it
should be appreciated that processing performed in response
to execution of computer-executable instructions provided
as part of an application, program module, or the like may
be interchangeably described herein as being performed by
the application or the program module itself or by a device
on which the application, program module, or the like is
executing. While the operations of the methods, process
flows, or use cases of FIGS. 1-9 may be described in the
context of the illustrative devices, it should be appreciated
that such operations may be implemented in connection with
numerous other device configurations.

The operations described and depicted in the illustrative
methods, process flows, and use cases of FIGS. 1-9 may be
carried out or performed in any suitable order, such as the
depicted orders, as desired in various example embodiments
of the disclosure. Additionally, in certain example embodi-
ments, at least a portion of the operations may be carried out
in parallel. Furthermore, in certain example embodiments,
less, more, or different operations than those depicted in
FIGS. 1-9 may be performed.

Although specific embodiments of the disclosure have
been described, one of ordinary skill in the art will recognize
that numerous other modifications and alternative embodi-
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ments are within the scope of the disclosure. For example,
any of the functionality and/or processing capabilities
described with respect to a particular device or component
may be performed by any other device or component.
Further, while various illustrative implementations and
architectures have been described in accordance with
embodiments of the disclosure, one of ordinary skill in the
art will appreciate that numerous other modifications to the
illustrative implementations and architectures described
herein are also within the scope of this disclosure.

Certain aspects of the disclosure are described above with
reference to block and flow diagrams of systems, methods,
apparatuses, and/or computer program products according to
example embodiments. It will be understood that one or
more blocks of the block diagrams and flow diagrams, and
combinations of blocks in the block diagrams and the flow
diagrams, respectively, may be implemented by execution of
computer-executable program instructions. Likewise, some
blocks of the block diagrams and flow diagrams may not
necessarily need to be performed in the order presented, or
may not necessarily need to be performed at all, according
to some embodiments. Further, additional components and/
or operations beyond those depicted in blocks of the block
and/or flow diagrams may be present in certain embodi-
ments.

Accordingly, blocks of the block diagrams and flow
diagrams support combinations of means for performing the
specified functions, combinations of elements or steps for
performing the specified functions, and program instruction
means for performing the specified functions. It will also be
understood that each block of the block diagrams and flow
diagrams, and combinations of blocks in the block diagrams
and flow diagrams, may be implemented by special-purpose,
hardware-based computer systems that perform the specified
functions, elements or steps, or combinations of special-
purpose hardware and computer instructions.

The examples presented herein are not meant to be
limiting.

FIG. 9 illustrates a block diagram of an example of a
machine 900 (e.g., implemented in whole or in part in the
context of embodiments described in connection with other
figures. In some embodiments, the machine 900 may operate
as a standalone device or may be connected (e.g., net-
worked) to other machines. In a networked deployment, the
machine 900 may operate in the capacity of a server
machine, a client machine, or both in server-client network
environments. In an example, the machine 900 may act as a
peer machine in Wi-Fi direct, peer-to-peer (P2P) (or other
distributed) network environments. The machine 900 may
be a wearable device or any machine capable of executing
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while only a single
machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein, such as cloud computing, software as a service
(SaaS), or other computer cluster configurations.

Examples, as described herein, may include or may
operate on logic or a number of components, modules, or
mechanisms. Modules are tangible entities (e.g., hardware)
capable of performing specified operations when operating.
A module includes hardware. In an example, the hardware
may be specifically configured to carry out a specific opera-
tion (e.g., hardwired). In another example, the hardware may
include configurable execution units (e.g., transistors, cir-
cuits, etc.) and a computer readable medium containing
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instructions where the instructions configure the execution
units to carry out a specific operation when in operation. The
configuring may occur under the direction of the executions
units or a loading mechanism. Accordingly, the execution
units are communicatively coupled to the computer-readable
medium when the device is operating. In this example, the
execution units may be a member of more than one module.
For example, under operation, the execution units may be
configured by a first set of instructions to implement a first
module at one point in time and reconfigured by a second set
of instructions to implement a second module at a second
point in time.

The machine (e.g., computer system) 900 may include
any combination of the illustrated components. For example,
the machine 900 may include a hardware processor 902
(e.g., a central processing unit (CPU), a graphics processing
unit (GPU), a hardware processor core, or any combination
thereof), a main memory 904 and a static memory 906, some
or all of which may communicate with each other via an
interlink (e.g., bus) 908. The machine 900 may further
include a power management device 932, a graphics display
device 910, an alphanumeric input device 912 (e.g., a
keyboard), and a user interface (UI) navigation device 914
(e.g., a mouse). In an example, the graphics display device
910, alphanumeric input device 912, and UI navigation
device 914 may be a touch screen display. The machine 900
may additionally include a storage device (e.g., drive unit)
916, a signal generation device 918, and a network interface
device/transceiver 920 coupled to antenna(s) 930. The
machine 900 may include an output controller 934, such as
a serial (e.g., universal serial bus (USB), parallel, or other
wired or wireless (e.g., infrared (IR), near field communi-
cation (NFC), etc.) connection to communicate with or
control one or more peripheral devices (e.g., a printer, a card
reader, other sensors, etc.)).

Reconstruction subsystem 936 may refer to software,
hardware, or a combination thereof that implements depth
guided structure from motion approaches described herein.
For example, techniques described in connection with FIGS.
1, 3, and/or 8 may be implemented using reconstruction
subsystem 936 of machine 900. In various embodiments,
reconstructions subsystem 936 is used to perform 3-D
reconstruction of scenes depicted in digital content items,
such as TV shows, movies, or other types of digital media.

The storage device 916 may include a machine readable
medium 922 on which is stored one or more sets of data
structures or instructions 924 (e.g., software) embodying or
utilized by any one or more of the techniques or functions
described herein. The instructions 924 may also reside,
completely or at least partially, within the main memory 904,
within the static memory 906, or within the hardware
processor 902 during execution thereof by the machine 900.
In an example, one or any combination of the hardware
processor 902, the main memory 904, the static memory
906, or the storage device 916 may constitute machine-
readable media.

While the machine-readable medium 922 is illustrated as
a single medium, the term “machine-readable medium” may
include a single medium or multiple media (e.g., a central-
ized or distributed database, and/or associated caches and
servers) configured to store the one or more instructions 924.

Various embodiments may be implemented fully or par-
tially in software and/or firmware. This software and/or
firmware may take the form of instructions contained in or
on a non-transitory computer-readable storage medium.
Those instructions may then be read and executed by one or
more processors to enable performance of the operations
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described herein. The instructions may be in any suitable
form, such as but not limited to source code, compiled code,
interpreted code, executable code, static code, dynamic
code, and the like. Such a computer-readable medium may
include any tangible non-transitory medium for storing
information in a form readable by one or more computers,
such as but not limited to read only memory (ROM); random
access memory (RAM); magnetic disk storage media; opti-
cal storage media; a flash memory, etc.

The term “machine-readable medium” may include any
medium that is capable of storing, encoding, or carrying
instructions for execution by the machine 900 and that cause
the machine 900 to perform any one or more of the tech-
niques of the present disclosure, or that is capable of storing,
encoding, or carrying data structures used by or associated
with such instructions. Non-limiting machine-readable
medium examples may include solid-state memories and
optical and magnetic media. In an example, a massed
machine-readable medium includes a machine-readable
medium with a plurality of particles having resting mass.
Specific examples of massed machine-readable media may
include non-volatile memory, such as semiconductor
memory devices (e.g., electrically programmable read-only
memory (EPROM), or electrically erasable programmable
read-only memory (EEPROM)) and flash memory devices;
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks.

The instructions 924 may further be transmitted or
received over a communications network 926 using a trans-
mission medium via the network interface device/trans-
ceiver 920 utilizing any one of a number of transfer proto-
cols (e.g., frame relay, internet protocol (IP), transmission
control protocol (TCP), user datagram protocol (UDP),
hypertext transfer protocol (HTTP), etc.). Example commu-
nications networks may include a local area network (LAN),
a wide area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), plain old telephone (POTS) networks, wireless data
networks (e.g., Institute of Electrical and Electronics Engi-
neers (IEEE) 802.11 family of standards known as Wi-Fi®,
IEEE 802.16 family of standards known as WiMax®), IEEE
802.15.4 family of standards, and peer-to-peer (P2P) net-
works, among others. In an example, the network interface
device/transceiver 920 may include one or more physical
jacks (e.g., Ethernet, coaxial, or phone jacks) or one or more
antennas to connect to the communications network 926. In
an example, the network interface device/transceiver 920
may include a plurality of antennas to wirelessly commu-
nicate using at least one of single-input multiple-output
(SIMO), multiple-input multiple-output (MIMO), or mul-
tiple-input  single-output (MISO) techniques. The term
“transmission medium” shall be taken to include any intan-
gible medium that is capable of storing, encoding, or car-
rying instructions for execution by the machine 900 and
includes digital or analog communications signals or other
intangible media to facilitate communication of such soft-
ware.

The operations and processes described and shown above
may be carried out or performed in any suitable order as
desired in various implementations. Additionally, in certain
implementations, at least a portion of the operations may be
carried out in parallel. Furthermore, in certain implementa-
tions, less than or more than the operations described may be
performed.

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration.” Any embodiment
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described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other embodi-
ments. The terms “computing device,” “user device,” “com-
munication station,” “station,” “handheld device,” “mobile
device,” “wireless device” and “user equipment” (UE) as
used herein refers to a wireless communication device such
as a cellular telephone, a smartphone, a tablet, a netbook, a
wireless terminal, a laptop computer, a femtocell, a high data
rate (HDR) subscriber station, an access point, a printer, a
point of sale device, an access terminal, or other personal
communication system (PCS) device. The device may be
either mobile or stationary.

As used within this document, the term “communicate” is
intended to include transmitting, or receiving, or both trans-
mitting and receiving. This may be particularly useful in
claims when describing the organization of data that is being
transmitted by one device and received by another, but only
the functionality of one of those devices is required to
infringe the claim. Similarly, the bidirectional exchange of
data between two devices (both devices transmit and receive
during the exchange) may be described as “communicat-
ing,” when only the functionality of one of those devices is
being claimed. The term “communicating” as used herein
with respect to a wireless communication signal includes
transmitting the wireless communication signal and/or
receiving the wireless communication signal. For example,
a wireless communication unit, which is capable of com-
municating a wireless communication signal, may include a
wireless transmitter to transmit the wireless communication
signal to at least one other wireless communication unit,
and/or a wireless communication receiver to receive the
wireless communication signal from at least one other
wireless communication unit.

As used herein, unless otherwise specified, the use of the
ordinal adjectives “first,” “second,” “third,” etc., to describe
a common object, merely indicates that different instances of
like objects are being referred to and are not intended to
imply that the objects so described must be in a given
sequence, either temporally, spatially, in ranking, or in any
other manner.

Some embodiments may be used in conjunction with
various devices and systems, for example, a personal com-
puter (PC), a desktop computer, a mobile computer, a laptop
computer, a notebook computer, a tablet computer, a server
computer, a handheld computer, a handheld device, a per-
sonal digital assistant (PDA) device, a handheld PDA
device, an on-board device, an off-board device, a hybrid
device, a vehicular device, a non-vehicular device, a mobile
or portable device, a consumer device, a non-mobile or
non-portable device, a wireless communication station, a
wireless communication device, a wireless access point
(AP), a wired or wireless router, a wired or wireless modem,
a video device, an audio device, an audio-video (A/V)
device, a wired or wireless network, a wireless area network,
a wireless video area network (WVAN), a local area network
(LAN), a wireless LAN (WLAN), a personal area network
(PAN), a wireless PAN (WPAN), and the like.

Some embodiments may be used in conjunction with one
way and/or two-way radio communication systems, bio-
medical sensors, wearable devices or sensors, cellular radio-
telephone communication systems, a mobile phone, a cel-
Iular telephone, a wireless telephone, a personal
communication system (PCS) device, a PDA device which
incorporates a wireless communication device, a mobile or
portable global positioning system (GPS) device, a device
which incorporates a GPS receiver or transceiver or chip, a
device which incorporates an RFID element or chip, a
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multiple input multiple output (MIMO) transceiver or
device, a single input multiple output (SIMO) transceiver or
device, a multiple input single output (MISO) transceiver or
device, a device having one or more internal antennas and/or
external antennas, digital video broadcast (DVB) devices or
systems, multi-standard radio devices or systems, a wired or
wireless handheld device, e.g., a smartphone, a wireless
application protocol (WAP) device, or the like.

Some embodiments may be used in conjunction with one
or more types of wireless communication signals and/or
systems following one or more wireless communication
protocols, for example, radio frequency (RF), infrared (IR),
frequency-division multiplexing (FDM), orthogonal FDM
(OFDM), time-division multiplexing (TDM), time-division
multiple access (TDMA), extended TDMA (E-TDMA),
general packet radio service (GPRS), extended GPRS, code-
division multiple access (CDMA), wideband CDMA
(WCDMA), CDMA 2000, single-carrier CDMA, multi-
carrier CDMA, multi-carrier modulation (MDM), discrete
multi-tone (DMT), Bluetooth®, global positioning system
(GPS), Wi-Fi, Wi-Max, ZigBee, ultra-wideband (UWB),
global system for mobile communications (GSM), 2G,
2.5G, 3G, 3.5G, 4G, fifth generation (5G) mobile networks,
3GPP, long term evolution (LTE), LTE advanced, enhanced
data rates for GSM Evolution (EDGE), or the like. Other
embodiments may be used in various other devices, systems,
and/or networks.

It is understood that the above descriptions are for pur-
poses of illustration and are not meant to be limiting.

Although specific embodiments of the disclosure have
been described, one of ordinary skill in the art will recognize
that numerous other modifications and alternative embodi-
ments are within the scope of the disclosure. For example,
any of the functionality and/or processing capabilities
described with respect to a particular device or component
may be performed by any other device or component.
Further, while various illustrative implementations and
architectures have been described in accordance with
embodiments of the disclosure, one of ordinary skill in the
art will appreciate that numerous other modifications to the
illustrative implementations and architectures described
herein are also within the scope of this disclosure.

Program module(s), applications, or the like disclosed
herein may include one or more software components
including, for example, software objects, methods, data
structures, or the like. Each such software component may
include computer-executable instructions that, responsive to
execution, cause at least a portion of the functionality
described herein (e.g., one or more operations of the illus-
trative methods described herein) to be performed.

A software component may be coded in any of a variety
of programming languages. An illustrative programming
language may be a lower-level programming language such
as an assembly language associated with a particular hard-
ware architecture and/or operating system platform. A soft-
ware component comprising assembly language instructions
may require conversion into executable machine code by an
assembler prior to execution by the hardware architecture
and/or platform.

Another example programming language may be a
higher-level programming language that may be portable
across multiple architectures. A software component com-
prising higher-level programming language instructions
may require conversion to an intermediate representation by
an interpreter or a compiler prior to execution.

Other examples of programming languages include, but
are not limited to, a macro language, a shell or command
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language, a job control language, a script language, a
database query or search language, or a report writing
language. In one or more example embodiments, a software
component comprising instructions in one of the foregoing
examples of programming languages may be executed
directly by an operating system or other software component
without having to be first transformed into another form.

A software component may be stored as a file or other data
storage construct. Software components of a similar type or
functionally related may be stored together such as, for
example, in a particular directory, folder, or library. Software
components may be static (e.g., pre-established or fixed) or
dynamic (e.g., created or modified at the time of execution).

Software components may invoke or be invoked by other
software components through any of a wide variety of
mechanisms. Invoked or invoking software components
may comprise other custom-developed application software,
operating system functionality (e.g., device drivers, data
storage (e.g., file management) routines, other common
routines and services, etc.), or third-party software compo-
nents (e.g., middleware, encryption, or other security soft-
ware, database management software, file transfer or other
network communication software, mathematical or statisti-
cal software, image processing software, and format trans-
lation software).

Software components associated with a particular solu-
tion or system may reside and be executed on a single
platform or may be distributed across multiple platforms.
The multiple platforms may be associated with more than
one hardware vendor, underlying chip technology, or oper-
ating system. Furthermore, software components associated
with a particular solution or system may be initially written
in one or more programming languages, but may invoke
software components written in another programming lan-
guage.

Computer-executable program instructions may be loaded
onto a special-purpose computer or other particular
machine, a processor, or other programmable data process-
ing apparatus to produce a particular machine, such that
execution of the instructions on the computer, processor, or
other programmable data processing apparatus causes one or
more functions or operations specified in any applicable
flow diagrams to be performed. These computer program
instructions may also be stored in a computer-readable
storage medium (CRSM) that upon execution may direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable storage medium produce an
article of manufacture including instruction means that
implement one or more functions or operations specified in
any flow diagrams. The computer program instructions may
also be loaded onto a computer or other programmable data
processing apparatus to cause a series of operational ele-
ments or steps to be performed on the computer or other
programmable apparatus to produce a computer-imple-
mented process.

Additional types of CRSM that may be present in any of
the devices described herein may include, but are not limited
to, programmable random access memory (PRAM), SRAM,
DRAM, RAM, ROM, electrically erasable programmable
read-only memory (EEPROM), flash memory or other
memory technology, compact disc read-only memory (CD-
ROM), digital versatile disc (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
may be used to store the information and which may be
accessed. Combinations of any of the above are also
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included within the scope of CRSM. Alternatively, com-
puter-readable communication media (CRCM) may include
computer-readable instructions, program module(s), or other
data transmitted within a data signal, such as a carrier wave,
or other transmission. However, as used herein, CRSM does
not include CRCM.

Although embodiments have been described in language
specific to structural features and/or methodological acts, it
is to be understood that the disclosure is not necessarily
limited to the specific features or acts described. Rather, the
specific features and acts are disclosed as illustrative forms
of implementing the embodiments. Conditional language,
such as, among others, “can,” “could,” “might,” or “may,”
unless specifically stated otherwise, or otherwise understood
within the context as used, is generally intended to convey
that certain embodiments could include, while other
embodiments do not include, certain features, elements,
and/or steps. Thus, such conditional language is not gener-
ally intended to imply that features, elements, and/or steps
are in any way required for one or more embodiments or that
one or more embodiments necessarily include logic for
deciding, with or without user input or prompting, whether
these features, elements, and/or steps are included or are to
be performed in any particular embodiment.

What is claimed is:

1. A computer-implemented method, comprising:

obtaining a plurality of image frames from a digital

content item that corresponds to a scene;

performing a correspondence search on the plurality of

image frames to determine a set of 2-D keypoints that
are matched across the plurality of image frames;
obtaining a pretrained depth estimator;

determining, using the pretrained depth estimator and for

the plurality of image frames, a plurality of dense depth
maps;

determining, based on the plurality of dense depth maps,

a corresponding set of depth priors for the set of 2-D
keypoints;

determining, for the plurality of image frames, a plurality

of 3-D points comprising at least a first 3-D point,

wherein the first 3-D point is determined based at least

in part on:

a first 2-D keypoint of a first image frame;

a first depth prior of the first 2-D keypoint; and

a first intrinsic matrix associated with the first image
frame;

determining, based at least in part on the plurality of 3-D

points, an image frame pair of a plurality of images, the
image frame pair comprising a second image frame and
a third image frame, wherein the second image frame
is different from the third image frame;

determining, for the image frame pair, an initial camera

pose;

obtaining a fourth image frame of the plurality of image

frames, wherein the fourth image frame is different
from the second image frame and the third image
frame;

determining, based at least in part on the fourth image

frame, an updated camera pose based at least in part on

a first objective function, wherein the first objective

function that is used to minimize a first loss determined

based at least in part on:

a reprojection error for a set of inlier keypoints; and

a depth consistency error for the set of inlier keypoints;
and

adding, based at least in part on the fourth image frame,

one or more 3-D points to a point cloud via triangula-
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tion that is refined based at least in part on a second

objective function that is used to minimize a second

loss determined based at least in part on:

a reprojection error for the one or more 3-D points; and

a depth consistency error for the one or more 3-D
points.

2. The computer-implemented method of claim 1,
wherein the set of depth prior are extracted from the plurality
of dense depth maps using bilinear interpolation.

3. The computer-implemented method of claim 1, further
comprising determining a relative pose for the second image
frame and the third image frame based at least in part on a
geometric relationship between respective 2-D keypoints of
the second image frame and the third image frame and their
corresponding 3-D points of the plurality of 3-D points.

4. The computer-implemented method of claim 1, further
comprising:

obtaining a fifth image frame of the plurality of image

frames, wherein the fifth image frame is different from
the second image frame, the third image frame, and the
fourth image frame;

determining, based at least in part on the fifth image

frame, a second updated camera pose based at least in
part on the first objective function; and

adding, based at least in part on the fifth image frame,

additional one or more 3-D points to the point cloud via
the triangulation that is refined based at least in part on
the second objective function.

5. The computer-implemented method of claim 1,
wherein a majority of the plurality of image frames have a
parallax of 1.0 or less.

6. A system, comprising:

one or more processors; and

memory storing executable instructions that, as a result of

execution by the one or more processors, cause the

system to:

obtain a plurality of image frames from a digital
content item that corresponds to a scene;

determine, based at least in part on a correspondence
search, a set of 2-D keypoints for the plurality of
image frames;

obtain a depth estimator;

determine, based at least in part on the depth estimator,
a plurality of dense depth maps for the plurality of
image frames;

determine, based at least in part on the set of 2-D
keypoints and the plurality of dense depth maps, a
corresponding set of depth priors;

perform an initialization based at least in part on the set
of 2-D keypoints and the corresponding set of depth
priors to determine an initial image frame pair, the
initial image frame pair comprises a first image
frame and second image frame of the plurality of
image frames;

determine a camera pose based at least in part on the
first image frame and the second image frame; and

perform a depth-constrained optimization to incremen-
tally update the camera pose based at least in part on
the set of 2-D keypoints, and the corresponding set
of depth priors.

7. The system of claim 6, wherein the instructions to
perform the initialization based at least in part on the set of
2-D keypoints and the corresponding set of depth priors to
determine an initial image pair include instructions that, as
a result of execution by the one or more processors, cause
the system to:
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determine, for the plurality of image frames, a plurality of
3-D points comprising at least a first 3-D point, wherein
the first 3-D point is determined based at least in part
on:
a first 2-D keypoint of a first image frame;
a first depth prior of the first 2-D keypoint; and
a first intrinsic matrix associated with the first image

frame.

8. The system of claim 6, wherein the initial image frame
pair is selected based at least in part on how many 2-D
keypoint correspondences are in the second image frame and
the first image frame.

9. The system of claim 6, wherein the set of depth prior
are extracted from the plurality of dense depth maps using
bilinear interpolation.

10. The system of claim 6, wherein the executable instruc-
tions include further instructions that, as a result of execu-
tion by the one or more processors, further cause the system
to:

determine a camera pose based at least in part on a first

objective function, wherein the first objective function
that is used to minimize a first loss determined based at
least in part on:

a reprojection error for a set of inlier keypoints; and
a depth consistency error for the set of inlier keypoints.

11. The system of claim 6, wherein the executable instruc-
tions include further instructions that, as a result of execu-
tion by the one or more processors, further cause the system
to:

add one or more 3-D points to a point cloud via triangu-

lation that is refined based at least in part on a second

objective function that is used to minimize a second

loss determined based at least in part on:

a reprojection error for the one or more 3-D points; and

a depth consistency error for the one or more 3-D
points.

12. The system of claim 6, wherein the depth estimator is
a pretrained depth estimator.

13. The system of claim 6, wherein a majority of the
plurality of image frames have parallax of 1.0 or less.

14. A non-transitory computer-readable storage medium
storing executable instructions that, as a result of being
executed by one or more processors of a computer system,
cause the computer system to at least:

obtain a plurality of image frames from a digital content

item that corresponds to a scene;

determine, based at least in part on a correspondence

search, a set of 2-D keypoints for the plurality of image
frames;

obtain a depth estimator;

determine, based at least in part on the depth estimator, a

plurality of dense depth maps for the plurality of image
frames;

determine, based at least in part on the set of 2-D

keypoints and the plurality of dense depth maps, a
corresponding set of depth priors;

perform an initialization based at least in part on the set

of 2-D keypoints and the corresponding set of depth
priors to determine an initial image frame pair, the
initial image frame pair comprises a first image frame
and second image frame of the plurality of image
frames;

determine a camera pose based at least in part on the first

image frame and the second image frame; and



US 12,046,002 B1

25

perform a depth-constrained optimization to incremen-
tally update the camera pose based at least in part on the
set of 2-D keypoints, and the corresponding set of depth
priors.

15. The non-transitory computer-readable storage
medium of claim 14, wherein the instructions to perform the
initialization based at least in part on the set of 2-D key-
points and the corresponding set of depth priors to determine
an initial image pair include instructions that, as a result of
execution by the one or more processors, cause the computer
system to:

determine, for the plurality of image frames, a plurality of

3-D points comprising at least a first 3-D point, wherein

the first 3-D point is determined based at least in part

on:

a first 2-D keypoint of a first image frame;

a first depth prior of the first 2-D keypoint; and

a first intrinsic matrix associated with the first image
frame.

16. The non-transitory computer-readable storage
medium of claim 14, wherein the initial image frame pair is
selected based at least in part on how many 2-D keypoints
correspondences are in the second image frame and the first
image frame.

17. The non-transitory computer-readable storage
medium of claim 14, wherein the set of depth prior are
extracted from the plurality of dense depth maps using
bilinear interpolation.
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18. The non-transitory computer-readable storage
medium of claim 14, wherein the executable instructions
include further instructions that, as a result of execution by
the one or more processors, further cause the computer
system to:

determine a camera pose based at least in part on a first

objective function, wherein the first objective function
that is used to minimize a first loss determined based at
least in part on:

a reprojection error for a set of inlier keypoints; and
a depth consistency error for the set of inlier keypoints.

19. The non-transitory computer-readable storage
medium of claim 14, wherein the executable instructions
include further instructions that, as a result of execution by
the one or more processors, further cause the computer
system to:

add one or more 3-D points to a point cloud via triangu-

lation that is refined based at least in part on a second

objective function that is used to minimize a second

loss determined based at least in part on:

a reprojection error for the one or more 3-D points; and

a depth consistency error for the one or more 3-D
points.

20. The non-transitory computer-readable storage
medium of claim 14, wherein the depth estimator is a
pretrained depth estimator.
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