wo 2024/129337 A1 |0 0000 KOO 0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
20 June 2024 (20.06.2024)

(10) International Publication Number

WO 2024/129337 Al

WIPO I PCT

(51) International Patent Classification:
HO04L 67/2871 (2022.01) GO6F 16/25 (2019.01)
HO4L 67/561 (2022.01)

(21) International Application Number:
PCT/US2023/081055

(22) International Filing Date:
27 November 2023 (27.11.2023)

98052-6399 (US). FROGEL, Nitzan; Microsoft Technol-
ogy Licensing, LLC, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). BLACHMAN, Meir Baruch;
Microsoft Technology Licensing, LLC, One Microsoft
Way, Redmond, Washington 98052-6399 (US). CHERNI,
Tomer; Microsoft Technology Licensing, LLC, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

(74) Agent: CHATTERJEE, Aaron C. et al.; Microsoft Tech-
(25) Filing Language: English nology Licensing, LLC, One Microsoft Way, Redmond,
.. . Washington 98052-6399 (US).
(26) Publication Language: English
(81) Designated States (unless otherwise indicated, for every

(30) Priority Data:
18/066,842 15 December 2022 (15.12.2022) US
(71) Applicant: MICROSOFT TECHNOLOGY LI-

CENSING, LLC [US/US]; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(72) Inventors: AZULAY, Itamar, Microsoft Technology Li-

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,

censing, LLC, One Microsoft Way, Redmond, Washington

(54) Title: MULTI-LAYER BROWSER-BASED CONTEXT EMULATION DETECTION

100

A

Computing device(s) 134

Proxy Server(s) 104

‘ Multi-layer Context Detector 114 |

‘ Code Injector 136 |

110

120 Requests Responses 124

Client Device(s) 102 ,/ l3i Lol web Server(s) 106 App Server(s) 108
e 9 P————————
Web browser(s) 112 | [~~~ ~~°7777 f_____l___;/___> : Website(s) 116 | y : Web app(s) 118 |
~ny \ 130 I~—-] b]
___/'\\ Vs
User(s) Sene”

(57) Abstract: Methods, systems and computer program products are provided for multi-layer, browser-based context emulation de-
tection, which may be implemented by a proxy for browsers. A policy may be enforced against requests if a request context indicates
a restricted context. Context may be detected and indicated in a response header and body based on one or more context detection/in-
dication rules. Context may be indicated by marking or not marking resources indicated in responses. Code may be injected to cause
the client web browser to indicate context. A response may be forwarded to the client with a response header context, a response body
context, and/or injected code, which a client browser may process to generate a request with one or more indications of request context.

[Continued on next page]

WO 2024/129337 A [IN U000 00000000

NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE,LR,LS, MW, MZ NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
MULTI-LAYER BROWSER-BASED CONTEXT EMULATION DETECTION

BACKGROUND

Client computing devices may be unmanaged or managed with respect to implementing security
policies. For example, a user may use an unmanaged computing device to access a cloud resource
(e.g., a Web application) providing access to one or more other resources (e.g., business files).
Security policies may be implemented for the unmanaged client (e.g., unmanaged client and/or
unmanaged Web browser application) such as by routing client-based browser activity through a
proxy. Security policies may be avoided by security loopholes and/or by nefarious activity. For
example, to thwart a policy that restricts downloading documents while permitting web surfing,
which includes rendering Webpage resources that include images, a user could rename a document
file, such as a .docx document file, to an image file, such as a .png image file, to download the
document file disguised as an image file.

SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further
described below in the Detailed Description. This Summary is not intended to identify key features
or essential features of the claimed subject matter, nor is it intended to be used to limit the scope
of the claimed subject matter.

Methods, systems and computer program products are provided for multi-layer, browser-based
context emulation detection, which may be implemented by a proxy. Requests associated with
client Web browsers are parsed into a request header and a request body. The request header is
inspected for an indication of a request context. A policy may be enforced against the request, for
example, if the indication of the request context indicates a restricted context (e.g., a download
action rather than a webpage rendering resource). A response associated with a web server is
received. The response is parsed into a response header and a response body, which may be
inspected to detect (e.g., and indicate) context (e.g., for a subsequent request from the browser).
Context interpretation and/or marking determinations may be made based on one or more context
detection rules. Context (e.g., restricted and/or unrestricted) may be indicated by marking or not
marking (e.g., resources in) the response header (e.g., to indicate a response header context) and/or
the response body (e.g., to indicate a response body context, such as resource type). Code (e.g.,
JavaScript code) may be injected into a response. Injected code is configured to cause the client
web browser to maintain and/or generate context in a (e.g., subsequent) request with at least a
portion of request context (e.g., for dynamically generated request content and/or requests
intercepted by service workers). A response is forwarded to the client with a response header

context, a response body context, and/or injected code, which a client browser may process to

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

generate a request with one or more indications of request context.

Further features and advantages of the invention, as well as the structure and operation of various
embodiments, are described in detail below with reference to the accompanying drawings. It is
noted that the invention is not limited to the specific embodiments described herein. Such
embodiments are presented herein for illustrative purposes only. Additional embodiments will be
apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

The accompanying drawings, which are incorporated herein and form a part of the specification,
illustrate embodiments of the present application and, together with the description, further serve
to explain the principles of the embodiments and to enable a person skilled in the pertinent art to
make and use the embodiments.

FIG. 1 shows a block diagram of an example computing environment for multi-layer, browser-
based context emulation detection, according to an embodiment.

FIG. 2 shows a block diagram of an example multi-layer context detector and policy enforcer,
according to an embodiment.

FIG. 3 shows a flowchart of a method for multi-layer browser-context emulation, detection and
policy enforcement, according to an example embodiment.

FIG. 4 shows a flowchart of a method for request context determination via fetch metadata,
according to an example embodiment

FIG. 5 shows a block diagram of an example computing device that may be used to implement
example embodiments.

The features and advantages of the present invention will become more apparent from the detailed
description set forth below when taken in conjunction with the drawings, in which like reference
characters identify corresponding elements throughout. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or structurally similar elements. The
drawing in which an element first appears is indicated by the leftmost digit(s) in the corresponding
reference number.

DETAILED DESCRIPTION

L Introduction

The present specification and accompanying drawings disclose one or more embodiments that
incorporate the features of the present invention. The scope of the present invention is not limited
to the disclosed embodiments. The disclosed embodiments merely exemplify the present
invention, and modified versions of the disclosed embodiments are also encompassed by the
present invention. Embodiments of the present invention are defined by the claims appended

hereto.

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
Numerous exemplary embodiments are described as follows. It is noted that any
section/subsection headings provided herein are not intended to be limiting. Embodiments are
described throughout this document, and any type of embodiment may be included under any
section/subsection. Furthermore, embodiments disclosed in any section/subsection may be
combined with any other embodiments described in the same section/subsection and/or a different
section/subsection in any manner.

IL Example Implementations

As noted in the Background Section, above, client computing devices may be unmanaged or
managed (e.g., controlled, such as by server agents), for example, with respect to implementing
security policies. For example, a user may use an unmanaged computing device to access a cloud
resource (e.g., a Web application) providing access to one or more other resources (e.g., business
files). Security policies may be implemented for the unmanaged client (e.g., unmanaged client
and/or unmanaged Web browser application), for example, by routing client-based browser
activity through a proxy. Security policies may be avoided by security loopholes and/or by
nefarious activity. For example, to thwart a policy that restricts downloading documents while
permitting web surfing, which includes rendering Webpage resources, including images, a user
could rename a document file, such as .docx, to an image file, such as .png, to download the
document file.

Methods, systems and computer program products are provided for multi-layer, browser-based
context emulation detection, which may be implemented by a proxy for (e.g., unmanaged)
browsers. A policy may be enforced against requests if a request context indicates a restricted
context (e.g., a download action rather than a webpage rendering). Context may be detected and
indicated in a response header and body based on one or more context detection/indication rules.
Context may be indicated by marking or not marking resources indicated in responses. Code (e.g.,
JavaScript library) may be injected to cause the client web browser to indicate context (e.g., for
dynamically generated request content and/or requests intercepted by service workers). A
response may be forwarded to the client with a response header context, a response body context,
and/or injected code, which a client browser may process to generate a request with one or more
indications of request context.

Web proxies may be used to intercept and edit client-side JavaScript code running in (e.g.,
unmanaged) client browsers, for example, to monitor actions (e.g., on the client-side) through
policy evaluation (e.g., file upload or download actions that occur in the browser without an
indication to the server). For example, suffix proxies (e.g., proxy services that modify the URLs
(uniform resource locators) of their target applications) may modify JavaScript navigation and

asynchronous JavaScript and XML (extensible markup language), such as AJAX (asynchronous

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
JavaScript and XML), client-side actions to suffix or un-suffix URLs.

Proxy services may hook relevant places, for example, by modifying the JavaScript code received
from a Webserver (e.g., an original application running on a Webserver) before the code reaches
the client. Proxy services may parse code and insert "hooks" in places marked as relevant (e.g., in
navigation events, AJAX, download, upload, etc.). Parsing, hooking and rebuilding JavaScript
files may be a resource-intensive task (e.g., minutes to complete for large JavaScript files). As a
Proxy service expands to more users, analyzing and modifying code may become a significant
bottleneck, e.g., for processors, caches, cache distribution, load balancing, etc.

Proxy services may seek to determine the context that a request originated from or is responded
to. A context may be, for example, the basis for a browser rendering mechanism determination,
such as whether to render code, download a potential document, display an image to the user
interface (UI), etc.

In an example, a PDF document downloaded from an <a> tag may not be treated the same as an
<iframe>. The <a> context may cause a file download while an <iframe> may render the file in
the Ul and preview it. Thus, tags in XML code may be used to determine file treatment.

A browser rendering mechanism/mapping may determine decision-making in terms of how to
handle resources provided (e.g., by a Web app running on a Web server) in response to requests.
In an example, a security policy may seek to prevent sensitive data from being downloaded to
unmanaged client devices. A malicious user might rename a .DOCX file to a .PNG extension and
upload the file to a file share app (e.g., OneDrive for Business or Google Drive). The file renaming
may cause the file to be recognized as an image, which may bypass tenant policies to block
sensitive data from being downloaded to unmanaged devices (e.g., due to the file extension being
wrongly translated to an image content-type).

A multi-layer detection mechanism may extract (e.g., an accurate) context to assist server-side
(e.g., proxy) detection of the origin of activity, for example, so that the correct policy may be
enforced (e.g., by a cloud operator on behalf of a tenant attempting to protect tenant information).
Multi-layer context detection may emulate context without installing a management agent/ on a
client device. Multi-layer context detection may be performed based on client/server web
manipulation.

Multi-layer context detection may detect context at multiple layers, such as for requests (e.g.,
request header, request body) and responses (e.g., response header, response body). For example,
multilayer detection may include context detection and/or indication at one or more of the
following levels: (1) during response manipulation for HTMLs, e.g., by providing server-side
request marking of URLs to correlate to HTML tags; (2) during response manipulation for

stylesheets, e.g., by providing server-side request marking of URLs to indicate a style context

4

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

(e.g., renderable by a client browser); (3) during dynamic JS DOM manipulation, e.g., by
providing client-side request marking of URLs to correlate to HTML tags, such as if/when a
dynamic HTML tag is created; (4) during a request inspection phase, e.g., by providing server-
side detection for a request destination, such as based on a fetch metadata request header; and/or
(5) during (e.g., application-based) service worker manipulation, e.g., by injecting client-side code
to maintain a correct request context, including for requests that may be captured by a service-
worker.

Multi-layer context detection may provide advantages, such as improving the accuracy of policy
enforcement for a wide variety of clients, including unmanaged clients (e.g., without installing an
agent on a client). Performing context detection at multiple layers allows detection to overlap or
compensate for loopholes that may exist at another layer, which improves context detection,
including malicious attempts to conceal restricted activity. Multi-layer context detection may
provide (e.g., full) browser context emulation, e.g., by mocking a browser rendering engine
without being a browser.

In examples, an HTML document and/or URL may be parsed, e.g., layer by layer, to determine a
context (e.g., associated with an activity and/or file that is or may be identified in a request). A
server may indicate the context in a response, return the response to the client, inject proxy
JavaScript code (e.g., as needed) to maintain and/or provide context indications, receive and
analyze a (e.g., follow-up/subsequent) request with the context indications, enforce policies
against requests based on the indications, and repeat the process for each request and response.
Various requests from a variety of clients may or may not include fetch metadata request headers,
which may allow a server to (e.g., at least partially) map to a context relevant to policy
enforcement. The multi-layer context indication and detection enables a (e.g., proxy) server to
detect the origin of activities so that the correct policy can be enforced for activities and/or
resources (e.g., files). Parsed content may be compared with (e.g., predefined) rules that indicate
restricted and/or unrestricted activities (e.g., page rendering versus download actions) and/or types
of resources (e.g., rendering resources versus potentially malicious data). For example, a fetch
metadata request may (e.g., be used to) obtain data from a request header. A proxy server may add
response data (e.g., marks, tags or other indications with or without marking depending on the
proxy interpretation configuration) to the response header and/or body. Context indications may
indicate a determination about how a browser may render a retrieved response file (e.g., a context
for rendering when the file content does not match its file type). For example, the content of a file
may be text, such that the file should have a consistent file extension (e.g., .docx). A malicious
actor may have changed the file extension to .png to indicate that the file is an image file. A proxy

may be configured to parse the content of the file regardless of the file extension, for example, to

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
determine possible malicious content and/or activity (e.g., an attempt to skirt a policy against
downloading .docx files). The proxy may perform mitigation on the server-side and/or on the
client-side, e.g., depending on the context detection. For example, the proxy may return a response
received from a Web server to the client with proxy JavaScript code injected for mitigation (e.g.,
to maintain a context indicated in a response and/or to add a context indication that may be
detected by the proxy to enforce policies based on the detected context of requests).
Embodiments may be implemented in a variety of systems/environments. For example, FIG. 1
shows a block diagram of an example computing environment 100 for multi-layer, browser-based
context emulation detection, according to an embodiment. Other configuration of multi-layer,
browser-based context emulation detection may be implemented. As shown in FIG. 1, computing
environment 100 includes one or more client devices 102, one or more computing devices 134
that each include one or more proxy servers 104, one or more web servers 106, and one or more
app servers 108, which may be communicatively coupled, for example, directly and/or indirectly,
e.g., via one or more networks 110. Each client device 102 includes one or more web browsers
112. Each proxy server 104 includes a multi-layer context detector 114 and a code injector 136.
Each web server 106 includes one or more websites 116. Each app server 108 includes one or
more web apps 118. Computing environment 100 may be any computing environment (e.g., any
combination of hardware, software, and firmware). An example computing device with example
features for client device(s) 102, computing device(s) 134 (including proxy server(s) 104), web
server(s) 106, and app server(s) 108 is presented in FIG. 6.

Network(s) 110 may include one or more public access and/or restricted (e.g., private) access
networks, which may be wired and/or wireless. Network(s) 110 may include one or more of any
of a local area network (LAN), a wide area network (WAN), a personal area network (PAN), a
combination of communication networks, such as the Internet, and/or a virtual network. In
example implementations, user client device(s) 102, computing device(s) 134 (including proxy
server(s) 104), and web (e.g., website or content) web server(s) 106 may be communicatively
coupled via network(s) 110. In an implementation, any one or more of user client device(s) 102,
proxy server(s) 104, web server(s) 106 may communicate (e.g. via network(s) 110) via one or
more application programming interfaces (APIs), and/or according to other interfaces and/or
techniques. User client device(s) 102, computing device(s) 134 (including proxy server(s) 104),
and web (e.g., website or content) server(s) 106 may each include at least one network interface
that enables communications with each other. Examples of network interfaces, wired or wireless,
include an IEEE 802.11 wireless LAN (WLAN) wireless interface, a Worldwide Interoperability
for Microwave Access (Wi-MAX) interface, an Ethernet interface, a Universal Serial Bus (USB)

interface, a cellular network interface, a Bluetooth™ interface, a near field communication (NFC)

6

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

interface, etc. Further examples of network interfaces are described elsewhere herein.

Web server(s) 106 may comprise one or more virtual machines, storage devices, servers, operating
systems, applications, services, local processes, remote machines, web services, etc. that may be
executed, hosted, and/or stored therein or via one or more other computing devices via network(s)
110. Web server(s) 106 may represent any number of computing devices. Web server(s) 106 may
each be any type of stationary or mobile computing device, including a mobile computer or mobile
computing device (e.g., a Microsoft® Surface® device, a personal digital assistant (PDA), a laptop
computer, a notebook computer, a tablet computer such as an Apple iPad™, a netbook, etc.), a
mobile phone, a wearable computing device, or other type of mobile device, or a stationary
computing device such as a desktop computer or PC (personal computer), or a server. Web
server(s) 106 are not limited to physical machines, but may include other types of machines or
nodes, such as a virtual machine. Web server(s) 106 may include and/or may be communicatively
coupled to one or more storage devices that store resources and/or other content that may be
indicated and/or provided in a response to a request. Resources and/or other content may be in the
form of HTML, style sheets, JavaScript, image files, audio files, video files, etc.

Web server(s) 106 may host/serve (e.g., tenant) website(s) 116, web app(s) 118, etc. Web server(s)
106 may serve any type of website or web application with any type of statically or dynamically
generated content, such as search engines, news, content entry/editing applications, content
management applications, entertainment, product/service sales, social media, etc.

Web server(s) 106 may be communicatively coupled (e.g., directly or indirectly) to and/or may
(e.g., also) operate as app server(s) 108, which may include web app(s) 118. Web applications
(e.g., “web apps” or “webapps”), such as web application(s) 118, are applications accessible over
network(s) 110 (e.g., Internet). Web app(s) 118 may be hosted in web browser(s) that render the
web application(s). Example applications include search engines, word processing applications,
database applications, social networking applications, navigational assistance applications (e.g.,
mapping applications, restaurant locating applications, traffic applications, etc.), gaming
applications, financial planning applications, etc.

App server(s) 108 may comprise one or more virtual machines, storage devices, servers, operating
systems, applications, services, local processes, remote machines, web services, etc. that may be
executed, hosted, and/or stored therein or via one or more other computing devices via network(s)
110. Web server(s) 106 may represent any number of computing devices. Web server(s) 106 may
each be any type of stationary or mobile computing device, including a mobile computer or mobile
computing device (e.g., a Microsoft® Surface® device, a personal digital assistant (PDA), a laptop
computer, a notebook computer, a tablet computer such as an Apple iPad™, a netbook, etc.), a

mobile phone, a wearable computing device, or other type of mobile device, or a stationary

7

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

computing device such as a desktop computer or PC (personal computer), or a server. Web
server(s) 106 are not limited to physical machines, but may include other types of machines or
nodes, such as a virtual machine. App server(s) 108 may include and/or may be communicatively
coupled to one or more storage devices that store resources and/or content that may be indicated
and/or provided in a response to a request. Resources and/or other content may be in the form of
HTML, style sheets, JavaScript, image files, audio files, video files, etc.

Web server(s) 106 may process requests and responses, which may be in the form of hypertext
markup language (HTML). Web server(s) 106 may receive and process requests 130 from client
device(s) 102 or proxy requests 122 from proxy server(s) 104. Whether requests from client
device(s) 102 pass through proxy server(s) 104 may depend whether user(s) website(s) 116 and/or
web app(s) 118 are restricted to access at least via proxy server(s) 104). Web server(s) 106 may
(e.g., in response to the request) generate and send responses 132 to client device(s) 102 and
responses 124 to proxy server(s) 104,

For example, requests 130 and proxy requests 122 may indicate an HTML page, style sheet,
image(s), code (e.g., JavaScript code), data (e.g., extensible markup language (XML) file,
JavaScript Object Notation (JSON) file), etc. for a uniform resource locator (URL) address
associated with a webpage in website 116. Responses 132 to client device(s) 102 or responses 124
to proxy server(s) 104 may respond to the respective request, for example, by providing the
requested HTML page, style sheet, image(s), code, data, etc.

Client device(s) 102 may comprise one or more virtual machines, storage devices, servers,
operating systems, applications, services, local processes, remote machines, web services, etc. that
may be executed, hosted, and/or stored therein or via one or more other computing devices via
network(s) 110. Client device(s) 102 may represent any number of computing devices. Client
device(s) 102 may each be any type of stationary or mobile computing device, including a mobile
computer or mobile computing device (e.g., a Microsoft® Surface® device, a personal digital
assistant (PDA), a laptop computer, a notebook computer, a tablet computer such as an Apple
iPad™, a netbook, etc.), a mobile phone, a wearable computing device, or other type of mobile
device, or a stationary computing device such as a desktop computer or PC (personal computer),
or a server. Client device(s) 102 are not limited to physical machines, but may include other types
of machines or nodes, such as a virtual machine. Client device(s) 102 may include and/or may be
communicatively coupled to one or more storage devices.

Client device(s) 102 may include web browser(s) 112. Web browser(s) 112 may comprise, for
example, general or specific browsing applications, such as Web browser applications that may
be used to render public and/or private content (e.g., based on providing authorized user

credentials) for one or more content providers (e.g., cloud service tenants). Web browser(s) 112

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

may be managed or unmanaged browsers. Web browser(s) may render website(s) 116 and/or web
app(s) 118 on client device(s) 102. User(s) 128 may view, select and/or interact with rendered
website(s) 116 and/or web app(s) 118. For example, user(s) 128 may enter URLs in web
browser(s) 112 and/or select (e.g., links to) URLs in content rendered by web browser 112.

For example, a user may select a link on a page to download or a user may right click a link to
copy (e.g., download) a file associated with the link. Proxy server(s) 104 may detect the context
(e.g., user actions) and enforce one or more policy restrictions, for example, to block the download
action or convert the download action into a different action, such as rendering the file associated
with the link (e.g., a document or image) in a new browser tab. A policy restriction may block or
convert download actions, for example, for copyright and/or information security reasons.

As shown in FIG. 1, client device(s) 102 may send and receive requests 130 to web server(s) 106
and/or requests 120 to proxy server(s) 104 depending whether website(s) 116 and/or web app(s)
118 are restricted to access at least via proxy server(s) 104). For example, client device(s) 102
may include unmanaged devices using any type of web browser(s) 112. Requests 120 may be
routed to proxy server(s) 104, for example, if/when user(s) 128 of client device(s) 102 are logged
into a cloud service operating web server(s) 106 (e.g., and app server(s) 108) to provide access to
restricted (e.g., private, secured, or tenant) website(s) 116 and/or web app(s) 118. Non-proxy
requests 130 and responses 132 may be routed to web server(s) 106 without passing through proxy
server(s) 104, for example, if/when user(s) 128 of client device(s) 102 are not logged into a cloud
service attempting to access restricted/private web server(s) 106 (e.g., and app server(s) 108).
Proxy server(s) 104 may comprise one or more virtual machines, storage devices, servers,
operating systems, applications, services, local processes, remote machines, web services, etc. that
may be executed, hosted, and/or stored therein or via one or more other computing devices, e.g.,
via network(s) 110. Proxy server(s) 104 may represent any number of computing devices. Proxy
server(s) 104 may each be any type of stationary or mobile computing device, including a mobile
computer or mobile computing device (e.g., a Microsoft® Surface® device, a personal digital
assistant (PDA), a laptop computer, a notebook computer, a tablet computer such as an Apple
iPad™, a netbook, etc.), a mobile phone, a wearable computing device, or other type of mobile
device, or a stationary computing device such as a desktop computer or PC (personal computer),
or a server. Proxy server(s) 104 are not limited to physical machines, but may include other types
of machines or nodes, such as a virtual machine. Proxy server(s) 104 may include and/or may be
communicatively coupled to one or more storage devices.

Proxy server(s) 104 may provide one or more proxy services for traffic between client device(s)
102 and web server(s) 106. For example, proxy server(s) 104 may operate as a security

intermediary between client device(s) 102 and web server(s) 106. In examples, proxy server(s)

9

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

104 may receive requests 120, generate proxy requests 122, receive responses 124, and generate
proxy responses 126. Proxy server(s) 104 may generate and send/forward proxy requests 122 to
web server(s) 106, e.g., based on receiving requests 120. Proxy server(s) 104 may receive
responses 124 from web server(s) 106, e.g., in response to proxy requests 122. Proxy server(s)
104 may generate and send proxy responses 126 to client device(s) 102, e.g., in response to
receiving responses 124. Whether requests from client device(s) 102 pass through proxy server(s)
104 may depend whether website(s) 116 and/or web app(s) 118 are restricted to access at least via
proxy server(s) 104 and whether user(s) 128 have sought and received access authorization
thereto.

Multi-layer context detector 114 processes (e.g., HTML) requests and responses, for example, to
enforce one or more policies pertaining to access to web server(s) 106 and/or app server(s) 108.
In support of policy enforcement, multi-layer context detector 114 may emulate web browser(s)
112, for example, to determine the request context of current requests 120 and subsequent (e.g.,
expected) requests 120 generated subsequent to receiving proxy responses 126. Browser
emulation may support layered context tracking and predictive (e.g., future) request context
determinations, which may be indicated in proxy responses 126 for interpretation and detection in
any future requests 120.

Multi-layer context detector 114 may generate proxy responses 122 with context indicators (e.g.,
contextualized (e.g., marked up) versions of responses 124). Context indications/marking may be
performed on responses 124, for example, if subsequent processing of the response by browser(s)
112 may trigger more requests. Web browser(s) 112 may generate initial and subsequent requests
120 to render website(s) 116 and/or web app(s) 118, for example, based on the responses 124
and/or based on action(s) by user(s) 128. Request(s) 120 may include context that proxy server(s)
104 generated in proxy responses 126 and/or context that web browser(s) 112 generated based on
proxy code injected by code injector 136 of proxy server(s) 104 into proxy responses 126. For
instance, code injector 136 may be configured to insert program code (e.g., one or more lines of
code) into the code of proxy response 126, such as in a header and/or body of a proxy response.
Contextualization (e.g., mark ups) and/or policy enforcement provided by multi-layer context
detector 114 may be general (e.g., for multiple users) or specific (e.g., for a particular user, such
as based on user authorization).

For example, requests 130 and responses 124 may indicate an HTML page, style sheet, image(s),
code (e.g., JavaScript code), file (e.g., XML file, JSON file), etc. for a URL address associated
with a webpage in website(s) 116 or web app 118 from app server(s) 108. Multi-layer context
detector 114 may indicate context and detect indications of context, for example, based on one or

more of the HTML, style sheet, image(s), code, file, etc. in requests 120 and responses 124. Multi-

10

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
layer context detector 114 may enforce one or more policies based on the indicated and/or detected
context.

Multi-layer context detector 114 may be configured in various ways in embodiments. For instance,
FIG. 2 shows a block diagram example of a multi-layer context detector 202, according to an
embodiment. As shown by example in FIG. 2, multi-layer context detector 202 may include, for
example, an interface 204, a parser 206, a request header contextualizer 208, a request context
policy enforcer 210, a response header contextualizer 212, and a response body contextualizer
214. FIG. 1 shows one of many possible implementations, in which proxy server(s) 104 and/or
multi-layer context detector 202 may include the same, similar, or different numbers, names,
and/or functional components relative to the example in FIG. 1.

Interface 204 is a communication interface configured to receive and queue requests 120 of FIG.
1 associated with (e.g., originating from, received directly or indirectly from) client web
browser(s) 112. Requests 112 may include a request header and a request body. Interface 204 may
receive, queue, and transmit (e.g., towards web server(s) 106) proxy requests 122 generated by
multi-layer context detector 202. Interface 204 may receive and queue responses 124 associated
with web server(s) 106 responding to proxy requests 122. Responses 124 may include a response
header and a response body. Interface 204 may receive, queue, and transmit (e.g., towards client
device(s) 102) proxy responses 126 generated by multi-layer context detector 202.

Parser 206 is configured to parse requests 120 into the request header and request body, e.g., for
context detection and/or indication. Parser 206 parses responses 124 into the response header and
response body, e.g., for context detection and/or indication. Parser 206 may further parse headers
and bodies, for example, based on the type of content, e.g., HTML, CSS, JavaScript content.
Examples are provided herein.

Request Header Contextualizer 208 analyzes request headers to inspect/interpret, detect, indicate
(e.g., mark or not mark) and/or map context (e.g., the context of requests 120). Request headers
may indicate a destination/target web server and/or app server. Request headers may or may not
indicate context. Context detection and indication may be driven by policies. For example, a policy
may indicate requests for webpage rendering resources are unrestricted (e.g., allowed) while
requests for download actions are restricted (e.g., not allowed). Various implementations may use
any number and type of policies, with associated context detections and indications to enforce the
policies.

An initial request may be an HTML request without context markings. Subsequent requests (e.g.,
made based on a marked response) may be HTML or another type of request from the browser. A
request may include a fetch metadata request header. A fetch metadata request header may be an

HTTP request header that provides information about the context from which the request

11

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
originated, which may allow proxy server(s) 104 to detect and/or indicate context, such as the
source and/or use of a request.

Request Header Contextualizer 208 may (e.g., be configured to) receive mixed requests with and
without fetch metadata request headers. If a request includes a fetch metadata request header,
Request Header Contextualizer 208 may map the value of the sec-fetch-dest request header into
an appropriate context that may otherwise be indicated by Request Header Contextualizer 208 in
a proxy response that pre-marks context for subsequent requests.

Requests may include context indications associated with each resource. The context indications
may (e.g., alone or in combination) indicate context, such as whether the resource is for a
download action or a resource for webpage rendering. Requests 120 may have context indications
(e.g., a context query string). If a request is already marked with context (e.g., because it was
generated based on a proxy response with context indications), Request Header Contextualizer
208 may detect the context, e.g., relative to one or more policies to the request. For example, a
policy may indicate that a request with a context query string having a value of XMLHttpRequest
may not be processed (e.g., may not be forwarded to web server(s) 106 for a response) because
the request is not for a webpage rendering resource.

Request context policy enforcer 210 may apply (e.g., enforce) one or more policies against
requests based on the context detected by Request Header Contextualizer 208. For example, a
request with a context query string having a value of XMLHttpRequest may not be processed
(e.g., may not be forwarded to web server(s) 106) for a response based on a policy restricting
responses to requests for webpage rendering resources.

If request 120 is permitted based on the one or more policies, or if request 120 is an initial (e.g.,
HTML) request, response parser 128 may send the request upstream as proxy request 124 towards
the destination/target web server(s) 106 to obtain a response. Interface 204 may receive the
response 124. Parser 206 may parse response 122 into response header and response body for
contextualization.

Response header contextualizer 212 may analyze response headers to inspect/interpret, detect,
indicate (e.g., mark or not mark) and/or map context (e.g., from the perspective of potential future
requests 120). Context may be determined/indicated, for example, from the perspective of how a
subsequent request may be sent out as request 120. Response header context detection and
indication may be driven by policies. For example, a policy may indicate requests for webpage
rendering resources are unrestricted (e.g., allowed) while requests for one or more download
actions are restricted (e.g., not allowed). For example, download actions may be distinguished
from webpage rendering actions. In examples, context may indicate what triggered browser 102

to make/send request 120. Context may indicate, for example, whether user(s) 128 navigated to

12

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
an image on website 116, e.g., indicating an intent to download an image, or whether the image is
fetched using an image tab, e.g., indicating the image is part of website 116.
Resources indicated in response headers may be distinguished (e.g., by marking and/or not
marking) whether the resources are webpage rendering resources (e.g., HTML, CSS, JavaScript
resources) or not. Response header contextualizer 212 may mark a response body, for example,
by marking URLs in HTML tags with a context, e.g., an indication of script (e.g., JavaScript),
CSS, or image resources. In some examples, resources that are not used for webpage rendering
may not be marked, e.g., or vice versa. HTML may or may not be marked, for example, because
a download of HTML may simply download a renderable web page. In some examples, there may
not be any marking, e.g., based on the configuration of Request Header Contextualizer 208.
Various implementations may use any number and type of policies, with associated context
detections and indications to enforce the policies.
In some examples, a navigation/location response header may be indicated (e.g., marked) as a
navigation (e.g., “NAVIGATE”) resource, for example, if the response status code is a redirect
HTTP status code (e.g., a 3 series status code, such as 3**). In some examples, if a response header
includes a Link response header field (e.g., to serialize one or more links, which may be
semantically equivalent to HTML), the header may be processed in accordance with an HTTP
specification for Link indicated by the Mozilla Developer Network (MDN).
Response body contextualizer 214 may analyze response bodies to inspect/interpret, detect,
indicate (e.g., mark or not mark) and/or map context (e.g., from the perspective of potential future
requests 120). Context may be determined/indicated, for example, from the perspective of how a
subsequent request may be sent out as request 120. Response body context detection and
indication may be driven by policies. For example, a policy may indicate requests for webpage
rendering resources are unrestricted (e.g., allowed) while requests for one or more download
actions are restricted (e.g., not allowed). For example, download actions may be distinguished
from webpage rendering actions. Resources indicated in response bodies may be distinguished
(e.g., by marking and/or not marking) whether the resources are webpage rendering resources
(e.g., HTML, CSS, JavaScript resources) or not. In some examples, resources that are not used for
webpage rendering may not be marked, e.g., or vice versa. HTML may or may not be marked, for
example, because a download of HTML may simply download a renderable web page. In some
examples, there may not be any marking, e.g., based on the configuration of Request Header
Contextualizer 208. Various implementations may use any number and type of policies, with
associated context detections and indications to enforce the policies.
In some examples, response body contextualizer 214 may indicate context for HTML content,

CSS content, JavaScript content, etc. In an example of HTML content, such as if/when the

13

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
response multipurpose internet mail extensions (MIME) type represents HTML, parser 206 may
parse the response body text into an HTML abstract syntax tree (AST). Response body
contextualizer 214 may traversed the AST for each HTML node. Response body contextualizer
214 may call a context-resolver function to mark the URL with the (e.g., appropriate) context.
For example, URLs in the following HTML tags may be marked by response body contextualizer
214 as script (e.g., “SCRIPT”) resources:
<script src="https://cdn.office.com/script.js"></script>

<link as="script" href="https://cdn.office.com/script js">

The URL in the following HTML tags may be marked as cascading style sheet (CSS) resources:
<link rel="stylesheet" href="https://cdn.office.com/style.css">

The URLs in the following HTML tags may be marked as image (e.g., “IMAGE”) resources:
<div style="background: url(https://cdn.office.com/image.png)"></div>

Response body contextualizer 214 (e.g., a context-resolver function) may determine (e.g.,
calculate) the resource types for resources (e.g., URLSs), for example, based on an HTML standard.
In an example of CSS content, if/when the response MIME type represents a cascading style
sheets, parser 206 may parse the response body text into a CSS AST. Response body
contextualizer 214 may traverse the AST for each CSS rule that uses the URL() CSS function.
Response body contextualizer 214 may call a context-resolver function to mark the URL with the
(e.g., appropriate) context.

For example, URLSs in the following example may be marked as CSS resources:

url (https://example.com/images/mylmg.jpg) ;

url (data:image/png;base64, iRxVBO. . .);

url (myFont.woff),

url (#IDofSVGpath);,

/* associated properties */

background-image: url (“star.gif”);

list-style-image: url (* . ./images/bullet.jpg’ O:

content: url (mycursor.cur);

border-image-source: url (/media/diamonds.png);

src: url (‘fantastictfont.woff’);

offset-path: url (#path);

14

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
mask-image: url (“masks.svg#mask1”);
/* Properties with fallbacks */
Cursor: url(pointer.cur), pointer;
/* Associated short-hand properties */
Background: url(‘star.gif’) bottom right repeat-x blue;
Border-image: url(“/media/diamonds.png”) 30 fill / 30px / 30px space;

There may be exceptions to contextualization. For example, the @namespace rule may not be
indicated (e.g., marked) because it represents the namespace of the elements for application of the
style.

Context marking may occur in the proxy and/or in the client browser, for example, based
on added and/or modified (e.g., collectively referred to as injected) code (e.g., JavaScript). Proxy
JavaScript code may be injected by code injector 136, for example, (e.g., only) if a response is an
HTML response (e.g., a response likely to spawn subsequent requests by a browser).

In an example of JavaScript content, e.g., if/when the response MIME type represents a JavaScript
resource, parser 206 may parse the response body text into a JavaScript AST. Response body
contextualizer 214 may traverse the AST for each JavaScript node. Response body contextualizer
214 may add or modify code/script (e.g., collectively referred to as injected code/script) using
code injector 136 of FIG. 1, for example, by replacing a (e.g., relevant) expression with a
contextualizer function. Injected code (e.g., contextualizer function) logic of the injected code
may handle (e.g., as web browser(s) 112 process proxy responses 126) marking URLs on the
client-side to maintain server-side context indications and/or to generate client-side context
marking for dynamically generated content.

For example, URLSs in the following example may be marked (e.g., on the client-side via injected
code) as JavaScript resources:

navigator.serviceWorker register('/service-worker js'),

new Worker('/worker js');

URLs in the following example may be marked (e.g., on the client-side via injected code) as
HTML resources:

var iframe = document.createElement(‘iframe'),

iframe.src = '/embedded-frame.html';

document.body.appendChild(iframe);,

window.open('/new-tab html');

15

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
URLs in the following example may be marked (e.g., on the client-side via injected code) as
IMAGE resources:
import data from '/data.json' assert { type: 'json' }
var data = await fetch('/data.json');
var XHR = new XMLHttpRequest
xhr.open('GET", '/data.json"),
xhr.send();

In some examples, JavaScript content may run within the scope of a service worker (e.g.,
ServiceWorker), which may behave like a proxy in terms of capability to intercept and modify
navigation and resource requests. As shown in the following example, a fetch API may be used
inside a function:

addEventListener('fetch’, function (event) {

event.respondWith(fetch(event.request));

1

A fetch event may indicate an HTTP request. Response body contextualizer 214 may use the value
of the destination, e.g., the value that was originally sent out for the request. Response body
contextualizer 214 may mark the URL with the value that appeared on the request destination, for
example, so that the proxy server will see the marking, limit/restrict activity, and/or be able to
determine whether there was a change in value of the destination.

For example, a browser (e.g., web browser 112) may send a request with the request header “sec-
fetch-dest: empty.” Response body contextualizer 214 may propagate the
event.request.destination and mark the request-URL with the originally requested destination
value, for example, if/when using the fetch API inside the FetchEvent.respondWith(). The
respondWith() method of FetchEvent may prevent a browser's default fetch handling, allowing
response body contextualizer 214 (e.g., via injected code execute on the client side browser) to
provide substitute fetch handling.

As shown in the following example, a cache API may be used inside a service worker:
addEventListener(‘install’, function (event) {

event.waitUntil(cache.addAlI([

'script Js’,

'style.css',

'image.png’,

'index.html'

16

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
;
3s

Response body contextualizer 214 may (e.g., via injected code executed on the client-side
browser) mark resources as (e.g., potential) JavaScript resources. The server-side (e.g., proxy
server(s) 104) may handle the resources based on their content-type response header, for example,
if/when using cache APIs inside a service worker.

A JavaScript client-side component (e.g., injected code) may maintain and/or generate marking
inside the client-side browser, for example, for scenarios involving JavaScript, which may include
service workers and/or dynamically generated content. Injected JavaScript code may monitor and
override/substitute, for example, according to functions defined in the (e.g., modified and/or
added) JavaScript component.

JavaScript resources in a web page may be modified (e.g., rewritten, such as by replacement and/or
addition) to perform client-side contextualization. Dynamic web pages may load resources over
time. The dynamically loaded resources may be marked by the injected code. A job resource may
be modified, for example, so that when it executes on the client-side browser it loads contextually
indicated (e.g., marked) resources.

JavaScript code may be injected into the browser, for example, so that dynamic activities go
through (e.g., are managed by) proxy-injected JavaScript in the browser. Response headers may
be processed by response header contextualizer 212 to extract information about the response.
Response body contextualizer 214 may process the response body, for example, if header
processing indicates the body includes relevant content types that may spawn subsequent requests.
FIG. 3 shows a flowchart of a method 300 for multi-layer browser-context emulation, detection
and policy enforcement, according to an example embodiment. Embodiments disclosed herein
and other embodiments may operate in accordance with example method 300. Method 300
comprises steps 302-314. However, other embodiments may operate according to other methods.
Other structural and operational embodiments will be apparent to persons skilled in the relevant
art(s) based on the foregoing discussion of embodiments. No steps are required unless expressly
indicated or inherently required. No order of steps is required unless expressly indicated or
inherently required. There is no requirement that a method embodiment implement all of the steps
illustrated in FIG. 3. In various implementations, steps may be added, removed, implemented in
the alternative, e.g., in any combination or order. FIG. 3 is simply one of many possible
embodiments. Embodiments may implement fewer, more or different steps.

As shown in FIG. 3, in step 302, a request associated with a client web browser may be received.

The request may include a request header and a request body. For example, as shown in FIG. 1,

17

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

proxy server(s) 104 may receive requests 120 from client device(s) 102 executing web browser(s)
112.

As shown in FIG. 3, in step 304, the request header may be inspected for an indication of a request
context. For example, as shown in FIGS. 1 and 2, multi-layer context detector 114 (e.g., request
header contextualizer 208 shown in FIG. 2) may inspect requests 120 for request context.

As shown in FIG. 3, in step 306, a policy may be enforced against the request if the indication of
the request context indicates a restricted context. For example, as shown in FIG. 2, request context
policy enforcer 210 may enforce one or more policies against requests 120 if one or more request
contexts detected by request header contextualizer 208 indicate a restricted context according to
the one or more policies.

As shown in FIG. 3, in step 308, a response may be received that originates from a web server.
The response may include a response header and a response body. For example, as shown in FIG.
1, proxy server(s) 104 may receive responses 124 from web server(s) 106 in response to requests
120 forwarded (e.g., with or without modification) as proxy requests 122.

As shown in FIG. 3, in step 310, the response header and the response body may be inspected for
a response header context and a response body context. For example, as shown in FIGS. 1 and 2,
multi-layer context detector 114 (e.g., response body contextualizer 212 and response header
contextualizer 214 shown in FIG. 2) may inspect responses 124 for request context that includes
a response header context and a response body context.

As shown in FIG. 3, in step 312, a determination may be made, based at least on context detection
rules, whether to: (i) mark the response header to indicate a response header context; (ii)) mark
the response body to indicate a response body context based at least on the context detection rules;
and/or (iii) inject code into the response. The injected code (e.g., injected by code injector 136)
may be configured to cause the client web browser to mark the request with at least a portion of
the request context. For example, as shown in FIG. 2, response header contextualizer 212 may
determine (e.g., based on one or more context indication rules) whether to indicate context (e.g.,
for one or more resources) in the header of responses 224. Response body contextualizer 214 may
determine (e.g., based on one or more context indication rules) whether to indicate context (e.g.,
for one or more resources) in the body of responses 224. Response header contextualizer 212 may
determine (e.g., based on one or more context indication rules) whether to indicate context (e.g.,
for one or more resources) in the header of responses 224 and code injector 136 may inject code
into the response to perform client-side context marking (e.g., to maintain context for service
workers and/or to generate context for dynamically generated content).

As shown in FIG. 3, in step 314, a response indicating at least one of the response header context,

the response body context, or including the injected code may be forwarded to the client. For

18

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
example, as shown in FIGS. 1 and 2, interface 204 may send proxy responses 126 (e.g., context
marked proxy responses 122), with or without injected code as determined in step 312, towards
client device(s) 102.

FIG. 4 shows a flowchart of a method 400 for request context determination via fetch metadata,
according to an example embodiment. Embodiments disclosed herein and other embodiments may
operate in accordance with example method 400. Method 400 comprises steps 402 and 404.
However, other embodiments may operate according to other methods. Other structural and
operational embodiments will be apparent to persons skilled in the relevant art(s) based on the
foregoing discussion of embodiments. There is no requirement that a method embodiment
implement all of the steps illustrated in FIG. 4. In various implementations, steps may be added,
removed, implemented in the alternative, e.g., in any combination or order. FIG. 4 is simply one
of many possible embodiments. Method 400 is described as follows with respect to FIGS. 1 and
2.

As shown in FIG. 4, in step 402, a plurality of requests associated with a plurality of client web
browsers is received, where a request comprises a fetch metadata request header and at least one
of the other plurality of requests does not comprise a fetch metadata request header. As described
above, a plurality of requests (e.g., requests 130 of FIG. 1) associated with client web browsers
(e.g., web browser(s) 112) may be received, where one or more of the received requests includes
a fetch metadata request header and one or more of the other plurality of requests may not
comprise a fetch metadata request header. An initial request may be an HTML request without
context markings. Subsequent requests (e.g., made based on a marked response) may be HTML
or another type of request from the browser. A request may include a fetch metadata request
header. A fetch metadata request header may be an HTTP request header that provides information
about the context from which the request originated, which may allow proxy server(s) 104 to
detect and/or indicate context, such as the source and/or use of a request. Request Header
Contextualizer 208 may (e.g., be configured to) receive mixed requests with and without fetch
metadata request headers.

In step 404, an indication in the fetch metadata request header is mapped to the restricted context
or to an unrestricted context. In an embodiment, if a request includes a fetch metadata request
header, Request Header Contextualizer 208 of FIG. 2 may map the value of the sec-fetch-dest
request header into an appropriate context that may otherwise be indicated by Request Header
Contextualizer 208 in a proxy response that pre-marks context for subsequent requests.

III. Example Computing Device Embodiments

As noted herein, the embodiments described, along with any circuits, components and/or

subcomponents thereof, as well as the flowcharts/flow diagrams described herein, including

19

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
portions thereof, and/or other embodiments, may be implemented in hardware, or hardware with
any combination of software and/or firmware, including being implemented as computer program
code configured to be executed in one or more processors and stored in a computer readable
storage medium, or being implemented as hardware logic/electrical circuitry, such as being
implemented together in a system-on-chip (SoC), a field programmable gate array (FPGA), and/or
an application specific integrated circuit (ASIC). A SoC may include an integrated circuit chip
that includes one or more of a processor (e.g., a microcontroller, microprocessor, digital signal
processor (DSP), etc.), memory, one or more communication interfaces, and/or further circuits
and/or embedded firmware to perform its functions.

Embodiments disclosed herein may be implemented in one or more computing devices that may
be mobile (a mobile device) and/or stationary (a stationary device) and may include any
combination of the features of such mobile and stationary computing devices. Examples of
computing devices in which embodiments may be implemented are described as follows with
respect to FIG. 5. FIG. 5 shows a block diagram of an exemplary computing environment 500 that
includes a computing device 502. Computing device 502 is an example of computing device 102
of FIG. 1, which may include one or more of the components of computing device 502. In some
embodiments, computing device 502 is communicatively coupled with devices (not shown in FIG.
5) external to computing environment 500 via network 504. Network 504 comprises one or more
networks such as local area networks (LANs), wide area networks (WANs), enterprise networks,
the Internet, etc., and may include one or more wired and/or wireless portions. Network 504 may
additionally or alternatively include a cellular network for cellular communications. Computing
device 502 is described in detail as follows

Computing device 502 can be any of a variety of types of computing devices. For example,
computing device 502 may be a mobile computing device such as a handheld computer (e.g., a
personal digital assistant (PDA)), a laptop computer, a tablet computer (such as an Apple iPad™),
a hybrid device, a notebook computer (e.g., a Google Chromebook™ by Google LLC), a netbook,
a mobile phone (e.g., a cell phone, a smart phone such as an Apple® iPhone® by Apple Inc., a
phone implementing the Google® Android™ operating system, etc.), a wearable computing
device (e.g., a head-mounted augmented reality and/or virtual reality device including smart
glasses such as Google® Glass™, Oculus Rift® of Facebook Technologies, LL.C, etc.), or other
type of mobile computing device. Computing device 502 may alternatively be a stationary
computing device such as a desktop computer, a personal computer (PC), a stationary server
device, a minicomputer, a mainframe, a supercomputer, etc.

As shown in FIG. 5, computing device 502 includes a variety of hardware and software

components, including a processor 510, a storage 520, one or more input devices 530, one or more

20

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

output devices 550, one or more wireless modems 560, one or more wired interfaces 580, a power
supply 582, a location information (LI) receiver 584, and an accelerometer 586. Storage 520
includes memory 556, which includes non-removable memory 522 and removable memory 524,
and a storage device 590. Storage 520 also stores an operating system 512, application programs
514, and application data 516. Wireless modem(s) 560 include a Wi-Fi modem 562, a Bluetooth
modem 564, and a cellular modem 566. Output device(s) 550 includes a speaker 552 and a display
554. Input device(s) 530 includes a touch screen 532, a microphone 534, a camera 536, a physical
keyboard 538, and a trackball 540. Not all components of computing device 502 shown in FIG. 5
are present in all embodiments, additional components not shown may be present, and any
combination of the components may be present in a particular embodiment. These components of
computing device 502 are described as follows.

A single processor 510 (e.g., central processing unit (CPU), microcontroller, a microprocessor,
signal processor, ASIC (application specific integrated circuit), and/or other physical hardware
processor circuit) or multiple processors 510 may be present in computing device 502 for
performing such tasks as program execution, signal coding, data processing, input/output
processing, power control, and/or other functions. Processor 510 may be a single-core or multi-
core processor, and each processor core may be single-threaded or multithreaded (to provide
multiple threads of execution concurrently). Processor 510 is configured to execute program code
stored in a computer readable medium, such as program code of operating system 512 and
application programs 514 stored in storage 520. Operating system 512 controls the allocation and
usage of the components of computing device 502 and provides support for one or more
application programs 514 (also referred to as “applications” or “apps”). Application programs 514
may include common computing applications (e.g., e-mail applications, calendars, contact
managers, web browsers, messaging applications), further computing applications (e.g., word
processing applications, mapping applications, media player applications, productivity suite
applications), one or more machine learning (ML) models, as well as applications related to the
embodiments disclosed elsewhere herein.

Any component in computing device 502 can communicate with any other component according
to function, although not all connections are shown for ease of illustration. For instance, as shown
in FIG. 5, bus 506 is a multiple signal line communication medium (e.g., conductive traces in
silicon, metal traces along a motherboard, wires, etc.) that may be present to communicatively
couple processor 510 to various other components of computing device 502, although in other
embodiments, an alternative bus, further buses, and/or one or more individual signal lines may be
present to communicatively couple components. Bus 506 represents one or more of any of several

types of bus structures, including a memory bus or memory controller, a peripheral bus, an

21

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

accelerated graphics port, and a processor or local bus using any of a variety of bus architectures.
Storage 520 is physical storage that includes one or both of memory 556 and storage device 590,
which store operating system 512, application programs 514, and application data 516 according
to any distribution. Non-removable memory 522 includes one or more of RAM (random access
memory), ROM (read only memory), flash memory, a solid-state drive (SSD), a hard disk drive
(e.g., a disk drive for reading from and writing to a hard disk), and/or other physical memory
device type. Non-removable memory 522 may include main memory and may be separate from
or fabricated in a same integrated circuit as processor 510. As shown in FIG. 5, non-removable
memory 522 stores firmware 518, which may be present to provide low-level control of hardware.
Examples of firmware 518 include BIOS (Basic Input/Output System, such as on personal
computers) and boot firmware (e.g., on smart phones). Removable memory 524 may be inserted
into a receptacle of or otherwise coupled to computing device 502 and can be removed by a user
from computing device 502. Removable memory 524 can include any suitable removable memory
device type, including an SD (Secure Digital) card, a Subscriber Identity Module (SIM) card,
which is well known in GSM (Global System for Mobile Communications) communication
systems, and/or other removable physical memory device type. One or more of storage device 590
may be present that are internal and/or external to a housing of computing device 502 and may or
may not be removable. Examples of storage device 590 include a hard disk drive, a SSD, a thumb
drive (e.g., a USB (Universal Serial Bus) flash drive), or other physical storage device.

One or more programs may be stored in storage 520. Such programs include operating system
512, one or more application programs 514, and other program modules and program data.
Examples of such application programs may include, for example, computer program logic (e.g.,
computer program code/instructions) for implementing one or more of multi-layer context
detector 114/202, interface 204, parser 206, request header contextualizer 208, request context
policy enforcer 10, response header contextualizer 212, response body contextualizer 214, and/or
injected code, along with any components and/or subcomponents thereof, as well as the
flowcharts/flow diagrams (e.g., method 300) described herein, including portions thereof, and/or
further examples described herein.

Storage 520 also stores data used and/or generated by operating system 512 and application
programs 514 as application data 516. Examples of application data 516 include web pages, text,
images, tables, sound files, video data, and other data, which may also be sent to and/or received
from one or more network servers or other devices via one or more wired or wireless networks.
Storage 520 can be used to store further data including a subscriber identifier, such as an
International Mobile Subscriber Identity (IMSI), and an equipment identifier, such as an

International Mobile Equipment Identifier (IMEI). Such identifiers can be transmitted to a

22

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

network server to identify users and equipment.

A user may enter commands and information into computing device 502 through one or more
input devices 530 and may receive information from computing device 502 through one or more
output devices 550. Input device(s) 530 may include one or more of touch screen 532, microphone
534, camera 536, physical keyboard 538 and/or trackball 540 and output device(s) 550 may
include one or more of speaker 552 and display 554. Each of input device(s) 530 and output
device(s) 550 may be integral to computing device 502 (e.g., built into a housing of computing
device 502) or external to computing device 502 (e.g., communicatively coupled wired or
wirelessly to computing device 502 via wired interface(s) 580 and/or wireless modem(s) 560).
Further input devices 530 (not shown) can include a Natural User Interface (NUI), a pointing
device (computer mouse), a joystick, a video game controller, a scanner, a touch pad, a stylus pen,
a voice recognition system to receive voice input, a gesture recognition system to receive gesture
input, or the like. Other possible output devices (not shown) can include piezoelectric or other
haptic output devices. Some devices can serve more than one input/output function. For instance,
display 554 may display information, as well as operating as touch screen 532 by receiving user
commands and/or other information (e.g., by touch, finger gestures, virtual keyboard, etc.) as a
user interface. Any number of each type of input device(s) 530 and output device(s) 550 may be
present, including multiple microphones 534, multiple cameras 536, multiple speakers 552, and/or
multiple displays 554.

One or more wireless modems 560 can be coupled to antenna(s) (not shown) of computing device
502 and can support two-way communications between processor 510 and devices external to
computing device 502 through network 504, as would be understood to persons skilled in the
relevant art(s). Wireless modem 560 is shown generically and can include a cellular modem 566
for communicating with one or more cellular networks, such as a GSM network for data and voice
communications within a single cellular network, between cellular networks, or between the
mobile device and a public switched telephone network (PSTN). Wireless modem 560 may also
or alternatively include other radio-based modem types, such as a Bluetooth modem 564 (also
referred to as a “Bluetooth device”) and/or Wi-Fi 562 modem (also referred to as a “wireless
adaptor”). Wi-Fi modem 562 is configured to communicate with an access point or other remote
Wi-Fi-capable device according to one or more of the wireless network protocols based on the
IEEE (Institute of Electrical and Electronics Engineers) 802.11 family of standards, commonly
used for local area networking of devices and Internet access. Bluetooth modem 564 is configured
to communicate with another Bluetooth-capable device according to the Bluetooth short-range
wireless technology standard(s) such as IEEE 802.15.1 and/or managed by the Bluetooth Special
Interest Group (SIG).

23

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
Computing device 502 can further include power supply 582, LI receiver 584, accelerometer 586,
and/or one or more wired interfaces 580. Example wired interfaces 580 include a USB port, IEEE
1394 (FireWire) port, a RS-232 port, an HDMI (High-Definition Multimedia Interface) port (e.g.,
for connection to an external display), a DisplayPort port (e.g., for connection to an external
display), an audio port, an Ethernet port, and/or an Apple® Lightning® port, the purposes and
functions of each of which are well known to persons skilled in the relevant art(s). Wired
interface(s) 580 of computing device 502 provide for wired connections between computing
device 502 and network 504, or between computing device 502 and one or more
devices/peripherals when such devices/peripherals are external to computing device 502 (e.g., a
pointing device, display 554, speaker 552, camera 536, physical keyboard 538, etc.). Power supply
582 is configured to supply power to each of the components of computing device 502 and may
receive power from a battery internal to computing device 502, and/or from a power cord plugged
into a power port of computing device 502 (e.g., a USB port, an A/C power port). LI receiver 584
may be used for location determination of computing device 502 and may include a satellite
navigation receiver such as a Global Positioning System (GPS) receiver or may include other type
of location determiner configured to determine location of computing device 502 based on
received information (e.g., using cell tower triangulation, etc.). Accelerometer 586 may be present
to determine an orientation of computing device 502.

Note that the illustrated components of computing device 502 are not required or all-inclusive,
and fewer or greater numbers of components may be present as would be recognized by one skilled
in the art. For example, computing device 502 may also include one or more of a gyroscope,
barometer, proximity sensor, ambient light sensor, digital compass, etc. Processor 510 and
memory 556 may be co-located in a same semiconductor device package, such as being included
together in an integrated circuit chip, FPGA, or system-on-chip (SOC), optionally along with
further components of computing device 502.

In embodiments, computing device 502 is configured to implement any of the above-described
features of flowcharts herein. Computer program logic for performing any of the operations, steps,
and/or functions described herein may be stored in storage 520 and executed by processor 510.
In some embodiments, server infrastructure 570 may be present in computing environment 500
and may be communicatively coupled with computing device 502 via network 504. Server
infrastructure 570, when present, may be a network-accessible server set (e.g., a cloud-based
environment or platform). As shown in FIG. 5, server infrastructure 570 includes clusters 572.
Each of clusters 572 may comprise a group of one or more compute nodes and/or a group of one
or more storage nodes. For example, as shown in FIG. 5, cluster 572 includes nodes 574. Each of

nodes 574 are accessible via network 504 (e.g., in a “cloud-based” embodiment) to build, deploy,

24

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

and manage applications and services. Any of nodes 574 may be a storage node that comprises a
plurality of physical storage disks, SSDs, and/or other physical storage devices that are accessible
via network 504 and are configured to store data associated with the applications and services
managed by nodes 574. For example, as shown in FIG. 5, nodes 574 may store application data
578.

Each of nodes 574 may, as a compute node, comprise one or more server computers, server
systems, and/or computing devices. For instance, a node 574 may include one or more of the
components of computing device 502 disclosed herein. Each of nodes 574 may be configured to
execute one or more software applications (or “applications”) and/or services and/or manage
hardware resources (e.g., processors, memory, etc.), which may be utilized by users (e.g.,
customers) of the network-accessible server set. For example, as shown in FIG. 5, nodes 574 may
operate application programs 576. In an implementation, a node of nodes 574 may operate or
comprise one or more virtual machines, with each virtual machine emulating a system architecture
(e.g., an operating system), in an isolated manner, upon which applications such as application
programs 576 may be executed.

In an embodiment, one or more of clusters 572 may be co-located (e.g., housed in one or more
nearby buildings with associated components such as backup power supplies, redundant data
communications, environmental controls, etc.) to form a datacenter, or may be arranged in other
manners. Accordingly, in an embodiment, one or more of clusters 572 may be a datacenter in a
distributed collection of datacenters. In embodiments, exemplary computing environment 500
comprises part of a cloud-based platform such as Amazon Web Services® of Amazon Web
Services, Inc. or Google Cloud Platform™ of Google LLC, although these are only examples and
are not intended to be limiting.

In an embodiment, computing device 502 may access application programs 576 for execution in
any manner, such as by a client application and/or a browser at computing device 502. Example
browsers include Microsoft Edge® by Microsoft Corp. of Redmond, Washington, Mozilla
Firefox®, by Mozilla Corp. of Mountain View, California, Safari®, by Apple Inc. of Cupertino,
California, and Google® Chrome by Google LLC of Mountain View, California.

For purposes of network (e.g., cloud) backup and data security, computing device 502 may
additionally and/or alternatively synchronize copies of application programs 514 and/or
application data 516 to be stored at network-based server infrastructure 570 as application
programs 576 and/or application data 578. For instance, operating system 512 and/or application
programs 514 may include a file hosting service client, such as Microsoft® OneDrive® by
Microsoft Corporation, Amazon Simple Storage Service (Amazon S3)® by Amazon Web

Services, Inc., Dropbox® by Dropbox, Inc., Google Drive™ by Google LLC, etc., configured to

25

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
synchronize applications and/or data stored in storage 520 at network-based server infrastructure
570.

In some embodiments, on-premises servers 592 may be present in computing environment 500
and may be communicatively coupled with computing device 502 via network 504. On-premises
servers 592, when present, are hosted within an organization’s infrastructure and, in many cases,
physically onsite of a facility of that organization. On-premises servers 592 are controlled,
administered, and maintained by IT (Information Technology) personnel of the organization or an
IT partner to the organization. Application data 598 may be shared by on-premises servers 592
between computing devices of the organization, including computing device 502 (when part of an
organization) through a local network of the organization, and/or through further networks
accessible to the organization (including the Internet). Furthermore, on-premises servers 592 may
serve applications such as application programs 596 to the computing devices of the organization,
including computing device 502. Accordingly, on-premises servers 592 may include storage 594
(which includes one or more physical storage devices such as storage disks and/or SSDs) for
storage of application programs 596 and application data 598 and may include one or more
processors for execution of application programs 596. Still further, computing device 502 may be
configured to synchronize copies of application programs 514 and/or application data 516 for
backup storage at on-premises servers 592 as application programs 596 and/or application data
598.

Embodiments described herein may be implemented in one or more of computing device 502,
network-based server infrastructure 570, and on-premises servers 592. For example, in some
embodiments, computing device 502 may be used to implement systems, clients, or devices, or
components/subcomponents thereof, disclosed elsewhere herein. In other embodiments, a
combination of computing device 502, network-based server infrastructure 570, and/or on-
premises servers 592 may be used to implement the systems, clients, or devices, or components/
subcomponents thereof, disclosed elsewhere herein.

29 LC

As used herein, the terms “computer program medium,” “computer-readable medium,” and

“computer-readable storage medium,” etc., are used to refer to physical hardware media.

Examples of such physical hardware media include any hard disk, optical disk, SSD, other
physical hardware media such as RAMs, ROMs, flash memory, digital video disks, zip disks,
MEMs (microelectronic machine) memory, nanotechnology-based storage devices, and further
types of physical/tangible hardware storage media of storage 520. Such computer-readable media
and/or storage media are distinguished from and non-overlapping with communication media and

propagating signals (do not include communication media and propagating signals).

Communication media embodies computer-readable instructions, data structures, program

26

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

modules or other data in a modulated data signal such as a carrier wave. The term “modulated data
signal” means a signal that has one or more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example, and not limitation, communication
media includes wireless media such as acoustic, RF, infrared and other wireless media, as well as
wired media. Embodiments are also directed to such communication media that are separate and
non-overlapping with embodiments directed to computer-readable storage media.

As noted above, computer programs and modules (including application programs 514) may be
stored in storage 520. Such computer programs may also be received via wired interface(s) 580
and/or wireless modem(s) 560 over network 504. Such computer programs, when executed or
loaded by an application, enable computing device 502 to implement features of embodiments
discussed herein. Accordingly, such computer programs represent controllers of the computing
device 502.

Embodiments are also directed to computer program products comprising computer code or
instructions stored on any computer-readable medium or computer-readable storage medium.
Such computer program products include the physical storage of storage 520 as well as further
physical storage types.

IV. Further Example Embodiments

Methods, systems and computer program products are provided for multi-layer, browser-based
context emulation detection, which may be implemented by a proxy for (e.g., unmanaged)
browsers. A policy may be enforced against requests if a request context indicates a restricted
context (e.g., a download action rather than a webpage rendering). Context may be detected and
indicated in a response header and body based on one or more context detection/indication rules.
Context may be indicated by marking or not marking resources indicated in responses. Code (e.g.,
JavaScript library) may be injected to cause the client web browser to indicate context (e.g., for
dynamically generated request content and/or requests intercepted by service workers). A
response may be forwarded to the client with a response header context, a response body context,
and/or injected code, which a client browser may process to generate a request with one or more
indications of request context.

In examples, a computing device may include a proxy server. The proxy server may comprise, for
example, an interface and a multi-layer browser context detector. The interface may be configured
to receive a request associated with a client web browser (e.g., an original request or a subsequent
request, which may be generated from a previously marked response). A request may include a
request header and a request body. The interface may be configured to receive a response
associated with a web server. A response may include a response header and a response body. The

multi-layer browser context detector may be configured to: inspect (e.g., review) the request

27

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
header for an indication of a request context; enforce a policy against the request if the indication
of the request context indicates a restricted context; inspect (e.g., review) the response header and
the response body for a response header context and a response body context; determine whether
to mark (e.g., label, edit, modify) the response header (e.g., e.g., location response header) to
indicate the response header context based at least on context detection rules; and determine
whether to mark (e.g., label, edit, modify) (e.g., a URL in) the response body to indicate the
response body context based at least on the context detection rules. The interface may be
configured to forward to the client a response indicating (e.g., by marking or not marking) at least
one of the response header context or the response body context.

In examples, at least one of the response header context or the response body context may indicate
(e.g., by marking or not marking) the restricted context. At least one of the response header context
or the response body context may indicate (e.g., by marking or not marking) an unrestricted
context.

In examples, the restricted context may indicate a download action. The unrestricted context may
indicate a webpage rendering resource.

In examples, the unrestricted context in the response header context may indicate (e.g., by marking
or not marking) whether a navigation response header in the response corresponds to a navigate
resource. The unrestricted context in the response body context may indicate (e.g., by marking or
not marking) whether resource indicators in the response correspond to hypertext markup
language (HTML) resources, JavaScript resources, style sheet resources, or image resources.

In examples, the request may be created based at least on (e.g., subsequent to, responsive to) the
forwarded response (e.g., request context derived from the response header/body context).

In examples, the proxy server may (e.g., further) comprise a code injector configured to inject
code (e.g., proxy JavaScript code, a library) into the forwarded response. The injected code may
be configured to cause the client web browser to mark the request with at least a portion of the
request context (e.g., subsequently interpreted in a request generated by the browser after
receiving a marked response).

In examples, the injected code may be configured to cause the client web browser to mark the
request with at least a portion of the request context for dynamically generated request content
(e.g., dynamically created HTML tags for JavaScript (JS) document object model (DOM)
manipulation).

In examples, the injected code may be configured to cause the client web browser to mark the
request with at least a portion of the request context if the request is captured by a client-side
service worker (e.g., for JS non-DOM manipulation).

In examples, the interface may be (e.g., further) configured to: receive a plurality of requests

28

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055
associated with a plurality of client web browsers, including the request. The request may include
a fetch metadata request header while at least one of the other plurality of requests does not
comprise a fetch metadata request header. The interface may be configured to map an indication
(e.g., value) in the fetch metadata request header to the restricted context or to an unrestricted
context.

In examples, the client may be an unmanaged client, e.g., in contrast to a managed/controlled
client.

In examples, a computer-implemented method may comprise receiving a request associated with
a client web browser, the request comprising a request header and a request body; inspecting the
request header for an indication of a request context; enforcing a policy against the request if the
indication of the request context indicates a restricted context; receiving a response associated
with a web server, the response comprising a response header and a response body; inspecting the
response header and the response body for a response header context and a response body context;
determining based at least on context detection rules whether to: mark the response header to
indicate the response header context; mark the response body to indicate the response body context
based at least on the context detection rules; and/or inject code into the forwarded response, where
the injected code may be configured to cause the client web browser to mark the request with at
least a portion of the request context; and forwarding to the client a response indicating at least
one of the response header context, the response body context, or including the injected code.

In examples, at least one of the response header context or the response body context may indicate,
by marking or not marking, a download action; and at least one of the response header context or
the response body context may indicate, by marking or not marking, a webpage rendering
resource.

In examples, the header context may indicate whether a navigation response header in the response
corresponds to a navigate resource; and the response body context may indicate whether resource
indicators in the response correspond to hypertext markup language (HTML) resources,
JavaScript resources, style sheet resources, or image resources.

In examples, the injected code may be configured to cause the client web browser to mark the
request with at least a portion of the request context for dynamically generated request content.
In examples, the injected code may be configured to cause the client web browser to mark the
request with at least a portion of the request context if the request is captured by a client-side
service worker.

In examples, a method may (e.g., further) comprise receiving a plurality of requests associated
with a plurality of client web browsers, including the request, where the request comprises a fetch

metadata request header and at least one of the other plurality of requests does not comprise a

29

10

15

20

25

30

35

WO 2024/129337 PCT/US2023/081055

fetch metadata request header; and mapping an indication in the fetch metadata request header to
the restricted context or to an unrestricted context.

In examples, a computer-readable storage medium may have program instructions recorded
thereon that, when executed by a processing circuit, perform a method. The method may comprise
receiving a request associated with a client web browser, the request comprising a request header
and a request body; inspecting the request header for an indication of a request context; enforcing
a policy against the request if the indication of the request context indicates a restricted context;
receiving a response associated with a web server, the response comprising a response header and
a response body; inspecting the response header and the response body for a response header
context and a response body context; determining based at least on context detection rules whether
to: mark the response header to indicate the response header context, mark the response body to
indicate the response body context based at least on the context detection rules; and/or inject code
into the forwarded response, wherein the injected code is configured to cause the client web
browser to mark the request with at least a portion of the request context; and forwarding to the
client a response indicating at least one of the response header context, the response body context,
or including the injected code.

In examples, at least one of the response header context or the response body context may indicate,
by marking or not marking, a download action; and at least one of the response header context or
the response body context may indicate, by marking or not marking, a webpage rendering
resource.

In examples, the header context may indicate whether a navigation response header in the response
corresponds to a navigate resource; and the response body context may indicate whether resource
indicators in the response correspond to hypertext markup language (HTML) resources,
JavaScript resources, style sheet resources, or image resources.

In examples, the method may (e.g., further) comprise receiving a plurality of requests associated
with a plurality of client web browsers, including the request, where the request comprises a fetch
metadata request header and at least one of the other plurality of requests does not comprise a
fetch metadata request header; and mapping an indication in the fetch metadata request header to
the restricted context or to an unrestricted context.

V. Conclusion

References in the specification to "one embodiment," "an embodiment," "an example
embodiment," etc., indicate that the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the

same embodiment. Further, when a particular feature, structure, or characteristic is described in

30

10

15

WO 2024/129337 PCT/US2023/081055
connection with an example embodiment, it is submitted that it is within the knowledge of one
skilled in the art to effect such feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described.

In the discussion, unless otherwise stated, adjectives such as “substantially” and “about”
modifying a condition or relationship characteristic of a feature or features of an example
embodiment of the disclosure, are understood to mean that the condition or characteristic is
defined to within tolerances that are acceptable for operation of the embodiment for an application
for which it is intended.

If the performance of an operation is described herein as being “based on” one or more factors, it
is to be understood that the performance of the operation may be based solely on such factor(s) or
may be based on such factor(s) along with one or more additional factors. Thus, as used herein,
the term “based on” should be understood to be equivalent to the term “based at least on.”

While various embodiments of the present invention have been described above, it should be
understood that they have been presented by way of example only, and not limitation. It will be
understood by those skilled in the relevant art(s) that various changes in form and details may be
made therein without departing from the spirit and scope of the invention as defined in the
appended claims. Accordingly, the breadth and scope of the present invention should not be
limited by any of the above-described exemplary embodiments, but should be defined only in

accordance with the following claims and their equivalents.

31

WO 2024/129337 PCT/US2023/081055
CLAIMS
1. A computing device that includes a proxy server, the proxy server comprising:
an interface configured to:
receive a request associated with a client web browser, the request comprising a
request header and a request body;
receive a response associated with a web server, the response comprising a
response header and a response body;
a multi-layer browser context detector configured to:
inspect the request header for an indication of a request context;
enforce a policy against the request if the indication of the request context
indicates a restricted context;
inspect the response header and the response body for a response header context
and a response body context;
determine whether to mark the response header to indicate the response header
context based at least on context detection rules; and
determine whether to mark the response body to indicate the response body
context based at least on the context detection rules;
wherein the interface is configured to forward to the client a response indicating at least
one of the response header context or the response body context.
2. The computing device of claim 1,
wherein at least one of the response header context or the response body context
indicates the restricted context; and
wherein at least one of the response header context or the response body context
indicates an unrestricted context.
3. The computing device of claim 2,
wherein the restricted context indicates a download action; and
wherein the unrestricted context indicates a webpage rendering resource.
4. The computing device of claim 2,
wherein the unrestricted context in the response header context indicates whether a
navigation response header in the response corresponds to a navigate resource; and
wherein the unrestricted context in the response body context indicates whether resource
indicators in the response correspond to hypertext markup language (HTML) resources,
JavaScript resources, style sheet resources, or image resources.
5. The computing device of claim 1, wherein the request is created based at least on the

forwarded response.

32

WO 2024/129337 PCT/US2023/081055
6. The computing device of claim 1, wherein the proxy server further comprises:

a code injector configured to inject code into the forwarded response, wherein the
injected code is configured to cause the client web browser to mark the request with at least a
portion of the request context.

7. The computing device of claim 6, wherein the injected code is configured to cause the
client web browser to mark the request with at least a portion of the request context for
dynamically generated request content.

8. The computing device of claim 6, wherein the injected code is configured to cause the
client web browser to mark the request with at least a portion of the request context if the request
is captured by a client-side service worker.

9. The computing device of claim 1, wherein the interface is further configured to:

receive a plurality of requests associated with a plurality of client web browsers,
including the request, where the request comprises a fetch metadata request header and at least
one of the other plurality of requests does not comprise a fetch metadata request header; and

map an indication in the fetch metadata request header to the restricted context or to an
unrestricted context.

10. The computing device of claim 1, wherein client is an unmanaged client.
11. A computer-implemented method comprising:

receiving a request associated with a client web browser, the request comprising a
request header and a request body;

inspecting the request header for an indication of a request context;

enforcing a policy against the request if the indication of the request context indicates a
restricted context;

receiving a response associated with a web server, the response comprising a response
header and a response body;

inspecting the response header and the response body for a response header context and a
response body context;

determining based at least on context detection rules whether to:

mark the response header to indicate the response header context;
mark the response body to indicate the response body context based at least on
the context detection rules; or
inject code into the response, wherein the injected code is configured to cause the
client web browser to mark the request with at least a portion of the request context; and
forwarding to the client a response indicating at least one of the response header context,

the response body context, or including the injected code.

33

WO 2024/129337 PCT/US2023/081055

12. The computer-implemented method of claim 11,

wherein at least one of the response header context or the response body context
indicates, by marking or not marking, a download action; and

wherein at least one of the response header context or the response body context
indicates, by marking or not marking, a webpage rendering resource.
13. The computer-implemented method of claim 11,

wherein the header context indicates whether a navigation response header in the
response corresponds to a navigate resource; and

wherein the response body context indicates whether resource indicators in the response
correspond to hypertext markup language (HTML) resources, JavaScript resources, style sheet
resources, Or image resources.
14. The computer-implemented method of claim 11, wherein the injected code is configured
to cause the client web browser to mark the request with at least a portion of the request context
for dynamically generated request content.
15. A computer-readable storage medium having program instructions encoded thereon that

are executable by one or more processors to perform any of the methods of claims 11-14.

34

PCT/US2023/081055

WO 2024/129337

1/5

801 (s)19A105 ddy

\ 4
\O
—
—
~~

W
N’
[}
=
R7
e
g

T11 (5)19sM01q QI

0T (8)92145(WWSTD

$71 sasuodsay sisenboy 071

OlT

A ¥/

9€1 10309uf 9po)

H11 J010919(T IXSIU0)) JDAR[-NNIA

£0T (5)19A19S Ax01d

€1 (s)20149p Sunndwo)

(s)19sn

o0
—

001

PCT/US2023/081055

WO 2024/129337

2/5

¢ DI

0T 99BJIIU]

907 Josied

71T 19Z1[emXa1u0)) JOPeaf osuodsoy]

807 JoZI[en)xouo)) JopesH Isonboy

17 Wzienxdauo) Apog asuodsay

017 J92103uq A21]0d 1X1u0)) 1sanbay

70T 1019919(] 1X21U0)) I9ART-NNIA

WO 2024/129337

3/5
300

\.\

PCT/US2023/081055

302

Receive a request associated with a client web browser, the request
comprising a request header and a request body

l

304

Inspect the request header for an indication of a request context

l

306

Enforce a policy against the request if the indication of the request context
indicates a restricted context

l

308

Receive a response associated with a web server, the response comprising a
response header and a response body

l

310

Inspect the response header and the response body for a response header
context and a response body context

l

Determine based at least on context detection rules whether to:
mark the response header to indicate the response header context;
mark the response body to indicate the response body context based at

least on the context detection rules; and/or
inject code into the response, wherein the injected code is configured to
cause the client web browser to mark the request with at least a portion of the
request context

312

y

314

Forward to the client a response indicating at least one of the response header
context, the response body context, or including the injected code.

FIG. 3

WO 2024/129337 PCT/US2023/081055

4/5

400

\\

402

Receive a plurality of requests associated with a plurality of client web browsers is
received, where a received request comprises a fetch metadata request header

l

Inspect the request header for an indication of a request context

FI1G. 4

404

PCT/US2023/081055

WO 2024/129337

S/5

¢ DA

|1 | R
90¢
0§ 11eg3orIL 0r¢
1293 006G 06S bze J0SS3001]
Aejdsiq Ie[nyR) 901A9(] 35r101§
8¢S pIe0qhay| . K1owop I
[eo1s Ay o[qrAOWIY pae
css 96 91¢ IOARIIY I'T
9€¢ BIWE)) D LETUN yoojenyg ejeq uoneoddy
Q1§ dIeMuLIL]
0S¢ 98¢
€< duoydoIdmn $1S sweiso1d
(s)ao189 INdINQ 706 woneorddy as I9J0WOIS[920Y
Zcc E— £ g Arowo
U92I0S YONO . 00¢ TIS washg SIqBAOTISYTON 786
085 SuneradQ 966 AJowaA £1ddng 1omoq
(s)oo1aa] indu (s)aorpIoluy (s)wopon
0€s 1A’ I paIIpM SSA[AITM 076 95eI01S 205 201ASd
A * Sunndwo))

86¢ e uoneorddy

065 SWRISOI]
uonedrddy

$6S 958101

766 SIOAIOG SASTWRIJ-UQ

¥0¢

eI uoneorddy

8LS 9/G sweiSo1q
uonedrddy

vLS SOPON

TLS s1Isn[)

0LS SINONIISRIJUT JOAIDS PISeg-JIOMION

v

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/081055

A. CLASSIFICATION OF SUBJECT MATTER
INV. HO04L67/2871 HO04L67/561

ADD.

GO6F16/25

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Anonymous :
Applications",

Retrieved from the Internet:

5-BE90-D46495856C90 . .html
[retrieved on 2024-02-06]
the whole document

"Policy Enforcement with Proxy

22 May 2014 (2014-05-22), XpP093128278,

URL:https://docs.tibco.com/pub/policy-dire
ctor/1.0.1/doc/html/GUID-B940BB42-BC2D-4BE

|__K| Further documents are listed in the continuation of Box C.

|:| See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

6 February 2024

Date of mailing of the international search report

23/02/2024

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Manea, Anda

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/081055
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A Anonymous : "HTTP headers — HTTP | MDN", 2-10,
12-14

10 December 2022 (2022-12-10),
Xp093128281,

Retrieved from the Internet:
URL:https://web.archive.org/web/2022121023
2449/https://developer.mozilla.org/en-US/d
ocs/Web/HTTP /Headers

[retrieved on 2024-02-06]

ch.Fetch metadata request headers

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

