
US 20200380173A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0380173 A1

HERSHMAN et al . (43) Pub . Date : Dec. 3 , 2020

(54) IMPROVED SYSTEM AND METHOD FOR
CORRECTION OF MEMORY ERRORS

(71) Applicant : NUVOTON TECHNOLOGY
CORPORATION , Hsinchu Science
Park (TW)

GOOF 9/4401 (2006.01)
G06F 21/44 (2006.01)

(52) U.S. CI .
CPC G06F 21/76 (2013.01) ; G06F 11/1068

(2013.01) ; G06F 21/44 (2013.01) ; H04L 9/32
(2013.01) ; G06F 9/4418 (2013.01) ; GIIC

29/52 (2013.01) (72) Inventors : Ziv HERSHMAN , Givat Shmuel (IL) ;
Ilan MARGALIT , Tel - Aviv (IL)

(73) Assignee : NUVOTON TECHNOLOGY
CORPORATION , Hsinchu Science
Park (TW)

(21) Appl . No .: 16 / 423,676
(22) Filed : May 28 , 2019

(57) ABSTRACT

A self - correcting memory system comprising an integrated
circuit including memory and memory content authentica
tion functionality , which is operative to compare content to
be authenticated to a standard and to output “ authentic ” if
the content to be authenticated equals the standard and
“ non - authentic ” otherwise ; and error correction functional
ity which is operative to apply at least one possible correc
tion to at least one erroneous word entity in said memory ,
yielding a possibly correct word entity , call said authenti
cation for application to the possibly correct word entity , and
if the authentication's output is “ authentic ” , to replace said
erroneous word entity in said memory , with said possibly
correct word entity thereby to yield error correction at a level
of confidence derived from the level of confidence associ
ated with the authentication .

Publication Classification

(51) Int . Ci .
G06F 21/76
G06F 11/10
GIIC 29/52
H04L 9/32

(2006.01)
(2006.01)
(2006.01)
(2006.01)

Triggered Indication e.g. reset or
interrupt request to Processor 1
or other processor exception

Integrated circuit
Alert : " error found ,
couldn't correcta
e ... to sw18 of
Auth Error Application System 16

Utilizing IC
IC Interconnect

Processor 1 11 Other
processor
Functions Access ctrl System Main Host

Processor HW6 & / or
FW7

Memory
Array 2

Application
System 16's
Software 18

Device firmware
Scontrolling Access
to Memory Array

Zones 3
FW update
Or other
recovery

Triggered Indication e.g. reset or interrupt request to Processor 1
or other processor exception

Alert : " error found , couldn't correct "
e.s. to sw18 of

Auth Error Application System 16

Utilizing IC

Patent Application Publication

Integrated circuit

IC Interconnect
Processor 1

Other processor Functions

Access ctrl

System Main Host Processor

HW6 & / or

th

Dec. 3 , 2020 Sheet 1 of 11

Memory Array 2

Application System 16's Software 18

Device firmware Scontrolling Access to Memory Array Zones 3

FW update Or other recovery

US 2020/0380173 A1

Patent Application Publication Dec. 3 , 2020 Sheet 2 of 11 US 2020/0380173 A1

FIG . 2

Operation 10 : Provide an integrated circuit in which memory
content e.g. code stored in memory , is protected by both Power - up

' strong auth ' and On - the - fly ' word auth '
?

Operation 20 : each time on - the - fly word auth fails (e.g. during
runtime) , the integrated circuit halts or is automatically restarted .

?
Operation 30 : On next power - up (e.g.) all “ word auth ' are checked

as part of the ' strong auth ' computation already being used to
protect the memory content . If a ' word auth ' fails during power - up

auth the integrated circuit attempts to correct the error that has
been found in its memory content e.g. by performing operation / s

140 - 170 of Fig . 3 .
l

Operation 80 : if the memory is a code execution memory , a
suitable Power - fail safe Code recovery update flow may be

executed if error correction e.g. performing operation / s 140 - 170
of Fig . 3 results in resolving of corrected code . Once the code has
been successfully corrected , the processor can resume running aka

normal operation .

Patent Application Publication Dec. 3 , 2020 Sheet 3 of 11 US 2020/0380173 A1

FIG . 3

Operation 140 : All one bit permutations of the bad word are
checked , searching for a match .

t
Operation 150 : If a match is found , the erroneous data or content
as corrected or rectified may be digested as part of the ' strong

auth ' computation .
l

Operation 160 : otherwise , optionally , try to correct more than one
error e.g. by searching again , this time over at least some double
bit permutations of the error . It is appreciated that if more than one

error (involving more than one bit) can be corrected with high
likelihood , but according to some embodiments errors involving

plural bits are not corrected because computation is more
complicated than for one bit , requiring --X ̂ 2 / 2 (~ 144 ̂ 2 / 2) checks .

1
Operation 170 : If error cannot be corrected , typically an alert is

provided to the end - user e.g. via higher level software as shown in
Fig . 1 .

Patent Application Publication Dec. 3 , 2020 Sheet 4 of 11 US 2020/0380173 A1

FIG . 4

Operation 210 : Identify the flash pages to be corrected . If there is
more than one page , for each , keep (an indication of) the words
(addresses + data) that needs to be corrected in volatile memory ,

then perform operation 220 or operation 230 .
t

Operation 220 : correct each page that needs to be corrected , e.g. by
performing , for each page , all of operations 310 - 350 in Fig . 5 .

End .
?

Operation 230 : During boot time , before flash code authentication
is performed , the boot code checks if there is a page which is
known to be e.g. marked as usable , and if so , the boot code

completes all of operations 310 - 350 before continuing the boot .
Otherwise , some higher level firmware may perform “ garbage

collection ' .

Patent Application Publication Dec. 3 , 2020 Sheet 5 of 11 US 2020/0380173 A1

FIG . 5

Operation 310 : Write the flash page address and corrected data
(code) in a reserved predefined flash page and verifies that it was

written correctly .
l

Operation 320 : Set a bit in the reserved page that indicates e.g. to
other firmware that this page carries valid info , or is in use and

should not be erased .
?

Operation 330 : Erase original flash page (that in which error / s
was / were found in operation 210 of Fig . 4)

t
Operation 340 : Update original flash page with corrected data from

the reserved flash page and verify that it was written correctly
t

Operation 350 : Erase the reserved page to enable future use thereof
for correction of errors in other pages

Patent Application Publication Dec. 3 , 2020 Sheet 6 of 11 US 2020/0380173 A1

FIG . 6

Operation 1001 -- Fill the memory zone with contents , e.g. code ,
which includes a multiplicity of words . For each word , compute

the " word auth " while writing , and store the “ word auth "
1

Operation 1002 – Run “ strong auth " over the memory contents and
store result

?
Operation 1003 – Use the memory as usual including performing
memory reads . Each memory read includes : computation of a

current aka recomputed “ word auth ” , reading from memory , the
pre - computed word - auth stored in Operation 1001 , and comparing

the two . If recomputed " word auth ” equals the pre - computed
word - auth read from memory , else enter error correction sequence .

Patent Application Publication Dec. 3 , 2020 Sheet 7 of 11 US 2020/0380173 A1

FIG . 7

Operation 1006 - perform error correction on content to be
corrected including the word and its associated word auth ,

combined .
?

Operation 1008 -flag uncorrectable memory contents , and / or halt
system , and / or processor 1 may prompt for higher level recovery

?
Operation 1009 - Do “ strong auth ” including computing a digest
e.g. HMAC for the whole memory zone , thereby to yield a strong
auth result . Typically , strong auth yields a digest / MAC / signature .

t
Operation 10010 - Compare the strong auth result to the pre

computed pre - computed strong - auth result stored in memory in
Operation 1002. If the results are equal , there is a strong - auth
match ; otherwise (unequal) there is a strong - auth mismatch .

?
Operation 10011 - If there is a strong auth match --- memory

contents is qualified after correction , continue using memory as
usual e.g. go to Operation 1003

t
Operation 10012 - else i.e. If there is a strong auth mismatch

perform mismatch process e.g. as in Fig . 8 .

FIG . 8
Operation 10012.5 : scan the whole memory 2 in Fig . 1 , e.g.

by redoing Operation 1006 , but correct all identified errors .
t

Operation 10013 - redo strong auth e.g. by redoing
Operations 1009 - 11 .

t
Operation 10014 - If strong auth now fails , flag

uncorrectable memory contents

Protected Access Controlled Memory Zone 3 In memory array 2

128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload

16 - bit auth 16 - bit auth 16 - bit auth 16 - bit auth 16 - bit auth

Patent Application Publication

16 - bit auth

-

16 - bit auth

128 - bit payload

16 - bit auth

Dec. 3 , 2020 Sheet 8 of 11

Read payload

Read auth

compute auth

compare

US 2020/0380173 A1

FIG . 9

Word auth error if not equal

Nth 128 - bit payload

1

Nth 16 - bit auth

000

Read payload

Read auth

Patent Application Publication

Flip One Bit

?

Read payload

Read auth

If not

compute auth

equal ,
flip next bit

compare

Dec. 3 , 2020 Sheet 9 of 11

If equal on first read , read N + 1 payload + auth

NO

YES

Retry or hi - level recover e.g. by alerting sw 18

Are all payloads and auths consistent ?

Run Strong Auth e.g. as

US 2020/0380173 A1

per Fig . lg

FIG . 10

Protected Access Controlled Memory Zone 3

16 - bit auth 16 - bit auth

128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload 128 - bit payload

16 - bit auth - 16 - bit auth 16 - bit auth

Patent Application Publication

16 - bit auth 16 - bit auth

Pre computed Pre - stored Strong auth Digest

128 - bit payload

16 - bit auth
PORR

Dec. 3 , 2020 Sheet 10 of 11

Strong Auth Computation

compare

US 2020/0380173 A1

FIG . 11

Strong auth error if not equal

Patent Application Publication

Change in power state
Device reset

Logical combination of incoming
Trigger / s

Trigger Strong Auth Cycle e.g. of

Hack attempt detected Periodic trigger

Fig . 11

Word Auth Error

Dec. 3 , 2020 Sheet 11 of 11

FIG . 12

US 2020/0380173 A1

US 2020/0380173 A1 Dec. 3 , 2020
1

IMPROVED SYSTEM AND METHOD FOR
CORRECTION OF MEMORY ERRORS

REFERENCE TO CO - PENDING APPLICATIONS

[0001] None .

FIELD OF THIS DISCLOSURE

[0002] The present invention relates generally to inte
grated circuits , and more particularly to protecting IC (Inte
grated Circuit) memory content .

BACKGROUND FOR THIS DISCLOSURE
[0003] State of the art systems in the general field of the
invention include the following patent documents :
[0004] U.S. Pat . No. 6,838,331B2
[0005] U.S. Pat . No. 9,525,546B2
[0006] US20070089034A1
[0007] US20080168319A1
[0008] US20090164704A1
[0009] US20080222491A1
[0010] U.S. Pat . No. 7,266,747B2
[0011] US20060256615A1
[0012] U.S. Pat . No. 7,937,639B2 (Infineon 2006)
[0013] US20170255512A1
[0014] U.S. Pat . No. 10,026,488B2 (Sandisk)
[0015] US20180239665A1
[0016] US20180246783A1 (Sandisk 2016)
[0017] US20180091308 to Durham .
[0018] Wikipedia's entry on scrubbing (https : //en.wikipe
dia.org/wiki/Data_scrubbing) states that Data Integrity (re
ducing data corruption) is crucial e.g. for prevention of
hardware or software failure in operating systems , storage
systems or data transmission systems which are all config
ured for extensively writing , reading , storing , transmission ,
and processing of data in memory , disk arrays , file systems ,
FPGAs or elsewhere . To facilitate integrity , data scrubbing
is performed by checking for inconsistencies in data . Data
scrubbing is a form of error correction , using a background
task to periodically inspect memory and detect errors , then
correct any errors detected using available redundant data
e.g. checksums or copies of the data in which the error was
detected . Absent Data scrubbing , single errors which are
correctable tend to accumulate to multiple , uncorrectable
errors , making it advantageous to address data errors while
they are still small enough to be correctable .
[0019] The disclosures of all publications and patent docu
ments mentioned in the specification , and of the publications
and patent documents cited therein directly or indirectly , are
hereby incorporated by reference . Materiality of such pub
lications and patent documents to patentability is not con
ceded .

[0022] Certain embodiments seek to provide an error
correction solution which , unlike conventional error correc
tion solutions , does not generate overhead in memory (as
opposed , say to ECC , which requires x bits to be stored per
y amount of data) . This is because “ evaluation " of the data
utilizes authentication , an existing functionality in conven
tional , e.g. security — and integrity - aware memory man
agement , which inevitably involves its own overhead and is
harnessed as described herein for error correction , such that
typically no overhead over and above the authentication's
natural overhead , is required .
[0023] It is appreciated that applicability of embodiments
herein extends inter alia to any general microcontroller
performing any function / s , that has a processor and memory .
These functions are typically operated by the FW executed
by the processor ; the FW resides in the memory and may
itself be (included in) the memory content that is sought to
be secured .
[0024] It is appreciated that certain embodiments herein
may be used with a legacy ic , parsimoniously utilizing
(portions of) the legacy ic's own legacy auth whose crypto
computations may be done either in HW or FW ; HW is
typically provided for storing the auth digests . firmware
using regular CPU instructions may be employed , or HW
accelerators may be used . For example , if HMAC is used for
the strong auth , and the legacy IC has a piece of crypto HW
operative to perform HMAC , the firmware may utilize this
piece of legacy hardware in the legacy IC if the legacy
hardware is accessible for the processor of the subject IC
hence accessible for the FW the processor is executing .
[0025] Alternatively or in addition , (portions of) access
control functionality in the IC's legacy HW and / or FW may
be employed .
[0026] Alternatively or in addition , an existing IC's legacy
HW and / or FW are not employed to implement the embodi
ments herein and instead , (some or all of) the functionality
described herein is implemented in suitable FW which is
added to the mutable code of the existing ic's legacy FW .
[0027] There are thus provided at least the following
embodiments :
[0028] Embodiment 1. A self - correcting memory system
comprising :
[0029] an integrated circuit including :

[0030] memory and
[0031] memory content authentication functionality ,
which is operative to compare content to be authenti
cated to a standard and to output “ authentic ” if the
content to be authenticated equals the standard and
" non - authentic ” otherwise ; and

[0032] error correction functionality which is operative
to apply at least one possible correction to at least one
erroneous word entity in the memory , yielding a pos
sibly correct word entity , call the authentication for
application to the possibly correct word entity , and if
the authentication's output is “ authentic ” , to replace the
erroneous word entity in the memory , with the possibly
correct word entity

[0033] thereby to yield error correction at a level of
confidence derived from the level of confidence associated
with the authentication .
[0034] It is appreciated that comparison of content to be
authenticated to a standard typically involves computing
some derivative of the content to be authenticated , such as

SUMMARY OF CERTAIN EMBODIMENTS

[0020] Certain embodiments seek to provide a system for
testing possible corrections of memory errors , using
memory authentication functionality not only to identify
errors , but also to verify (or not) various possible correc
tions .
[0021] Certain embodiments seek to provide a method for
error correction including applying at least one possible
error correction and then using an integrated circuit's exist
ing authentication functionality to verify whether the pos
sible error correction is correct .

US 2020/0380173 A1 Dec. 3 , 2020
2

a digest thereof , and comparing that derivative (rather than
directly comparing the actual raw content) to a standard .
[0035] Embodiment 2. A system according to any of the
preceding embodiments wherein the authentication func
tionality is operative to perform cryptographically strong
authentication .
[0036] Embodiment 3. A system according to any of the
preceding embodiments wherein the authentication func
tionality is also operative to perform word- authentication .
[0037] Embodiment 4. A system according to any of the
preceding embodiments wherein the Error correction func
tionality is configured for :
[0038] applying at least one possible correction to at least
one erroneous word in the memory , yielding a possibly
correct word ,
[0039] calling the word - authentication for application to
the possibly correct word ,
[0040] if the word - authentication's output is " authentic ” ,
to subsequently call the strong authentication for application
to the possibly correct word , and
[0041] if the strong - authentication's output is authentic ” ,
to replace the erroneous word in the memory , with the
possibly correct word ,
[0042] thereby to yield error correction at a level of
confidence derived from the level of confidence associated
with the strong authentication and / or word - authentication .
[0043] Embodiment 5. A system according to any of the
preceding embodiments wherein the erroneous word is
detected by word - authentication applied to at least one word
in the memory and wherein any word which yields a
“ non - authentic ” output is considered erroneous and any
word which yields an “ authentic ” output is considered
non - erroneous .
[0044] Embodiment 6. A system according to any of the
preceding embodiments wherein the correction comprises a
flip of at least one bit in the erroneous word entity from 0 to
1 or from 1 to 0 .
[0045] Embodiment 7a . A system according to any of the
preceding embodiments wherein possible corrections are
applied to plural erroneous words yielding plural possibly
correct words , and wherein said strong authentication is
called once for application to a revised memory image /
chunk in which all of said plural erroneous words are
replaced with said possibly correct words respectively ,
rather than calling said strong authentication plural times for
application to memory images / chunks respectively includ
ing said plural possibly correct words respectively , thereby
to save memory and / or correction time .
[0046] Embodiment 7b . A system according to any of the
preceding embodiments wherein possible corrections are
applied to plural erroneous words yielding plural possibly
correct words , and wherein the strong authentication is
called once for application to all of the plural possibly
correct words rather than calling the strong authentication
plural times for application to the plural possibly correct
words respectively , thereby to save memory and / or correc
tion time .
[0047] Embodiment 8. A system according to any of the
preceding embodiments wherein at least first and second
possible corrections are applied to at least one erroneous
word and wherein any bit in the erroneous word which is
flipped in the first correction is unflipped before the second
possible correction is applied to the erroneous word , thereby

to undo the first possible correction of the erroneous word
before applying the second possible correction to the same
erroneous word .
[0048] Embodiment 9. A system according to any of the
preceding embodiments wherein all possible corrections are
applied to at least one erroneous word .
[0049] Embodiment 10. A system according to any of the
preceding embodiments wherein the erroneous word to
which all possible corrections are applied comprises an
erroneous word for which none of the possible corrections
tried results in correct word authentication , until the last
possible correction is tried , in which case the erroneous
word is regarded as uncorrectable .
[0050] Embodiment 11. A system according to any of the
preceding embodiments wherein at least one heuristic is
employed to determine a subset of possible corrections
including less than all possible corrections and wherein only
possible corrections in the subset are applied to at least one
erroneous word , even if none of the possible corrections in
the subset results in correct word authentication .
[0051] It is appreciated that heuristics may be used to
generate subset of candidate corrections aka possible cor
rections , and / or may be used to prioritize candidate correc
tions such that the right corrections , for a given use - case , are
more likely to be found earlier whereas less likely correc
tions are tested only later (e.g. only if the more likely
corrections are not verified) .
[0052] Typically , if a given subset of priority possible
corrections are not verified , the system defaults to the rest of
the possible corrections (which were deemed lower priority
because they were deemed less likely , a priori , to be veri
fied)
[0053] Embodiment 12. A system according to any of the
preceding embodiments wherein the authentication func
tionality , operative to compare content to be authenticated to
a standard , is operative to apply strong auth to the content to
be authenticated which is stored at a given memory location ,
at a time t2 , thereby to yield a " computed ” auth value , and
to compare the computed auth value to a stored result , aka
expected auth value , generated by applying strong auth to
content of the memory , at the given memory location , at a
previous time t1 earlier than t2 .
[0054] Embodiment 13. A method providing error correc
tion functionality for memory content which resides on an
integrated circuit's target (non - volatile or volatile) memory ,
the method comprising at least once :
[0055] b . Detecting an error in memory content residing in
target memory
[0056] c . Searching , through at least some bit - permuta
tions constituting respective possible fixes of the error , for at
least one on - the - fly signature match ,
[0057] thereby to define a proposed fix which achieves
successful strong auth
[0058] d . If at least one on - the - fly signature match is
found , using overall authentication as a final verification for
the proposed fix ,
[0059] e . if verified , correct the code , using a power - fail
safe code recovery update process ,
[0060] thereby to provide error correction for the target
memory without taking the target memory to a lab .
[0061] Embodiment 14. A method according to any of the
preceding embodiments and also comprising providing an
output indication that memory recovery is needed e.g. by

US 2020/0380173 A1 Dec. 3 , 2020
3

taking at least the target memory to a lab for complete
reprogramming , because memory content correction has
failed .
[0062] Embodiment 15. A method according to any of the
preceding embodiments wherein , before providing the out
put indication , the searching is performed only over single
bit permutations of the error .
[0063] Embodiment 16. A method according to any of the
preceding embodiments wherein , before providing the out
put indication , the searching is performed over all single - bit
and double - bit permutations of the error .
[0064] Embodiment 17. A method according to any of the
preceding embodiments wherein , before providing the out
put indication , the searching is performed over all single - bit
permutations of the error and if no match is found , then the
searching is again performed , this time over at least some
double - bit permutations of the error .
[0065] Embodiment 18. A method according to any of the
preceding embodiments and also comprising protecting
memory content residing on target memory , before the
detecting , both by strong - auth performed once and by on
the - fly word auth .
[0066] Embodiment 19. A method according to any of the
preceding embodiments wherein the strong - auth performed
once comprises strong - auth performed just after the inte
grated circuit wakes up from a less active state .
[0067] Embodiment 20. A method according to any of the
preceding embodiments wherein the strong - auth performed
once comprises strong - auth performed just after the inte
grated circuit powers - up .
[0068] Embodiment 21. A method according to any of the
preceding embodiments wherein the strong - auth performed
once comprises strong - auth performed just after the inte
grated circuit exits a sleep state .
[0069] Embodiment 22. A method according to any of the
preceding embodiments wherein the memory content com
prises code stored in the target memory .
[0070] Embodiment 23. A system according to any of the
preceding embodiments wherein the error correction func
tionality is operative to apply at least one possible correction
to at least one erroneous word in the memory , yielding a
possibly correct word , call the authentication for application
to the possibly correct word , and if the authentication's
output is “ authentic ” , to replace the erroneous word in the
memory , with the possibly correct word .
[0071] Embodiment 24. A system according to any of the
preceding embodiments wherein the error correction func
tionality is operative to apply at least one possible correction
to at least one erroneous word entity's word auth , yielding
a possibly correct word entity , call the authentication for
application to the possibly correct word entity , and if the
authentication's output is “ authentic ” , to replace the erro
neous word auth in the memory , with the possibly correct
word auth .
[0072] Embodiment 25. A system according to any of the
preceding embodiments wherein the previous time tl is a
time at which a firmware update of the memory occurred .
[0073] Embodiment 26. A computer program comprising
instructions which , when the program is executed by a
processor , cause the processor to carry out one or more
operations within one or more of the above methods .
[0074] Embodiment 27 : A system comprising at least one
processor , typically operative in conjunction with corre

sponding , dedicated hardware , configured to carry out at
least one of the operations of one or more of the methods
herein .
[0075] The following terms may be construed either in
accordance with any definition thereof appearing in the prior
art literature or in accordance with the specification , or to
include in their respective scopes , the following :
[0076] Access control : intended to include any conven
tional access control functionality , typically associated with
the interface between processor and memory , may be imple
mented as a virtual - logical entity including hardware and
firmware .
[0077] Target memory : may include any memory array
within an integrated circuit aka IC , the array typically
including pages of memory , some in use , and some free . Any
free page not currently in use , may be considered a
* reserved * page .
[0078] When using a reserved page e.g. as a very short
term warehouse while updating memory pages , the method
typically verifies that what the reserved page contains is
exactly what was written to it (e.g. by comparing the
contents of the reserved page in real time to the data that was
copied to the reserved page and ensuring both are identical) .
If this is not the case , the reserved page's content should be
erased and redone by rewriting onto the reserved page .
Verification may include reading the reserved page right
after writing thereupon to ensure that writing was success
ful , resulting in data being stored on that reserved or spare
page that is correct e.g. exactly what was written .
[0079] ' strong authentication ' (aka “ strong authº) : may
include an algorithm or process which authenticates memory
content ; may employ digest / secured key - based HASH func
tion , like HMAC aka Hash - based message authentication
code or CMAC aka Cipher - based Message Authentication
Code , e.g. on a large code or persistent data segment .
[0080] The authentication code used for strong auth may
be based on a secure hash function such as SHA (SHA - 1 ,
SHA - 2) or HMAC (e.g. https://en.wikipedia.org/wiki/Se
cure Hash Algorithms) .
[0081] Typically , “ strong auth ’ herein yields a single value
that vouches for an entire data section or image or image
chunk representing content to be secured (such as but not
limited to code] which enables integrity of content of an
entire data section or image or image chunk to be verified
not just for a specific corresponding row or column as in
conventional 2D horizontal / vertical correction
schemes .
[0082] Typically strong auth authenticates memory con
tent at a higher level of confidence than word auth . Thus
“ Strong auth ” as used herein is intended to include any
algorithm or any message authentication code scheme which
produces a digest which is small e.g. relative to that of the
“ word auth ” algorithm referred to herein , thus , as opposed to
word auth , may be regarded as irreversible , i.e. impossible
to reproduce the original plaintext from the digest .
[0083] Typically , after rectifying or correcting an error in
a specific data word within the memory content (which may
be identified by auth) , and replacing the data + auth with the
rectified data + auth , the strong auth for the whole contents is recomputed and compared to the stored , pre - computed
strong auth or digest .
[0084] Strong - auth is typically applied to a given body of
data (in which at least one erroneous word is replaced with
its proposed correction respectively) e.g. to an entire

error

US 2020/0380173 A1 Dec. 3 , 2020
4

computed and compared to an expected value while data to
be authenticated is still being read , or may be computed and
written to the memory during the write operations (of the
content) .
[0094] For example , on - the - fly encryption , decryption and
authentication are described in the following co - pending
patent document , the disclosure of which is hereby incor
porated by reference :
[0095] https://patents.google.com/patent/US9525546B2/
en

memory image or to only a chunk thereof , depending on the
body of data to which the recomputed strong auth is to be
compared e.g. depending on whether the stored , pre - com
puted strong auth to which the recomputed strong auth is to
be compared , was pre - computed on the entire memory
image (in which , typically , an erroneous word is replaced
with its proposed correction)
[0085] or only on a chunk thereof (ditto) . The strong auth
is typically considered “ successful ” if the re - computed
strong auth and the pre - computed , aka expected strong auth ,
are exactly equal .
[0086] “ strong auth ' may occur upon FW request which is
typically from the application system , aka higher level
system utilizing and incorporating the integrated circuit (see
FIG . 1) . Alternatively or in addition , “ strong auth ' may occur
may occur upon request from application FW being
executed on a given IC (integrated circuit) containing the
memory content in which it is sought to correct errors .
Typically , the recipient of the request is operative to re
authenticate itself responsive to a certain trigger (e.g. as per
FIG . 12) resulting from events such as , say , an attack
identified in some other IC or system element . The higher
level system is thus one possible source of requests to
perform functionalities described herein , such as authenti
cation e.g. strong auth , and so may be FW and hardware
events within the IC .
[0087] word : may include any piece of data which is much
smaller than the memory is e.g. 16 bits of data , or 128 or 256
bits of data , or more , out of a memory array which may
contain , say , thousands of words . Typically a word is the
smallest piece of data retrieved from memory , which has its
own auth code .
[0088] Word auth aka signature match : may include a
digest of the " word ” being authenticated .
[0089] on - the - fly signature match : Every time a word is
read , read the word auth at the same time . Typically , the bit
structure's length is the length of the data plus the length of
the auth . At the same time the auth is re - computed based on
the word as read , and is then compared to the auth read with
the word . Match occurs when the re - computed auth equals
the auth read from memory .
[0090] Overall authentication : may include strong auth ,
which operates on the entire contents of the memory that a
system seeks to manage . Typically , if the digest of the
contents at any time , and specifically after data correction , is
the same as pre - computed , then the content now , at the time
of re - authentication , can be regarded as identical to the
content at the time of pre - computation hence strong - auth is
successful hence , in case executed immediately after data
correction , the proposed correction or proposed fix is correct
or authenticated or confirmed .
[0091] Digest : may include algorithm (used e.g. for strong
auth) which generates a hash from content , the hash enabling
the integrity of the content to be verified e.g. whether or not
the content has changed or (for memory with controlled
access) has undergone an unauthorized change or been
tampered with . Thus digest and hash are used generally
interchangeably herein , and are both used both a noun and
a verb .
[0092] HMAC algorithm : typically , a MAC algorithm that
uses a hash (rather than , say , encryption) , internally , to
generate a MAC .
[0093] on - the - fly : e.g. concurrently with another ongoing
process . For example , in authentication , a digest may be

[0096] error verification : may include determining
whether there is a match or a mismatch (equal or non - equal)
between computed “ strong auth ” of memory at time t2 and
pre - computed / stored (aka expected) “ strong auth ” computed
over the same memory zone , at time t1 which precedes time
t2 .
[0097] Typically , the Pre - computed strong auth comprises
a strong auth digest for the entire contents of the memory
space or array whose integrity is sought to be protected using
embodiments herein .
[0098] Stacked flash : may include a chip , which may be
referred to as a “ vertical ” or “ 3d ” chip , which yields ultra
high density storage and reduces bit costs by having plural
(sometimes dozen) of layers or dies of memory deployed
one atop another . May use BiCS (Bit Cost Scaling) or a
punch and plug process . It is appreciated that the embodi
ments herein are applicable to memory in general , including
but not limited to stacked flash and other flash / NVM tech
nologies .
[0099] Overhead : may include redundancy in memory
capacity which is typically disadvantageous e.g. in terms of
die area and / or product cost . For example , implementing
error correction with error correction codes (ECC) typically
means X bits of ECC added to Y bits of data / auth info ,
translating to overhead or extra memory capacity of (Y / X)
* 100 % for error correction .
[0100] word entity : may include data stored about a word
in memory , including the word itself (aka word bits) , plus
word auth (aka auth bits) relating to that word ; the word auth
is termed herein the word's " corresponding ” word auth .
According to certain embodiments , the bits in the word
portion and the bits in the auth portion are both scanned or
flipped , but for the word , computations are typically per
formed , whereas for the auth comparisons are typically
performed , all e.g. as described herein .
[0101] The following acronyms are employed herein :
ECC (Error - correcting code) ; FW (firmware) , NVM (non
volatile memory) , ASIC (application - specific integrated cir
cuit) , DSP (digital signal processing) and HMAC (hash
based message authentication de) , is (integrated circuit) ,
hw (hardware) .
[0102] Embodiments referred to above , and other embodi
ments , are described in detail in the next section .
[0103] Any trademark occurring in the text or drawings is
the property of its owner and occurs herein merely to explain
or illustrate one example of how an embodiment of the
invention may be implemented .
[0104] Unless specifically stated otherwise , as apparent
from the following discussions , it is appreciated that
throughout the specification discussions , utilizing terms
such as , “ processing " , " computing " , " estimating " , " select
ing ” , “ ranking " , " grading " , " calculating " , " determining " ,
" generating " , " reassessing " , " classifying " , " generating " ,
“ producing ” , “ stereo - matching ” , “ registering ” , “ detecting ” ,

US 2020/0380173 A1 Dec. 3 , 2020
5

“ associating ” , “ superimposing " " obtaining ” or the like ,
refer to the action and / or processes of at least one computer / s
or computing system / s , or processor / s or similar electronic
computing device / s , that manipulate and / or transform data
represented as physical , such as electronic , quantities within
the computing system's registers and / or memories , into
other data similarly represented as physical quantities within
the computing system's memories , registers or other such
information storage , transmission or display devices . The
term “ computer ” should be broadly construed to cover any
kind of electronic device with data processing capabilities ,
including , by way of non - limiting example , personal com
puters , servers , embedded cores , computing systems , com
munication devices , processors (e.g. digital signal processor
(DSP) , microcontrollers , field programmable gate array
(FPGA) , application specific integrated circuit (ASIC) , etc.)
and other electronic computing devices .
[0105] Elements separately listed herein need not be dis
tinct components and alternatively may be the same struc
ture . A statement that an element or feature may exist is
intended to include (a) embodiments in which the element or
feature exists ; (b) embodiments in which the element or
feature does not exist ; and (c) embodiments in which the
element or feature exist selectably e.g. a user may configure
or select whether the element or feature does or does not
exist .

[0119] Methods and systems included in the scope of the
present invention may include some (e.g. any suitable sub
set) or all of the functional blocks shown in the specifically
illustrated implementations by way of example , in any
suitable order e.g. as shown .
[0120) Computational , functional or logical components
described and illustrated herein can be implemented in
various forms , for example , as hardware circuits such as but
not limited to custom VLSI circuits or gate arrays or
programmable hardware devices such as but not limited to
FPGAs , or as software program code stored on at least one
tangible or intangible computer readable medium and
executable by at least one processor , or any suitable com
bination thereof . A specific functional component may be
formed by one particular sequence of software code , or by
a plurality of such , which collectively act or behave or act
as described herein with reference to the functional compo
nent in question . For example , the component may be
distributed over several code sequences such as but not
limited to objects , procedures , functions , routines and pro
grams , and may originate from several computer files which
typically operate synergistically .
[0121] Any logical functionality described herein may be
implemented as a real time application , if and as appropriate ,
and which may employ any suitable architectural option
such as but not limited to ASIC or DSP or any suitable
combination thereof . Any hardware component mentioned
herein may in fact include either one or more hardware
devices e.g. chips , which may be co - located or remote from
one another .

BRIEF DESCRIPTION OF THE DRAWINGS

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

[0106] Certain embodiments of the present invention are
illustrated in the following drawings :
[0107] FIG . 1 is a diagram of an integrated circuit which
has some function / s (aka " other functions ”) to fulfill and
which has error correction functionality , including function
ality which harnesses authentication for testing possible
error corrections , all according to an embodiment of the
invention .
[0108] FIG . 2 is a simplified flowchart illustration of a
flow for combining authentication with error correction .
[0109] FIG . 3 is a simplified flowchart illustration of an
example flow for performing operation 30 in FIG . 2 .
[0110] FIG . 4 is a simplified flowchart illustration of an
example flow for carrying out error correction and verifica
tion when the memory is page - based nonvolatile memory .
[0111] FIG . 5 is a simplified flowchart illustration of an
example flow for performing operation 220 in FIG . 4 .
[0112] FIG . 6 is a simplified flowchart illustration of a
flow for operation of the integrated circuit of FIG . 1 .
[0113] FIG . 7 is a simplified flowchart illustration of a
suitable error correction sequence flow , including testing
possible error corrections .
[0114] FIG . 8 is a simplified flowchart illustration of an
example flow for performing operation 10012 in FIG . 7 .
[0115] FIG . 9 is a diagram of memory zone 3 of FIG . 1 ,
also showing word auth comparison functionality . Payload
and auth sizes are indicated merely by way of example and
may instead have any other value .
[0116] FIG . 10 is a diagram of Scanning and Error Cor
rection functionality according to certain embodiments ; it is
appreciated that bit / s can be flipped sequentially , or in an
order based on any suitable heuristic .
[0117] FIG . 11 is a diagram of memory zone 3 of FIG . 1 ,
also showing strong auth comparison functionality .
[0118] FIG . 12 is a diagram showing how a strong auth
cycle may be triggered , according to certain embodiments .

[0122] IC makers are eager to secure the contents of their
integrated circuits ' memories .
[0123] The embodiments herein are applicable to memo
ries of many different technologies , hence the term “ flash ”
when used herein is used only by way of example .
[0124] A system for ensuring integrity of memory content ,
in ICs , is described in detail . Typically , access to such
memory is controlled ; a digest may be used to sign a
controlled , hence authorized memory update . Thus , any
change in the memory which is not a result of that controlled
access , is an undesirable error , whether malicious or , per
haps , due to a transitional physical or electrical failure e.g.
of the physical memory itself . The system herein is operative
to test possible corrections for errors , reducing " out - of
order ” time for the computer or other product in which the
integrated circuit is embedded . Typically , (one or more
levels of) authentication functionality , which the integrated
circuit typically needs for other purposes anyhow , is used to
verify or approve possible corrections , such as using word
auth for discovering errors and initially verifying proposed
corrections thereof , and using strong - auth for finally veri
fying proposed corrections .
[0125] Certain embodiments provide error detection and
recovery (aka error correction) functionality in integrated
circuits whether by providing integrated circuits such as that
shown in FIG . 1 , or by modifying existing integrated circuits
e.g. by adding software over the existing ICs . The software
may reside in another , typically independent memory space
of the same IC , having access authorization to the memory
space the system seeks to secure and typically being opera

US 2020/0380173 A1 Dec. 3 , 2020
6

tive to perform auth e.g. word auth and / or strong auth and / or
to accomplish the error correction and / or verification thereof
e.g. as described herein .
[0126] Certain embodiments provide error detection and
recovery functionality in integrated circuits including detec
tion (e.g. based on conventional authentication) for identi
fying events in which memory contents has been altered , and
recovering from these events to enable the IC (and the
device e.g. pc in which the IC is embedded) to continue
operating as usual with as little as possible overhead for the
end - user of the device . This is particularly advantageous
because this means that some events , which today cause a
PC , for example , which an end - user is working on , to
“ break ” , and necessitates the end - user to take his computer
to a lab to fix , will not need this according to certain
embodiments described herein , because the component with
the memory fault rectifies itself by itself , thereby maintain
ing the security of the system .
[0127] The error correction functionality may be imple
mented as any suitable combination of HW and FW . the
memory is typically configured to support the structure of
auth + word auth . Typically , on - the - fly word auth is imple
mented in hardware (while reading the memory) . The strong
auth is typically implemented in firmware , typically using
suitable crypto HW to accelerate the process . bit flipping +
consistency check may be implemented in either FW or HW .
The actual update of memory contents to correct an error is
typically done by FW , in view of the complex operations ,
e.g. NVM erase and re - write , which are sometimes involved .
[0128] The system of FIG . 1 shows an integrated circuit
according to certain embodiments , which may be embedded
in a higher level system 16. The higher level system 16 of
FIG . 1 is one possible source of requests to perform func
tionalities described herein , such as authentication e.g.
strong auth . Alternatively or in addition , the higher level
system may serve as an access path via which the memory
array 2 in FIG . 1 legitimately gets its original contents (e.g.
code stored in the memory array 2) or is subsequently
updated , i.e. the memory array's content is replaced with
different content .
[0129] Access control functionality (e.g. as shown in FIG .
1) is typically , a combination of HW and FW . Typically ,
there is HW which defines which memory zones can and
cannot be accessed . Firmware may , at a certain privilege
level , have access to that HW which controls memory
access . Thus , updating memory content may be done by
“ convincing ” the FW that permission to do so exists , in
which case the FW would open the gate and update the
memory .
[0130] Functionality for testing possible error corrections
e.g. as per the method of FIG . 7 , may comprise a separate
state machine which may be implemented , say , in hardware
or firmware (see hw 6 and / or fw 7 in FIG . 1) . Also , the logic
of the error correction functionality may also be implanted
in any suitable combination of hardware and firmware
[0131] The system of FIG . 1 , or any subset of the blocks
illustrated therein , may be provided in conjunction with all
or any subset of the embodiments of FIGS . 1 , 9 , 10 and 11 ;
and / or in conjunction with all or any subset of the flows
illustrated in FIGS . 2 onward .
[0132] FIGS . 2 onward illustrate schemes or methods for
combining authentication with error correction which is
economical in terms of memory overhead , since conven
tional ECC requires memory capacity for storing ECC bits

per piece of data . In contrast , embodiments herein obviate
use or storage of error detection or correction code by
utilizing on - the - fly (say) authentication which exists in an
existing design , or must be provided in a new design , in any
event , for error correction without compromising security
level . The security level is typically not at all compromised
because , when using ECC , an attacker may modify both data
and its ECC , such that no error is identified in real time
because both the data and ECC are revised to match one
another . Instead , the system may only identify an error when
either word auth or strong auth is executed .
[0133] It is appreciated that the term overhead may be
used herein to include storage needs engendered by authen
tication , or by error correction , or other memory manage
ment processes which may be stored in any suitable location .
For example , in word auth (aka word - level auth) or word
ECC , the memory may be produced with a wider word
length , thus the auth / ECC may be stored right next to the
word , such that when reading the word , the auth / ECC bits
are accessed as well . Or , in hardware systems , an additional
memory component read may be implemented concurrently
with reading the actual payload desired (as opposed to its
auth / ecc bits) , to allow effectively greater word length since
the memory's entire word length may then be devoted to the
actual payload , with the payload's auth / ecc bits stored
elsewhere .
[0134] The method of FIG . 2 may include all or any subset
of the following operations , suitably ordered e.g. as shown .
[0135] 10 : Provide an integrated circuit in which memory
content e.g. code stored in memory , is protected by both :

[0136] Power - up ‘ strong auth ' (e.g. HMAC or CMAC ,
say on a large code segment) e.g. , against cold flash
content replacement

[0137] On - the - fly ' word auth ' (say 128 bit payload + 16
bit auth) e.g . , against hot flash content replacement
e.g. when executing code straight from flash .

[0138] on - the - fly encryption , decryption and authenti
cation are described in the following co - pending patent
document , the disclosure of which is hereby incorpo
rated by reference :

[0139] https://patents.google.com/patent/
US9525546B2 / en

[0140] 20 : each time on - the - fly word auth fails (e.g. during
runtime) , the integrated circuit halts (e.g. until next power
up) or is automatically restarted . For example , assume there
is code in the memory space that is to be secured . Reading
from the memory thus typically means that a processor in the
IC is fetching code from that memory space , which in turn
typically means that if a word auth failure is identified , the
subject processor just fetched altered code . At this point the
processor may be halted , to prevent execution of altered
code , and recovery typically needs to start . Recovery may
include , say , jumping to another code which is known to be
100 % secure , e.g. code in ROM , or resetting to restart
execution from ROM , which triggers error correction and / or
verification e.g. as described herein , whether by software or
by hardware .
[0141] 30 : On next power - up (or as per the above
example) all ‘ word auth ' are checked as part of the “ strong
auth ' computation already being used to protect the memory
content . If a ' word auth ' fails during power - up auth (as
opposed to during runtime) , this constitutes error detection ,
and therefore the integrated circuit attempts to correct the

US 2020/0380173 A1 Dec. 3 , 2020
7

error that has been found in its memory content e.g. by
performing all or any subset of operations 140-170 of FIG .
3 .
(0142] 80 : if the memory is a code execution memory , a
suitable Power - fail safe Code recovery update flow may be
executed if error correction e.g. performing all or any subset
of operations 140-170 of FIG . 3 results in resolving of
corrected code . Once the code has been successfully cor
rected , the processor can resume running aka normal opera
tion .

[0143] The method of FIG . 3 may include all or any subset
of the following operations , suitably ordered e.g. as shown .
[0144] 140 : All one bit permutations (say : 128 + 16 permu
tations in the illustrated embodiment) of the bad word (word
in which error was found e.g. because ' word auth ' failed for
this word , during power - up auth) are checked , searching for
a match . It is emphasized that any suitable proportion may
exist between the data and authportions ; the 128 and 16 bit
parameters are merely illustrative .
[0145] A dedicated HW or SW may quickly scan all
permutations (e.g. on memory or as part of memory control
and interface unit without needing to iteratively write - to /
read - from memory e.g. flash) .
[0146] According to certain embodiments , a dedicated
buffer holds the data structure of the bad word , where the
bad word may be manipulated bitwise . Dedicated firmware
code , or a hardware state machine , then scans permutations
of the data structure , flipping one bit (see e.g. FIG . 10 , ‘ Flip
One Bit ’ block) , or more , at a time . For each permutation , the
word auth is computed for the then - current , manipulated ,
bit - flipped data structure .
[0147] It is appreciated , generally , that scanning of per
mutations may be accomplished by firmware , or , alterna
tively , may be accomplished by dedicated hardware .
[0148] 150 : If a match is found , the erroneous data or
content as corrected or rectified (e.g. the proposed correction
of erroneous content) may be digested as part of the ' strong
auth ' computation . Depending on the auth algorithm and the
number of corrected bits , it may be that more than one match
may be found . In this case , all permutations of matching bit
combinations , aka patterns , may be tried and the one that
yields the correct strong auth ' is taken . Correct typically
means that the result of strong auth with (or applied to) the
rectified code is equal to the pre - computed result of strong
auth with (or applied to) the original contents of the memory .
[0149] For example , for one - bit errors the method may
include flipping a first bit e.g. bit 0 and checking auth ; then
subsequent bits e.g. bit 1 , 2 etc. until a match is found . For
2 bit errors , each pair of bits may be flipped and each
possible pair of values for the two bits is typically consid
ered separately .
[0150] 160 : otherwise , optionally , try to correct more than
one error e.g. by searching again , this time over at least some
double - bit permutations of the error . It is appreciated that if
more than one error (involving more than one bit) can be
corrected with high likelihood , but according to some
embodiments errors involving plural bits are not corrected
because computation is more complicated than for one bit ,
requiring ~ XA ̂ 2 / 2 (~ 144 ̂ 2 / 2) checks .
[0151] 170 : If error cannot be corrected , typically an alert
is provided to the end - user e.g. via higher level software as
shown in FIG . 1 .

[0152] FIG . 4
[0153] FIG . 4 is a method for carrying out error correction
and verification when the memory is page - based nonvolatile
memory . Typically , in such memory one can only erase
whole pages (or the entire memory) . Thus when an error is
found that needs to be corrected , page juggling is typically
performed to enable the correction to be applied e.g. copying
the page with the correction to some reserved page while
applying the correction . More generally , it is appreciated
that the present invention includes corrections which are
made under memory usage restrictions .
[0154] The method of FIG . 4 may be performed at any
suitable time e.g.
[0155] 1 - Immediately upon error detection (operation
220 below) .

[0156] 2 – Upon the next IC boot (operation 230 below) .
[0157] The method of FIG . 4 may include all or any subset
of the following operations , suitably ordered e.g. as shown .
[0158] Operation 210 : Identify the flash pages to be cor
rected . If there is more than one page , for each , keep (an
indication of) the words (addresses + data) that needs to be
corrected in volatile memory . Next , perform operation 220
to correct immediately , or operation 230 , to correct after the
next boot .
[0159] Operation 220 : correct each page that needs to be
corrected , e.g. by performing , for each page , all of opera
tions 310-350 in FIG . 5. End .
[0160] Operation 230 : During boot time , before flash code
authentication is performed , the boot code checks if there is
a page which is known to be e.g. marked as usable , and if
so , the boot code completes all or any subset of operations
310-350 before continuing the boot . Otherwise , some higher
level firmware may perform ‘ garbage collection ' , e.g. con
densing memory contents to occupy the smallest possible
memory space , thus freeing at least one page for the tem
porary purpose of error correction .
[0161] The method of FIG . 5 may include all or any subset
of the following operations , suitably ordered e.g. as shown .
[0162] Operation 310 : Write the flash page address and
corrected data (code) in a reserved predefined flash page and
verifies that it was written correctly .
[0163] Operation 320 : Set a bit in the reserved page that
indicates e.g. to other firmware that this page carries valid
info , or is in use and should not be erased . The bit is also
useful in case the system of the present invention is inter
rupted , e.g. by user power - off , and seeks to resume operation
thereafter .
[0164] Operation 330 : Erase original flash page (that in
which error / s was / were found in operation 210 of FIG . 4)
[0165] Operation 340 : Update original flash page with
corrected data from the reserved flash page and verify that
it was written correctly
[0166] Operation 350 : Erase the reserved page to enable
future use thereof for correction of errors in other pages
[0167] Variants re what triggers performance of the error
detection / correction method of FIGS . 2 onward may
include :
[0168] I. On the fly : respond to word auth failures by a
memory check right away : if a word auth mismatch is found
while reading from the target memory , the process is gone
through before whatever comes next in the execution
sequence of the processor doing the execution .
[0169] For example , if code from the memory is being
executed , and during code fetch word auth failure is iden
tified , execution typically halts to allow , say , the whole

US 2020/0380173 A1 Dec. 3 , 2020
8

memory space or array to be scanned for failures or errors .
Thereafter , the halt is terminated , and whatever comes next
in the execution sequence of the processor is executed , or
execution may be restarted from the beginning of the code .
In the case of data which is not code , there may be an
indication of error during data read , in which case , again , the
processor may halt and the memory scanning / correction /
verification may be triggered .
[0170] II . Power - up : triggered by each event of the inte
grated circuit waking up from a less active state e.g. power
up , or change of state from sleep to active , the strong auth
is recomputed , compared to the pre - computed strong auth ,
and in case of a mismatch between the re - computed and
pre - computed strong auth , the error correction mechanism is
invoked as described above .
[0171] III . Periodic aka scrubbing : upon occasion , the
strong auth is recomputed , compared to the pre - computed
strong auth , and in case of a mismatch between the re
computed and pre - computed strong auth , the process of
memory error correction as described herein may be
invoked . This trigger may be implemented , say , using some
programmable timer which gives an indication of a time at
which the above is to be performed .
[0172] This typically has some penalty because regular
operation of the integrated circuit is disturbed and inter
rupted , but greater protection is achieved .
[0173] IV . Initiated : triggered by external event , e.g. if a
device aka integrated circuit identifies e.g. using hardware or
firmware hack detection which may be present in the IC , an
attempt of hacking , or possibly some other functional error ,
the strong auth is recomputed , compared to the pre - com
puted strong auth , and in case of a mismatch between the
re - computed and pre - computed strong auth , the process of
memory error correction as described herein may be
invoked .
[0174] V. Access - triggered : check the whole target
memory each time the memory is accessed ; practical e.g. for
code which gets executed infrequently . This embodiment is
suitable e.g. if the memory is accessed very rarely and
real - time data integrity is imperative such that performance
overhead is relatively unimportant .
[0175] It is appreciated that all or any subset of the above
variants may be provided , in any given device .
[0176] A flow for operation of the integrated circuit of
FIG . 1 , which may be controlled or put into effect by
processor 1 of FIG . 1 , is shown in FIG . 6 and may include
all or any subset of the following operations , suitably
ordered e.g. as follows :
(0177] Operation 1001 – Fill the memory zone with con
tents , e.g. code , which includes a multiplicity of words . For
each word , compute the “ word auth ” while writing , and
store the “ word auth ” e.g. adjacent to the word .
[0178] Operation 1002 — Run “ strong auth ” over the
memory contents and store the result somewhere in the
memory (may be pre - computed e.g. by an entity preparing
the memory image offline , which has the capability of
executing strong auth] and provided to the IC in which the
secured memory array 2 resides .
[0179] It is appreciated that not uncommonly , a memory
image is prepared outside an IC and " injected " into the IC
for programming together with authentication code attached
to the contents .

[0180] Operation 1003 — Use the memory as usual includ
ing performing memory reads . Each memory read includes :
[0181] computation of a current aka recomputed “ word
auth ” ,
[0182] reading from memory , the pre - computed word
auth stored in Operation 1001 , and comparing the two .
[0183] If recomputed “ word auth ” equals the pre - com
puted word - auth read from memory , continue because all is
well . Otherwise (not equal) , assume an error has been
identified , thus enter error correction sequence .
[0184] A suitable error correction sequence flow , includ
ing testing possible error corrections , is shown in FIG . 7 and
may include all or any subset of the following operations ,
suitably ordered e.g. as follows , and may also be controlled
or put into effect by error correction functionality which may
be software - implemented and may reside e.g. in processor 1
of FIG . 1 :
[0185] Operation 1006 — perform error correction on con
tent to be corrected including the word and its associated
word auth , combined e.g. concatenated thereby to provide a
combined string of bits . Error correction includes : scan all
bits , flip each bit (if aiming to correct ' one - bit errors , and / or
each pair of bits , if aiming to correct two - bit errors) in the
combined string of bits and recheck the word auth . Do not
compare to the word auth stored in memory because the
error may be in the word auth , not in the word . Instead , flip
a bit , recompute the word auth and compare recomputed
word auth e.g. to the word auth that is available on hand . For
example , a structure of X bits of data and Y bits of auth may
be read from memory . Bits then are flipped in the combined
structure . If the bit being flipped is within the X bits of data ,
re - compute the auth for the corrected X bits of data and
compare that re - computed auth to Y bits of auth that were
read from the memory .
[0186] If the bit being flipped is one of the Y bits of auth ,
re - compute the auth for the X bits of data read from memory
and compare to the corrected Y bits of auth .
[0187] If a match is found (comparison finds equality
between the compared word auth’s) , this indicates a " con
sistent ” word and word auth , skip to Operation 1009. If no
match is found , flip next bit (or pair thereof) and repeat
re - computation and comparison . It is appreciated that here
and elsewhere , the term “ next ” may be physically adjacent
or may be a bit deemed sequential or next in sequence by
virtue of an ordering between bits defined by any suitable
heuristic .
[0188] Operation 1008 — Reaching this point typically
means no bit - flip (or pair thereof , for two - bit errors) yielded
a workable correction thus error correction has failed on the
word - level ; thus flag uncorrectable memory contents , e.g. by
alerting higher - level software as shown in FIG . 1 and / or halt
system , and / or processor 1 may prompt (e.g. by generating
a suitable output indication) for higher level recovery e.g.
sending the device housing the integrated circuit to a labo
ratory for human technical support .
[0189] Operation 1009 - Do “ strong auth ” including com
puting a digest e.g. HMAC for the whole memory zone ,
thereby to yield a strong - auth result . Typically , strong auth
yields a digest / MAC / signature .
[0190] Operation 10010 Compare the strong auth result
to the pre - computed pre - computed strong - auth result stored
in memory in Operation 1002. If the results are equal , there
is a strong - auth match ; otherwise (unequal) there is a
strong - auth mismatch .

US 2020/0380173 A1 Dec. 3 , 2020
9

[0191] Operation 10011 — If there is a strong auth match
memory contents is qualified after correction , continue using
memory as usual e.g. go to Operation 1003
[0192] Operation 10012 — else i.e. If there is a strong auth
mismatch - perform mismatch process e.g. as in FIG . 8 .
[0193] A suitable flow for the mismatch process in Opera
tion 10012 , is shown in FIG . 8 and may include all or any
subset of the following operations , suitably ordered e.g. as
follows , and may also be controlled or put into effect by the
error correction functionality :
[0194] Operation 10012.5 : scan the whole memory 2 in
FIG . 1 , by redoing Operation 1006 , but correct all identified

V

errors .

[0195] Operation 10013redo strong auth by redoing
Operations 1009-11 .
[0196] Operation 10014 — If strong auth now fails (i.e.
mismatch) assume unable to correct thus higher level of
recovery may be needed ; thus flag uncorrectable memory
contents , e.g. by alerting higher - level software as shown in
FIG . 1 and / or halt system , and / or processor 1 may prompt
(e.g. by generating a suitable output indication) for higher
level recovery such as sending the device housing the
integrated circuit to a laboratory for human technical sup
port .
[0197] The functionality for testing possible error correc
tions e.g. as per the method of FIG . 7 , may comprise a
separate state machine which may be implemented , say , in
hardware or firmware . This functionality gets “ auth ser
vices ” from auth functionality , typically including verifica
tion of word auth after attempting corrections (e.g. opera
tions 6 above) , and / or verifying the whole memory using
strong auth (e.g. operations 9-12 above) .
[0198] Hardware implementation of all or most of the
above , would typically yield best performance e.g. because
if the entire flow is in hardware , on - the - fly verification is
performed by hardware while using the memory , translating
into no performance penalty if there is no error .
[0199] If almost all implementation is in firmware , on - the
fly word auth may be omitted , instead making do with
memory scanning periodically and / or on occasion to check
for errors , and then performing correction and verification
(e.g. operations 6-12 above) in case an error is found .
[0200] If all implementation is in firmware , an existing
aka legacy IC may be employed . An existing IC typically
has an existing aka legacy memory structure , which may
then be rearranged or managed logically in software , to store
the word auths computed in the error correction process
described herein . In such cases , error detection and correc
tion would typically not be carried out on - the - fly but rather
off - line , upon a certain trigger as described above .
[0201] Any suitable implementation may be employed to
ensure that the functionality for testing possible error cor
rections interfaces with or gets “ auth services ” from , the
auth functionality , even in an existing or legacy IC in which
the legacy auth is configured to compare memory contents
to a certain standard (a digest computed right after the most
recent authorized memory update , for example) . The imple
mentation typically ensures that the auth compares a pro
posed error to be tested , to that standard ; this may be ensured
e.g. as follows :
[0202] i - FW may read data word + word auth from the
memory .

[0203] ii FW may compute the auth for the data word ,
either itself or using some hardware dedicated for this
purpose .

[0204] iii - FW may compare the results of the computa
tion to the auth value read from memory , and see whether
the data structure is consistent , or has an error .

[0205] iv - If the FW identifies an error , the FW may go
through the bit flipping process described herein , com
puting the auth as in operation ii above .

[0206] Once error correction is done through the
memory , the FW may digest the whole memory contents ,
either by itself , or using some hardware which accelerates
or eases the execution of whatever MAC algorithm the
designer of the system has chosen for this purpose .

[0207] An advantage of certain embodiments herein is
error correction which engenders no extra overhead above
the overhead for (strong and word , typically) auth which is
needed anyway .
[0208] Another advantage of certain embodiments herein
is that speculative correction of errors (testing various
possible error corrections) as described herein sets no hard
limit on the number of bits . In contrast , convention error
correction implements some kind of error correction code .
For a given data size of X bits , to correct a certain ,
pre - decided number of errors , the number of binary combi
nations , and the method selected , dictate the numbers of bits
required for error correction code . Once implemented , only
the pre - decided number of bit errors , and no larger , can be
rectified . The practical complexity of correcting errors typi
cally grows with the number of bits one attempts to fix .
However , if desired , very strong auth may be used to verify
any number of errors corrected , enabling any number of bit
errors to be corrected , if reasonable for a given use - case .
[0209] Another advantage of certain embodiments herein
is that utilization of authentication for verification yields
error correction which truly is correct , at a high level of
confidence . For example , if strong auth is used to verify
proposed corrections , this typically means that once the
result of the strong auth on the “ rectified data ” aka proposed
correction , shows a match with (e.g. is equal to) the expected
strong auth , this implies cryptographic - level confidence that
the rectified data is truly correct .
[0210] Another advantage of certain embodiments herein
is protection against malicious content change as opposed to
prior art systems which implement ECC (error correction
code) . However , a malicious attack may replace both the
data and the error correction code , in a mutually consistent
manner , such that the error appears to have been rectified ,
whereas in fact the content or code is bad or malicious . In
contrast , by virtue of using auth for error correction as
described herein , an attacker becomes unable to maliciously
replace the data and the auth code as above , because the
method herein is cryptographically strong .
[0211] It is appreciated that use of on - the - fly authentica
tion may be particularly advantageous since performance
remains unimpaired (authentication takes place in parallel)
and / or data that has been read can be used right away ,
without delay , unless it is found to contain error / s .
[0212] Any memory e.g. code execution memory or large
data blobs which are persistent or not often changed and / or
especially if access to the memory content is controlled e.g.
memory content which changes only via a secured or
controlled (firmware) update , can benefit from the flow of
FIG . 2 , especially if the memory is unprotected or external .

US 2020/0380173 A1 Dec. 3 , 2020
10

efficient process , because errors may be detected on a word
basis aka on the word level , and basic verification of
proposed aka speculative corrections may also occur at the
word level , thus strong auth to qualify or verify the correc
tion need not be run too often , relative to embodiments in
which the word - level auth is omitted .

EXAMPLES

Memory which can benefit from the flow of FIG . 2 includes
but is not limited to EEPROM , hard - disc , NAND - flash ,
NOR - flash , SDRAM , SRAM .
[0213] It is appreciated that various solutions exist for
controlled access to memory , other than secured (firmware)
updates . In particular , various technologies are known which
allow access to memory content to be tightly controlled ,
such as but not limited to memory whose content can only
be executed aka execute - only memory , or memory whose
content can only be read , and which can only be updated or
written to via a dedicated gateway after obtaining certain
access privilege or authenticating , or memory that can only
be written to after changing access control settings which are
alterable only when having a certain access privilege .
[0214] Re memory content not often changed : For
example , some memory content may be known to change
typically at a frequency which is low enough , to cause the
overhead engendered by the system and method described
herein , to be cost effective . For example , code may be
known to change only once every few months , say due to
software updates occurring periodically or occasionally . Or ,
certain data may be known to change only once every few
days or weeks , or may be known to change on average at
those intervals . In contrast , some data may be manipulated
by software , hence may change each time a program is
executed or run .
[0215] Many variations are possible .
[0216] For example , according to some embodiments , an
error is rectified aka corrected as soon as it is encountered ,
and the memory is then immediately repaired ; after which
whatever processes were being run , continue running .
[0217] Alternatively or in addition , an overlay patch may
be provided to enable the device to continue running , by
deferring actual memory content repair until later . This may
be advantageous because NVM handling , which may be
lengthy rather than causing delays as the device attempts to
get this done online , is instead taken off line and done later ,
such that the device is able to continue running . The cached
in dedicated override patch (NV or volatile) may reside in
any computer memory , typically on the same IC , which is
accessible to whichever processor / s are using the target
memory , so as to be pulled out in case of need for target
memory recovery .
[0218] Another example of possible variations is that any
suitable authentication may be used to test possible error
corrections , including but not limited to strong and word
level auth , separately or in any suitable combination . It is
even possible to detect errors based on strong auth over the
whole memory , albeit inefficient in many contexts , if the
flow demands going through the strong auth to just identify
that an error exists in the memory , and once the error has
been identified to exist , each memory bit may be flipped and
then strong auth may be used to verify bit flips (or pairs
thereof) . Yet , although strong auth is a heavy , i.e. long and
resource consuming , operation , this may be a perfectly
viable implementation for small memory zones , for which
there may be no need to provide two levels of auth .
[0219] In many use cases , use of 2 levels (termed herein
word and strong , and more generally differing in heaviness
i.e. the former being less long and / or consuming less
resources and the latter being longer and / or consuming more
resources) is useful to ensure the process is efficient .
[0220] For large memory zones , having the word auth ,
which is quite common , typically results in a much more

[0221] Example i : speculate a proposed correction , apply
the proposed correction , then strong auth to verify the
correction . If this fails , try again — speculate another correc
tion , etc.
[0222] Example ii : speculate a proposed correction , check
word auth , if fails speculate another proposed correction
and again use word auth to check ; continue until obtaining
successful word auth . Then , use strong auth to finally verify
the correction . Workable also without word auth .
[0223] Another possible variation is that any suitable
method may be used to actually make a verified proposed
correction , on memory contents . For example , if the
memory content is code , a power - fail safe code recovery
update process may be used to correct the code to apply the
verified proposed correction to the code which , e.g. by
having failed authentication , was found to be erroneous .
[0224] Variations may be designed , depending on perfor
mance - area - runtime - reliability tradeoffs , such as but not
limited to :
[0225] A. Larger ' on - the - fly code word ' yields :

[0226] Smaller flash area & fetch throughput overhead
(for a given ‘ redundancy ' width)

[0227] Larger bit correction time (to scan all bits)
[0228] Larger fetch latency (if waiting for check before

execute , the method of US20140082721 may be used ;
this co - pending patent document

[0229] (https://patents.google.com/patent/
US20140082721A1 / en ? oq = 13 % 2f965 % 2c256) whose
disclosure is hereby incorporated by reference
describes a computing device , comprising :

[0230] a . an input bridge , coupled to receive a sequence of
data items for use by the device in execution of a program ;
and an output bridge ;

[0231] b . a processing core , coupled to receive the data
items from the input bridge and execute the program so as
to cause the output bridge to output a signal in response
to a given data item in the sequence ; and

[0232] c . authentication logic , coupled to receive and
authenticate the data items while the processing core
executes the program , and to inhibit output of the signal
by the output bridge until the given data item has been
authenticated .

[0233] B. Larger ' on - the - fly redundancy word ' yields the
following , relative to a smaller choice :

[0234] More secured , more reliable , faster correction
[0235] Larger flash area & fetch throughput overhead

[0236] C. Larger “ strong auth ' size (in bits) yields the
following , relative to a smaller choice :

[0237] More secured i.e. greater confidence that the
authenticated original or corrected content of the
memory is correct .

[0238] Larger flash area overhead (typically negligible)
[0239] SHA256-512 HMAC seems like a good choice

US 2020/0380173 A1 Dec. 3 , 2020
11

[0240] D. Smaller code segmentation (when dividing code
into segments with strong auth ' for each) yields the fol
lowing , relative to a larger choice :

[0241] Larger area overhead
[0242] Faster correction time
[0243] Boot / cycle runtime may be maintained if the
HASH is accumulative , i.e. , use one HASH for the
whole code while keeping intermediate results to speed
up the correction process .

[0244] One recommendation is dynamically determining
tradeoff parameter / s e.g. choosing different (larger or
smaller) ' on - the - fly redundancy words ' and / or different
(larger or smaller) ' strong auth ' size and / or different (larger
or smaller) segmentation (when dividing code into segments
with strong auth ' for each) , per flash statistics and / or per
wear level . e.g. as the target memory gets old , change the
aforementioned tradeoff parameters towards faster and more
robust correction than the speed and / or robustness of error
correction used when the target memory was younger (e.g.
due to slower operation of an older and / or more worn flash ,
relative to a younger and / or less worn flash) .
[0245] According to some embodiments , on - the - fly ‘ word
auth ' with statistic correction is provided . Rather than per
forming brute - force aka dumb scanning of all single bit flip
options (possible corrections) throughout whole target
memory , instead , if error is detected in a given word , take a
“ short cut ” (vs. the dumb embodiment) by :
[0246] trying to rectify just the given word , again by
scanning or searching all one - bit flips of just that word , and
[0247] if / when the payload word can be corrected to be
consistent with the auth word , invoke the strong auth as the
supreme verification of memory contents integrity .
[0248] Thus , embodiments of this invention include inter
alia :
[0249] A. a method for combined authentication / error
correction , including :
[0250] invoking strong auth as verification of integrity of
at least a portion of target memory contents , including
scanning of at least some single bit flip options throughout
at least some of target memory .
[0251] b . (“ dumb ” embodiment :) a method according to
embodiment a wherein the scanning is performed for the
entire target memory

[0252] c . (on - the - fly ' word auth ' with statistical correction
embodiment :) a method according to embodiment a
wherein word auth is employed and wherein , if auth error
is detected in a given word , the scanning is performed for
just that given word rather than for the entire target
memory , thereby to try to rectify just the given word , and

[0253] if / when the payload word is brought to consistency
with the auth word , invoke the strong auth as the supreme
verification of memory contents integrity .
[0254] It is appreciated that in statistical correction , there
is no guarantee of success in correcting the memory con
tents .
[0255] In FIG . 1 , re " other processor functions ' , it is
appreciated that the illustrated processor may have any main
functionality other than the specific functionalities described
herein , and may use any peripherals such as but not limited
to all or any subset of : timers , comm channels , converters .
[0256] Re scanning (“ Flip one bit ”) in FIG . 10 , this may
e.g. be implemented in hw and / or sw , using any suitable
permutation scanning process known to ordinarily skilled
logic designers and software designers .

[0257] Re " compute auth ” in FIGS . 9 and / or 10 , this may
comprise on - line word - auth computation . It is appreciated
that word auth can have different levels of strength , wherein ,
typically , there is a trade - off between strength and perfor
mance . If strength is taken to an extreme , it is possible to
assume that the word - auth may be the final verdict for the
correction . In such cases , strong auth becomes optional .
Thus either word auth , alone , may be used , or strong auth ,
alone , may be used , or both may be used , in which case word
auth may be simplified (may be performed at a lower level
of strength , thereby to yield better performance) , relying on
strong auth for the final verdict .
[0258] Firmware , if used to implement certain embodi
ments herein , may be held in non - volatile memory , e.g.
Flash or ROM .
[0259) Alternatively , certain embodiments described
herein may be implemented partly or exclusively (i.e. with
out firmware) in hardware in which case some or all of the
variables , parameters , sequential operations and computa
tions described herein may be in hardware .
[0260] It is appreciated that terminology such as “ manda
tory ” , “ required ” , “ need ” and “ must ” refer to implementa
tion choices made within the context of a particular imple
mentation or application described herewithin for clarity and
are not intended to be limiting , since , in an alternative
implementation , the same elements might be defined as not
mandatory and not required , or might even be eliminated
altogether .
[0261] Features of the present invention , including opera
tions , which are described in the context of separate embodi
ments , may also be provided in combination in a single
embodiment . For example , a system embodiment is
intended to include a corresponding process embodiment
and vice versa . Features may also be combined with features
known in the art and particularly , although not limited to
those described in the Background section or in publications
mentioned therein . Conversely , features of the invention ,
including operations , described for brevity in the context of
a single embodiment or in a certain order may be provided
separately or in any suitable sub - combination , including
with features known in the art (particularly although not
limited to those described in the Background section or in
publications mentioned therein) or in a different order . “ e.g. ”
is used to denote an example not intended to be limiting .
Each method may comprise some or all of the operations
illustrated or described , suitably ordered e.g. as illustrated or
described herein .

1. A self - correcting memory system comprising :
an integrated circuit including :
memory and
memory content authentication functionality , which is

operative to compare content to be authenticated to
a standard and to output " authentic ” if the content to
be authenticated equals the standard and “ non - au
thentic ” otherwise ; and

error correction functionality which is operative to
apply at least one possible correction to at least one
erroneous word entity in said memory , yielding a
possibly correct word entity , call said authentication
for application to the possibly correct word entity ,
and if the authentication's output is “ authentic ” , to
replace said erroneous word entity in said memory ,
with said possibly correct word entity

US 2020/0380173 A1 Dec. 3 , 2020
12

thereby to yield error correction at a level of confidence
derived from the level of confidence associated with the
authentication .

2. A system according to claim 1 wherein said authenti
cation functionality is operative to perform cryptographi
cally strong authentication .

3. A system according to claim 2 wherein said authenti
cation functionality is also operative to perform word
authentication .

4. A system according to claim 3 wherein said Error
correction functionality is configured for :

applying at least one possible correction to at least one
erroneous word in said memory , yielding a possibly
correct word ,

calling said word - authentication for application to the
possibly correct word ,

if the word - authentication's output is " authentic ” , subse
quently calling said strong authentication for applica
tion to an entire memory image / chunk including the
possibly correct word , and

if the strong - authentication's output is “ authentic ” , to
replace said erroneous word in said memory , with said
possibly correct word ,

thereby to yield error correction at a level of confidence
derived from the level of confidence associated with the
strong authentication and / or word - authentication .

5. A system according to claim 1 wherein said erroneous
word is detected by word - authentication applied to at least
one word in said memory and wherein any word which
yields a “ non - authentic ” output is considered erroneous and
any word which yields an “ authentic ” output is considered
non - erroneous .

6. A system according to claim 1 wherein said correction
comprises a flip of at least one bit in the erroneous word
entity from 0 to 1 or from 1 to 0 .

7. A system according to claim 2 wherein possible cor
rections are applied to plural erroneous words yielding
plural possibly correct words , and wherein said strong
authentication is called once for application to a revised
memory image / chunk in which all of said plural erroneous
words are replaced with said possibly correct words respec
tively , rather than calling said strong authentication plural
times for application to memory images / chunks respectively
including said plural possibly correct words respectively ,
thereby to save memory and / or correction time .

8. A system according to claim 1 wherein at least first and
second possible corrections are applied to at least one
erroneous word and wherein any bit in the erroneous word
which is flipped in the first correction is unflipped before the

ond possible correction is applied to said erroneous word ,
thereby to undo the first possible correction of the erroneous
word before applying the second possible correction to the
same erroneous word .

9. A system according to claim 8 wherein all possible
corrections are applied to at least one erroneous word .

10. A system according to claim 9 wherein said erroneous
word to which all possible corrections are applied comprises
an erroneous word for which none of the possible correc
tions tried results in correct word authentication , until the
last possible correction is tried , in which case the erroneous
word is regarded as uncorrectable .

11. A system according to claim 8 wherein at least one
heuristic is employed to determine a subset of possible
corrections including less than all possible corrections and

wherein only possible corrections in the subset are applied
to at least one erroneous word , even if none of the possible
corrections in the subset results in correct word authentica
tion .

12. A system according to claim 1 wherein said authen
tication functionality , operative to compare content to be
authenticated to a standard , is operative to apply strong auth
to said content to be authenticated which is stored at a given
memory location , at a time t2 , thereby to yield a “ computed ”
auth value , and to compare said computed auth value to a
stored result , aka expected auth value , generated by applying
strong auth to content of said memory , at said given memory
location , at a previous time t1 earlier than t2 at which time
the authenticity of memory contents is known to be correct .

13. A method providing error correction functionality for
memory content which resides on an integrated circuit's
target (non - volatile or volatile) memory , the method com
prising at least once :

b . Detecting an error in memory content residing in target
memory

c . Searching , through at least some bit - permutations con
stituting respective possible fixes of the error , for at
least one on - the - fly signature match ,

thereby to define a proposed fix which achieves successful
strong auth

d . If at least one on - the - fly signature match is found , using
overall authentication as a final verification for said
proposed fix ,

e . if verified , correct said code , using a power - fail safe
code recovery update process ,

thereby to provide error correction for said target memory
without taking the target memory to a lab .

14. A method according to claim 13 and also comprising
providing an output indication that memory recovery is
needed e.g. by taking at least the target memory to a lab for
secured , complete reprogramming , because memory content
correction has failed .

15. A method according to claim 14 wherein , before
providing said output indication , said searching is performed
only over single - bit permutations of said error .

16. A method according to claim 14 wherein , before
providing said output indication , said searching is performed
over all single - bit and double - bit permutations of said error .

17. A method according to claim 14 wherein , before
providing said output indication , said searching is performed
over all single - bit permutations of said error and if no match
is found , then said searching is again performed , this time
over at least some double - bit permutations of said error .

18. A method according to claim 13 and also comprising
protecting memory content residing on target memory ,
before said detecting , both by strong - auth performed once
and by on - the - fly word auth .

19. A method according to claim 18 wherein said strong
auth performed once comprises strong - auth performed just
after the integrated circuit wakes up from a less active state .

20. A method according to claim 19 wherein said strong
auth performed once comprises strong - auth performed just
after the integrated circuit powers - up .

21. A method according to claim 19 wherein said strong
auth performed once comprises strong - auth performed just
after the integrated circuit exits a sleep state .

22. A method according to claim 13 wherein said memory
content comprises code stored in the target memory .

US 2020/0380173 A1 Dec. 3. 2020
13

23. A system according to claim 1 wherein said error
correction functionality is operative to apply at least one
possible correction to at least one erroneous word in said
memory , yielding a possibly correct word , to call said
authentication for application to the possibly correct word ,
and if the authentication's output is “ authentic ” , to replace
said erroneous word in said memory , with said possibly
correct word .

24. A system according to claim 1 wherein said error
correction functionality is operative to apply at least one
possible correction to at least one erroneous word entity's
word auth , yielding a possibly correct word entity , to call
said authentication for application to the possibly correct
word entity , and if the authentication's output is " authentic ” ,
to replace said erroneous word auth in said memory , with
said possibly correct word auth .

25. A system according to claim 12 wherein said previous
time t1 is a time at which a firmware update of said memory
occurred

26. A system according to claim 1 wherein at least one
heuristic is employed to order the possible corrections such
that possible correction s ordered earlier would have greater
a priori chances to be correct than possible correction s
ordered later , thereby to shorten expected overall correction
time .

27. A method according to claim 14 wherein , before providing said output indication , said searching is performed
at least one more time over single - bit permutations of said
error .

