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Description

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No. 60/647,729 entitled "METHOD FOR
CLASSIFYING LABELED PATHOLOGY AND CYTOLOGY TISSUE SECTIONS" by Richard Levenson and Clifford C.
Hoyt, filed on January 27, 2005, the entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] This invention relates to classifying tissue samples.

BACKGROUND

[0003] Chromogenic staining techniques have been developed empirically to impart visual contrast to various elements
within tissue samples. Staining techniques and protocols can produce mixtures of dyes in different tissue elements, and
human observers, using microscopes and other imaging devices, have learned to distinguish these staining patterns as
typical for particular elements. Modem targeted staining methods, which can be specific to chemical moieties and/or
molecular structural arrangements, can produce stained tissues in which two or more chromogenic or fluorescent stains
apparently overlap spatially. In fact, the perceived overlap can result because the multiple stains truly are bound within
a common structure in the sample, or because, due to the method of preparation, a structure within the sample containing
one stain overlaps with a second structure containing a different stain. In either case, it may be difficult to distinguish
the presence and relative distribution of the multiple stains and the structures to which they are bound, especially when
the stains employed have similar spectral absorption and/or emission characteristics.
[0004] In fields such as pathology and cytology in which staining and inspection of tissue samples occurs frequently,
the stained samples are often classified according to one or more criteria by human researchers performing visual
inspection of the samples using a microscope or other imaging device. For example, a sample can be stained with
multiple dyes in order to highlight differences in particular organelles, structures, or molecular targets among cells in the
sample. Samples containing different types of cells can be treated with different dyes in order to visually distinguish the
number, spatial distribution, and morphology of the cell types. The samples can then be classified according to one or
more criteria such as the presence of different types of chemical or biological structures therein. A wide variety of staining
protocols have been developed in order to provide different types of classification information for particular classes of
samples.
[0005] As an alternative to the sometimes tedious procedure of manual inspection and classification of tissue samples,
machine-vision methods can be employed in an effort to automate the process of sample classification.

SUMMARY

[0006] In general, in a first aspect, the invention features a method that includes classifying different parts of a sample
into respective classes based on an image stack that includes one or more images. For example, the sample can be a
tissue section.
[0007] Embodiments of the method can include any of the following features.
[0008] The method can further include decomposing a set of spectral images of a sample into an unmixed image set,
where each member of the unmixed image set corresponds to a spectral contribution from a different component in the
sample, and where the images in the image stack used for classification include one or more of the unmixed images.
For example, the images in the image stack used for classification can include some or all of the unmixed images.
[0009] Classifying can include: (i) positioning a sampling window within the image stack to select a portion of the image
stack for classification, where the selected portion includes multiple pixels; (ii) classifying the selected portion into one
of several classes, where each of the pixels in the selected portion are provisionally classified as having the same class
as that of the selected portion; (iii) translating the sampling window to select a second portion of the image stack for
classification and classifying the second portion into one of several classes, where each of the pixels in the second
portion are provisionally classified as having same class as that of the second portion; (iv) repeating the translating and
classifying for the additional portions of the image stack until at least some of the pixels in the image stack have been
provisionally classified multiple times as part of different portions selected by the sampling window; and (v) classifying
each of at least some of the pixels that have been provisionally classified multiple times into one of the several classes
based on their multiple provisional classifications. The different portions selected by the sampling window can include
the same number of pixels, and at least some of the different portions selected by the sampling window can overlap
with one another. The provisional classifications of each pixel can be expressed as a histogram indicating the number
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of times the pixel was provisionally classified in each class, and the final classification of each pixel can correspond to
the class to which it was most frequently provisionally classified. The number of times at least some of the pixels are
provisionally classified can be more than two and no larger than the number of pixels in the sampling window. For
example, the number of times at least some of the pixels are provisionally classified can equal the number of pixels in
the sampling window. Additionally, the image stack can include only one image.
[0010] The image stack can include more than three spectral images, and the classification can include classifying
different regions of the image stack into respective classes based on the set of spectral images, where each region
includes multiple pixels so that each classification involves both spectral and spatial information.
[0011] The method can further include generating a composite image based on a set of spectral images of the sample,
where the spatial intensities of two or more different spectral images in the set are weighted differently and combined
to produce the composite image, and where the one or more images in the image stack include the composite image.
For example, the set of spectral images can include n images, and the one or more images in the image stack used for
classification can include fewer than n images. The composite image can be generated by weighting the spatial intensities
of the two or more different spectral images in the set according to a function that changes monotonically with a spectral
wavelength. The weighting function can be a ramp function that varies linearly with spectral wavelength. Alternatively,
the spatial intensities of the two or more different spectral images can be weighted according to a function that changes
non-monotonically with a spectral wavelength. For example, the weighting function can include a first portion that changes
monotonically with the spectral wavelength and a second portion that changes monotonically with the spectral wavelength,
where the slopes of the first and second portions of the weighting function have opposite signs (e.g., the weighting
function can be a Gaussian function). The weighting function can be selected to enhance a contrast between features
contributed to the composite image from the two or more different spectral images. Further, the one or more images in
the image stack can include two or more composite images.
[0012] In any of the methods, a neural network can be used for the classifying. Classifying different regions of the
sample into the different classes can include identifying selected regions of the image stack that correspond to each of
the individual classes, training the neural network to recognize the classes based on the selected regions, and applying
the trained neural network to the additional regions of the image stack. The input into the neural network can be a feature
vector having one or more elements based on calculating at least one spatial gray level dependency matrix. Alternatively,
or in addition, the input into the neural network can be a feature vector having one or more elements based on calculating
a two-dimensional Fourier transform.
[0013] In certain embodiments, the one or more images in the image stack can include one or more spectral images.
The spectral images can be images of sample emission according to different spectral indices for the emission, for
example. Alternatively, the spectral images can be images of sample emission according to different spectral indices
for illumination of the sample causing the emission. Further, the input information for the classifying can include both
spectral and spatial information. The sample can include components having different absorption and emission spectra.
In addition, a number of classes into which regions of the sample are classified can be equal to a number of distinct
spectral contributors in the sample. For example, the distinct spectral contributors can be chemical dyes or fluorescent
labels.
[0014] In certain embodiments, the image stack can include an RGB image.
[0015] Also, in certain embodiments, one can further include generating an output image showing the classified regions
of the sample. Additionally, any of the methods can further include obtaining the one or more images in the image stack.
The images can be obtained, for example, by measuring light transmitted through, or reflected from, the sample. The
images can also be obtained by measuring fluorescence emission from the sample.
[0016] In general, in another aspect, the invention features a method that includes: (i) positioning a sampling window
within an image stack to select a portion of the image stack for classification, where the image stack includes one or
more images and the selected portion includes multiple pixels; (ii) classifying the selected portion into one of several
classes, where each of the pixels in the selected portion are provisionally classified as having the same class as that of
the selected portion; (iii) translating the sampling window to select a second portion of the image stack for classification
and classifying the second portion into one of several classes, where each of the pixels in the second portion are
provisionally classified as having same class as that of the second portion; (iv) repeating the translating and classifying
for the additional portions of the image stack until at least some of the pixels in the image stack have been provisionally
classified multiple times as part of different portions selected by the sampling window; and (v) classifying each of at least
some of the pixels that have been provisionally classified multiple times into one of the several classes based on their
multiple provisional classifications.
[0017] Embodiments of the method can include any of the foregoing aspects or features of other methods that are
suitable for this method.
[0018] In general, in another aspect, the invention features apparatus that includes a computer readable medium
storing a program that causes a processor to carry out any of the foregoing methods.
[0019] In general, in another aspect, the invention features apparatus that includes a means for obtaining one or more
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images of a sample, and an electronic processor for analyzing an image stack based on the obtained images and
configured to classify different parts of the sample into respective classes based on the image stack as set forth in any
of the foregoing methods.
[0020] Embodiments of the apparatus can include any of the following features.
[0021] The means for obtaining the one or more images of the sample can include means for obtaining spectrally-
resolved emission images from the sample. The means for obtaining the one or more images of the sample can include
means for obtaining images from the sample corresponding to different spectral illuminations of the sample.
[0022] In general, in another aspect, the invention features apparatus that includes an optical system for obtaining
one or more spectral images of a sample, and an electronic processor for analyzing an image stack based on the obtained
spectral images and configured to classify different parts of the sample into respective classes based on the image stack
as set forth in any of the foregoing methods.
[0023] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this invention belongs. In case of conflict between documents
incorporated herein by reference and the present specification, the present specification will control.
[0024] Further the following aspects of the invention are specified. The following aspects are given in a numerical order:

1. A method comprising:

classifying different parts of a sample into respective classes based on an image stack comprising one or more
images of the sample.

2. The method of aspect 1, further comprising:

decomposing a set of spectral images of the sample into an unmixed image set, wherein each member of the
unmixed image set corresponds to a spectral contribution from a different component in the sample,
wherein the images in the image stack used for classification comprise one or more of the unmixed images.

3. The method of aspect 2, wherein the images in the image stack used for classification comprise two or more of
the unmixed images.

4. The method of aspect 1, wherein the classifying comprises:

positioning a sampling window within the image stack to select a portion of the image stack for classification,
the selected portion comprising multiple pixels;
classifying the selected portion into one of several classes, wherein each of the pixels in the selected portion
are provisionally classified as having the same class as that of the selected portion;
translating the sampling window to select a second portion of the image stack for classification and classifying
the second portion into one of several classes, wherein each of the pixels in the second portion are provisionally
classified as having same class as that of the second portion;
repeating the translating and classifying for the additional portions of the image stack until at least some of the
pixels in the image stack have been provisionally classified multiple times as part of different portions selected
by the sampling window; and
classifying each of at least some of the pixels that have been provisionally classified multiple times into one of
the several classes based on their multiple provisional classifications.

5. The method of aspect 4, wherein the different portions selected by the sampling window comprise the same
number of pixels.

6. The method of aspect 4, wherein at least some of the different portions selected by the sampling window overlap
with one another.

7. The method of aspect 4, wherein the provisional classifications of each pixel can be expressed as a histogram
indicating the number of times the pixel was provisionally classified in each class.

8. The method of aspect 4, wherein the final classification of each pixel corresponds to the class to which it was
most frequently provisionally classified.

9. The method of aspect 4, wherein the number of times at least some of the pixels are provisionally classified is
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more than two and no larger than the number of pixels in the sampling window.

10. The method of aspect 9, wherein the number of times at least some of the pixels are provisionally classified
equals the number of pixels in the sampling window.

11. The method of aspect 1, wherein the image stack comprises more than three spectral images and wherein the
classification comprises:

classifying different regions of the image stack into respective classes based on the set of spectral images,
wherein each region comprises multiple pixels so that each classification involves both spectral and spatial
information.

12. The method of aspect 1, further comprising:

generating a composite image based on a set of spectral images of the sample,
wherein the spatial intensities of two or more different spectral images in the set are weighted differently and
combined to produce the composite image, and
wherein the one or more images in the image stack comprise the composite image.

13. The method of aspect 12, wherein the set of spectral images comprises n images, and wherein the one or more
images in the image stack used for classification comprises fewer than n images.

14. The method of aspect 12, wherein the composite image is generated by weighting the spatial intensities of the
two or more different spectral images in the set according to a function that changes monotonically with a spectral
wavelength.

15. The method of any of the preceding aspects, wherein a neural network is used for the classifying.

16. The method of any of the preceding aspects, wherein the one or more images in the image stack comprise one
or more spectral images.

17. The method of aspect 16, wherein the input information for the classifying includes both spectral and spatial
information.

18. The method of any of aspects 4-10, wherein the image stack comprises only one image.

19. The method of any of the preceding aspects, wherein the image stack comprises an RGB image.

20. The method of any of the preceding aspects, further comprising generating an output image showing the classified
regions of the sample.

21. The method of any of the preceding aspects, further comprising obtaining the one or more images in the image
stack.

22. The method of aspect 21, wherein the images are obtained by measuring light transmitted through, or reflected
from, the sample.

23. The method of aspect 21, wherein the images are obtained by measuring fluorescence emission from the sample.

24. The method of aspect 16, wherein the sample comprises components having different absorption and emission
spectra.

25. The method of aspect 14, wherein the weighting function is a ramp function that varies linearly with spectral
wavelength.

26. The method of aspect 12, wherein the spatial intensities of the two or more different spectral images are weighted
according to a function that changes non-monotonically with a spectral wavelength.
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27. The method of aspect 26, wherein the weighting function comprises a first portion that changes monotonically
with the spectral wavelength and a second portion that changes monotonically with the spectral wavelength, wherein
the slopes of the first and second portions of the weighting function have opposite signs.

28. The method of aspect 27, wherein the weighting function is a Gaussian function.

29. The method of aspect 12, wherein the weighting function is selected to enhance a contrast between features
contributed to the composite image from the two or more different spectral images.

30. The method of aspect 12, wherein the one or more images in the image stack comprises two or more composite
images.

31. The method of any of the preceding aspects, wherein the sample is a tissue section.

32. The method of aspect 16, wherein a number of classes into which regions of the sample are classified is equal
to a number of distinct spectral contributors in the sample.

33. The method of aspect 32, wherein the distinct spectral contributors are chemical dyes or fluorescent labels.

34. The method of aspect 15, wherein classifying different regions of the sample into the different classes comprises
identifying selected regions of the image stack that correspond to each of the individual classes, training the neural
network to recognize the classes based on the selected regions, and applying the trained neural network to the
additional regions of the image stack.

35. The method of aspect 15, wherein the input into the neural network is a feature vector having one or more
elements based on calculating at least one spatial gray level dependency matrix for a corresponding one of the
images in the image stack.

36. The method of aspect 15, wherein the input into the neural network is a feature vector having one or more
elements based on calculating a two-dimensional Fourier transform for a corresponding one of the images in the
image stack.

37. The method of aspect 16, wherein the spectral images are images of sample emission according to different
spectral indices for the emission.

38. The method of aspect 16, wherein the spectral images are images of sample emission according to different
spectral indices for illumination of the sample causing the emission.

39. A method comprising:

positioning a sampling window within an image stack to select a portion of the image stack for classification,
the image stack comprising one or more images and the selected portion comprising multiple pixels;
classifying the selected portion into one of several classes, wherein each of the pixels in the selected portion
are provisionally classified as having the same class as that of the selected portion;
translating the sampling window to select a second portion of the image stack for classification and classifying
the second portion into one of several classes, wherein each of the pixels in the second portion are provisionally
classified as having same class as that of the second portion;
repeating the translating and classifying for the additional portions of the image stack until at least some of the
pixels in the image stack have been provisionally classified multiple times as part of different portions selected
by the sampling window; and
classifying each of at least some of the pixels that have been provisionally classified multiple times into one of
the several classes based on their multiple provisional classifications.

40. Apparatus comprising a computer readable medium storing a program that causes a processor to carry out the
method of any of the preceding aspects.

41. Apparatus comprising:
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a means for obtaining one or more images of a sample; and
an electronic processor for analyzing an image stack based on the obtained images and configured to classify
different parts of the sample into respective classes based on the image stack as set forth in the method of any
of aspects 1-38.

42. Apparatus of aspect 41, wherein the means for obtaining the one or more images of the sample comprises
means for obtaining spectrally-resolved emission images from the sample.

43. Apparatus of aspect 41, wherein the means for obtaining the one or more images of the sample comprises
means for obtaining images from the sample corresponding to different spectral illuminations of the sample.

44. Apparatus comprising:

an optical system for obtaining one or more spectral images of a sample; and
an electronic processor for analyzing an image stack based on the obtained spectral images and configured to
classify different parts of the sample into respective classes based on the image stack as set forth in the method
of any of aspects 1-38.

[0025] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages of the invention will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0026]

FIG. 1 is a schematic diagram of a system for acquiring spectral images of a sample, and for classifying the sample.
FIG. 2 is a flow chart showing steps involved in classifying a sample.
FIG. 3 is a flow chart showing steps involved in training a neural network to perform sample classification.
FIG. 4 is a schematic diagram showing a region of interest selected for a particular class.
FIG. 5 is a schematic diagram showing a partitioning of a spatial Fourier transform of a sample image in frequency
space into a set of smaller regions.
FIG. 6 is a flow chart showing steps involved in optimizing a trained neural network.
FIG. 7 is a flow chart showing steps involved in classifying a sample with a trained neural network.
FIG. 8 is a schematic diagram showing a region of a sample images selected for classification.
FIG. 9 shows a calculation of a spatial gray level dependency matrix.
FIGS. 10A-10I show an example of a classification technique disclosed herein being applied to data for a real sample.
FIG. 11 is a schematic diagram of a portion of a neural network.

[0027] Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

Overview

[0028] The methods and systems disclosed herein can be used to classify a wide variety of biological and other
samples according to spectral and/or structural features appearing on images of the samples. The classification methods
include at least some steps that are performed in an automated manner using various machine-vision algorithms and
techniques. A set of images of a sample is acquired, and can be transformed prior to submission to an automated
classifier. Transformation of the image set can include mathematical transformations such as conversion from intensities
to optical densities, spectral unmixing operations, calculation of composite images, and forming a classification data set
that may include only a subset of available sample images. The classification data set is then submitted to a machine-
based classifier, which can be a neural network or another type of classifier. Image pixels can be classified multiple
times, and a final classification performed based on the distribution of the multiple classifications for each pixel. Images
illustrating differently-classified regions of the sample can be displayed for a system operator. Classification information
can also be used to as an input to direct automated processes such as laser-capture microdissection, or in other image-
guided procedures.
[0029] The classification methods are mathematical and so are general in scope, and can be applied wherever clas-
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sification is desired, regardless of the apparatus or method used to obtain the images, or the nature of the sample. The
classification methods can be used to classify a wide variety of samples, including samples stained with one or more
absorbing stains, and samples that include fluorescent labels. Fluorescent labels can include chemical labels that are
introduced into a sample from an external source; alternatively, the labels can be intrinsic to the sample (e.g., endogenous
autofluorescence or fluorescent proteins such as green fluorescent protein and red fluorescent protein). The classification
methods can also be used to classify samples containing various luminescent species and structures. The images may
be obtained in the visible, infrared, or ultraviolet range. The classification methods are not limited to use with images of
sample absorption or sample emission, but can also be used to classify images that utilize a wide variety of measurement
or contrast mechanisms to visualize a sample, including but not limited to polarized light, sample birefringence, elastic
or inelastic light scattering, or fluorescence lifetime. The classification methods can also be used to classify samples
that are imaged with non-optical means such as x-ray transmission or scatter, magnetic resonance, neutron scatter, or
positron emission. In short, the classification methods may be used to classify sample regions in any setting where
classification of an image is desired. Moreover, the images may be images other than microscopic images. For example,
the images can be macroscopic images captured in remote sensing applications. Such images can be detected optically
or through other means, as described above.
[0030] As used herein, the term "classifying" refers to identifying different regions of an image of a sample that share
a set of common characteristics, wherein at least some of the steps in the procedure are performed in an automated
fashion by electronic components. The set of common characteristics can include signal strength, shape, spectral and
textural features, for example. The identification of such regions in a sample image effectively identifies the corresponding
regions in the sample as sharing a set of common features, and more generally that the sample region is of a specific
known state or type based on its expression of these features. At least some of the steps in the classification procedure
are performed in automated fashion by electronic components. For example, in many embodiments, steps that include
spectral unmixing of images, generating composite images, and classifying regions of images into one or more classes
are performed by electronic components. However, some operator intervention may occur in other steps. In particular,
in some embodiments, steps such as the selection of reference regions corresponding to various classes for training a
machine-based classifier may be performed manually by a system operator.
[0031] In certain embodiments, spectral images of a sample are "unmixed" into images that each correspond to a
spectral index of a respective constituent of the sample. These unmixed images can then by processed by the classifier.
The use of the unmixed images as the input into the classifier may improve the efficiency and/or accuracy of the
classification.
[0032] In certain embodiments, one or more composite images can be generated from spectral images, prior to
classification. As explained in more detail later, composite images generally include "flattened" spectral information; that
is, composite images contain spectral information that is encoded as variations in a spatial intensity image of a sample.
The use of the composite image as an input into the classifier may improve the efficiency and/or accuracy of the
classification.
[0033] In certain embodiments, the classification may involve the use of a sampling window to initially classify the
pixels in the window, followed by subsequent translations of the sampling window to make further classifications. The
translations are smaller than a dimension of the window, so that pixels are classified multiple times. A final classification
of each pixel is then based on the statistical distribution of the initial classifications. The technique enables the use of
sampling window large enough to recognize spatial features indicative of a specific class, while still providing fine
resolution because of the smaller-scale translations.
[0034] In general, the classification methods disclosed herein can be used to classify features in spectral image sets,
including color (RGB) images of a sample; or the methods can be used for sample classification where sample images
contain no spectral information (i.e., gray scale or monochrome images).

Apparatus for Obtaining Images and Subsequent Classification

[0035] FIG. 1 is a schematic diagram showing a system 100 for acquiring multiple spectrally resolved images of a
sample, and for classifying the sample. A light source 102 provides light 122 to light conditioning optics 104. Light 122
can be incoherent light, such as light generated from a filament source for example, or light 122 can be coherent light,
such as light generated by a laser. Light 122 can be either continuous-wave (CW) or time-gated (i.e., pulsed) light.
Further, light 122 can be provided in a selected portion of the electromagnetic spectrum. For example, light 122 can
have a central wavelength and/or a distribution of wavelengths that falls within the ultraviolet, visible, infrared, or other
regions of the spectrum.
[0036] Light conditioning optics 104 can be configured to transform light 122 in a number of ways. For example, light
conditioning optics 104 can spectrally filter light 122 to provide output light in a selected wavelength region of the
spectrum. Alternatively, or in addition, light conditioning optics can adjust the spatial distribution of light 122 and the
temporal properties of light 122. Incident light 124 is generated from light 122 by the action of the elements of light
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conditioning optics 104.
[0037] Incident light 124 is directed to be incident on sample 108 mounted on illumination stage 106. Stage 106 can
provide means to secure sample 108, such as mounting clips or other fastening devices. Alternatively, stage 106 can
include a movable track or belt on which a plurality of samples 108 are affixed. A driver mechanism can be configured
to move the track in order to successively translate the plurality of samples, one at a time, through an illumination region
on stage 106, whereon incident light 124 impinges. Stage 106 can further include translation axes and mechanisms for
translating sample 108 relative to a fixed position of illumination stage 106. The translation mechanisms can be manually
operated (e.g., threaded rods) or can be automatically movable via electrical actuation (e.g., motorized drivers, piezo-
electric actuators).
[0038] In response to incident light 124, emitted light 126 emerges from sample 108. Emitted light 126 can be generated
in a number of ways. For example, in some embodiments, emitted light 126 corresponds to a portion of incident light
124 transmitted through sample 108. In other embodiments, emitted light 126 corresponds to a portion of incident light
124 reflected from sample 108. In yet further embodiments, incident light 124 can be absorbed by sample 108, and
emitted light 126 corresponds to fluorescence emission from sample 108 in response to incident light 124. In still further
embodiments, sample 108 can be luminescent, and may produce emitted light 126 even in the absence of incident light
124. In some embodiments, emitted light 126 can include light produced via two or more of the foregoing mechanisms.
[0039] In many embodiments, sample 108 is a biological sample such as a tissue slice (e.g., a sample used for
pathology, or a cell suspension or smear, as in cytology studies), or living or fixed cells in tissue culture. In some
embodiments, sample 108 can be an animal (e.g., a mouse), individual bacteria or other microorganisms, bacterial or
other colonies, embryos, oocytes, plants, including seeds or grains, or sample 108 can be a non-biological entity.
[0040] Light collecting optics 110 are positioned to received emitted light 126 from sample 108. Light collecting optics
110 can be configured to collimate emitted light 126 when light 126 is divergent, for example. Light collecting optics 110
can also be configured to spectrally filter emitted light 126. Filtering operations can be useful, for example, in order to
isolate a portion of emitted light 126 arising via one of the mechanisms discussed above from light arising via other
processes. Further, light collecting optics 110 can be configured to modify the spatial and/or temporal properties of
emitted light 126 for particular purposes in embodiments. Light collecting optics 110 transform emitted light 126 into
output light 128 which is incident on detector 112.
[0041] Detector 112 includes one or more elements such as CCD sensors configured to detect output light 128. In
embodiments, detector 112 can be configured to measure the spatial and/or temporal and/or spectral properties of light
128. Detector 112 generates an electrical signal that corresponds to output light 128, and is communicated via electrical
communication line 130 to electronic control system 114.
[0042] Electronic control system 114 includes a processor 116, a display device 118, and a user interface 120. In
addition to receiving signals corresponding to output light 128 detected by detector 112, control system 114 sends
electrical signals to detector 112 to adjust various properties of detector 112. For example, if detector 112 includes a
CCD sensor, control system 114 can send electrical signals to detector 112 to control the exposure time, active area,
gain settings, and other properties of the CCD sensor.
[0043] Electronic control system 114 also communicates with light source 102, light conditioning optics 104, illumination
stage 106, and light collecting optics 110 via electrical communication lines 132, 134, 136, and 138, respectively. Control
system 114 provides electrical signals to each of these elements of system 100 to adjust various properties of the
elements. For example, electrical signals provided to light source 102 can be used to adjust the intensity, wavelength,
repetition rate, or other properties of light 122. Signals provided to light conditioning optics 104 and light collecting optics
110 can include signals for configuring properties of devices that adjust the spatial properties of light (e.g., spatial light
modulators) and for configuring spectral filtering devices, for example. Signals provided to illumination stage 106 can
provide for positioning of sample 108 relative to stage 106 and/or for moving samples into position for illumination on
stage 106, for example.
[0044] Control system 114 includes a user interface 120 for displaying system properties and parameters, and for
displaying captured images of sample 108. User interface 120 is provided in order to facilitate operator interaction with,
and control over, system 100. Processor 116 includes a storage device for storing image data captured using detector
112, and also includes computer software that embodies instructions to processor 116 that cause processor 116 to carry
out control functions, such as those discussed above for example. Further, the software instructions cause processor
116 to mathematically manipulate the images captured by detector 112 and to carry out the steps of classifying sample
108 according to either or both of the original and the manipulated images. The classification steps are described in
more detail subsequently.
[0045] In many embodiments, system 100 is configured to acquire multiple spectral images of sample 108. The multiple
spectral images may correspond to illumination of sample 108 at a variety of selected wavelengths of light, and detecting
an intensity of light either transmitted through or reflected by sample 108. Alternatively, the multiple spectral images
may correspond to illumination of sample 108 with light having similar spectral properties, and collecting multiple images
of sample 108, each image corresponding to a different wavelength of emitted light 126. Spectral filtering elements in
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light conditioning optics 104 and light collecting optics 110 are generally used to obtain the spectrally resolved data.
[0046] In some embodiments, images of sample 108 can be collected in sequence, with adjustments to the configuration
of optical components (e.g., optical filters) between successive captured images. In other embodiments, multiple images
can be captured simultaneously using detection systems configured to detect multiple sample views. For example,
detection systems can be configured to project different views of the sample corresponding to different illumination or
emission wavelengths onto a detector such as a CCD camera, and the multiple views can be captured simultaneously.
[0047] In some embodiments, light conditioning optics 104 include an adjustable spectral filter element such as a filter
wheel or a liquid crystal spectral filter. The filter element can be configured to provide for illumination of sample 108
using different light wavelength bands. Light source 102 can provide light 122 having a broad distribution of spectral
wavelength components. A selected region of this broad wavelength distribution is allowed to pass as incident light 124
by the filter element in light conditioning optics 104, and directed to be incident on sample 108. An image of light 126
transmitted through sample 108 is recorded by detector 112. Subsequently, the wavelength of the filter pass-band in
light conditioning optics 104 is changed to provide incident light 124 having a different wavelength, and an image of light
126 transmitted through sample 108 (and corresponding to the new wavelength of incident light 124) is recorded. A
similar set of spectrally-resolved images can also be recorded by employing a light source 102 having multiple source
elements generating light of different wavelengths, and alternately turning the different source elements on and off to
provide incident light 124 having different wavelengths.
[0048] As discussed previously, the emitted light 126 from sample 108 can also correspond to incident light 124 that
is reflected from sample 108. Further, emitted light 126 can correspond to fluorescence emission from sample 108 if
the sample includes fluorescent chemical structures. For some samples, emitted light 126 can include contributions from
multiple sources (i.e., transmission and fluorescence) and the spectral filtering elements in light conditioning optics 110
can be used to separate these signal contributions.
[0049] In general, both light conditioning optics 104 and light collecting optics 110 include configurable spectral filter
elements. Therefore, spectral resolution can be provided either on the excitation side of sample 108 (e.g., via light
conditioning optics 104) or on the emission side of sample 108 (e.g., via light collecting optics 110), or both. In any case,
the result of collecting multiple, spectrally resolved images of sample 108 is an "image stack" where each image in the
stack is a two-dimensional image of the sample corresponding to a particular wavelength. Conceptually, the set of images
can be visualized as forming a three-dimensional matrix, where two of the matrix dimensions are the spatial length and
width of each of the images, and the third matrix dimension is the spectral wavelength (emission or excitation) to which
the image corresponds. For this reason, the set of spectrally resolved images can be referred to as a "spectral cube" of
images. As used herein, a "pixel" in such a set of images (or image stack or spectral cube), refers to a common spatial
location for each of the images. Accordingly, a pixel in a set of images includes a value associated with each image at
the spatial location corresponding to the pixel.
[0050] Other arrangements to obtain spectral images which are known in the art may be employed, according to the
requirements of the sample at hand.
[0051] While each spectral image described above typically refers to a particular wavelength or range of wavelengths
(e.g., a spectral band), more generally, each spectral image can correspond to a spectral index that may include one
or more wavelength bands, or some more complex spectral distribution. For example, such an image can be generated
by using a spectral comb filter. Generally, the image cube will include several spectral images, for example, 10 or more.
However, in some embodiments, the image cube may include fewer images, for example, only two or three spectral
images. One such example is an red-green-blue (RGB) color image, in which each pixel includes a value associated
with the strength of each of the red, green, and blue colors. Such information may be displayed as a single color image,
rather than as a set of separate images; however, the information content is the same as that in the set of images, and
therefore we use the expression "spectral images" to refer to both cases.
[0052] In certain embodiments, images used for classification may also include false-color images, and also mono-
chrome or gray scale images.
[0053] Following acquisition of one or more images, sample 108 is classified by system 100 according to the shape,
intensity, spectral and/or textural features of the individual image(s). In practice, in some embodiments, images are
recorded for multiple samples first, and the classification of the samples is deferred to a later time for expediency.
[0054] Not all of the images of a spectral cube need be analyzed in order to accurately classify the sample to which
the cube corresponds. In some embodiments, a classification of sufficiently high accuracy is achieved by examining
only a subset of the spectral cube images. Further, in some embodiments, the spectrally resolved images may be
spectrally unmixed (i.e., decomposed into a set of images corresponding to a set of spectral eigenstates) before analysis.
Some embodiments include additional steps wherein one or more composite images are generated via mathematical
combination of multiple images selected from the spectral cube and/or the set of spectrally unmixed images. Classification
of a sample can be performed based on the composite images, in addition to or exclusive of the spectral cube images
and the spectrally unmixed images.
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Spectral Unmixing

[0055] FIG. 2 is a flow chart 200 showing steps involved in classifying a sample. Step 202 includes acquiring a set of
one or more images (e.g., a spectral cube) of a sample, as discussed above. Step 204, which is optional, includes
spectrally unmixing some or all of the images in the spectral cube to generate an unmixed set of images (i.e., an "unmixed
spectral cube"). Spectral unmixing is a technique that quantitatively separates contributions in an image that arise from
spectrally different sources. For example, a sample may contain three different types of structures, each labeled with a
different dye. The three different dyes may each have different absorption spectra. Typically, the individual absorption
spectra of the dyes are known before they are used, or they can be measured. Images of the specimen under illumination
will contain, in the most general case, spectral contributions from each of the three dyes. A similar situation arises, for
example, in samples containing multiple different fluorescence labels, each of which contribute to measured fluorescence
emissions.
[0056] Spectral unmixing decomposes one or more images that include contributions from multiple spectral sources
into a set of component images (the "unmixed images") that correspond to contributions from each of the spectral entities
within the sample. Thus, if the sample includes three different dyes, each specific to a particular structural entity, then
an image of the sample can be separated into three unmixed images, each unmixed image reflecting contributions
principally from only one of the dyes.
[0057] The unmixing procedure essentially corresponds to decomposing an image into a set of spectral eigenstates.
In many embodiments, the eigenstates are known beforehand, as discussed above. In other embodiments, the eigen-
states can sometimes be determined using techniques such as principal component analysis. In either case, once the
eigenstates have been identified, an image can be decomposed by calculating a set of values, usually as a coefficient
matrix, that corresponds to the relative weighting of each of the eigenstates in the overall image. The contributions of
each of the individual eigenstates can then be separated out to yield the unmixed image set.
[0058] As an example, a series of two dimensional images having x and y coordinates can be measured for a sample
by illuminating the sample at a set of different excitation wavelengths λk. As described above, the two dimensional
images can be combined to form a three-dimensional image cube I(x,y,k) where the first two indices of the image cube
represent coordinate directions, and the third index is a spectral index corresponding to the wavelength of the illumination
light. Assuming, for the sake of simplicity, that each of the images of the sample contains spectral contributions from
two different spectral sources F(λk) and G(λk), then the values in the three-dimensional image cube I(x,y,k) may be
given by 

where λk is used to denote a given wavelength (or wavelength band). The functions a(x,y) and b(x,y) describe the spatial
abundance of the spectral contributions from the two different spectral sources in the sample.
[0059] According to Equation (1), the net signal any position in the three-dimensional image cube (i.e., at any two-
dimensional pixel coordinate, and at a particular illumination wavelength) is the sum of two contributions, weighted by
the relative abundance of each. This can be expressed as 

[0060] The functions F and G can be termed the "spectral eigenstates" for the system because they correspond to
the pure spectra for the spectral sources in the sample, which are combined in varying proportions to produce the
measured spectral images of the sample. Thus, the sample spectrum is a weighted superposition corresponding to
separate contributions from the two spectral sources.
[0061] If the spectra F(λk) and G(λk) are known (or can be deduced), then Equation (2) can be inverted to solve for a
and b, provided that spectrum I includes at least two elements (i.e., provided that one has data for at least two wavelengths
λk). Equation (2) can be rewritten in matrix form as I = EA, so that 

where A is a column vector with components a and b, and E is a matrix whose columns are the spectral eigenstates,
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namely [F G].
[0062] Using Equation (3), measured spectral images of a sample can be used to calculate contributions to the images
arising purely from source F and purely from source G at particular pixel locations. The process can be repeated for
each pixel location on a selected image (i.e., throughout the range of values x and y in I) to produce an image of the
sample that includes contributions only from source F, and another image of the sample that includes contributions only
from source G.
[0063] In the above discussion, the number of spectral sources is two (i.e., F and G). In general, however, unmixing
techniques are not restricted to any particular number of sources. For example, a sample can generally contain m
different spectral sources. If the number of wavelengths at which data is collected is n - that is, k = 1... n - then matrix
E is an n x m matrix instead of an n x 2 matrix, as in the above discussion. The unmixing algorithm can then be employed
in the same manner as described above to isolate specific contributions at each pixel location in an image from each of
the m spectral eigenstates.
[0064] One factor which can limit the ability of the algorithm to distinguish between contributions from different spectral
eigenstates is the degree of spectral distinction between the eigenstates. The correlation between two spectra, such as
two spectral eigenstates I1 and I2, can be described by a spectral angle θ where 

[0065] Sets of spectra for which θ is small for two members are not as easily separated into their components. Physically,
the reason for this is easily understood: if two spectra are only marginally different, it is harder to determine the relative
abundance of each.
[0066] A number of techniques can be used to measure or estimate the pure spectra of the spectral sources F and
G (and other spectral sources, where the sample includes more than two). In general, any method that yields spectral
eigenstates of sufficient accuracy can be used. Some samples can contain spectral sources such as dyes, fluorescence
labels, or other chemical moieties for which there are known spectra available in published reference materials. Alter-
natively, it may be possible to directly measure the spectra of source components using one or more measurement
systems. In some samples, a particular region of the sample may be known to include only one particular spectral source,
and the spectrum of that source can be extracted from measurements taken on only the identified region of the sample.
[0067] Various data analysis techniques can also be used for determining component spectra for spectral unmixing,
such as principal component analysis (PCA), which identifies the most orthogonal spectral eigenvectors from an image
cube and yields score images showing the weighting of each eigenvector throughout the image. This may be done in
combination with other mathematical processing, and there are other known techniques for identifying low-dimensionality
spectral vectors, such as projection pursuit, a technique described, for example, in L. Jimenez and D. Landgrebe,
"Hyperspectral Data Analysis and Feature Reduction Via Projection Pursuit", IEEE Transactions on Geoscience and
Remote Sensing, Vol. 37, No. 6, pp. 2653-2667, November 1999, the entire contents of which are incorporated herein
by reference. Other techniques include independent component analysis (ICA) and end-member detection algorithms,
for example.
[0068] These techniques are typically not well-suited to the applications in the life sciences. For example, some
techniques are optimized for spectral imaging data sets that contain spectra with dense spectral shapes and well-defined
narrow peaks. In some techniques the spectral ranges are large compared to the individual spectral features and peaks
that are used for analysis. The presence of peaks, or the ratio of peaks may be then used to classify "end-members" to
be separated. Unfortunately, the components in biological samples typically do not have such well-defined, narrow peaks.
[0069] Some of these techniques generate images related to spectra that are present in a pure form somewhere within
the original image cube. In many cases in the life sciences, signal spectra present in the image cube are mixtures of
components. If the component of interest is not in a pure form somewhere in the original image cube, then it is unlikely
that these techniques will generate an image that accurately represents the abundance of the component of interest.
[0070] There are some techniques, sometimes called "convex-hull" algorithms, that estimate what the true end-mem-
bers are even if they do not exist in a pure form in the image, but the effectiveness is dependent on how close signal
spectra in the image cube are to the end-members.
[0071] One technique that can be used to extract spectral eigenstates (or representations thereof) without a priori
knowledge of all of the eigenstates involves considering the signal spectrum I(λk) for a given pixel, and subtracting from
it the maximum amount of a first spectral source F(λk) while leaving the remaining signal that is positive definite in all
spectral channels. That is, one defines a so-called "remainder spectrum" Ua(λk) for each pixel as 
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and then selects the largest value of the parameter a consistent with Ua(λk) having a non-negative value in every spectral
channel. The resulting spectrum Ua(λk) is then used as the signal spectrum, expunged of contributions due to first
spectral source F. One may also make the determination of parameter a based not on strict non-negative criterion listed
above, but on some related criteria that incorporates a small negative distribution, to account for considerations such
as shot noise or detector noise in a measurement system. Additional examples of optimization criteria for removing the
maximal amount of spectral source F include using different error functions.
[0072] Alternatively, one may seek to extract a contribution to a measured spectrum that is due to second spectral
source G. In analogy with Equation (5), the remainder spectrum can be calculated for each pixel as 

where one selects the largest value of the parameter b consistent with Ub(λk) having a non-negative value in every
spectral channel.
[0073] The remainder technique can be expanded to cases where the spectra for one or more additional components
of the sample are known, and one wants to remove their contributions to the signal. In such cases, the remainder
spectrum is written to subtract a contribution of each such component from the observed signal based on the additional
spectra and consistent with a positive remainder in each spectral channel.
[0074] Additional spectral unmixing techniques are described in PCT Patent Publication No. WO2005/040769 entitled
"SPECTRAL IMAGING OF BIOLOGICAL SAMPLES" by Richard Levenson et al., the contents of which are incorporated
herein by reference.
[0075] In order for the spectral unmixing techniques disclosed herein to effectively separate contributions in sample
images that are due to different spectral eigenstates, Equation (1) should be at least approximately correct. That is, the
measured spectral data should be approximately described as a linear superposition of weighted eigenstates. This
approximation holds for many samples and spectral measurement techniques, especially darkfield measurement tech-
niques. For example, sample images arising from fluorescent or luminescent chemical labels within the sample typically
satisfy the linearity assumption. In some cases however, such as for some brightfield measurement techniques, the
linearity approximation may not be satisfied. For example, when images are captured that arise from illumination light
that is transmitted through a sample that includes light-absorbing components, the linearity assumption in Equation (1)
may not be correct. Instead, the intensity of the measured light may be reduced with an exponential dependence on the
concentration of the light-absorbing components. In such cases, transformation of the images may first be necessary
before unmixing techniques can be used. As an example, for sample images measured in a transmission mode, the
measured image intensities can be transformed into optical densities (e.g., by applying a logarithmic function) in order
to apply linear unmixing techniques. Optical density techniques are further described, for example, in U.S. Application
No. 10/226,592 (Publication No. US 2003/0081204 A1) entitled "SPECTRAL IMAGING" by Paul J. Cronin and Peter J.
Miller, filed August 23, 2002, the entire contents of which are incorporated herein by reference.
[0076] Spectral unmixing operations (e.g., matrix inversion techniques and remainder techniques) and image data
transformation operations (e.g., converting measured image intensities to optical densities, where appropriate) can be
performed by electronic control system 114 via processor 116, for example. These operations can include manual
intervention and configuration steps performed by a system operator, or system 100 can be configured to perform these
operations in an automated manner.

Composite Images

[0077] Application of the unmixing techniques discussed above provides a set of unmixed images from a multi-spectral
data set. Returning now to FIG. 2, in a second optional step in flow chart 200, step 206 includes generating one or more
composite images using the spectral cube images and/or unmixed spectral cube images. Composite images are gen-
erated as a means to "flatten" or compress spectral information into a two-dimensional grayscale image. In other words,
in terms of a 3D spectral matrix of image data, generating a composite image corresponds roughly to compressing or
packing the information from two or more layers into a single layer. Since both spectral cube and unmixed spectral cube
image data can be used, the technique can conceptually include packing multiple layers from different spectral cubes
into a single layer.
[0078] As an example, consider a 3D spectral cube of images, where each image has width x, height y, and an index
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k that corresponds to a wavelength λk. If there are a total of N different images in the cube (i.e., data recorded at N
different wavelengths) then the spectral cube I can be represented, as described previously, as a matrix I(x,y,k). Com-
pressing spectral information from two or more images in the spectral cube to create a composite image C is equivalent
to adding the image layers together. In some embodiments, prior to adding the layers together, each layer is scaled
according to a weighting function f(k). The spectral compression operation is then performed according to

which yields composite image C(x,y) from layers m through n of the spectral image cube. The weighting function f(k) is
generally chosen to emphasize different spectral features in the composite image; that is, to create contrast between
features arising from the different layers of the spectral cube that contribute to the overall intensity distribution in the
composite image.
[0079] A wide variety of weighting functions can be chosen in order to produce the desired contrast. In general, in
some embodiments, a monotonically increasing or decreasing function is chosen for f(k), such as a linear ramp function
or a sigmoidal function. In other embodiments, f(i) can be a dual ramp function (i.e., decreasing to a point and then
increasing, or increasing to a point and then decreasing) or another function, such as one or more Gaussian functions.
The weight function can generally be selected as desired, and can be applied to a batch series of samples, or can be
selected individually for each sample prior to classification. System 100 can include a storage medium to store weighting
functions for particular types of samples, so that a weighting function appropriate for a sample undergoing classification
can be recalled as needed.
[0080] Step 208 includes selecting a set of images to be classified. In general, any or all of the images from the spectral
image cube, the unmixed spectral image cube (if calculated), and the composite images (if calculated) can be selected
for classification analysis. In some embodiments, for example, classification of a sample to a high degree of accuracy
can be achieved using a composite image and a small subset of either spectral cube images or unmixed spectral cube
images. This has the advantage that the overall set of data upon which a classification algorithm operates is greatly
reduced, increasing the speed with which the classification of the sample is complete.
[0081] In some other embodiments, images from the unmixed spectral cube can be used for sample classification.
The images can be delivered to a classification algorithm, and may be accompanied (although not always) by one or
more composite images.
[0082] In some embodiments, more than three spectral images can be used for classification of a sample. The images
can be taken from either the spectral image cube or, if calculated, an unmixed spectral image cube. This technique can
be particularly advantageous when the sample includes more than three distinct spectral contributors. For example, the
sample can contain four different stains or dyes, or four different fluorescent labels.
[0083] In other embodiments, color RGB images or single plane images can be used for classification of a sample.
Single plane images may be narrow band or panchromatic.

Classification

[0084] In general, the classifier is a mechanism or rule-set to assign a sample to one of several output classes, and
it can be any linear or nonlinear classifier. Linear classifiers include least-squares distance, Mahalanobis distance, and
others. These may be used, but the classifier is preferably a machine-learning algorithm such as a neural network,
genetic algorithm, or support vector machine. However, a neural network is often preferred, and will be used as the
example throughout the subsequent discussion.
[0085] The neural network is generally applied to one or more areas, each of which typically corresponds to several
pixels (e.g., a 2x2 set of pixels, or a 16x16 set of pixels, etc.) in the image stack (which, as described above, may include
one or more images). When there is more than one image in the image stack, each pixel will include a value associated
for each of the images. The values for all of the pixels in a given area being classified form the basis of the input information
that can potentially be applied to the neural network. Because each area includes several pixels, the input information
available to the neural network includes both spatial and spectral information when the image stack includes a composite
image and/or multiple spectral images.
[0086] The neural network has one or more input nodes, by which it receives information about the region to be
classified. An input is termed a "feature vector," where each element of the feature vector corresponds to a specific input
node of the neural network. The elements of the feature vector are functions of the signal values at one or more pixels
in the area being classified. Examples of suitable functions for producing the feature vector are described further below.
[0087] The neural network will also have several output nodes, each corresponding to a class to which the area may
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be designated. When the feature vector for a given area is applied to the neural network, values for the output nodes
correspond to the degree to which the area should be assigned to a given class. Preferably, the neural network is trained
so that the output node values are binary, with only one output node yielding a non-zero value (and indicating the class
to which the area should be assigned) for any given feature vector.
[0088] As described in further detail below, the neural network is trained and can be further optimized to reduce the
number of input nodes necessary for efficient and accurate classification. In many embodiments, the use of unmixed
images and/or one or more composite images can lead to a reduction in the number of input nodes, and therefore greater
efficiency when classifying the regions of an unknown sample. The topology of the neural network employed in some
embodiments is bipolar, although binary and other neural network types can also be used effectively. The network is
trained using a back propagation method, with momentum included in the training algorithm. The activation function of
the network in some embodiments is a bipolar sigmoidal function; other activation functions can also be used.
[0089] In embodiments, the networks can commonly include 0, 1, or 2 hidden layers, which are the layers between a
first layer having the input nodes and the last layer having the output nodes, although additional hidden layers are
possible. Anywhere from 1-15 nodes per hidden layer and are common, though again additional nodes can be used.
The input layer of the network uses spatial and spectral texture features identified on sample images as input. The output
layer includes a number of output nodes equal to the number of identified classes Nc.
[0090] FIG. 11 is a schematic diagram showing an example of a neural network that can be used in the classification
methods disclosed herein. The network includes an input layer, one hidden layer, and an output layer. Inputs to the
neural network are feature vectors fm, and coupling strengths between nodes are given by γk,l values. The outputs from
the neural network are the classes associated with an image or image stack.
[0091] Typical topological parameters for networks used in the processing of tissue sample images include one hidden
layer with 5 nodes, a learning parameter of 0.2, and a momentum factor of 0.5. The structure of neural networks are
described, for example, in Christopher M. Bishop, "Neural Networks for Pattern Recognition", Oxford University Press,
1995.
[0092] Referring again to FIG. 2, after selecting the set of images according to which the sample will be classified (the
"classification image set"), step 210 includes training the classifier using images from the classification image set.
[0093] The neural network is trained when a new type of sample is presented for classification analysis. A system
operator can be provided with a choice to re-train the existing network for a particular sample via display device 118,
for example. The procedure for training the neural network is discussed in greater detail subsequently.
[0094] After the neural network-based classifier is trained, step 212 includes submitting the classification image set
to the classifier. The classifier generally classifies portions of the sample according to textural and spectral features
present on images of the sample in the classification image set. The details of the steps involved in the classification
routine are presented later.
[0095] Finally, step 214 includes generating classification output for the sample. The classification output can include,
for example, one or more images constructed to show contrast between differently classified regions of the sample.
Alternatively, or in addition, the classification output can include warning sounds or messages to indicate the presence
or absence of particular elements (i.e., stained or labeled structures) in the sample. The output can also include numeric
data indicating the types of regions present in the sample, their relative abundance, and other numerical parameters
describing the sample.

Training the Neural Network

[0096] FIG. 3 is a flow chart 300 that includes steps for training the neural network classifier. A first step 302 includes
determining a number of classes Nc to search for in the image stack. In many embodiments, the number of classes is
selected to correspond to the number of different states that are expected or sought within the sample. This may be
greater than the number of spectral planes in the image set, or it may be fewer. For example, a sample may be stained
with three different dyes or labeled with three different fluorescent labels. In such a sample, one may seek to identify
three different classes Nc, or two, or five, according to the structure and nature of the sample. The classifier is capable
of resolving more classes Nc than the number of spectral planes, based on other aspects of the sample such as signal
strength, shape, and texture.
[0097] The second step 304 includes selecting at least one training region of interest (ROI) for every class on one of
the sample images (the pixel spatial coordinates (x,y) of the ROIs for each of the classes are assumed to be the same
from one image to the next). The training ROIs are known to correspond to respective classes and provide a reference
for the neural network algorithm to allow it to determine particular spectral and spatial features which are common to
each of the classes in order to assist in classification decisions. In some embodiments, for example, the selection of
ROIs occurs dynamically via interaction with a system operator through display device 118 and user interface 120.
[0098] The third step 306 includes selecting a sub-sampling window size. A sub-sampling window is used to examine
each of the selected ROIs at a finer level of detail. In many embodiments, the sub-sampling window size is chosen to



EP 2 237 189 A2

16

5

10

15

20

25

30

35

40

45

50

55

be smaller than the mean length and width of all of the ROIs, but larger than a single pixel within the ROI. The sub-
sampling window width is also frequently chosen to have both width and length that are multiples of 2, because Fourier
methods that operate on sub-sampled regions of the ROIs can take advantage of FFT algorithms if the variable space
is a multiple of 2. In embodiments, typical sub-sampling window sizes include 4x4 pixels, 8x8 pixels, 16x16 pixels, and
32x32 pixels, although a wide variety of window sizes, including window sizes not listed explicitly herein, are also possible.
Moreover, while the presently described embodiments presume that the data for each image is represented with respect
to a two-dimensional grid of squares, other embodiments may include a different representation of data and corresponding
window and ROI dimensions. For example, the data may represented on a hexagonal grid, or some other shape.
[0099] The next series of steps involve operations conducted on each of the identified classes. Each of the classes
is analyzed in turn. Step 308 includes selecting a ROI corresponding to a currently selected class. Step 310 includes
examination of the ROI by sub-sampling the ROI with the selected sub-sampling window. FIG. 4 shows the sub-sampling
process in greater detail. A chosen ROI 400 is sub-sampled by a sub-sampling window 402 that selects a fraction of
the image pixels within ROI 400 for analysis.
[0100] Returning to FIG. 3, step 312 includes calculating and storing a feature vector for each of the sub-sampled
regions of the ROI. The feature vector includes as elements a set of numbers calculated from the sub-sampled pixels
of the ROI. Each of the calculated feature vectors correspond to a feature vector that would, for a properly trained neural
network, output a classification corresponding to the selected class. The elements of the feature vector generally cor-
respond to particular texture analysis features which provide a basis for classification of regions within an image of the
sample.
[0101] Many different numerical quantities can be calculated in order to provide a sufficiently distinguishable description
of the ROI. For example, in some embodiments, the feature vector corresponding to a selected ROI for a particular class
can include 10 different calculations for each of the images in the image stack, thereby resulting in vector with 10Ni
elements, where Ni is the number of images in the image stack. The first four of the ten calculations can be texture
analysis features obtained from spatial gray level dependency matrices (SGLDMs), which are also referred to as co-
occurrence matrices. For example, such matrices are described in R. M. Haralick, K. Shanmugam, and I. Dinstein,
"Textural features for image classification", IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 610-621, 1973. A SGLDM
is a spatial histogram of an image (or a portion thereof) that quantifies a distribution of gray scale values within the image.
SGLDMs can be calculated, for example, from an estimate of the second-order joint conditional probability densities, sθ
(i,j|d,θ). Each value of this conditional probability density represents the probability of a pixel having a gray level value
i being d pixels away from a pixel having a gray level value j in a direction described by θ. If an image includes Ng gray
levels, then an Ng x Ng matrix sθ(i,j|d,θ) can be created. Optionally, the matrix can be summed over a set of directions
θ for a selected distance d. For example, in some embodiments, a single direction θ = 0° can be selected. In other
embodiments, for example, four directions can be employed: θ = 0°, 45°, 90°, and 135°. In general, any number of
directions can be selected for analysis of the texture features in a particular ROI.
[0102] In some embodiments, the distance d is fixed at a particular value for analysis. For example, the distance d
can be fixed at a value of 1 pixel. In other embodiments, a range of distances can be used, depending upon the nature
of the specific texture features. In general, the distance d and the direction θ can be regarded as parameters that are
adjusted in order to ensure higher accuracy classification performance from the neural network.
[0103] With four directions θ and a single fixed distance d of one pixel, for example, a SGLDM can be computed as
a sum of co-occurrence matrices over the four directions in each ROI. Textural features can then be calculated from
each SGLDM. For example, four different textural features that can be calculated from each SGLDM include energy (E),
entropy (S), local homogeneity (H), and inertia (R). The inertia value is also referred to as "contrast". In this example,
then, four SGLDM features for the set of angles θ can be calculated as follows for each ROI: 
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where sθ(i,j|d) corresponds to the (i,j)-th element of the SGLDM for a distance d. The calculated values E, S, H, and R,
for each of the image slices, can then be stored as the first 4N elements in the feature vector corresponding to the ROI
for the currently selected class.
[0104] As an example, a 2x2 region 902 of an image is shown in FIG. 9. The region includes 4 pixels, each of which
can have an integral intensity level from 1 to 4 (i.e., Ng = 4). The second-order joint conditional probability matrix sθ(i,
j|d,θ) is therefore a 4x4 matrix 904. In order to evaluate the numerical elements of matrix 904, particular values of d and
θ can be selected. For example, selecting θ = 0 corresponds to evaluating probabilities along rows of region 902. Selecting
d=1 corresponds to evaluating probabilities for elements in region 902 that are separated by 1 unit (i.e., adjacent ele-
ments). With the selection of θ = 0 and d = 1 for region 902, the values of the elements of probability matrix 904 are as
shown in FIG. 9.
[0105] In region 902, pixel (1,1) has an intensity value of 1. Related to pixel (1,1), at a distance d = 1 and angle θ =
0, is pixel (1,2) with an intensity value of 3. Therefore, the probability value at position (3,1) in matrix 904 is 1. Pixel (2,1)
in region 902 has an intensity value of 1. Related to pixel (2,1) at a distance d = 1 and angle θ = 0 is pixel (2,2) with an
intensity value of 2. Therefore, the probability value at position (2,1) in matrix 904 is 1. In some embodiments, the next
four calculations for each of the image slices in the ROI’s feature vector can be derived from the magnitude of the
complex 2D Fourier transform of the ROI. For example, the 2D Fourier transform can be calculated (e.g., using a 2D
FFT algorithm, if the sub-sampling window width and length are multiples of 2) and the magnitude data stored in a matrix,
wherein the DC frequency component is represented by the origin of the axis in the frequency domain. FIG. 5 is a
schematic illustration of a sub-sampled ROI for which a 2D Fourier transform is calculated. The 2D Fourier transform
data set can then be divided into four concentric regions 502, 504, 506, and 508 based on frequency content. The
outermost region 502, for example, represents a portion of the sample image having the highest spatial frequency content.
[0106] The magnitudes of the spatial frequencies in each of regions 502, 504, 506, and 508 can be integrated and
normalized to the total signal magnitude. The integrated magnitudes form the next four elements in the ROI’s feature
vector, and each corresponds to a percentage of Fourier transform signal within a certain range of spatial frequencies.
[0107] In general, in embodiments, the spatial Fourier transform data can be partitioned into any number of selected
frequency regions (subject to the spatial Nyquist limit) and the integrated intensities from these regions correspond to
textural features of the image. Some or all of these textural features can be incorporated into the feature vector for the ROI.
[0108] The remaining two calculations in this present example of determining the feature vector can be derived from
first order pixel statistics. For example, the ninth and tenth calculations can correspond to the mean and standard
deviation of the pixel values within the ROI. In general, other statistical measures can also be useful as feature vector
elements. These quantities can be derived from first order or higher order statistical measures (e.g., the variance in pixel
values, which is derived from the second moment of the statistical distribution of pixel values).
[0109] Referring again to FIG. 3, following calculation of each of the elements of the feature vector that corresponds
to the currently selected class, the feature vector is stored. A logical decision 314 follows next. If feature vectors for all
of the Nc classes have been calculated and stored, then subsequent neural network training steps, beginning with step
318, are taken. Conversely, if feature vectors have not been calculated, then in step 316 a class indicator i is incremented,
which is equivalent to selecting a new class and its associated ROI, and the analysis for the newly selected class begins
at step 308.
[0110] When all of the feature vectors for the identified classes have been calculated, the next step in the sequence
is step 318, which includes selecting a sequence of the calculated feature vectors for use as training vectors corresponding
to the Nc classes identified in step 302. The set of training vectors can include multiple vectors corresponding to different
ROIs for each of the classes. However, care is taken to ensure that each identified class contributes the same number
of distinct training vectors to the training set in step 318. This balancing of the relative abundance of different training
vectors in the training set is important in order to ensure that the neural network is trained in unbiased fashion with
respect to the different classes in sample images.
[0111] In step 320, the set of training vectors is submitted to the neural network-based classifier for classification. The
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vectors are classified one-by-one in random order, and for each one the neural network develops an output estimate of
what class the vector belongs to, and this is compared against the actual known class corresponding to the vector. The
difference between the network output and the actual class is termed the error. The network is then adjusted using a
method such as gradient descent back-propagation, or other error-adjustment techniques, which acts to adjust the
network values and produce a reduced error value. When all of the training ROIs have been assigned by the network,
the classification accuracy can be determined in step 322, either manually by an operator or automatically by calculating
a score that indicates, for example, what percentage of ROIs were classified correctly.
[0112] Logical step 324 includes a decision based on the accuracy of the classification of the training ROIs. If the
accuracy is higher than a selected threshold (which, in some embodiments, can be set to 100% accuracy, for example)
then the neural network is considered to have been suitably trained and the training sequence finishes in step 326.
However, if the accuracy falls below the selected threshold, then the steps involving classification of training ROIs are
repeated. That is, training vectors are prepared as in step 318 and test classification of these ROIs by the neural network
begins again. The vectors may be the same set used in the initial training, or may be a different set of vectors. Repeatedly
training on a single set is productive as long as the error network adjustment continues to improve classification accuracy.
In many embodiments, 100% accuracy is achieved on a first set of training ROIs. However, the threshold for successful
training may be set lower than 100 percent if that is desirable. This may occur if one does not have perfect knowledge
of class identity for the training ROIs, or if the samples themselves are highly variable and a wide range of training ROIs
are employed.

Optimizing the Neural Network

[0113] Following successful training of the neural network-based classifier, the network can optionally be optimized
with respect to the number of features used to classify sample images. Optimizing the network in this manner can
increase the efficiency and speed of classification operations.
[0114] FIG. 6 is a flow chart 600 that includes an optional series of steps involved in optimizing a trained neural network.
First step 602 includes generating a random sequence of training vectors to test the performance of the neural network.
As before, the sequence of training vectors is constructed such that there exists an equal number of vectors corresponding
to each of the Nc classes identified previously.
[0115] Step 604 includes choosing the number of neural network classification features Nf. Initially, the value of Nf
typically consists of all the features that were calculated, for all image planes, which is the number of elements in the
feature vector. Subsequent iterations of the optimization sequence can reduce the value of Nf according to the classifi-
cation performance of the neural network.
[0116] In step 606, the random sequence of vectors generated in step 602 is submitted to the neural network for
classification. The classification of individual vectors is performed by the trained network in a manner consistent with
the prior discussion. A feature vector is calculated for each ROI (e.g., based on one or more sub-sampled windows in
the ROI), and the ROI is assigned to a particular class according to the known feature vectors for the various identified
classes. In step 608, a classification accuracy score is determined either by visual inspection (e.g., by an operator) or
by calculating the fraction of correct classification results.
[0117] In order to assess the relative significance of each of the Nf features to the performance of the neural network,
the mean feature value Pj for each of the j classification features is calculated in step 610. Calculation of a mean feature
value can be accomplished, for example, by calculating a mean value of the elements in a feature vector corresponding
to a particular class. The elements in the feature vector can be weighted equally or differently in performing the calculation
of Pj.
[0118] In a further step 612, the weighted contribution Wj of each feature j of the Nf total features under consideration
by the neural network is calculated according to 

where the γk values are the node-to-node coupling constants within the neural network. Using Equation (12), the weighted
contributions of each of the features (which generally correspond to classes) can be evaluated. In step 614, classification
feature s having the smallest weighted contribution Ws is identified as the "weakest" classification feature and removed
from the set of classification features considered by the neural network.
[0119] In steps 616 and 618, a new random sequence of training vectors is generated according to the procedures
discussed previously, and the training vectors are classified by the modified neural network, which now includes one
less feature. A classification accuracy score is determined following classification of the vectors.
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[0120] In logic step 620, the classification accuracy score is compared against a selected accuracy threshold. If the
accuracy score is higher than the threshold, then the removed feature is deemed to be insignificant enough that it can
be permanently removed from consideration by the neural network. The number of neural network classification features
Nf is reduced by one in step 622 and logical flow returns to step 610, where new mean feature values are calculated for
the newly reduced set of classification features in the neural network. In some embodiments, before logical flow returns
to step 610, the neural network can be retrained in order to adapt to the smaller number of features. This step is not
necessary, but may be employed in some embodiments to improve the accuracy and/or speed of classification.
[0121] If the accuracy score is lower than the selected threshold, the removed feature s is deemed to have been
significant after all, and is re-introduced into the neural network in step 624. This completes the optimization of the
network in step 626, and the network is then ready for use in classifying samples based on image sets.
[0122] If all features corresponding to a given input image plane are removed during the optimization process, that
input plane is superfluous and need not be acquired in order to provide the classification signal. Further improvement
in efficiency can be obtained by not acquiring such planes in future measurements, if the plane is not required for other
purposes. The determination of which image planes are necessary can be made once, when devising a measurement
protocol; or, it may be made and/or reviewed on an ongoing basis over time, in settings where factors such as sample
variability may lead to changes in what image planes are necessary or helpful in making a classification.

Classification using a Trained Neural Network

[0123] The procedure by which a sample is classified according to its image stack is shown in FIG. 7. The figure
includes a flow chart 700 that illustrates a series of steps in the classification procedure. In step 702, a particular image
stack for the sample is chosen for classification, and in step 704, a number of regions Nr within the image stack are
selected for analysis. In some embodiments, the regions selected are subsets of the entire image. In other embodiments,
the entire image can be selected for analysis.
[0124] The image stack being selected for analysis may include one or more images. The images in the image stack
may include one or more raw spectral images, one or more composite images, and/or one or more unmixed images.
For example, in certain embodiments, the image stack may include one composite image to provide spectral and spatial
information and one gray scale image to provide spatial information. In other embodiments, for example, the image stack
may include a set of unmixed images. Furthermore, in some embodiments, for example, the classification may be applied
to only a single image containing only spatial (and no spectral) information. In any case, the neural network is trained
in anticipation of the type of image stack being selected.
[0125] In step 706, a length l and width w of a sub-sampling window are selected. As discussed previously, the length
and width of the sub-sampling window are typically chosen to be smaller than the mean length and width of each of the
Nr regions selected for analysis. In addition, step 706 includes selection of window offset increments ∆l and ∆w. The
offset increments are used to translate the sub-sampling window over the classification regions of the sample image in
order to ensure that each of the pixels within the regions is classified at least once. In some embodiments, the values
of ∆l and ∆w are both chosen to be smaller than I and w, respectively, so that at least some pixels are classified multiple
times since each translation of the sub-sampling window to a new position leaves a fraction of the previous window’s
pixels within the new window.
[0126] In step 708, one of the regions selected in step 704 is submitted to the trained (and optionally, optimized) neural
network for classification. The classification of the pixels in the windowed region is performed in step 710. The classification
procedure is an iterative one, in which pixels within the selected region can be provisionally assigned a classification
multiple times. The procedure begins by positioning sub-sampling window 802 within the selected region 800, as shown
in FIG. 8. Sub-sampling window 802 has a length I in the x direction and a width w in the y direction. The offset increments
∆l and ∆w are smaller than the length and width of the sub-sampling window, respectively.
[0127] In the first position of the sub-sampling window, each of the image pixels within the window is assigned a
provisional classification based on the classification of the overall window region by the neural network using the methods
discussed previously. The provisional pixel classifications can be stored within a pixel histogram for future reference.
This corresponds to step 710. Referring again to FIG. 7, the next step is a logical decision 712 based on whether sub-
sampling of the region is complete. If sub-sampling of the region is not complete, the sub-sampling window is then
translated in the x and y directions by increments ∆l and ∆w, respectively, as shown in step 714. The image pixels that
fall within the new sub-sampling window position are then classified as before in step 710.
[0128] The procedure is illustrated schematically in the lower part of FIG. 8, in which window 802a represents the first
position of the sub-sampling window and window 802b represents the second position of the window following translation.
The classification of the pixels within the second window 802b by the neural network then proceeds as before. Note that
the pixels that fall within shaded region 804 are classified a second time, since they are positioned within both windows
802a and 802b. The multiple classification of image pixels is a particular feature of certain embodiments of the methods
disclosed herein.
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[0129] Returning again to step 710 in FIG. 7, the classifications of individual pixels are again stored in the pixel
histogram, and then the sub-sampling window is again translated and the classification procedure begins anew for a
new window position. This iterative procedure, consisting of steps 710 through 714, can be specified to repeat for a
selected number of window translations, such that a pixel classification histogram is built up.
[0130] Note that while FIG. 8 depicts the translation associated with step 714 as having both increments ∆l and ∆w,
this is not necessary. For example, in some embodiments, the translation may scan horizontally, followed by a vertical
translation when each horizontal scan across the selected region is complete, or vice versa. In certain embodiments,
for example, each translation will correspond to a step of a single pixel and the translations across the region will generally
result in each pixel being classified by number of pixels in the sampling window. Furthermore, in other embodiments,
the translations need not be sequential. For example, the window translations can be systematic or random within the
selected image region, although in some embodiments, an additional constraint that must be satisfied prior to termination
of the classification procedure stipulates that all pixels within the selected region should be classified at least once, and
preferably multiple times. Such a constraint is optional, however, and need not be imposed. Once the sub-sampling of
the selected image region is complete, logical decision 716 determines a course of action based upon whether all of the
selected regions of the sample image stack have been provisionally classified (e.g., a histogram of provisional classifi-
cations has been developed for every pixel in the selected regions of the selected image stack). If there are remaining
unclassified regions, then counter i is incremented in step 718 (equivalent to selecting one of the unclassified regions)
and classification of the selected regions begins at step 708 of flow chart 700.
[0131] Alternatively, if each of the regions of the sample image have been provisionally classified, then the initial
classification procedure is finished and control passes to step 722, in which a final pixel classification step is performed
based on the accumulated histogram data for each of the pixels. Due to the fact that pixels can be classified multiple
times, entries in the classification histogram for particular pixels may not all be the same, and a pixel can be provisionally
classified into more than one class.
[0132] A wide variety of algorithms can be used to establish a classification for a particular pixel from the histogram
data. For example, the final classification of a given pixel can be the class to which the pixel was most frequently assigned.
Alternatively, a more complex analysis of the statistical information in the histogram can be used to assign the final
classification. For example, a pixel’s classification can be established as the mean, median, or mode of the distribution
of classifications for that pixel. Alternatively, more advanced statistical methods such as fuzzy logic or Bayesian logic
can be applied to the histogram data to determine classifications for each of the image pixels.
[0133] In some embodiments, the histogram data can be used to "flag" particular regions of the sample according to
classification. For example, if the histogram data for a particular pixel includes even a single instance in which the pixel
was classified as belonging to a particular class, steps can be taken to ensure that the pixel is positively identified.
Warning messages or sounds can be produced, or a sample image having the identified pixels highlighted for easy
identification can be displayed. Flagging techniques can be particularly useful when tissue samples are examined for
the presence of harmful agents or structures such as pathogens and cancer cells.
[0134] The final step 724 includes generating a classification map for the sample based on the final classification of
step 722, or more generally, on the provisional pixel classification histogram data generated in the earlier steps. The
classification map can include, for example, an image of the sample with classified regions highlighted in order to enhance
contrast. The map can include, in some embodiments, multiple images of the sample, where each image only those
portions of the sample that belong to a particular class, as identified by the neural network. The classification map can
also include numerical data specifying classified sample regions, and statistical information such as the distribution and
relative abundance of various classes within the sample. This information is particularly useful when the classified regions
correspond to different structural, chemical, or biological entities within the sample. The classification image map can
be displayed on display device 118, for example, and can be stored in electronic form on a storage medium by electronic
control system 114. Generation of the classification map completes the classification procedure, and generally yields
accurate class data for a wide variety of samples.

Optical System Components

[0135] System 100 can include a wide variety of optical elements and devices for capturing images of a sample that
are used in subsequent classification algorithms. Light source 102 can be an incoherent light source such as an incan-
descent lamp, a fluorescent lamp, or a diode. Light source 102 can also be a coherent source such as a laser source,
and the coherent source can provide continuous wave (CW) or pulsed light. Light source 102 may contain multiple light
source elements for producing light having a range of wavelengths (e.g., multiple diodes). When the light produced by
light source 102 is pulsed (i.e., time-gated), various properties of the light pulses can be manipulated according to control
signals provided to light source 102 from electronic control system 114 via communication line 132. Light source 102
can also include various optical elements such as lenses, mirrors, waveplates, and nonlinear crystals, all of which can
be used to produce light having selected characteristics. In general, light source 102 includes optical elements and
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devices configured to provide light having desired spectral, spatial, and, in some embodiments, temporal properties.
[0136] Light conditioning optics 104 and light collecting optics 110 can include a variety of optical elements for ma-
nipulating the properties of light incident on, and emitted from, a sample of interest. For example, light conditioning optics
104 and light collecting optics 110 can each include spectral filter elements for selecting particular wavelength bands
from incident and emitted light. The spectral filter elements can include, for example, interference filters mounted on a
filter. In some embodiments, adjustable filter elements based on liquid crystal masks can be used to change the spectral
properties of the incident or emitted light. Liquid crystal based devices can be controlled by electronic control system
114 via communication lines 134 and 138.
[0137] Light conditioning optics 104 and light collecting optics 110 can also include elements such as spatial light
masks, spatial light modulators, and optical pulse shapers in order to manipulate the spatial distribution of light incident
on, or emitted from, a sample. Spatial light modulators and other adaptive devices can also be controlled via communi-
cation lines 134 and 138 by electronic control system 114.
[0138] Finally, light conditioning optics 104 and light collecting optics 110 can include other common optical elements
such as mirrors, lenses, beamsplitters, waveplates, and the like, configured in order to impart selected characteristics
to the incident or emitted light.
[0139] In general, detector 112 includes one or more measurement devices configured to detect and capture light
emitted by a sample as multiple images of the sample. Detector 112 can include devices such as CCD arrays and
photomultiplier tubes, along with their respective control systems, for acquiring the images. The adaptive optical devices
in detector 112 can, in general, be controlled by electronic control system 114 via communication line 130.

Software

[0140] The steps described above in connection with various methods for collecting, processing, analyzing, interpreting,
and displaying information from samples can be implemented in computer programs using standard programming tech-
niques. Such programs are designed to execute on programmable computers or specifically designed integrated circuits,
each comprising an electronic processor, a data storage system (including memory and/or storage elements), at least
one input device, and least one output device, such as a display or printer. The program code is applied to input data
(e.g., images from the detector) to perform the functions described herein and generate output information (e.g., images
showing classified regions of samples, statistical information about sample components, etc.), which is applied to one
or more output devices. Each such computer program can be implemented in a high-level procedural or object-oriented
programming language, or an assembly or machine language. Furthermore, the language can be a compiled or interpreted
language. Each such computer program can be stored on a computer readable storage medium (e.g., CD ROM or
magnetic diskette) that when read by a computer can cause the processor in the computer to perform the analysis and
control functions described herein.

EXAMPLES

[0141] The following examples are intended to be exemplary of the systems and methods disclosed herein, but should
not in any way be construed as limiting the scope of the subsequent claims.
[0142] FIG. 10A shows an example of a sample of rat blood that is classified according to some of the methods of
the present disclosure. The blood sample includes 4 classes: background 1002, red cells 1004, monocytes 1006, and
polymorphonuclear neutrophils (PMNs) 1008. A set of spectral images corresponding to incident light transmitted through
the sample were collected and then transformed from measured intensities to optical densities (ODs). The resulting
transformed images formed a spectral cube of image data.
[0143] The spectral image cube was unmixed into separate images corresponding to a red component 1010 and a
blue component 1012 of the blood sample, as shown in FIG. 10B. FIG. 10C and FIG. 10D show the results of this
spectral unmixing operation. FIG. 10C shows an example of an unmixed image corresponding to the red component
1010 and FIG. 10D shows an example of an unmixed image corresponding to the blue component 1012.
[0144] Following the unmixing step, a composite plane was generated by a linear ramp function used as the weighting
function, so that the unmixed planes and composite plane formed a 3-plane stack. Next, training regions were selected
on the image stack, and a neural network-based classifier was trained according to the selected regions. FIG. 10E shows
selected training regions superimposed on an image of the sample. Training of the neural network includes calculation
of features related to the identified training regions. An expanded view of this process for the training regions is shown
in FIG. 10F. The left side of FIG. 10F shows a view of an expanded region of a sample image that includes selected
training regions. On the right side of FIG. 10F, the selected training regions have been sub-sampled, and the sub-
sampling windows are superimposed over the regions.
[0145] The trained neural network-based classifier was then used to classify the remaining regions of the images. The
results are shown in FIG. 10G. The image features corresponding to the background class 1002, red cell class 1004,
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monocyte class 1006, and PMN class 1008 are all accurately determined and identified using the neural network-based
classifier.
[0146] In another example, a 3-plane RGB image was generated from the same image cube of spectral images, and
selected regions of the RGB image were used to train and optimize a neural network. This RGB image was generated
by summing all the spectral bands in the blue to form a blue plane, summing all the spectral bands in the green to form
a green plane, and summing all the spectral bands in the red to form a red plane. The result mimics what would have
resulted if the scene were imaged using a conventional RGB camera. The trained and optimized neural network was
then used to classify the remainder of the composite image. FIG. 10H shows the RGB image, and FIG. 10I shows the
results of the classification operations carried out. The image features corresponding to the background class 1002, red
cell class 1004, monocyte class 1006, and PMN class 1008 are all accurately determined and identified using the neural
network-based classifier.
[0147] The automated methods disclosed herein provide an effective means for classifying the blood sample.
[0148] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments
are within the scope of the following claims.

Claims

1. A method comprising:

decomposing a set of spectral images of a sample (108) into an unmixed image set, wherein each member of
the unmixed image set corresponds to a spectral contribution from a different component in the sample (108); and
classifying different regions of the sample (108) into respective classes based on an image stack comprising
one or more images of the sample (108),
wherein the images in the image stack used for classification comprise one or more of the unmixed images.

2. The method of claim 1, wherein the images in the image stack used for classification comprise two or more of the
unmixed images.

3. The method of any of the preceding claims, wherein a neural network is used for the classifying.

4. The method of any of the preceding claims, wherein the one or more images in the image stack comprise one or
more spectral images.

5. The method of any of the preceding claims, wherein the one or more images in the image stack comprise four or
more spectral images.

6. The method of any of the preceding claims, wherein the image stack comprises only one image.

7. The method of any of the preceding claims, further comprising generating an output image showing the classified
regions of the sample (108).

8. The method of any of the preceding claims, further comprising obtaining the one or more images in the image stack.

9. The method of claim 8, wherein the images are obtained by measuring light transmitted through, or reflected from,
the sample (108).

10. The method of claim 8, wherein the images are obtained by measuring fluorescence emission from the sample (108).

11. The method of claim 1, wherein the sample (108) comprises components having different absorption spectra.

12. The method of claim 1, wherein the sample (108) comprises components having different emission spectra.

13. The method of any of the preceding claims, wherein the sample (108) is a tissue section.

14. The method of claim 11, wherein the components comprise at least one of chemical dyes and fluorescent labels.
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15. The method of claim 12, wherein the components comprise at least one of chemical dyes and fluorescent labels.

16. The method of claim 3, wherein classifying different regions of the sample (108) into respective classes comprises
identifying selected regions of the image stack that correspond to each of the individual classes, training the neural
network to recognize the classes based on the selected regions, and applying the trained neural network to additional
regions of the image stack.

17. The method of claim 3, wherein input information for the neural network is a feature vector having one or more
elements based on calculating at least one co-occurrence matrix for a corresponding one of the images in the image
stack.

18. The method of claim 3, wherein input information for the neural network is a feature vector having one or more
elements based on calculating a two-dimensional Fourier transform for a corresponding one of the images in the
image stack.

19. The method of claim 4, wherein the spectral images are images of sample (108) emission according to different
spectral indices for the emission.

20. The method of claim 4, wherein the spectral images are images of sample (108) emission according to different
spectral indices for illumination of the sample (108) causing the emission.

21. Apparatus comprising a computer readable medium storing a program that causes a processor to carry out the
method of any of the preceding claims.

22. Apparatus comprising:

a means (112) for obtaining one or more images of a sample (108); and
an electronic processor (116) for analyzing an image stack based on the obtained images and configured to
classify different regions of the sample (108) into respective classes based on the image stack as set forth in
the method of claim 1.

23. Apparatus of claim 22, wherein the means (112) for obtaining the one or more images of the sample (108) comprises
means for obtaining spectrally-resolved emission images from the sample (108).

24. Apparatus of claim 22, wherein the means (112) for obtaining the one or more images of the sample (108) comprises
means for obtaining images from the sample (108) corresponding to different spectral illuminations of the sample
(108).

25. Apparatus comprising:

an optical system (100) for obtaining one or more spectral images of a sample (108); and
an electronic processor (116) for analyzing an image stack based on the obtained spectral images and configured
to classify different regions of the sample (108) into respective classes based on the image stack as set forth
in the method of claim 1.
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