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1
AUTOMATED MACHINE LEARNING USING
NEAREST NEIGHBOR RECOMMENDER
SYSTEMS

BACKGROUND

The present disclosure relates generally to the field of
machine learning, and more particularly to providing pipe-
line recommendations using a nearest neighbor recom-
mender.

In general, machine learning often involves several steps
of preprocessing, culminating with a model building phase
using the preprocessed data. These set of preprocessing
operations plus model building together are often referred to
as a pipeline (e.g., machine learning pipeline).

SUMMARY

According to an aspect of the present invention, there is
a computer-implemented method, computer program prod-
uct and/or system that performs the following operations
(not necessarily in the following order): obtaining a perfor-
mance matrix representing accuracies obtained by executing
a plurality of machine-learning pipelines on a plurality of
training data sets, wherein a machine-learning pipeline com-
prises a series of operations performed on a data set;
computing a similarity between a testing data set and each
of the plurality of training data sets represented in the
performance matrix; selecting a defined number of columns
of the performance matrix based on the similarity between
the testing data set and each of the plurality of training data
sets; selecting a defined number of top machine-learning
pipelines as potential machine-learning pipelines for the
testing data set based on the selected columns of the per-
formance matrix; storing results from executing each of the
potential machine-learning pipelines as a new data set;
determining a pipeline accuracy for each of the potential
machine-learning pipelines when executed against the test-
ing data set; determining a recommended machine-learning
pipeline for the testing data set based on the pipeline
accuracy for each potential machine-learning pipeline; and
providing the recommended machine-learning pipeline for
use with the testing data set.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram view of a first embodiment of
a system, according to the present disclosure;

FIG. 2 is a flowchart showing a first embodiment method
performed, at least in part, by the first embodiment system;

FIG. 3 is a flowchart showing an embodiment of an
initialization method performed, at least in part, by the first
embodiment system;

FIGS. 4A-4D illustrate block diagrams of example data
sets and matrices used in pipeline recommendation, accord-
ing to the present disclosure; and

FIG. 5 illustrates an expected improvement graph, accord-
ing to the present disclosure.

DETAILED DESCRIPTION

According to aspects of the present disclosure, systems
and methods can be provided to allow for machine learning
pipeline recommendations through the use of nearest neigh-
bor methods. In particular, systems and methods of the
present disclosure can provide for recommendations of
pipelines to be used on new data sets, and in some embodi-
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2

ments, such recommended pipelines can be obtained in a
minimum number of pipeline executions. More particularly,
embodiments of systems and methods of the present disclo-
sure can provide for pipeline recommendations using
K-nearest neighbor methods.

In general, machine learning often involves several steps
of preprocessing, culminating with a model building phase
using the preprocessed data. These sets of preprocessing
operations plus model building together are often referred to
as a pipeline (e.g., machine learning pipeline), and as used
herein a “pipeline” can be a series of operations (e.g., data
preprocessing, outlier detection, feature engineering, etc.)
performed on a data set. Pipeline exploration is often time
consuming due to the combinatorial nature of the problem.
Pipeline recommendation, as provided by the systems and
methods of the present disclosure, may recommend pipe-
lines to be used in machine learning (e.g., in training
machine-learned models, etc.) rather than try to construct an
optimal pipeline for a data set. The systems and methods of
the present disclosure can perform such pipeline recommen-
dation based on constructing meta-models of the historical
information on the performance of various pipelines on
various data sets (e.g., training data sets, etc.).

According to aspects of the present disclosure, in some
embodiments, the systems and methods disclosed herein can
provide for K-nearest neighbor pipeline recommendation
and may include an initialization process using an [.1-norm
of a training data set metafeature matrix with metafeatures
of'a new data set for which pipelines are to be recommended.
Additionally, some embodiments may provide for pipeline
recommendations using K-nearest neighbor along with
Bayesian optimization.

This Detailed Description section provides the following
sub-sections: The Hardware and Software Environment;
Example Embodiment(s); and Definitions.

The Hardware and Software Environment

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.
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Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.
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The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

An embodiment of a possible hardware and software
environment for software and/or methods according to the
present invention will now be described in detail with
reference to the Figures. FIG. 1 is a functional block diagram
illustrating various portions of exemplary networked com-
puters system 100, which may include: server sub-systems
102, 104, 106; client sub-systems 108, 110, 112; communi-
cation network 114; server computer 200; communication
unit 202; processor set 204; input/output (I/0) interface set
206; memory device 208; persistent storage device 210;
display device 212; external device set 214; random access
memory (RAM) devices 230; cache memory device 232;
and program 300.

Sub-system 102 is, in many respects, representative of the
various computer sub-system(s) in the present invention.
Accordingly, several portions of sub-system 102 will now be
discussed in the following paragraphs.

Sub-system 102 may be a laptop computer, tablet com-
puter, netbook computer, personal computer (PC), a desktop
computer, a personal digital assistant (PDA), a smart phone,
or any programmable electronic device capable of commu-
nicating with the client sub-systems via network 114. Pro-
gram 300 is a collection of machine-readable instructions
and/or data that is used to create, manage and control certain
software functions that will be discussed in detail, below, in
the Example Embodiment sub-section of this Detailed
Description section. As an example, a program 300 can
comprise a machine learning pipeline recommendation sys-
tem, and/or the like.

Sub-system 102 is capable of communicating with other
computer sub-systems via network 114. Network 114 can be,
for example, a local area network (LAN), a wide area
network (WAN) such as the Internet, or a combination of the
two, and can include wired, wireless, or fiber optic connec-
tions. In general, network 114 can be any combination of
connections and protocols that will support communications
between server and client sub-systems.
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Sub-system 102 is shown as a block diagram with many
double arrows. These double arrows (no separate reference
numerals) represent a communications fabric, which pro-
vides communications between various components of sub-
system 102. This communications fabric can be imple-
mented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, the
communications fabric can be implemented, at least in part,
with one or more buses.

Memory device(s) 208 and persistent storage device(s)
210 are computer-readable storage media. In general,
memory device(s) 208 can include any suitable volatile or
non-volatile computer-readable storage media. It is further
noted that, now and/or in the near future: (i) external device
set 214 may be able to supply, some or all, memory for
sub-system 102; and/or (ii) devices external to sub-system
102 may be able to provide memory for sub-system 102.

Program 300 is stored in persistent storage device(s) 210
for access and/or execution by one or more of the respective
computer processors in processor set 204, usually through
one or more memories of memory device(s) 208. Persistent
storage device(s) 210: (i) is at least more persistent than a
signal in transit; (ii) stores the program (including its soft
logic and/or data), on a tangible medium (such as magnetic
or optical domains); and (iii) is substantially less persistent
than permanent storage. Alternatively, data storage may be
more persistent and/or permanent than the type of storage
provided by persistent storage device(s) 210.

Program 300 may include both machine readable and
performable instructions and/or substantive data (that is, the
type of data stored in a database). For example, program 300
may include machine readable and performable instructions
to provide for performance of method operations as further
disclosed herein. In this particular embodiment, persistent
storage device(s) 210 includes a magnetic hard disk drive.
To name some possible variations, persistent storage
device(s) 210 may include a solid-state hard drive, a semi-
conductor storage device, read-only memory (ROM), eras-
able programmable read-only memory (EPROM), flash
memory, or any other computer-readable storage media that
is capable of storing program instructions or digital infor-
mation.

The media used by persistent storage device(s) 210 may
also be removable. For example, a removable hard drive
may be used for persistent storage device(s) 210. Other
examples include optical and magnetic disks, thumb drives,
and smart cards that are inserted into a drive for transfer onto
another computer-readable storage medium that is also part
of persistent storage device(s) 210.

Communications unit 202, in these examples, provides
for communications with other data processing systems or
devices external to sub-system 102. In these examples,
communications unit 202 includes one or more network
interface cards. Communications unit 202 may provide
communications through the use of either or both physical
and wireless communications links. Any software modules
discussed herein may be downloaded to a persistent storage
device (such as persistent storage device device(s) 210)
through a communications unit (such as communications
unit 202).

1/O interface set 206 allows for input and output of data
with other devices that may be connected locally in data
communication with server computer 200. For example, [/O
interface set 206 provides a connection to external device set
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214. External device set 214 will typically include devices
such as a keyboard, keypad, a touch screen, and/or some
other suitable input device. External device set 214 can also
include portable computer-readable storage media such as,
for example, thumb drives, portable optical or magnetic
disks, and memory cards. Software and data used to practice
embodiments of the present invention, for example, program
300, can be stored on such portable computer-readable
storage media. In these embodiments the relevant software
may (or may not) be loaded, in whole or in part, onto
persistent storage device 210 via I/O interface set 206. I/O
interface set 206 also connects in data communication with
display device 212.

Display device 212 provides a mechanism to display data
to a user and may be, for example, a computer monitor or a
smart phone display screen.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

EXAMPLE EMBODIMENT(S)

FIG. 2 shows flowchart 250 depicting a computer-imple-
mented method according to aspects of the present inven-
tion. FIG. 3 shows flowchart 350 depicting a computer-
implemented method, provided in some embodiments, for
initialization prior to the operations of flowchart 250 of FIG.
2, according to aspects of the present invention. With regard
to FIG. 2 and FIG. 3, one or more flowchart blocks may be
identified with dashed lines and represent optional steps that
may additionally be included, but which are not necessarily
required, in the depicted embodiments.

As illustrated in FIG. 2, in some embodiments, operations
for pipeline recommendation begin at operation S252, where
a computing system (e.g., server computer 200 of FIG. 1 or
the like) obtains a performance matrix representing accura-
cies that were obtained by executing a plurality of pipelines
(e.g., machine learning pipelines, etc.) on a plurality of
training data sets. As described herein, a pipeline (e.g.,
machine learning pipeline, etc.) is a series of operations, for
example, data preprocessing, outlier detection, feature engi-
neering, and/or the like, that can be performed on given data
set(s). The performance matrix is representative of historical
information associated with the performance of various
pipelines on various data sets. The performance can be
measured using any one of a plurality of performance
measures, such as for instance, area under receiver operating
characteristic curve (AUC ROC), accuracy, Fl-score, area
under precision-recall curve, mean squared error, and/or the
like. Each (i, j) entry in the performance matrix represents an
accuracy obtained by executing a pipeline i and a training
data set j.
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In an example, as illustrated in FIG. 4A, in some embodi-
ments, the performance matrix may include a sparse perfor-
mance matrix Y 402 that represents data associated with a
plurality of training datasets (D) and a plurality of pipelines
(N). The sparse performance matrix Y 402 includes accuracy
entry (e.g., y;) 404a, accuracy entry 404b, etc. obtained by
executing a pipeline (e.g., pipeline i) of the plurality of
pipelines (N) on a data set (e.g., data set j) of the plurality
of datasets (D). Each (i, j) entry in the performance matrix
(e.g., sparse performance matrix Y 402) represents an accu-
racy obtained by executing a pipeline i and a training data set
j- Further, FIG. 4A illustrates testing data d* 408 represen-
tative of a new data set for which pipeline(s) are to be
recommended, a data set metafeatures matrix U 406 where
each column u; contains metafeatures associated with data
set d;, and metafeatures u* 410 associated with the testing
data d* 408. The metafeatures will be discussed further
herein with regard to the operations of FIG. 3.

Processing proceeds to operation S254, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can compute a similarity between a testing data set
(e.g., a new data set for which pipeline(s) are to be recom-
mended) and each of the plurality of training data sets
represented in the performance matrix. For example, a
similarity measure, such as cosine similarity, Pearson Coef-
ficient, adjusted cosine similarity, mean-centered cosine
similarity, and/or the like can be used to compute the
similarity between the testing data set and a training data set.
Only entries that are present in both the testing data set (d*)
and a training data set (d;) are used for the similarity
computation between the data sets.

Processing proceeds to operation S256, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can select a defined number of columns of the perfor-
mance matrix (e.g., training data sets) based on the similarity
between the testing data set and each of the plurality of
training data sets. For example, in some embodiments, the
top-k most similar columns (e.g., data sets) in the perfor-
mance matrix to the testing data set (d*) may be selected. In
an example, as illustrated in FIG. 4C, in some embodiments,
one or more columns, such as column 420a, column 4205,
column 420c, etc., of the performance matrix 402 may be
selected based on the similarity of the training data set (d,)
represented by each column and the testing data set (d*).

Processing optionally proceeds to operation S258, where
the computing system (e.g., server computer 200 of FIG. 1
or the like) can determine an average rank for each machine-
learning pipeline based on the selected columns of the
performance matrix and the accuracies represented in the
performance matrix. For example, in some embodiments,
each selected column of the performance matrix (e.g., rep-
resenting a training data set d;) can be converted to a rank
whereby each of the pipelines is ranked based on the
accuracy (e.g., included in the performance matrix). As an
example, the best ranked pipeline in the column can be
ranked 1 and the least accurate pipeline can be ranked n.
After ranking the pipelines in each column of the perfor-
mance matrix, an average rank per pipeline can be com-
puted. The average rank can then be used to select a number
of top ranked pipelines at operation S260, in some embodi-
ments.

Alternatively, in some embodiments, the computing sys-
tem (e.g., server computer 200 of FIG. 1 or the like) can
apply Bayesian optimization and determine a similarity-
weighted mean and variance of pipeline accuracy for each
machine-learning pipeline. An expected, improvement cri-
teria can be determined based in part on the mean and
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variance and the expected improvement criteria can be used
to select the next number of pipelines (next-k pipelines) to
execute at operation S260.

For example, in some embodiments, the mean of the
pipeline accuracies can be predicted as

Sk Vi
Zjempfk similar data sers( J J’y)

Vi =
5.
Z jetop—k similar data sers(l i

and the variance can be predicted as

5 =yl

(s

Z jctop—k similar data sets
e

*

Zjetop*k similar data sets

The expected improvement (EI) criteria can then be
determined by

Yix = Vbess =€

Yie =
Tix

and EL.=0;, [, P(Y::)+ N (7,,10,1)], where &(*) is a Gauss-
ian Cumulative Distribution Function, N (»10,1) is a Gauss-
ian Probability Density Function with zero mean and 1
variance, and & is a free parameter to encourage exploration
(e.g., usually very small values, such as 0.01). A pipeline i
can then be executed with argmax; EL..

FIG. 4D illustrates the use of Bayesian optimization in the
nearest neighbor pipeline recommendation. As illustrated in
FIG. 4D, the performance data (e.g., accuracies) associated
with the selected columns (e.g., column 430a, column 4300,
column 430c, etc.) of the performance matrix 402 can be
used to determine the mean and variance for each pipeline.
Graph 500 of FIG. 5 illustrates an expected improvement in
the Bayesian optimization.

Processing proceeds to operation S260, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can select a defined number of machine-learning pipe-
lines (e.g., top-k pipelines, next-k pipelines, etc.) as potential
machine-learning pipelines for the testing data set based on
the selected columns of the performance matrix. For
example, in some embodiments, such as where an average
rank for each pipeline is determined at operation S258, the
computing system can select the top-k ranked pipelines from
the unexecuted pipelines at operation S260. Alternatively, in
some embodiments, the computing system can select the
next number of pipelines to execute based on an expected,
improvement criteria determined in a Bayesian optimiza-
tion. The computing system can then execute the potential
machine-learning pipelines.

Processing proceeds to operation S262, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can store the results from executing each of the
potential machine-learning pipelines. For example, the
results of the pipeline executions can be stored associated
with the testing data set (d*). Processing proceeds to opera-
tion S264, where the computing system (e.g., server com-
puter 200 of FIG. 1 or the like) can determine a pipeline
accuracy for each of the potential machine-learning pipe-
lines when executed against the testing data set and the
entries (e.g., performance information) for the latest execu-
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tion of pipelines can be stored. For example, the best
accuracy obtained so far for the pipelines along with an
identifier for the corresponding pipeline can be stored. As an
example, FIGS. 4C and 4D illustrate testing data pipeline
execution information 422a and/or the like, which record the
results of the pipeline executions on the testing data set.

In some embodiments, the pipeline selection, execution,
and accuracy determination of operations S254 through
S264 can be repeated for a defined number of iterations to
determine a best accuracy pipeline over the total number of
iterations.

Processing proceeds to operation S266. where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can determine a recommended machine-learning pipe-
line for the testing data set based on the pipeline accuracy for
each potential machine-learning pipeline. For example, the
computing system can track the best accuracy and corre-
sponding pipeline from the latest execution of potential
pipelines and determine the recommended machine-learning
pipeline based on the best accuracy achieved. Processing
proceeds to operation S268, where the computing system
(e.g., server computer 200 of FIG. 1 or the like) can provide
the recommended machine-learning pipeline for use with the
testing data set.

FIG. 3 provides a flowchart 350 depicting a computer-
implemented method, provided in some embodiments, for
initialization of nearest neighbor pipeline recommendation
prior to the operations of flowchart 250 of FIG. 2, according
to aspects of the present invention. In some embodiments, a
nearest neighbor pipeline recommendation system can be
initialized, for example, using [.1-norm. As illustrated in
FIG. 3, in some embodiments, operations for initialization of
nearest neighbor pipeline recommendation begin at opera-
tion S352, where a computing system (e.g., server computer
200 of FIG. 1 or the like) obtains data set metafeatures for
each of the plurality of training data sets in the performance
matrix (e.g., a metafeatures matrix). For example, as illus-
trated in FIG. 4A and FIG. 4B, a data set metafeatures matrix
U 406 can be provided where each column u; of the matrix
406 contains metafeatures corresponding to the data set d, of
the performance matrix 402.

Processing proceeds to operation S354, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can obtain data set metafeatures for the testing data set.
For example, as illustrated in FIG. 4A and FIG. 4B, metafea-
tures u* 410 can be provided where the metafeatures
included in u*are associated with the testing data set d* 408.
In some embodiments, the metafeatures associated with a
data set can include at least one or more of a number of
missing values in a data set; a number of categorical
features; a number of real-valued features; and quantile
distributions of the data set or individual features.

Processing proceeds to operation S356, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can determine a plurality of training data sets that are
similar to the testing data set based in part on the data set
metafeatures for each of the plurality of training data sets
and the data set metafeatures for the testing data set. For
example, in some embodiments, the computing system can
compute an L.1-norm of the data set metafeatures for the
testing data set (e.g., metafeatures u*) with the data set
metafeatures for each of the plurality of training data sets in
the performance matrix (e.g., metafeatures u, in the metafea-
tures matrix U 406).

Processing proceeds to operation S358, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can select a defined number of most similar training
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data sets associated with the data set metafeatures matrix.
Processing proceeds to operation S360, where the comput-
ing system (e.g., server computer 200 of FIG. 1 or the like)
can select one or more columns from the performance
matrix that correspond to the selected most similar training
data sets. For example, the computing system can select the
corresponding top-k most similar columns of the perfor-
mance matrix based on data set similarity determined using
the metafeatures (e.g., corresponding to the data sets
selected in the metafeatures matrix based on similarity to the
testing data metafeatures). As illustrated in FIG. 4B, the
similarity assessment using the metafeatures u, of the
metafeatures matrix U 406 and the testing data set metafea-
tures u* 410 (e.g., the Ll-norm of u* with u) shows
metafeatures 412a, etc. which provide for the selection of
the corresponding columns 414a, etc. of the performance
matrix 402.

Processing proceeds to operation S362, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can determine an initialization stage average rank for
each machine-learning pipeline based on the selected col-
umns of the performance matrix. For example, in some
embodiments, each selected column of the performance
matrix (e.g., representing a training data set dj) can be
converted to a rank whereby each of the pipelines is ranked
based on the pipeline accuracy (e.g., included in the perfor-
mance matrix). As an example, the best ranked pipeline in
the column can be ranked 1 and the least accurate pipeline
can be ranked n. After ranking the pipelines in each column
of the performance matrix, an average rank per pipeline can
be computed.

Processing proceeds to operation S364, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can select a plurality of machine-learning pipelines as
initialization stage machine-learning pipelines based on the
initialization stage average rank for each machine-learning
pipeline. For example, in some embodiments, the computing
system can select the top-k ranked pipelines as the initial-
ization stage machine-learning pipelines to be executed. The
computing system can execute each of the initialization
stage machine-learning pipelines on the testing data set.

Processing proceeds to operation S366, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can store the initialization stage results from executing
each of'the initialization stage machine-learning pipelines as
an initialization data set. As an example, in FIG. 4A, can
execute one or more of the selected initialization pipelines in
training datasets D 402 against the testing data set d* 408
and record the results 4164 associated with testing data set
d* 408. For example, the initialization stage results may be
representative of the pipeline accuracies resulting from
execution of the initialization stage machine-learning pipe-
lines. Processing proceeds to operation S368, where the
computing system (e.g., server computer 200 of FIG. 1 or
the like) can provide the initialization data set as the testing
data set. For example, in some embodiments, in response to
completion of the initialization operations, the computing
system can provide the initialization data set as the testing
data set for use in computing the similarity at operation S254
of flowchart 250 in FIG. 2.

Definitions

Present invention: should not be taken as an absolute
indication that the subject matter described by the term
“present invention” is covered by either the claims as they
are filed, or by the claims that may eventually issue after



US 11,941,541 B2

11

patent prosecution; while the term “present invention™ is
used to help the reader to get a general feel for which
disclosures herein are believed to potentially be new, this
understanding, as indicated by use of the term “present
invention,” is tentative and provisional and subject to
change over the course of patent prosecution as relevant
information is developed and as the claims are potentially
amended.

Embodiment: see definition of “present invention”
above—similar cautions apply to the term “embodiment.”

and/or: inclusive or; for example, A, B “and/or” C means
that at least one of A or B or C is true and applicable.

Including/include/includes: unless otherwise explicitly
noted, means “including but not necessarily limited to.”

Data communication: any sort of data communication
scheme now known or to be developed in the future,
including wireless communication, wired communication
and communication routes that have wireless and wired
portions; data communication is not necessarily limited to:
(1) direct data communication; (ii) indirect data communi-
cation; and/or (iii) data communication where the format,
packetization status, medium, encryption status and/or pro-
tocol remains constant over the entire course of the data
communication.

Receive/provide/send/input/output:  unless otherwise
explicitly specified, these words should not be taken to
imply: (i) any particular degree of directness with respect to
the relationship between their objects and subjects; and/or
(ii) absence of intermediate components, actions and/or
things interposed between their objects and subjects.

Module/Sub-Module: any set of hardware, firmware and/
or software that operatively works to do some kind of
function, without regard to whether the module is: (i) in a
single local proximity; (ii) distributed over a wide area; (iii)
in a single proximity within a larger piece of software code;
(iv) located within a single piece of software code; (v)
located in a single storage device, memory or medium; (vi)
mechanically connected; (vii) electrically connected; and/or
(viii) connected in data communication.

Computer: any device with significant data processing
and/or machine readable instruction reading capabilities
including, but not limited to: desktop computers, mainframe
computers, laptop computers, field-programmable gate array
(FPGA) based devices, smart phones, personal digital assis-
tants (PDAs), body-mounted or inserted computers, embed-
ded device style computers, application-specific integrated
circuit (ASIC) based devices.

What is claimed is:

1. A computer-implemented method comprising:

obtaining a performance matrix representing accuracies

obtained by executing a plurality of machine-learning
pipelines on a plurality of training data sets, wherein a
machine-learning pipeline comprises a series of opera-
tions performed on a data set;

selecting a defined number of top machine-learning pipe-

lines as potential machine-learning pipelines for a
testing data set based, at least in part, on computing a
similarity between the testing data set and each of the
plurality of training data sets represented in the perfor-
mance matrix;

determining a pipeline accuracy for each of the potential

machine-learning pipelines when executed against the
testing data set;

providing a recommended machine-learning pipeline for

use with the testing data set based, at least in part, on
the pipeline accuracy for each potential machine-learn-
ing pipeline; and
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performing initialization for pipeline recommendation
prior to the computing of similarities between the
testing data set and each of the plurality of training data
sets represented in the performance matrix, the initial-
ization comprising:
obtaining data set metafeatures for each of the plurality
of training data sets in the performance matrix;
obtaining data set metafeatures for the testing data set;
determining a plurality of similar training data sets that
are similar to the testing data set based in part on the
data set metafeatures for each of the plurality of
training data sets and the data set metafeatures for
the testing data set;
selecting a defined number of most similar training data
sets;
selecting one or more columns from the performance
matrix that correspond to the selected most similar
training data sets;
determining an initialization stage average rank for
each machine-learning pipeline based on the selected
columns of the performance matrix;
selecting a plurality of top machine-learning pipelines
as initialization stage machine-learning pipelines
based on the initialization stage average rank for
each machine-learning pipeline;
storing initialization stage results from executing each
of the initialization stage machine-learning pipelines
as an initialization data set; and
providing the initialization data set as the testing data
set;
storing results from executing each of the potential
machine-learning pipelines as a new data set.
2. The computer-implemented method of claim 1 wherein
selecting the defined number of top machine-learning pipe-
lines as potential machine-learning pipelines for the testing
data set further comprises:
selecting a defined number of columns of the performance
matrix based on the similarity between the testing data
set and each of the plurality of training data sets; and

selecting the defined number of top machine-learning
pipelines as potential machine-learning pipelines for
the testing data set based on the selected columns of the
performance matrix.

3. The computer-implemented method of claim 2 further
comprising:

determining an average rank for each machine-learning

pipeline based on the selected columns of the perfor-
mance matrix and the accuracies represented in the
performance matrix; and

selecting the defined number of top machine-learning

pipelines based on the average rank for each machine-
learning pipeline.

4. The computer-implemented method of claim 2,
wherein when computing the similarity between the testing
data set and each of the plurality of training data sets, only
entries that are present in both the training data set and the
testing data set being compared for similarity are used.

5. The computer-implemented method of claim 1 further
comprising:

determining a similarity-weighted mean and variance of

pipeline accuracy for each machine-learning pipeline;
and

selecting the defined number of top machine-learning

pipelines based on an expected, improvement criteria
associated with the mean and variance.
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6. The computer-implemented method of claim 1,
wherein the data set metafeatures for each of the plurality of
training data sets and the metafeatures for the testing data set
comprise:

a number of missing values in a data set;

a number of categorical features;

a number of real-valued features; and

quantile distributions of the data set or individual features.

7. The computer-implemented method of claim 1,
wherein each (i, j) entry in the performance matrix repre-
sents an accuracy obtained by executing a pipeline i and a
training data set j.

8. The computer-implemented method of claim 1 further
comprising performing an iterative series of pipeline accu-
racy determinations, for a defined number of iterations, in
response to the determining of the pipeline accuracy for each
of the potential machine-learning pipelines when executed
against the testing data set and prior to providing the
recommended machine-learning pipeline, the performing of
the iterative series of pipeline accuracy determinations com-
prising:

computing a similarity between the stored results from

executing each of the potential machine-learning pipe-
lines and each of the plurality of training data sets
represented in the performance matrix;
selecting a defined number of columns of the performance
matrix based on the similarity between the stored
results and each of the plurality of training data sets;

determining an average rank for each machine-learning
pipeline based on the selected columns of the perfor-
mance matrix;

selecting a defined number of top-ranked machine-learn-

ing pipelines that are unexecuted as potential machine-
learning pipelines;

storing iteration result sets from executing each of the

potential machine-learning pipelines;

determining the pipeline accuracy for each of the potential

machine-learning pipelines when executed against the
stored iteration result sets; and

determining a new recommended machine-learning pipe-

line based on the pipeline accuracy for each potential
machine-learning pipeline.

9. A computer program product comprising a computer
readable storage medium having stored thereon:

program instructions programmed to obtain a perfor-

mance matrix representing accuracies obtained by
executing a plurality of machine-learning pipelines on
a plurality of training data sets, wherein a machine-
learning pipeline comprises a series of operations per-
formed on a data set;

program instructions programmed to select a defined

number of top machine-learning pipelines as potential
machine-learning pipelines for a testing data set based
on computing a similarity between the testing data set
and each of the plurality of training data sets repre-
sented in the performance matrix;

program instructions programmed to store results from

executing each of the potential machine-learning pipe-
lines as a new data set;
program instructions programmed to determine a pipeline
accuracy for each of the potential machine-learning
pipelines when executed against the testing data set;

program instructions programmed to provide a recom-
mended machine-learning pipeline for use with the
testing data set based, at least in part, on the pipeline
accuracy for each potential machine-learning pipeline;
and
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program instructions programmed to perform initializa-

tion for pipeline recommendation prior to the comput-

ing of similarities between the testing data set and each

of the plurality of training data sets represented in the

performance matrix, the initialization comprising:

obtaining data set metafeatures for each of the plurality
of training data sets in the performance matrix;

obtaining data set metafeatures for the testing data set;

determining a plurality of similar training data sets that
are similar to the testing data set based in part on the
data set metafeatures for each of the plurality of
training data sets and the data set metafeatures for
the testing data set;

selecting a defined number of most similar training data
sets;

selecting one or more columns from the performance
matrix that correspond to the selected most similar
training data sets;

determining an initialization stage average rank for
each machine-learning pipeline based on the selected
columns of the performance matrix;

selecting a plurality of top machine-learning pipelines
as initialization stage machine-learning pipelines
based on the initialization stage average rank for
each machine-learning pipeline;

storing initialization stage results from executing each
of the initialization stage machine-learning pipelines
as an initialization data set; and

providing the initialization data set as the testing data
set;

storing results from executing each of the potential
machine-learning pipelines as a new data set.

10. The computer program product of claim 9, wherein
the computer readable storage medium has further stored
thereon:

program instructions programmed to select a defined

number of columns of the performance matrix based on
the similarity between the testing data set and each of
the plurality of training data sets; and

program instructions programmed to select the defined

number of top machine-learning pipelines as potential
machine-learning pipelines for the testing data set
based on the selected columns of the performance
matrix.

11. The computer program product of claim 10, wherein
the computer readable storage medium has further stored
thereon:

program instructions programmed to determine an aver-

age rank for each machine-learning pipeline based on
the selected columns of the performance matrix and the
accuracies represented in the performance matrix; and
program instructions programmed to select the defined
number of top machine-learning pipelines based on the
average rank for each machine-learning pipeline.

12. The computer program product of claim 10, wherein
the computer readable storage medium has further stored
thereon:

program instructions programmed to determine a similar-

ity-weighted mean and variance of pipeline accuracy
for each machine-learning pipeline; and

program instructions programmed to select the defined

number of top machine-learning pipelines based on an
expected, improvement criteria associated with the
mean and variance.
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13. The computer program product of claim 9, wherein
the data set metafeatures for each of the plurality of training
data sets and the metafeatures for the testing data set
comprise:

a number of missing values in a data set;

a number of categorical features;

a number of real-valued features; and

quantile distributions of the data set or individual features.

14. The computer program product of claim 9, wherein
the computer readable storage medium has further stored
thereon program instructions programmed for:

performing an iterative series of pipeline accuracy deter-

minations, for a defined number of iterations, in
response to the determining of the pipeline accuracy for
each of the potential machine-learning pipelines when
executed against the testing data set and prior to
providing the recommended machine-learning pipe-
line, the performing of the iterative series of pipeline
accuracy determinations comprising:

computing a similarity between the stored results from

executing each of the potential machine-learning pipe-
lines and each of the plurality of training data sets
represented in the performance matrix;
selecting a defined number of columns of the performance
matrix based on the similarity between the stored
results and each of the plurality of training data sets;

determining an average rank for each machine-learning
pipeline based on the selected columns of the perfor-
mance matrix;

selecting a defined number of top-ranked machine-learn-

ing pipelines that are unexecuted as potential machine-
learning pipelines;

storing iteration result sets from executing each of the

potential machine-learning pipelines;

determining the pipeline accuracy for each of the potential

machine-learning pipelines when executed against the
stored iteration result sets; and

determining a new recommended machine-learning pipe-

line based on the pipeline accuracy for each potential
machine-learning pipeline.

15. A computer system comprising:

a processor(s) set; and

a computer readable storage medium;

wherein:

the processor set is structured, located, connected and/
or programmed to run program instructions stored on
the computer readable storage medium; and
the stored program instructions include:
program instructions programmed to obtain a per-
formance matrix representing accuracies obtained
by executing a plurality of machine-learning pipe-
lines on a plurality of training data sets, wherein a
machine-learning pipeline comprises a series of
operations performed on a data set;
program instructions programmed to select a defined
number of top machine-learning pipelines as
potential machine-learning pipelines for a testing
data set based, at least in part, on computing a
similarity between the testing data set and each of
the plurality of training data sets represented in the
performance matrix;
program instructions programmed to store results from
executing each of the potential machine-learning
pipelines as a new data set;
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program instructions programmed to determine a pipe-
line accuracy for each of the potential machine-
learning pipelines when executed against the testing
data set; and
program instructions programmed to provide a recom-
mended machine-learning pipeline for use with the
testing data set based, at least in part, on the pipeline
accuracy for each potential machine-learning pipe-
line,
program instructions programmed to perform initial-
ization for pipeline recommendation prior to the
computing of similarities between the testing data set
and each of the plurality of training data sets repre-
sented in the performance matrix, the initialization
comprising:
obtaining data set metafeatures for each of the plu-
rality of training data sets in the performance
matrix;
obtaining data set metafeatures for the testing data
set;
determining a plurality of similar training data sets
that are similar to the testing data set based in part
on the data set metafeatures for each of the plu-
rality of training data sets and the data set metafea-
tures for the testing data set;
selecting a defined number of most similar training
data sets;
selecting one or more columns from the performance
matrix that correspond to the selected most similar
training data sets;
determining an initialization stage average rank for
each machine-learning pipeline based on the
selected columns of the performance matrix;
selecting a plurality of top machine-learning pipe-
lines as initialization stage machine-learning pipe-
lines based on the initialization stage average rank
for each machine-learning pipeline;
storing initialization stage results from executing
each of the initialization stage machine-learning
pipelines as an initialization data set; and
providing the initialization data set as the testing data
set;
storing results from executing each of the potential
machine-learning pipelines as a new data set.
16. The computer system of claim 15, wherein the stored

program instructions further include:

program instructions programmed to select a defined
number of columns of the performance matrix based on
the similarity between the testing data set and each of
the plurality of training data sets; and

program instructions programmed to select the defined
number of top machine-learning pipelines as potential
machine-learning pipelines for the testing data set
based on the selected columns of the performance
matrix.

17. The computer system of claim 16, wherein the stored

program instructions further include:

program instructions programmed to determine an aver-
age rank for each machine-learning pipeline based on
the selected columns of the performance matrix and the
accuracies represented in the performance matrix; and

program instructions programmed to select the defined
number of top machine-learning pipelines based on the
average rank for each machine-learning pipeline.

18. The computer system of claim 15, wherein the stored

program instructions further include:
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program instructions programmed to determine a similar-
ity-weighted mean and variance of pipeline accuracy
for each machine-learning pipeline; and

program instructions programmed to select the defined

number of top machine-learning pipelines based on an
expected, improvement criteria associated with the
mean and variance.

19. The computer system of claim 15, wherein the data set
metafeatures for each of the plurality of training data sets
and the metafeatures for the testing data set comprise:

a number of missing values in a data set;

a number of categorical features;

a number of real-valued features; and

quantile distributions of the data set or individual features.

20. The computer system of claim 15, wherein the stored
program instructions further include program instructions
programmed to perform an iterative series of pipeline accu-
racy determinations, for a defined number of iterations, in
response to the determining of the pipeline accuracy for each
of the potential machine-learning pipelines when executed
against the testing data set and prior to providing the
recommended machine-learning pipeline, the performing of
the iterative series of pipeline accuracy determinations com-
prising:
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computing a similarity between the stored results from
executing each of the potential machine-learning pipe-
lines and each of the plurality of training data sets
represented in the performance matrix;

selecting a defined number of columns of the performance
matrix based on the similarity between the stored
results and each of the plurality of training data sets;

determining an average rank for each machine-learning
pipeline based on the selected columns of the perfor-
mance matrix;

selecting a defined number of top-ranked machine-learn-
ing pipelines that are unexecuted as potential machine-
learning pipelines;

storing iteration result sets from executing each of the
potential machine-learning pipelines;

determining the pipeline accuracy for each of the potential
machine-learning pipelines when executed against the
stored iteration result sets; and

determining a new recommended machine-learning pipe-
line based on the pipeline accuracy for each potential
machine-learning pipeline.
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