(19)

US 20240249285A1

a2y Patent Application Publication o) Pub. No.: US 2024/0249285 A1

United States

Moloney et al.

43) Pub. Date: Jul. 25, 2024

(54)

(71)

(72)

@

(22)

(63)

(60)

SYSTEMS AND METHODS FOR
CENTRALIZED AUTHENTICATION OF
FINANCIAL TRANSACTIONS

Applicant: DAPIT NA LLC, NEW YORK, NY
(US)
Inventors: Kieran Moloney, New York, NY (US);
Warren Hogg, New York, NY (US);
Sean Dennis, New York, NY (US);
Owen Newport, New York, NY (US);
Kim Fleury Bertrand, New York, NY
(US)

Appl. No.: 18/442,016

Filed: Feb. 14, 2024

Related U.S. Application Data

Continuation of application No. 17/996,200, filed on
Oct. 13, 2022.

Provisional application No. 63/022,231, filed on May
8, 2020.

600

N

Publication Classification

(51) Int. CL
GO6Q 20/40 (2006.01)
G06Q 20/02 (2006.01)
G060 20/32 (2006.01)
(52) US.CL
CPC ... GO6Q 20/4012 (2013.01); GO6Q 20/027
(2013.01); GO6Q 20/3223 (2013.01); GO6Q
20/40145 (2013.01)
(57) ABSTRACT

Disclosed are systems and methods for centralized authen-
tication of financial transactions. An authentication sewer
receives, from a client device, information for a financial
transaction. In accordance with an embodiment of the dis-
closure, the authentication server executes in a kernel-based
environment at least one authentication step based on the
information. For example, in some implementations, the
authentication server generates a PIN block and transmits
the PIN block to a financial gateway, along with a request for
the financial transaction. Notably, the client device does not
need to perform the authentication steps executed by the
authentication server, such as generating the PIN block for
example. This can enhance security of the transaction sys-
tem because information such as a terminal key used to
generate the PIN block remains centralized and not on a
client device where it could possibly be stolen by a criminal.

Network 200

Authentication Server 300

Compression Node 400

| Network Adapter 301] | Network Adapter 401]
Authentication Compression
Circuitry 302 Circuitry 402

Processor 303

Processor 403

/

o

Computer Readable
Medium 304

Computer Readable
Medium 404

Client Device 100

WAN Ratio 101 |

NFC Radio 102 |

Processor 103 |

Computer Readabie

Medium 104

| User Interface 105 |/

Financial Gateway
500

= .
% [°OIA e ~
m GO 89ejJ8)u 188
3 01 wnipayy
m ajqepeay Jaindwo?
-]
€01 J0s$320.d
. \ \ =
m 005 201 o1pey 34N
— Aemajeq |ejaueury T0T oed NYA
m |
< — 001 391aq Jual)
S 70 wnipsjy 0 wWnipapy
u, a|gepeay Jajndwo) 9|qepeay Jayndwo) — / \
m 0t 10883304 €0¢ 108882014
Z0¥ Anaxg Z0¢g Anaag L01
uoissaldwo? uoijeanuayiny
107 J91depy ¥lomian 10€ J18)depy ylomian
00t 9poN uoissaldwon 00€ J9AJ33 uoljeanuayIny

007 HoMmIBN /

009

Patent Application Publication

Patent Application Publication Jul. 25,2024 Sheet 2 of 28 US 2024/0249285 A1

(Start)

5

~Receive, from a client device, L _o_
information for a financial transaction -

3

Execute in a kernel-based environment at least one
authentication step based on the information —~2-2

A

Transmit, to a financial gateway,
a request for the financial transaction ™~—2-3

~

End

FIG. 2

< ¢ O
= =]
a
&
& JuawAed pue Juss | [elaueuly
z sjiejap juswied T

A\
m ||
m (wa)sAs [euJa)xa 0]
= Juas Jsanba) juswAied)
e Ve K N e

A

-
a 89A3p 0] pajesauah € 0€¢
m, ¥oeq padejal s1 Y20/ NId ;U011 2eSUel} _%%“__w“w__m_w%ﬁmm 180138
~ §| uofjezioujne pue paje|osi 10} paJinbal S] 138 | pleg uoieanuauiny
m.. 10 UOIjeWw.Ijuo9 painydea sI NId .

A _ \
- (p8)sanbay NId)
2 SBA
5
= IS S AN N
=
A Y
g SCTTIR SEITIR o5 SCTTIR
s00| _ ocl
w Z 860 301Aaq 1ual
z — — —
m 818|dwo? juswAed J9M U0 NId hed 0} deg LR REITR]

US 2024/0249285 Al

Jul. 25,2024 Sheet 4 of 28

Patent Application Publication

A K |
JuswAed 8y} aziioyine U0} elep AN3
oym ‘sannhe g sianssi | Juswied sa)esauad
yum juswAed)sanbal |0 Mau e anss| 19 1sanha)
0} U8)0)] 8sn SYJ0m}aN SHI0M]BN SOA18931 SYI0M)BN

YI0M]BU pJed 0} Juas

1s8nbay JuawAed

G-¥ v-¥ 3 BlEp JujBWOIg -y
\ = | § -V L-¥
asn ainny uayo] ym wajAs \ v \
10] p310)s ale ejep fiuoje ‘aginap ay) u) palols |3uJay 1sujebe —
al)awolq pajelaosse| | 0y yaeq patejal PaAIaJal $| -| passadoid mﬂmu
1 PI01S U0} S| uopeziioyyne 13e4114e 9lj18wolg sl eleq A
‘pajsanhal JI 10 uoiewlIuoy anbiun y

Ju8s asuodsay

691} U0
PRI pazIusY 0}
810$ 0] Sjuem
18W0)SN9

a)9|dwoy
Juswhed

pajsanbal
uorjeanuauiny

e ——

S ——

uonyeauayIny
alnaworg

o900

o

siielad

nie) 1ajug

Mo

IN0X98YJ

0€ES
Aemajeg

|e1ouBul4

0E€
JEIVEN

uoneanuauiny

0€L
a91A8Q 1uaid

US 2024/0249285 Al

Jul. 25, 2024 Sheet 5 of 28

Patent Application Publication

¢ "Old

"uswAed ay) az1joyine
oyMm ‘salnbae g sianssi
yim juawhed 1sanbal
0] U0} asn SyIoMm]aN

}J0M}3U pIed

0] Juas }sanba. juswAied

£-G B U0} ‘elep ujawolg z-g

\ v

TR
0} yaeq pahejal
S| uorezioyyne
10 UOIJBWLIJUOY

919|dwon
JuawAed

|

1-G

1INeA WoJ) pases|al
SI Uax0] ‘payajew
S e]ep j1jawolg

a1} Uo SI U8Y0}
pIED 13Y)ayYM 23S
0} $)98U3 Wa)SAS

A
asu0dsay
1ed
~J
.
uoeuayYINY InoxIaud
alnawoig yano1 -sup

0gs
Aemajeg
[e1oueul

0EE
18MI8S

uorjedijusyiny

0L
8018 Jusll)

< 9°OIA

K

2

S JuswAed ay} sziioyjne uax0} elep A3 0€5
S oum ‘sainboe g sianssi | JuswAed sajesauab Aemaieq
n yum JuswAed jsanbal |0 Mau e anss| 1 1s8nhal [e1oueuy
= 0] U8X0] asn SYI0M)aN $ylomisN SONI938. $YJOM]BN

8.::-:::::,-:::::--::--:::::::-:-:-:-:-:-::.:-:------::--:::-:--:-:.
o
3 Aemajeb 0] Juas
°)sanbai JuswAed
2 G-9 -9 B 019 NId ¢-g
7 \ N / | Nmm ﬁm
uajyol yiim
S asn aJnn Buofe ‘a21A3p pajesaual s IR JSUEGe b 0€g
< 10} P3I0}S UBY0} 0] Yaeq paheja v_uc_%_w o | | pesseo mmw% 8 130138
& ‘pajsanbal J $| uojjezLoyine w_%:mm_w) __,_a S| e1e(] 1P AT | uopeanuaLiny
£ J0 UO[JeULI}L0) .

4

U3S 3suodsay pa)sanhay Nid

M\m_:. :O 000 mom@v 200 200
pieJ paziuayo} Ol) 0€1
310)S 0} SjeMm ¢ P 06D| < 801A3(Jusy|)
JaLuo)sng oo
919|dwoy s|iejsq

Patent Application Publication

US 2024/0249285 Al

Jul. 25, 2024 Sheet 7 of 28

Patent Application Publication

L O

Juawhed ay) aziioyjne
oyMm ‘salinhae g sianss

Ujim JuswAed Jsanhal
0] UBX0) asn sylom}apN

1uds 1sanbal juswAed

13 U840} 200 NId
NIN NIN —IN
- G ,
‘891A8p 1ineA woJy pasea|al i
0] Yoeq pakejal U8X0} pue payolew 3|1} Uo S| uaxo}

S| UOIjezLIoYINe
J0 UO[JeWIIUO)

s1 ejeq ‘pajesauah si

130/0 NId B pajejos
‘nainyded si NId

Moot

3)8|dwon
JuswAhed

pIBD J3ylaym aas
0] $)99Yd WajsAg

A

®e®

|

1N0%38Y7
paseq-NId

asuodsay

L —

1n0x98yJ

0€5
Aemajeg
[ejoueuld

0EE
180188

uorednusyIny

0€1
g9lAs(] Judl)

US 2024/0249285 Al

Jul. 25, 2024 Sheet 8 of 28

Patent Application Publication

8 "DIA
JuawAed ay) azuoyne U303 0ES
ouM ‘sainbae g sianssi | JuswAed Aemaleg
yyum Juawded)sanbal Mau e anss| [elaueuld
0] U3Y0] 3sn S}Iom)aN $Yi0misN
}I0M)au pIed o0} Juas
1sanhal JuswAed
-8 c-9 B A0 NId z-g
y v | \ wa
asn ainjn} U3X0} Y}IM .
10} pBI0]S BJ8 Bep Buoje “8aiAap Swwa__% Sl |auIaY 1sujede 0€g
911J8W0Iq pajelaosse| | 0) yoeq pakejas _m_ u_wﬁ,__m_m_ passagold Ezmwmﬁmﬁé
Q Pal0]s UaY0) SI uolez|oyyne \ . S| BJe(] 83|
‘pajsanbal J 10 UOJJBLLIIUOY painjded s| Nid X
N
JU3s asuodsay pajsanhay Nid
A\ 4
bm_c zo 000 Woﬁ%o@ 000 200
PJe3 paziuaiol % 0EL
310)s 0} Sjuem € P 200 ¢ e < 891A3(JUaI|9
18L0)SNY _ e & _
ﬂ_wﬁ_»_mw gaMm uo Nid Redorde] noxydayy

US 2024/0249285 Al

Jul. 25, 2024 Sheet 9 of 28

Patent Application Publication

6 "Old

JuswAed ay) aziioyine
OUM ‘salinbae 9 sianss

\ v

yym JuswAed jsanbal
0] U8Y0} asn SylomjaN

Juds)sanbas JuswAed
18 Uay0] {20/q NId
&

"891ABD
0] Yaeq paAejal
SI uojjeziioyne
J0 UoewIIyue)

1INeA woJ) paseaal si
uayo} pue payajew
s1 ejeq ‘pajesauah s
¥90[0 NId B pajejosi
‘painided si NId

319|dwon
JuswAhed

3]1J Uo S| uax0]
pie3 Jaylaym aas
0] $)93Y9 Wa)sAg

A

B1a10)]

1N033J3YY
paseq-NId

asuodsay

Nt

1nox9ayd

0€s
Aemajeq

[eryueuty

0EE
130188

uofjesnusyiny

0€l
831A3(Jual)

US 2024/0249285 Al

Jul. 25, 2024 Sheet 10 of 28

Patent Application Publication

01 “DIA

paziioyne S|
JuswAed pue juas
s|iejap juswAhed

¥-01 £-0l
§ y)
3318 0 pajesaual | €0l
yaeq pakeja) SI 3010 NId ¢uorjaesuel]
S Lojjeziioyne pue pajejos| 10} paJinbal
10 UOIBWIIJUDY painyded s NId
A
_
(pa)sanbay NId)
SA
Y
[-1-.] @Dﬁ.m“vo
®O®0
P ©o®| +—
Glelo
918|dwog juawAed a|IqoLy uo NId

(Wa)sAS [eulaixa 0}
Juas 1sanhal Judwied)
ON

|auJay 1sujehe
pajedljuayine
Sl 18jlem | pJe)

A

auoyd o) dej

0€S
Aemajeq

[eloueuy

0
J18AI8S

uonednusyiny

0€1
831Aa(Judld

Patent Application Publication Jul. 25,2024 Sheet 11 of 28 US 2024/0249285 A1l

9
ﬂ\vuthentication Server &(YJ\ X
l \ \

1-2 1-4 11-6

FIG. 11

US 2024/0249285 Al

Jul. 25,2024 Sheet 12 of 28

Patent Application Publication

A) K |
61Z1
8500}
fu o) uopy
T T T
o | o it
5 RG] SUOEINILO]
buoyuoy OO 010
A
— / Y44}
oL weniy | o
Bussaanig ¢eel | jeq ufing gm._m_p__w_wm
jpuie}3 Hg Weiolg —5 Busao
RUIB}X] S3030id
— Loj}esuel|
6071 —
oL g
5T LISsaa0)
a__wmmﬁw: g_.;z_mm e___%ggs
Uof}aesuel| — S SDESSAN
X 80zl gw_ G0zl
_ v peall] Uo}3jouls BURIDS
il 0Lzl Bussaanig Uojeunbiun) afessayy
(S/3e0pIp |e—{ uibimg RUIRU Bjeg 10Z1
(femajen UoIjoesuel] day
S— _Y_ ———— UL
hm_@m__ v 9071 £0z1 g | M
o d 7071 pealy | pealy| 1933
EMgle) aseneeg |« fussaalg U0I}3aulo] U0 RIIUNUILIO]
10}99H sseqeje] [« 10)8H 10384

00Z1 8ImIsyudIYy 8.emy0S 10J98H PS

¢l O

US 2024/0249285 Al

)
' L1-g1 (Rayuoissag|nsayauoneayddy - [ani]

1

o S S Y N 0 N O A T M B N O M N A N A N T N A O N N B G M T B SN N N N NN N A N A M N N Y N S N 2 M e e e

1

y[1

| -8-€1 (jabessaajepien 01-€1 (uonJewuogason—

[8sey]
1nsay uonepien abiessapy e

6-£1 (|uorjasuuogasoy-’

A

[-€1 (ja1uoneayddy -’

Jul. 25, 2024 Sheet 13 of 28

y[1
9-¢| (juadguonaauuoy-’ g

ani| ynsay axeuspuey 1do

~G-£| (|uonJ8uuD9aINIISa)eal)

<.

¥-€1 (000:(}}nsay@xeySpueH -’

o
I

Wil
g-€l [jyeuspueHainasg—
A ¢-€1 (peaiypuoposuuogajeasy” L T _
pealyy 101984 €1 (PSBNIBYUONIBUIOT " o ooy
Uoi)a8uu0y J0)38H Xije4

10/)38UU07 USNGe}sT ps

Patent Application Publication

US 2024/0249285 Al

Jul. 25,2024 Sheet 14 of 28

Patent Application Publication

\448N) K|

M m £l-tl m

| (JAgyuoissagajeauay T m

! 0l-¥1 | _ Ni
:mm%%mmzm_amf _ R Zl-¥1 [))Insayuiboquasn-—

_ > L-v1-

ﬁ 61l (J}insayuifioiasn

| ()A1enpBuissadnidgp

8-yl (uifoTiasn]Anpgn-’
(~p} (|AsanDgRpIng-5

9-pL (aseqeleq)peaiy Lbuissasoidejeal)’

] [l)

S 7 o O . B S S T . S O O .) S T . T T . o

|

>

G-¥1 (an1)jasuodsayuiboiasn -/
[uorjepieA Juswo pue ainjanlyg afiessapy]

| [Palie4 uonepien juajuog mammmmS:
| S

p-1 (8sle}jasuodsayuiboyiasn- > ._

' [pajieq uonepiep anjanils abessapy|

" 73
- [l\ ‘_
E-pL (BSIE) BSUOUSBOLRUBY - ro o T

l-¥1 (Juiboyiasn~

»i

-1l 5%&8238__2%

1
!
I
1
I
I
i
1
1
1
i
i
i
i
i
i

pealy Buissad0.d
aseqeleq

aseqeleq

pealy] 101981
U0198UL07 J0}23Y X114

uopeayddy

wboy 18sn ps

US 2024/0249285 Al

Jul. 25, 2024 Sheet 15 of 28

Patent Application Publication

avl "Old

e m—

9l-p1 [l-v _ (jasuodsagfianpan
| () ienbussacnidgp |

H
i
i
i

G1-v1 [Rayuoissesppy}fianngn
yl-71 (JABNDgppINg-.,

i

i
i
H
i
s

1

g1 [Relaghayuoisses

US 2024/0249285 Al

Jul. 25, 2024 Sheet 16 of 28

Patent Application Publication

1O

aseqeleq 186pIM wbinid
Aemajen uoaesues}
10198H

peaiy]
Buissaanid
uonaesuel |

m m m m m - oig

m m m (Junsayu ?gs zm_.y_m:w m (linsaglolze __Esmz_:f

_ _ _ 11 ' Na|
m | " T AR m ”
m m (1}nsayuo2esUes Le1enill~ 1 m

-Gl {opeste) azjelu

| m [9-G|-/ |

m m (TN A m

m L c-g| :F__@:_%_ss__s%o#ﬂ_ !

| | | Gl m

| " "A__o_smw__s%gée__wwms_msmms _ =W

m | | B ——. %ws%mm_s_za__s%;__

|-Gl c%z_ux__s [ECT A

pealy] 10}93H uoryeayddy
U0J}98ULI09 Xi[4
10J30H

uofjoesuel] ps

US 2024/0249285 Al

Jul. 25, 2024 Sheet 17 of 28

Patent Application Publication

91 "OIA
m T T
| : . {)unsaysyielaqle uoryesuel . (MSBLSIEISONe LUONTES UL
m m m : AR m
m _ m@ 01-91 m |
m A"_Hsa.m%_am%__mg B UOIJIBSUE) fv: | (Aay pieau]
e e e e e e e e e e e e ..||||||ll||||......ll!..llll.....l..||...|l|......|.....lll_|......ll.....l...l!....._..Tll...
| " 6-91 | [A8) piieA]
| (ved@a0yjyinsaysyelag0e uoljaesuel L | !
| ! 8-91 |
! (|e1RQUONOBSURL] 310}S " T
m m [-9] m
| (A8 yuoi}oesue | 3epifep |
| m 4m 9-91-/ |
| m ()S|ie18(ibe uoijaesue. | |
| | _ G-91 m
| | (1ubniguonaesuesipeot 2 | |
| | | -9 |
| m |(U0/}aRSUB]| DR8] fuissaa014a1eal) ! TV
" " _ ! | (j9suorsaysiielagbe uooesuel|
| | | ! 2-91~2] _
| | | (jobessamaepen || m
| m | | A | 1-91- ||
| " " m (|sieiaqbe uondesues]
aseqejeq 180pIm ubini pealy] pealy) _%mx uoijeayddy
Aemajeq uoijoesuesy Buissagoid uor3I8uL0Y Xij84
10}98H uoresuely 10}28H

s|leiaqfie] uoryaesuel] ps

US 2024/0249285 Al

Jul. 25, 2024 Sheet 18 of 28

Patent Application Publication

VLI "DIA

m | | (A8 pieau]

m | | | W | [Aa) pieA]

m m m oen eyl

| W | {)nseysye}agfe uondesuei] h [INSGHSIEITIELIONBSEAL s

" | ” 6-LL AR m

! (Pe)daaa)nsaysye)agbe uonoesuell., | “

| | 8-/l ! m

" (|e1equoJesUe) | 310} | T

m | [-1] m

m (16 Uor}aesues| s1epeA !

m m | 9-/1- |

m m (sieyaqBe uojoesuei] |

m | , G-/ |

| | %_e_ag_za__égﬁﬂu. |

| | m el " ,

| m U1} JBSUR) Jpea.y | Buissatoidalealy ! TV

! ! ! ! ! (|asuodsaysiie}aqbe | uoijdesuel |

| ! ! | - L1~ "

| | m (jobesseiiepie || |

m | m | _ | 1-11-7 |l

" : : | m (istelegbe uonaesues, |
aseqejeq 136pIM uifiniq peaiy] pealy) 10193H uoneayddy

Kemaleq uoy)Jesuel] Bussaanlg uoj}38uliog X184
101934 uorjJesues | 10198}

sjieagbe] uojoesuel] ps

US 2024/0249285 Al

Jul. 25, 2024 Sheet 19 of 28

Patent Application Publication

.1 "IId

A

O I e e e

(Jnsaiisyeleq

i

vl-L1
BLUDJ9BSURIL

»
”

i

som_mx:_awmm__mz%m Luol

N_..:&Y_‘:
JSUEI[|

ST

H

1insaysyie}agBe | uorjoesues|

US 2024/0249285 Al

Jul. 25, 2024 Sheet 20 of 28

Patent Application Publication

81 D14

nsaysjie1aqubiguonsesue;
(J1Insays|ie] DF ISuon f Lh

-8l |

cl-8l

(insaysielaquiisuonoesuel]-

 am

i
1
i
1
!
1
i
i
1
i
i
i

m | | 01-8l |

m amzmam:_ammm_ﬁm 5_29_38__575 [Aay pieau]
llllIlTlIllllllIII"IIIIlIIIlIIII ..llllllllllll..-Illlllllllll..lllllllllllllllllllllllllll._..Tlll.

| | 6-81 " [A8) pieA]

| (11223 jumsaysielagubiSuonaesuelL | !

m | 8-8l g |

m :Egg_zmgs 181018 : s

| T W

" (1A yuorsesuei L ajepien~CT m

| m | 9-8|- |

m | (|Syie3aquBISuoIFesue. | |

m m | G-8l |

m m %_a_ig_smm:e;gﬂﬂu_ |

| | | -1~/ |

m | "Egsmésc89_:3:_%85285 " £-g1~

| " ! _ u (|8suodsaysyie1agubiSuorjaesue. |

| " | ! 7-81-" “

m | m (JoBessapyarzpien |

m ! m | | u —Iw—.k L]

” | _ | | (stejaqubiguonoesuel,

aseqejeq 186pIMm uifinid pealy | pealy] 10)98H uopeayddy
Kemajen uorjaesuel| Burssagoid TRENTR XI134
10]98H uonjJesues] 10)98H

sjiejaq ainjeudis uonoesuel] ps

US 2024/0249285 Al

Jul. 25,2024 Sheet 21 of 28

Patent Application Publication

Vol "OIA
| 11-61 m =8_=_§
| “amamss:aé__gzmgscggaj |
' X y[1 "
" . 0L-6l m
m (juoij9esLe jgaue) - | T
| | 6-6L [! _
| (|Beldssa0idxoaug~2 | [A8) pileA]
o e e e e e
| | g-61 | [A8) plleau]
| | {pa120loNSOHUONIESLR|SSBI0Id |
" | > " e
m | L-61 m
| (1Aayuonaesues ajepien~CT m
m | 96l m
| | (JUofjeSUe.] $58901 m
m | . g-g| m
m m (ubnauogoester peot~C] | m
| | m " 761 | ,
| | (ol esue jpeay buissaaoidajeal) N
| | " | | (josuodsayuof9esUEL L$s330i
| | " | 2-61-2 "
| | m (joDessapalepier || |
| " m " " 6L
| | _ | | (uonesuelssaony |
aseqeleq 186pIM wbnid pealy] pealy] 10}93H uoeayddy
femajen uopJesues) Buissazold uojdsulion XI134
101384 U0} Jesues] 101934

§S8201d - uofjoesuel] ps

US 2024/0249285 Al

Jul. 25,2024 Sheet 22 of 28

Patent Application Publication

del “OIA

(janjeudis- JU3sa)

Gl-61
(JAW3-Ju8saidpIeJssaaold

[

71-61

dPIBJSSa0.d

i

£l-61
(11uBsaid1oNpIEDSSa20.

Sl

1
1
1
llllllll s s s o e e e e s s S s S]
_

___l___
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1
1
1

R
1

_>S_m_ - Juasald Emu_

[8injeufiis - jussald pied]

[1Uasaid 10N pied]
Ll

¢l-61
%___wwsg,_\,_%gu

i

I
[s$82014]

m e

US 2024/0249285 Al

Jul. 25, 2024 Sheet 23 of 28

Patent Application Publication

<

74
E_:wmmcssmw%ﬁJ ﬁ

V0z D14

L 01-07/
()1sanbayuoILJes UL puaS

T
1
1
1
i
1
1
i
1
1
i
i
1
1
i
1
1
1
i
1
1
1
i
1
1
1
i
1
1
1
i
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
i
i
i
1
1

Aemajeg 186pIM
Aemajen

(JA1anps$saanid

6-07
(jejequorjaesUeL | puss

| 8-02-C7
([elequonoesuelLping

| [-07-2F
(|JapiAoIdAeMalEaUIWIB)A]
| 9-07-2
(1nsaA1anDSsa20id

Il

~6-07
v-0C (JInsayAsnp

| £-0z~
(uoijdesuel |Asenpgp

_ B] 1-0¢
0-02-2] 1IBSIJONPIEDSS3001g

:?:%E%%E___:m) 1:

<

aseqeleq uiinid
w0 Jesues|
101081

U

pealyl
fuissasniyd

uofjoesuel |

pealy | uoneayddy
U0} 98UL0Y Xija4
0198H

JugsaidlonpIeJSSad0ld PS

US 2024/0249285 Al

Jul. 25,2024 Sheet 24 of 28

Patent Application Publication

d40¢C "OIA
.:_amms_“ws__gmmﬁ
m m w P | l AN
m m . 910 Al -0z m
. m (nsaghiam |/ o7 (mseyuooestel ssadoig m
| | 107 " (rsaguonoesueljsseonyy | |
| (hanpssaold ||, |
“ m y1-0g m m |
m | (U01)aesUR]) asifeul)Alsnpgp | | _
w m el0z m m m
| | ([nSaYSSa0lg | | m
| ~71-07 " m m |
| ((1msaguonaesuelL | " _

2 V1T "OId
* : :
3 m “ “ “
S) ! ! " |
3 -1zt ” >, | | |
o " " 0l-1¢ ! ! !
P ‘.E:gm_g_smgg__@m ! (jeJequoi)aesuel | puag m m m
- " i . ! " !
| m ! 6-1¢-2F | | |
® m m (JSiielaquonesue. ping ! ! |
3 | | g " m |
& | m (1epInoigAemalenauiuialag m " !
g m m -1 | | |
7 | m {[}InsayA18npssaanid ; " |
3 m | _ R | m W
S m m 817 " " _
' " " G-1¢ (J}InsayAianp : " !
= ! 1 {)AJanpssaanig _ " "
= ! “ < ") :
J | | uol wg__s z%d._N\\ " " m
g | m | .ﬁ" : m,gmu | | [81njeubig]
e (jAsanpuopaesueIpIng m | e
= m | AT LA, m m
5 | | (BIIeAYRIRgaIEubS \:ezg IS-JUESIGPRISSBIN | |
g | | " < U | |
i m | | | m | |
B femaen b aseqeleq ujbnig pealy] pealy] uojed)ddy
2 Aemajey uoi)Jesuel] Buissaaold uol}38uu0g Xlie4
= 10}09H uorjoesuel] 10}98H
2 aIn)eufiiS)uasaldp.e)ssannid ps
="

< d17 " DIA
&
=
S
&
&
[99]
-]

] : ; : " le-1é
% | | | ! ! (J}nsayuol Umggmgogj ;
3 " : ! >
2 u | ! |
p m m m U m
2 m | m S61-12 " ﬁ:_aﬁ_co_zmm__misga |
. " | " (11 INS8HUOI}RSUEI[$58I0) | |
3 _ _ " ; " _
& m m g2y m m m
i e OB OUOROBS AL | oo JBAMEUDISON]
| m — | m m
_ m m : czsmmm_ ..m:dJ 0 m m m
£ m O | | |
2 | | (JanDssad0ld ||, " | |
e " | - Gl-lg | m m
& " | (uoyaesue1L asiieul4) Alanpgp | | |
= " ; " " " _
= m m L pl-1z] " " _
S | | {1 nSBYSSaI0L | | |
B P m > m | |
& (junsayuor destel | T | | |
E (JInsaguojoesue m m m
g | | | |
[~™

= VT O
8 SR m W m m . -
3 m | gz e? m | |
g | m (1S1e1aquonoeSUBALPINg : " "
S m m - gl-gg oY | m m
o | “ csu_*én%gsgg_sa 180 " | “
- m m g2z et m m W
" " A:_awngaméz ! ! !
& " “ - Na| " | ;
5 “ | 8-2¢ | | |
N " “ [-TC (JunsayAang ! ! !
m m +{JAJoNDssa0sg ! ! !
2 | | -~ 9gg " | “
z m m (Uo2eStE. L A1BTDGR | | m
s | ' t : X ;
S | | | §-27-7 " | |
" “ “ (|A18nguorjoesuel] pjing ! ! !
e m m | p-77-2Y | _8_53%238___&
= m m (Jejeqfie $s320. e
E | m | e-77 | | Duasaidereael]
.m | m (JJuasaidejequid . m m | e
5 | | m (-CC AJ-NN UBSBIRIeSSBI0] | m
£ | ” (uasaidejeqbe] ~VNNGUOSIGLIETSSN |
g | | " < O | |
E m m m m W m W
2 femaies jafpim aseqeleq uibnig pealyL pealy| uoijeanddy
Z emajeyg uorjaesue) Buissaanld 101}98uu07 X1184
= 101984 uorjaesuel] 10984
m UIJON)IU8SBIdPIe]SSaanld ps

US 2024/0249285 Al

Jul. 25, 2024 Sheet 28 of 28

Patent Application Publication

a¢c "Dd

)
»

vi-cc

(1}InSaYuI0I}2BSUR] | $$3014

|

-

\ez-zz !

\7z-12

{)}InsayuoIjBSUR1| SSBI0IJ

(nsayuondesuellssadnd

AR

—_— e e - = :]__.

e s e s

A e
(|uor2esue1 | [aue?

i

Ot O O 0 O O O S S

i

[uasa.dioneseatiel]

(J}Insayuondesuel ;

i
i
1
i
1
i
1
i

1
1
i
1
i
1
i
1
i
1
1
1
1
1
i
1
1
1
1
1
1
H

v1-CC

81-¢CH
(JAJaNDs$saa0id

nsayuonaesuel] -~

. 0¢-tc

(1PBAND3YLIILESE P eSSBI0Id

i

T S0 T 0 T A RN A I T N SO 308 U A U TN AW AN SO R OO0 M R AN NN W0 D I IO B N DA 0N A R ¢ I e

m»-NN
(msehiand |

{
i
H
i
i

-
%

" [1-T7

(lor}desue, L 6sijeu)Aienpgp

91-72-]

[

al-¢c ([Insayssarnig

: ¢l-¢¢
(|B1equonoesuelLpuas ~

£l-7¢”
()1sanhayuonJesuelL puag

i
i
i

_um__amxsmms&

N A SR IV WK UK IAAE GRS DAE I AT BUR MRS MM IV DA 0N JUOE IO U MRS SR I I TS N NS SN IVt NG JOOS ENE GAN IS AR SON DO WS 30 NE IS BhA O inee Y

US 2024/0249285 Al

SYSTEMS AND METHODS FOR
CENTRALIZED AUTHENTICATION OF
FINANCIAL TRANSACTIONS

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 17/996,200, filed on Oct. 13, 2022,
which claims priority to U.S. Provisional Patent Application
No. 63/022,231, filed on May 8, 2020, the entire disclosures
of which are incorporated by reference.

FIELD OF THE INVENTION

[0002] This disclosure relates to communication systems,
and more particularly to communication systems for finan-
cial transactions.

BACKGROUND OF THE INVENTION

[0003] Use of credit cards and debit cards for making
purchases or other financial transactions using a POS (Point
of Sale) device is commonplace in society. Use of such POS
devices can be subjected to various standards such as PCI
DSS (Payment Card Industry Data Security Standard),
which is an information security standard created to increase
controls around cardholder data and reduce credit card fraud.
Various security features have been implemented to authen-
ticate a financial transaction. As an example, when a user
wants to make a purchase that has a price exceeding a given
threshold, the POS device can prompt the user for a PIN
(personal identification number) for authentication pur-
poses. Upon receiving the PIN, the POS device generates a
PIN block based on the PIN and additional information that
can include a terminal key, a card certificate and sequencing
information. The POS device then transmits the PIN block
to a financial gateway, and the purchase is authorized by the
financial gateway only if the PIN block is confirmed to be
authentic.

[0004] Unfortunately, generation of the PIN block by the
POS device introduces various security risks because infor-
mation such as the terminal key is present on the POS
device. For example, if a criminal were to modify firmware
on the POS device, it may be possible for the criminal to not
only obtain the PIN that has been entered by the user, but
also other information such as the terminal key. In this
manner, it may be possible for the criminal to use this
information to generate another PIN block to make a fraudu-
lent purchase, possibly leaving the user responsible for the
fraudulent purchase. In addition, 3rd-party hacks to capture
card and PIN data are possible as well. In this manner,
authentication steps by the POS device such as generating
the PIN block introduces some security risks and leaves
much to be desired. Moreover, changing existing infrastruc-
ture would involve a lot of time and effort and hence is not
be practical.

SUMMARY OF THE DISCLOSURE

[0005] Disclosed are systems and methods for centralized
authentication of financial transactions. A financial transac-
tion system includes a client device, an authentication
server, and a financial gateway. The authentication server
receives, from the client device, information for a financial
transaction. In accordance with an embodiment of the dis-
closure, the authentication server executes in a kernel-based

Jul. 25, 2024

environment at least one authentication step based on the
information. For example, in some implementations, the
authentication server generates a PIN block and transmits
the PIN block to the financial gateway, along with a request
for the financial transaction.

[0006] Notably, the client device does not need to perform
the authentication steps executed by the authentication
server, such as generating the PIN block for example. This
can enhance security of the transaction system because
information such as a terminal key used to generate the PIN
block remains centralized and not on the client device where
it may be less secure. As previously noted, information that
is not centralized could be stolen by a criminal and used to
make fraudulent transactions.

[0007] In addition, because the client device does not need
to perform the authentication steps executed by the authen-
tication server, the client device can be any suitably config-
ured computing device such as a smartphone for example.
The client device does not need to be a specific POS device
with specialized firmware supporting a kernel-based envi-
ronment. In this way, in addition to the enhanced security
noted above, the financial transaction system can provide for
enhanced flexibility by enabling users to easily perform
financial transactions using their smartphone or another
computing device. This could allow for widespread adop-
tion.

[0008] Other aspects and features of the present disclosure
will become apparent, to those ordinarily skilled in the art,
upon review of the following description of the various
embodiments of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Embodiments will now be described with reference
to the attached drawings in which:

[0010] FIG. 1 is a block diagram of a financial transaction
system including a client device, an authentication server,
and a financial gateway;

[0011] FIG. 2 is a flowchart of a method for execution by
an authentication server;

[0012] FIG. 3 is a flowchart of an example method for
processing a financial transaction in a financial transaction
system,

[0013] FIG. 4 is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

[0014] FIG. 5 is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

[0015] FIG. 6 is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

[0016] FIG. 7 is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

[0017] FIG. 8 is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

[0018] FIG. 9 is is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

[0019] FIG. 10 is a flow chart of an example method for
processing a financial transaction in a financial transaction
system,

US 2024/0249285 Al

[0020] FIG. 11 is a flowchart of a method for remote key
injection;

[0021] FIG. 12 is a block diagram of example software
architecture for an authentication server; and

[0022] FIG. 13 is a sequence drawing showing example
signaling and processing for a financial transaction system.
[0023] FIG. 14A is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0024] FIG. 14B is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0025] FIG. 15 is a sequence drawing showing example
signaling and processing for a financial transaction system;
[0026] FIG. 16 is a sequence drawing showing example
signaling and processing for a financial transaction system;
[0027] FIG. 17A is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0028] FIG. 17B is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0029] FIG. 18 is a sequence drawing showing example
signaling and processing for a financial transaction system;
[0030] FIG. 19A is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0031] FIG. 19B is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0032] FIG. 20A is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0033] FIG. 20B is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0034] FIG. 21A is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0035] FIG. 22B is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system;

[0036] FIG. 22A is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system; and

[0037] FIG. 22B is a portion of a sequence drawing
showing example signaling and processing for a financial
transaction system.

DETAILED DESCRIPTION OF EMBODIMENTS

[0038] It should be understood at the outset that although
illustrative implementations of one or more embodiments of
the present disclosure are provided below, the disclosed
systems and/or methods may be implemented using any
number of techniques, whether currently known or in exis-
tence. The disclosure should in no way be limited to the
illustrative implementations, drawings, and techniques illus-
trated below, including the exemplary designs and imple-
mentations illustrated and described herein, but may be
modified within the scope of the appended claims along with
their full scope of equivalents.

Jul. 25, 2024

INTRODUCTION

[0039] Referring first to FIG. 1, shown is a block diagram
of a financial transaction system 600 including a client
device 100, an authentication server 300, and a financial
gateway 500. The authentication server 300 and the financial
gateway 500 are part of a network 200, which can include
several different networks even though such details are not
shown for simplicity. For example, the network 200 can
include a RAN (Radio Access Network) for communicating
with wireless stations such as the client device 100, and an
Internet for communicating with numerous computing
devices. The financial gateway 500 can include a card
network for a card issuer, a banking network, and other
components as well, but these details are not shown for
simplicity. In some implementations, as shown in the illus-
trated example, the network 200 also has a compression
node 400, which can be integrated with the financial gate-
way 500, for example with a card network. The financial
transaction system 600 can have other components as well,
but these details are not shown for simplicity.

[0040] Operation of the financial transaction system 600
will now be described by way of example. In this example,
a user of the client device 100 wishes to make a financial
transaction such as a purchase using a credit card 106. When
the credit card 106 is held close to the client device 100, the
client device 100 is able to read card data from the credit
card 106 using an NFC (Near-Field Communication) radio
102. The client device 100 is able to communicate with the
network 200 over a wireless connection 107 using a WAN
(Wide Area Network) radio 101. Such communication
includes information for the financial transaction. Such
information can include details of the financial transaction
and the card data, and can also include personal identifica-
tion data such as a PIN that has been entered via a user
interface 105 for example.

[0041] The authentication server 300 has a network
adapter 301 configured to receive the information for the
financial transaction from the client device 100, authentica-
tion circuitry 302 coupled to the network adapter 301, and
may have other components that are not specifically shown.
The network adapter 401 can include multiple network
adapters, for example a first network adapter for communi-
cating with client devices such as the client device 100 and
a second network adapter for communicating with the
financial gateway 500, or a single network adapter.

[0042] In accordance with an embodiment of the disclo-
sure, the authentication circuitry 302 is configured to
execute in a kernel-based environment at least one authen-
tication step based on the information from the client device
100. For example, in some implementations, if a PIN has
been received the client device 100, the authentication
circuitry 302 generates a PIN block based on the PIN and
additional information that can include a terminal key, a card
certificate and sequencing information. Furthermore, the
authentication circuitry 302 transmits the PIN block to the
financial gateway 500 via the network adapter 301, along
with a request for the financial transaction. In some imple-
mentations, the financial transaction is authorized by the
financial gateway 500 only if the PIN block is confirmed to
be authentic. In some implementations, the authentication
server 300 receives a result of the financial transaction (e.g.
authorized or denied) from the financial gateway 500, and
conveys that result to the client device 100.

US 2024/0249285 Al

[0043] In some implementations, the kernel-based envi-
ronment of the authentication server 300 is a low-level
abstraction layer that facilitates interactions between hard-
ware and software components. The kernel-based environ-
ment of the authentication server 300 is used to execute at
least one authentication step. In some implementations, the
kernel-based environment provides protection from faults
(fault tolerance) and from malicious behaviours (security).
Thus, the at least one authentication step can be executed by
the authentication server 300 with these protections. In some
implementations, the kernel reads card requirements but
overrides card requests to implement core authentication
based on the implementation of the Kernel. Specific
example details of the kernel-based environment are
described later for a “Hector” implementation. Other imple-
mentations are possible and are within the scope of the
disclosure.

[0044] Notably, the client device 100 does not need to
perform the authentication steps executed by the authenti-
cation server 300, such as generating the PIN block for
example. This can enhance security of the transaction sys-
tem 600 because information such as the terminal key used
to generate the PIN block can remain centralized in the
network 200 and not on the client device 100 where it may
be less secure. As previously noted, information that is not
centralized (e.g. terminal key) could be stolen by a criminal
and used to make fraudulent transactions. In some imple-
mentations, the client device 100 is classified as a “dumb”
terminal because all logic and determination of CVM (Card-
holder Verification Methods) are done in the cloud, espe-
cially by the authentication server 300.

[0045] In addition, because the client device 100 does not
need to perform the authentication steps executed by the
authentication server 300, the client device 100 can be any
suitably configured computing device such as a smartphone
for example. The client device 100 does not need to be a
specific POS device with specialized firmware supporting a
kernel-based environment. In this way, in addition to the
enhanced security noted above, the financial transaction
system 600 can provide for enhanced flexibility by enabling
users to easily perform financial transactions using their
smartphone or any other suitable computing device. This
could allow for widespread adoption.

[0046] Although the financial transaction system 600 is
shown with one client device 100, it is to be understood that
numerous client devices can be present. More than one of
these client devices can belong to the same user of the client
device 100. In other words, the user of the client device 100
can operate a plurality of client devices (including the client
device 100) in the financial transaction system 600. Note
that none of the plurality of client devices store the terminal
key used to generate the PIN block. Rather, the terminal key
is stored on the authentication server 300 and can be used for
all of the client devices of the same user. In this way, the
terminal key can be used with many endpoints, which is
different from existing systems in which each POS device
has its own unique terminal key. In some implementations,
the terminal key is generated by an Eso server and remotely
“injected” into the financial transaction system 600 for
storage on the authentication server 300. This remote injec-
tion can be provided by a third party, for example Geo-
bridge. Specific example details of remote key injection are

Jul. 25, 2024

provided below with reference to FIG. 11. Note that the
authentication server 300 would store different terminal keys
for different users.

[0047] Note that the authentication server 300 can perform
authentication steps for numerous client devices in a cen-
tralized and unified manner. While existing systems may
support numerous POS devices, each POS device uses
specialized firmware supporting a kernel-based environment
for performing authentication steps. The existing systems
already have several (e.g. nine) different kernels for different
POS devices, and deployment of new POS devices can be
arduous and time-consuming because there can be several
certification levels (e.g. level one certification for hardware,
level two certification for kernel, and level three certification
for card brand), which can for example take about 24 to 36
months to complete. By contrast, the kernel-based environ-
ment of the authentication server 300 is one unified envi-
ronment that can be used with numerous client devices
without any specialized firmware for the client devices and
without having to go through the certification levels for the
client devices.

[0048] There are many possibilities for the client device
100, especially since the client device 100 does not need to
be a specific POS device with specialized firmware support-
ing a kernel-based environment. In some implementations,
the client device 100 is a smartphone configured to com-
municate with the credit card 106 using the NFC radio 102
and to communicate with the network 200 using the WAN
radio 102. However, other implementations are possible for
the client device 100. In other implementations, the client
device 100 is a desktop computer, a laptop computer, a tablet
computer, or any other suitable client device. For such
implementations, there may be no NFC radio in which case
auser may manually enter card data through a user interface,
and there may be no WAN radio in which case a user may
connect to the network 200 through other means, such as a
wired connection for example.

[0049] In some implementations, operation of the client
device 100 is software implemented with a processor 103
running software, which can stem from a computer readable
medium 104 and/or downloaded from the network 200.
However, other implementations are possible and are within
the scope of this disclosure.

[0050] In some implementations, the authentication cir-
cuitry 302 of the authentication server 300 includes a
processor 303 running software, which can stem from a
computer readable medium 304. However, other implemen-
tations are possible and are within the scope of this disclo-
sure. Other implementations can include additional or alter-
native hardware components, such as any appropriately
configured FPGA (Field-Programmable Gate Array), ASIC
(Application-Specific Integrated Circuit), and/or microcon-
troller, for example. More generally, the authentication
circuitry 302 of the authentication server 300 can be imple-
mented with any suitable combination of hardware, software
and/or firmware.

[0051] According to another embodiment of the disclo-
sure, there is provided a non-transitory computer readable
medium having recorded thereon statements and instruc-
tions that, when executed by a processor of an authentication
server, implement a method as described herein. In some
implementations, the non-transitory computer readable
medium is the computer readable medium 304 of the authen-
tication server 300 shown in FIG. 1. There are many

US 2024/0249285 Al

possibilities for the non-transitory computer readable
medium. Some possibilities include an SSD (Solid State
Drive), a hard disk drive, a CD (Compact Disc), a DVD
(Digital Video Disc), a BD (Blu-ray Disc), a memory stick,
or any appropriate combination thereof.

[0052] In the example described above, the user provides
the PIN via the user interface 105, and the PIN is provided
to the authentication server 300 so that the authentication
circuitry 302 can generate the PIN block and transmit the
PIN block to the financial gateway. However, it is to be
understood that these are very specific authentication steps
and that other authentication steps can be performed by the
authentication server 300 instead of, or in addition to, those
described above. Further 25 details are provided below.

Method for Authentication

[0053] Turning now to FIG. 2, shown is a flowchart of a
method for execution by an authentication server, for
example by the authentication circuitry 302 of the authen-
tication server 300 shown in FIG. 1. The method of FIG. 2
is described below with reference to the financial transaction
system 600 of FIG. 1. However, it is to be understood that
the method of FIG. 2 is applicable to other financial trans-
action systems.

[0054] At step 2-1, the authentication server 300 receives,
from the client device 100, information for a financial
transaction. At step 2-2, in accordance with an 5 embodi-
ment of the disclosure, the authentication server 300
executes in a kernel-based environment at least one authen-
tication step based on the information. For example, in some
implementations, the authentication server 300 generates a
PIN block based on a PIN received from the client device
100. Finally, at step 2-3, the authentication server 300
transmits, to the financial gateway 500, a request for the
financial transaction. In the 10 example in which the PIN
block has been generated, the authentication server 300 also
transmits the PIN block to the financial gateway 500, and the
financial transaction is authorized by the financial gateway
500 only if the PIN block is confirmed to be authentic.
[0055] Notably, the client device 100 does not need to
perform the authentication steps executed by the authenti-
cation server 300, such as generating the PIN block for
example. As previously explained, this can enhance security
and flexibility for users.

[0056] Insome implementations, the information received
from the client device 100 includes personal identification
data, and the at least one authentication step executed by the
authentication server 300 includes generating a personal
identification block based on the personal identification data
and additional information, and transmitting the personal
identification block to the financial gateway 500.

[0057] In some implementations, the personal identifica-
tion data is a PIN and the personal identification block is a
PIN block. For specific examples, see FIG. 3 and FIG. 6
through FIG. 10. Also see FIG. 17 for specific example
signaling and processing. In some implementations, the PIN
is a four-digit number that has been predefined by a user.
[0058] In other implementations, the PIN is a six-digit
number that has been predefined by a user. Other imple-
mentations are possible.

[0059] In other implementations, the personal identifica-
tion data is biometric data, and the personal identification
block is a biometric block. For specific examples, see FIG.
4 and FIG. 5. Signaling and processing would be similar to

Jul. 25, 2024

that shown in FIG. 17. In some implementations, the bio-
metric data includes fingerprint data that has been generated
by a finger scanner. In other implementations, the biometric
data includes eye/iris data that has been generated by an eye
scanner. Other implementations are possible.

[0060] Insome implementations, the authentication server
300 requests the personal identification data from the client
device 100. In some implementations, the authentication
server 300 requests the personal identification data from the
client device 100 depending on some criteria, for example a
purchase price exceeding a given threshold such as $100 for
example. In some implementations, the authentication
server 300 requests biometric data instead of a PIN when
available, because biometric data may be more secure than
a PIN. For example, upon the authentication server 300
determining that the client device 100 is biometric ready
with saved biometrics, the authentication server 300 can
request biometric data. Otherwise, the authentication server
300 can consider whether to use a PIN, for example by
assessing whether card data contains a sequence indicating
that a PIN is available. In other implementations, the authen-
tication server 300 gives an option of using either biometric
data or a PIN when both options are available. In some
implementations, the authentication server 300 requests a
signature if neither biometric data nor a PIN is available. In
some jurisdictions such as the United States, it is possible
that neither biometric data nor a PIN is available, in which
case a signature may be requested.

[0061] Insome implementations, the request for the finan-
cial transaction and the personal identification block (e.g.
PIN block or biometric block) are transmitted together in a
single message. In some implementations, the single mes-
sage includes details of the financial transaction and the card
data, in addition to the personal identification block and the
request for the financial transaction. In other implementa-
tions, information is sent in separate messages. For example,
in some implementations, the request for the financial trans-
action and the personal identification block are transmitted
separately.

[0062] In some implementations, the additional informa-
tion for the personal identification block includes a terminal
key. In some implementations, the terminal key is retrieved
from a database using user login details that are supplied by
the client device 100 after the user has entered the user login
details via the user interface 105 for example. See FIG. 14
for specific example details of retrieving a terminal key. In
some implementations, the database is stored on a separate
server (i.e. the database is not located on the authentication
server 300). In some implementations, the database resides
on a secure server of the network 200 and can hold terminal
keys on behalf of numerous client devices.

[0063] In some implementations, the additional informa-
tion for the personal identification block also includes a card
certificate and sequencing information. In some implemen-
tations, the authentication server 300 acquires the card
certificate from a card issuer via the financial gateway 500,
and generates the sequencing information. The sequencing
information indicates an order/sequence of information in
the personal identification block, and can be generated based
on a dynamic cryptogram obtained from the card data, for
example.

[0064] If no personal identification data (e.g. PIN or
biometric data) is available or supported, then no personal
identification block is generated by the authentication server

US 2024/0249285 Al

300. In such cases, the authentication server 300 can execute
some other authentication step, for example EMV (Europay,
Mastercard and Visa) authentication as described below. In
addition, the authentication server 300 can request a signa-
ture. See FIG. 18 and FIG. 21 for specific example signaling
and processing. However, a signature is not normally
authenticated, but rather is stored so that it may be later
reviewed in the event that a financial transaction is disputed.
Hence, the authentication server 300 must still perform
some other authentication step such as EMV authentication
for example.

[0065] Insome implementations, the information received
from the client device 100 includes card data, and the at least
one authentication step executed by the authentication server
300 includes sending the card data to the financial gateway
500, receiving EMV data from the financial gateway 500
responsive to the card data, and processing the EMV data
and authenticating the EMV data using the terminal key. In
some implementations, the information from the EMV data
used for the authentication includes a cardholder verification
EMYV tag data set plus a dynamic EMV cryptogram. For
specific examples of the EMV authentication, see FIG. 4 and
FIG. 6. Also see FIG. 22 for specific example signaling and
processing.

[0066] In some implementations, the EMV authentication
is executed prior to generating and transmitting a personal
identification block (e.g. PIN block or biometric block). In
other implementations, the EMV authentication is executed
after generating and transmitting a personal identification
block (e.g. PIN block or biometric block). In other imple-
mentations, the EMV authentication is executed instead of
generating and transmitting a personal identification block
(e.g. PIN block or biometric block).

[0067] The EMYV data as issued by the financial gateway
500 can be relatively large, for example 52 MB. Notably, in
addition to the information used by the authentication server
300 for the authentication, the EMV data can include
additional information that is not actually needed for the
authentication, such as details of fifty previous transactions
by the user for example. This additional information sig-
nificantly contributes to the relatively large size of the EMV
data. There is limited bandwidth between the financial
gateway 500 and the authentication server 300, so the
relatively large size of the EMV data can result in a
relatively long delay before the EMV data is received by the
authentication server 300, thereby increasing total time for
processing and authorizing the financial transaction. A user
may not want to wait more than a few seconds for the
financial transaction to be processed and authorized. While
it may be possible to remove at least some of the additional
information such as the details of previous transactions,
issuing banks will not likely comply.

[0068] Therefore, in accordance with another embodiment
of the disclosure, the network 200 has a compression node
400 that operates to compress the EMV data to produce
compressed EMV data and to transmit the compressed EMV
data to the authentication server 300. The compression node
400 can be integrated with the financial gateway 500, for
example with a card network, such that the compression
node 400 can receive the EMV data relatively quickly.
Although bandwidth to the authentication server 300 is
limited, the relatively small size of the compressed EMV
data enables the compressed EMV data to be received by the
authentication server 300 relatively quickly.

Jul. 25, 2024

[0069] In some implementations, the compression node
400 transmits the compressed EMV data in an order starting
with the information used by the authentication server 300
for the authentication and followed by the additional infor-
mation that is not actually needed for the authentication. The
information transmitted first can for example include EMV
card aid (e.g. PSP e-card and issuer bank), EMV card track
(e.g. cardholder information and cryptographic info), and/or
EMYV dynamic data (e.g. card certificate infrastructure info
and cardholder verification method), which can be used by
the authentication server 300 for authentication purposes.
The information transmitted last can for example include
details of previous transactions, which is not actually needed
for the authentication. In some implementations, XML (Ex-
tensible Markup Language) is used for ordering the com-
pressed EMV data, for example based on determination and
drive by a state controller fuelled by security logic in the
cloud.

[0070] In some implementations, the compression node
400 determines an order for the compressed EMV data by
prioritizing the information used by the authentication server
300 for the authentication to be transmitted first. By per-
forming such prioritization, it is possible for the authenti-
cation server 300 to start receiving and processing the
information used for authentication before the additional
data is even received, thereby expediting the processing. As
a result of the EMV data being compressed and being
ordered such that most useful information is received first,
the financial transaction might be processed and authorized
in about 1.25 seconds, for example. By contrast, without the
compression node 400 to compress and order the EMV data,
the financial transaction might be processed and authorized
in about 30 seconds to 60 seconds, for example. Therefore,
the combination of compressing the EMV data and ordering
the compressed EMV data as described above can result in
a significant reduction of time for authorizing a financial
transaction.

[0071] The compression node 400 has a network adapter
401 configured to receive the EMV data and to transmit the
compressed EMV data. The network adapter 401 can
include multiple network adapters, for example a first net-
work adapter for receiving the EMV data and a second
network adapter for transmitting the compressed EMV data,
or a single network adapter. The compression node 400 also
has compression circuitry 402 configured to compress the
EMYV data to produce the compressed EMV data.

[0072] In some implementations, the compression cir-
cuitry 402 of the compression node 400 includes a processor
403 running software, which can stem from a computer
readable medium 404. However, other implementations are
possible and are within the scope of this disclosure. Hard-
ware implementations can include any appropriately con-
figured FPGA, ASIC, and/or microcontroller, for example,
and may be devoid of any software. More generally, the
compression circuitry 402 of the compression node 400 can
be implemented with any suitable combination of hardware,
software and/or firmware.

[0073] According to another embodiment of the disclo-
sure, there is provided a non-transitory computer readable
medium having recorded thereon statements and instruc-
tions that, when executed by a processor of a compression
node, implement a method as described herein. In some
implementations, the non-transitory computer readable
medium is the computer readable medium 404 of the com-

US 2024/0249285 Al

pression node 400 shown in FIG. 1. There are many possi-
bilities for the non-transitory computer readable medium.
Some possibilities include an SSD, a hard disk drive, a CD,
a DVD, a BD, a memory stick, or any appropriate combi-
nation thereof.

[0074] The compression node 400 is shown to operate in
combination with the authentication server 300. However, in
another embodiment, the compression node 400 operates
without the authentication server 300. For example, the
compression node 400 can compress EMV data to produce
compressed EMV data, and provide the compressed EMV
data to a client device, such that the client device can
perform an authentication step using the compressed EMV
data.

[0075] In some implementations, a card issuer generates a
token based on the card data, and provides the token to the
authentication server 300. In some implementations, the
authentication server 300 provides the client device 100 with
an option to store the token for future use. The token can be
stored in a vault of the card issuer for future use such that,
for a subsequent transaction, the client device 100 may not
need to supply the card data again. For specific examples of
how a token can be generated and stored for future use, see
FIG. 4, FIG. 6, and FIG. 8.

[0076] In some implementations, upon matching user
login data for a subsequent transaction, the authentication
server 300 releases and obtains the token from the vault, and
transmits the token to the financial gateway 500. In this way,
the client device 100 may not need to supply the card data
again. This is because the token includes the card data. For
specific examples of how a token may be released and
utilized, see FIG. 5, FIG. 7 and FIG. 9. In some implemen-
tations, a request for the subsequent financial transaction, a
personal identification block, and the token are all transmit-
ted together in a single message. In other implementations,
information is sent in separate messages.

[0077] In some implementations, a unique encryption key
is used to verify that the client device 100 may operate with
the authentication server 300. In some implementations, the
authentication server 300 generates the unique encryption
key, stores a first part of the unique encryption key on the
client device 100, and stores a second part of the unique
encryption key on the authentication server 300. Upon use
of the client device 100, the authentication server 300 looks
for the unique encryption key, decrypts, and validates the
points. If successful, the authentication server 300 can
rebuild the unique encryption key with a new set of points
and place back onto the client device 100. This unique
encryption key is checked and cycled each time the client
device 100 performs a financial transaction. This ultimately
enables the authentication server 300 to remotely monitor
the client device 100 for attestation as well as cloning the
application and software. If unsuccessful, the authentication
server 300 will disconnect the client device 100 from itself
and alert the user.

[0078] There are many ways for the unique encryption key
to be generated. In some implementations, the client device
100 captures up to about thirty points of data, the authen-
tication server 300 randomly selects some of these data
points (e.g. a combination of seven of the data points) and
generates the unique encryption key based on these data
points. Note that the data points that are selected are not
visible to any backend user, thereby preventing internal and
external parties from manipulating the transaction flow

Jul. 25, 2024

process. Possible data points can include a unique footprint,
a MAC (media access control) address, a geolocation, an
IMEI (International Mobile Equipment Identity) number, a
device unique 1D, a device serial number, a Bluetooth
adapter address, a SIM (Subscriber Identity Module) num-
ber if present, a network identifier, a software build OS e.g.
Windows, Linux, ios, Android etc., a model, a build number,
a release date, a merchant ID, a verification ID (one time
random sequence generated by the authentication server
300), a hardware certification number, a device authentica-
tion key, a checksum software value, a device account, a
device brand, a device firmware build date, a device firm-
ware update date, etc.

Transaction Processing

[0079] With reference to FIG. 3 through FIG. 10, shown
are flowcharts of methods for processing a financial trans-
action in a financial transaction system. It is also noted that,
similar to FIG. 1 and FIG. 2 described above, FIG. 3 through
FIG. 10 involve a client device 130, an authentication server
330, and a financial gateway 530 (e.g. gateway, processor,
card network or VISA/MasterCard). FIG. 3 through FIG. 10
show example details of signaling and processing similar to
what has been described above for FIG. 1 and FIG. 2. It is
to be understood that FIG. 3 through FIG. 10 are very
specific and are provided merely for illustrative purposes,
and that other embodiments are possible and within the
scope of this disclosure.

[0080] FIG. 3 shows an example of processing a financial
transaction using a software-based POS device and authen-
tication using a PIN. A financial transaction is initiated by a
user with a web-based NFC/PIN online checkout. The user
selects to pay and initiates a web-based NFC payment via
web browser by holding their card against their client device
130, which is NFC-enabled. Information for the financial
transaction (e.g. card data and purchase price) is then
provided to the authentication server 330. Upon receiving
that information, at step 3-1 the authentication server 330
authenticates the card or wallet against a kernel.

[0081] At step 3-2, the authentication server 330 deter-
mines whether a PIN is required for the financial transaction.
A PIN may be required depending on some criteria, for
example the purchase price exceeding a given threshold
such as $100 for example. If the authentication server 330
determines that a PIN is not required, then a payment request
is sent to the financial gateway 530. However, if the authen-
tication server 330 determines that a PIN is required, then a
request is sent to the client device 130, and the user can
respond by entering a PIN, for example using a touchscreen
of the client device 130, and the PIN is then sent to the
authentication server 330.

[0082] At step 3-3, the authentication server 330 captures
and isolates the PIN, generates a PIN block based on the
PIN, and sends the PIN block to the financial gateway 530
(e.g. Gateway, processor, card network) along with a pay-
ment request. The financial transaction is authorized by the
financial gateway 530 if the PIN block is authentic. After the
payment request has been processed by the financial gate-
way 530, at step 3-4 the authentication server 330 receives
a result of the payment request and relays that result to the
client device 130. In this case, the result of the payment
request is a confirmation of authorization, and hence the
client device 130 can provide an indication to the user that
payment is complete.

US 2024/0249285 Al

[0083] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as authenticating the card or wallet against the
kernel (i.e. step 3-1) and generating and transmitting the PIN
block (i.e. step 3-3). As previously explained, this can
enhance security and flexibility for users.

[0084] The Example depicted in FIG. 3 involves tap to pay
with NFC to obtain card data. In other implementations,
rather than obtaining card data using tap to pay with NFC,
card data can be manually entered by the user, for example
using a touchscreen of the client device 130. The user can for
example enter EMV data, and the EMV data is passed along
to a card present module. Note that information for the
financial transaction (e.g. card data and purchase price)
would still be provided to the authentication server 330, and
the authentication server 330 would still authenticate the
card or wallet against the kernel. Thus, step 3-1 (and
subsequent steps as well) would be executed in the same
way.

[0085] FIG. 4 shows an example of processing a first
financial transaction using manual entry of card data and
authentication using biometric data, with a token storage
process. A user selects to pay and enters card data, which is
sent to the authentication server 330. At step 4-1, the
authentication server 330 sends a request for EMV data
along with the card data to the financial gateway 530 (e.g.
VISA/MasterCard), which responds by generating EMV
data and returning the same to the authentication server 330.
At step 4-2, after the authentication server 330 receives the
EMYV data from the financial gateway 530 (e.g. issue bank),
the authentication server 330 processes and authenticates the
EMYV data against a kernel using a terminal key. Further-
more, the authentication server 330 sends a request for
authentication to the client device 130.

[0086] Authentication involves the user holding their fin-
gerprint against the client device 130. The client device 130
obtains biometric data and sends the same to the authenti-
cation server 330 (e.g. 3rd party biometric engines such as
facial recognition platforms). At step 4-3, the authentication
server 330 receives the biometric data, generates a biometric
block using the biometric data, and sends the biometric
block along with a request for the first financial transaction.
At step 4-3, the authentication server 330 receives the
request and the biometric block, and stores a unique bio-
metric artifact. Furthermore, the authentication server 330
sends a payment request along with biometric data to a card
network of the financial gateway 530. In response, the card
network generates and issues a token based on the card data.
The token is used by networks to request payment with
issuers and to determine who authorized payment. The first
financial transaction is authorized by the financial gateway
530 if the biometric block is authentic in which case
confirmation of authorization and the token are sent to the
authentication server 330.

[0087] At step 4-4, upon receiving the confirmation of
authorization and the token, the authentication server 330
relays the same to the client device 130. At this point, the
client device 130 can provide an indication to the user that
payment is complete. If the user agrees to store the token for
future use, then a response is sent to the authentication
server 330. Upon receipt of the response, at step 4-5, the
authentication server 330 stores the token and associated
biometric data for future use. For example, the authentica-
tion server 330 can send the token to a card issuer for storage

Jul. 25, 2024

in a vault for future use, which could allow for faster
transactions. An example of future use (i.e. second financial
transaction) is described below with reference to FIG. 5.

[0088] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as sending the request for EMV data along with
the card data (i.e. step 4-1), receiving and processing the
EMYV data to authenticate the EMV data using the terminal
key (i.e. step 4-2), and generating and transmitting the
biometric block (i.e. step 4-3). As previously explained, this
can enhance security and flexibility for users.

[0089] FIG. 5 shows an example of processing a second
financial transaction using the token that has been stored
with the first financial transaction (see FIG. 4). A user selects
to pay with their token on file. At step 5-1, upon determining
that the token is available, the card data does not need to be
entered again, and EMV authentication steps can be skipped
as well. In this manner, one-touch checkout is enabled.

[0090] Authentication involves the user holding their fin-
gerprint against the client device 130. The client device 130
obtains biometric data and sends the same to the authenti-
cation server 330. At step 5-2, the authentication server 330
receives the biometric data and generates a biometric block
based on the biometric data. Furthermore, upon matching
data (e.g. user login data and biometric data), the token is
released from the vault and the authentication server 330
obtains the token. Then, the authentication server 330 sends
the biometric block along with the token and a request for
the second financial transaction.

[0091] The token is used by networks to request payment
with issuers and to determine who authorized payment. The
second financial transaction is authorized by the financial
gateway 530 if the biometric block is authentic in which case
confirmation of authorization is sent to the authentication
server 330. At step 5-3, upon receiving the confirmation of
authorization, the authentication server 330 relays the same
to the client device 130. At this point, the client device 130
can provide an indication to the user that payment is
complete.

[0092] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as obtaining the token upon matching data, and
generating and sending the biometric block along with the
token (i.e. step 5-2). As previously explained, this can
enhance security and flexibility for users.

[0093] Insome implementations, the authentication server
330 matches the biometric data of the second financial
transaction to the biometric data of the first financial trans-
action. For example, the authentication server 330 can
generate a first security key based on the biometric data of
the first financial transaction, generate a second security key
based on the biometric data of the second financial transac-
tion, and compare the first security key to the second
security key. Other implementations are possible.

[0094] It is noted that some examples described herein,
including FIG. 4 and FIG. 5, refer to a “first financial
transaction” and a “second financial transaction”. In particu-
lar, a token can be stored with the “first financial transaction”
and subsequently used with the “second financial transac-
tion”, such that the “second financial transaction” occurs
after the “first financial transaction”. However, it is to be
understood that this does not preclude other financial trans-
actions occurring at other times, for example before the “first

US 2024/0249285 Al

financial transaction” and/or in-between the “first financial
transaction” and the “second financial transaction”.

[0095] FIG. 6 shows an example of processing a first
financial transaction using manual entry of card data and
authentication using a PIN, with a token storage process. A
user selects to pay and enters card data, which is sent to the
authentication server 330. At step 6-1, the authentication
server 330 sends a request for EMV data along with the card
data to the financial gateway 530 (e.g. VISA/MasterCard),
which responds by generating EMV data and returning the
same to the authentication server 330. At step 6-2, after the
authentication server 330 receives the EMV data from the
financial gateway 530, the authentication server 330 pro-
cesses and authenticates the EMV data against a kernel using
a terminal key. Furthermore, the authentication server 330
sends a request for authentication to the client device 130.
The user can respond by entering a PIN, for example using
a touchscreen of the client device 130, and the PIN is then
sent to the authentication server 330.

[0096] At step 6-3, the authentication server 330 captures
and isolates the PIN, generates a PIN block based on the
PIN, and sends the PIN block along with a request for the
first financial transaction. In response, the card network
generates and issues a token based on the card data. The
token is used by networks to request payment with issuers
and to determine who authorized payment. The first financial
transaction is authorized by the financial gateway 530 if the
PIN block is authentic in which case confirmation of autho-
rization and the token are sent to the authentication server
330.

[0097] At step 6-4, upon receiving the confirmation of
authorization and the token, the authentication server 330
relays the same to the client device 130. At this point, the
client device 130 can provide an indication to the user that
payment is complete. If the user agrees to store the token for
future use, then a response is sent to the authentication
server 330. Upon receipt of the response, at step 6-5, the
authentication server 330 stores the token and associated
biometric data for future use. For example, the authentica-
tion server 330 can send the token to a card issuer for storage
in a vault for future use, which could allow for faster
transactions. An example of future use (i.e. second financial
transaction) is described below with reference to FIG. 7.
[0098] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as sending the request for EMV data along with
the card data (i.e. step 6-1), receiving and processing the
EMYV data to authenticate the EMV data using the terminal
key (i.e. step 6-2), and generating and transmitting the PIN
block (i.e. step 6-3). As previously explained, this can
enhance security and flexibility for users.

[0099] FIG. 7 shows an example of processing a second
financial transaction using the token that has been stored
with the first financial transaction (see FIG. 6). A user selects
to pay with their token on file. At step 7-1, upon determining
that the token is available, the card data does not need to be
entered again, and EMV authentication steps can be skipped
as well.

[0100] Authentication involves the user entering a PIN,
for example using a touchscreen of the client device 130,
and the PIN is then sent to the authentication server 330. At
step 7-2, the authentication server 330 captures and isolates
the PIN, and generates a PIN block based on the PIN.
Furthermore, upon matching data (e.g. user login data and

Jul. 25, 2024

PIN block), the token is released from the vault and the
authentication server 330 obtains the token. Then, the
authentication server 330 sends the PIN block along with the
token and a request for the second financial transaction.
[0101] The token is used by networks to request payment
with issuers and to determine who authorized payment. The
second financial transaction is authorized by the financial
gateway 530 if the PIN block is authentic in which case
confirmation of authorization is sent to the authentication
server 330. At step 7-3, upon receiving the confirmation of
authorization, the authentication server 330 relays the same
to the client device 130. At this point, the client device 130
can provide an indication to the user that payment is
complete.

[0102] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as obtaining the token upon matching data, and
generating and sending the PIN block along with the token
(i.e. step 7-2). As previously explained, this can enhance
security and flexibility for users.

[0103] Insome implementations, the authentication server
330 matches at least a portion of the PIN block of the second
financial transaction to the token from the first financial
transaction. This is because the token includes a pathway to
build the PIN block from the token’s cryptogram. Note that
the PIN block of the second financial transaction is not
normally identical to the PIN block of the first financial
transaction, even though they may share some identical data
such as the PIN. This is because there is some dynamic
components in the PIN block, such as an application trans-
action counter, and the sequencing information can differ.
Other implementations are possible.

[0104] FIG. 8 shows an example of processing a first
financial transaction using web-based NFC entry of card
data and authentication using a PIN, with a token storage
process. A financial transaction is initiated by a user with a
web-based NFC/PIN online checkout. The user selects to
pay and initiates a web-based NFC payment via web
browser by holding their card against their client device 130,
which is NFC-enabled. Information for the financial trans-
action (e.g. card data and purchase price) is then provided to
the authentication server 330. Upon receiving that informa-
tion, at step 8-1 the authentication server 330 authenticates
the card or wallet against a kernel. With the web-based NFC
entry of card data, EMV authentication steps can be skipped.
Furthermore, the authentication server 330 sends a request
for authentication to the client device 130. The user can
respond by entering a PIN, for example using a touchscreen
of the client device 130, and the PIN is then sent to the
authentication server 330.

[0105] At step 8-2, the authentication server 330 captures
and isolates the PIN, generates a PIN block based on the
PIN, and sends the PIN block along with a request for the
first financial transaction. In response, the card network
generates and issues a token based on the card data. The
token is used by networks to request payment with issuers
and to determine who authorized payment. The first financial
transaction is authorized by the financial gateway 530 if the
PIN block is authentic in which case confirmation of autho-
rization and the token are sent to the authentication server
330.

[0106] At step 8-3, upon receiving the confirmation of
authorization and the token, the authentication server 330
relays the same to the client device 130. At this point, the

US 2024/0249285 Al

client device 130 can provide an indication to the user that
payment is complete. If the user agrees to store the token for
future use, then a response is sent to the authentication
server 330. Upon receipt of the response, at step 8-4, the
authentication server 330 stores the token and associated
biometric data for future use. For example, the authentica-
tion server 330 can send the token to a card issuer for storage
in a vault for future use, which could allow for faster
transactions. An example of future use (i.e. second financial
transaction) is described below with reference to FIG. 9.
[0107] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as authenticating the card or wallet against the
kernel (i.e. step 8-1) and generating and transmitting the PIN
block (i.e. step 8-2). As previously explained, this can
enhance security and flexibility for users.

[0108] FIG. 9 shows an example of processing a second
financial transaction using the token that has been stored
with the first financial transaction (see FIG. 8). A user selects
to pay with their token on file. At step 9-1, upon determining
that the token is available, the web-based NFC entry of card
data does not need to be repeated, and EMV authentication
steps can be skipped as well.

[0109] Authentication involves the user entering a PIN,
for example using a touchscreen of the client device 130,
and the PIN is then sent to the authentication server 330. At
step 9-2, the authentication server 330 captures and isolates
the PIN, and generates a PIN block based on the PIN.
Furthermore, upon matching data (e.g. user login data and
PIN block), the token is released from the vault and the
authentication server 330 obtains the token. Then, the
authentication server 330 sends the PIN block along with the
token and a request for the second financial transaction.
[0110] The token is used by networks to request payment
with issuers and to determine who authorized payment. The
second financial transaction is authorized by the financial
gateway 530 if the PIN block is authentic in which case
confirmation of authorization is sent to the authentication
server 330. At step 9-3, upon receiving the confirmation of
authorization, the authentication server 330 relays the same
to the client device 130. At this point, the client device 130
can provide an indication to the user that payment is
complete.

[0111] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as obtaining the token upon matching data, and
generating and sending the PIN block along with the token
(i.e. step 9-2). As previously explained, this can enhance
security and flexibility for users.

[0112] In some implementations, the authentication server
330 matches at least a portion of the PIN block of the second
financial transaction to the token from the first financial
transaction. This is because the token includes a pathway to
build the PIN block from the token’s cryptogram. Note that
the PIN block of the second financial transaction is not
normally identical to the PIN block of the first financial
transaction, even though they may share some identical data
such as the PIN. This is because there is some dynamic
components in the PIN block, such as an application trans-
action counter, and the sequencing information can differ.
Other implementations are possible.

[0113] FIG. 10 shows an example of processing a financial
transaction using a web-based NFC entry of card data and
authentication using a PIN. A financial transaction is initi-

Jul. 25, 2024

ated by a user entering a charge into their client device 130,
and then holding a card against the client device 130, which
is NFC-enabled. Information for the financial transaction
(e.g. card data and purchase price) is then provided to the
authentication server 330. Upon receiving that information,
at step 10-1 the authentication server 330 authenticates the
card or wallet against a kernel.

[0114] At step 10-2, the authentication server 330 deter-
mines whether a PIN is required for the financial transaction.
A PIN may be required depending on some criteria, for
example the purchase price exceeding a given threshold
such as $100 for example. If the authentication server 330
determines that a PIN is not required, then a payment request
is sent to the financial gateway 530. However, if the authen-
tication server 330 determines that a PIN is required, then a
request is sent to the client device 130, and the user can
respond by entering a PIN, for example using a touchscreen
of the client device 130, and the PIN is then sent to the
authentication server 330.

[0115] At step 10-3, the authentication server 330 captures
and isolates the PIN, generates a PIN block based on the PIN
and sends the PIN block to the financial gateway 530 (e.g.
Gateway, processor, card network) along with a payment
request. The financial transaction is authorized by the finan-
cial gateway 530 if the PIN block is authentic. After the
payment request has been processed by the financial gate-
way 530, at step 3-4 the authentication server 330 receives
a result of the payment request and relays that result to the
client device 130. In this case, the result of the payment
request is a confirmation of authorization, and hence the
client device 130 can provide an indication to the user that
payment is complete.

[0116] Notably, the client device 130 does not need to
perform the authentication steps by the authentication server
330, such as authenticating the card or wallet against the
kernel (i.e. step 10-1) and generating and transmitting the
PIN block (i.e. step 10-3). As previously explained, this can
enhance security and flexibility for users.

[0117] FIG. 10 is similar to FIG. 3. However, while FIG.
3 uses a web NFC framework via an HTML interface, FIG.
10 is based on a hardware client device such as a smartphone
for example.

Terminal Key Injection

[0118] As explained above with reference to FIG. 1, a
terminal key can be generated and remotely “injected” into
a financial transaction system for storage on an authentica-
tion server. With reference to FIG. 11, shown is a flowchart
of' a method for remote key injection. It is to be understood
that FIG. 11 is very specific and is provided merely for
illustrative purposes, and that other embodiments are pos-
sible and within the scope of this disclosure.

[0119] By way of overview, this method involves an
authentication server 330 receiving a key from a key injec-
tion appliance, and storing the key in a key-box. The key 20
can later be used for authentication purposes, for example
when generating a PIN block for a financial transaction for
example. Details of the method are provided below.
[0120] At step 11-1, the authentication server 330 receives
an MID (Merchant ID) and a TID (Transaction ID). At step
11-2, the authentication server 330 confirms merchant on-
boarding status.

[0121] At step 11-3, the authentication server 330 requests
a terminal key from a key injection appliance API (Appli-

US 2024/0249285 Al

cation Program Interface). The terminal key is assigned
based on the MID and the TID. At step 11-4, the authenti-
cation server 330 receives the terminal key from the key
injection appliance API and stores it within a key-box of the
authentication server 330. The terminal key is a public
security key, which is hidden within a database.

[0122] At step 11-5, a merchant or consumer initiates a
payment process, examples of which have been described
above. At step 11-6, the authentication server 330 performs
payment and authenticates with the terminal key across the
merchant’s acceptance points or devices. The terminal key is
associated with the transaction and can be used with many
client devices. This enables one-to-many use (i.e. terminal
key can be used with multiple client devices of the mer-
chant) rather than one-to-one use (i.e. terminal key can be
used with only one client device of the merchant). At step
11-7, the authentication server 330 completes the transaction
with a response sent back to devices and apps.

[0123] Some implementations enable a one to many asso-
ciation for merchant keys to connected devices and apps.
The merchant can have one key assigned to them but can
have an unlimited number of applications and devices
connected to them each passing payments via the same
terminal which houses the merchant’s key. This technology
is an agnostic platform that can integrate with any gateway
Of Processor.

Example Software Architecture

[0124] With reference to FIG. 12, shown is a block dia-
gram of example software architecture for an authentication
server, which is referred to as “Hector”. It is to be under-
stood that FIG. 12 is very specific and is provided merely for
illustrative purposes, and that other embodiments are pos-
sible and within the scope of this disclosure.

[0125] Hector is a message processing engine. Hector has
a set of messages definitions and a set of predefined pro-
cessing definitions. Once this configuration is defined, Hec-
tor can accept incoming messages from a valid source and
then process the message to achieve a result. In some
implementations, Hector supports the following processing
methods as a minimum:

[0126] Database Queries
[0127] Internal Processing
[0128] Transactions

Software Development Environment

[0129] In some implementations, Hector is developed
using the C++ Language. In some implementations, the
development of Hector makes use of the QT APIL, as this
allows for platform independent development. This means
that hector can be deployed in either Windows, Linux or IOS
environments.

Database Development Environment

[0130] In some implementations, Hector makes use of an
MS SQL database for data 10 storage and data processing.
In some implementations, the Database for Hector is MS
SQL Server 2018.

Software Architecture

[0131] FIG. 12 gives an overview of Hector’s software
architecture 1200. In some implementations, as Hector func-
tions primarily as a message processing engine, its archi-

Jul. 25, 2024

tecture 1200 is designed to facilitate this primary function.
Therefore, in some implementations, Hector has one com-
munication interface for accepting messages from external
applications and a second which it uses to monitor the
system. The following subsections will provide an overview
of the function associated with each element in the archi-
tecture.

Software Architecture: Communications Server

[0132] In some implementations, the communication
server 1202 is responsible for monitoring communication
requests and monitoring for the loss of connection. In some
implementations, when a connection request is received, and
the communication channel has been secured the server will
create a connection thread to handle all subsequent commu-
nications. In some implementations, the same thread is never
used twice (e.g. each thread in every process is unique and
single use only with a different IP and handshake authenti-
cation).

[0133] The connection thread 1203 processes the mes-
sages received from the external app 1201. For this thread to
perform its functionality, the Data Configuration Singleton
1204 has to have been created. On receipt of a message the
connection thread 1203 will validate the message structure
against the message schema 1205, the thread will send a
response to the external app 1201 on the validity of the
message. Once the message is determined to be valid, the
connection thread 1203 will determine how the message is
to be processed, passing the processing of the message to the
appropriate processing thread. At this point, it will wait for
a processing result which it will then return to the external
app 1201.

[0134] The Database Processing Thread 1206 is created by
the Connection Thread 1203 once a message has been
identified as being a database processing message. This
thread will take the message data and use it to create a SQL
query for the message as defined in the Database Processing
Definition Configuration Data. After sending the query to
the database the thread will wait from the query result. On
receipt of the query result, the thread will build a message
result and return it to the connection thread 1203 before
closing.

[0135] The Hector database 1207 is configured with all the
tables used by Hector to 20 facilitate data requests from the
external application 1201. Access to the database 1207 is
only through sending valid SQL Queries. Any invalid query
will not return valid data to the data processing thread 1206.
[0136] The Internal Processing Thread 1208 is created by
the Connection Thread 1203 once a message has been
identified as being an internal processing message. This
thread 1208 will take the message data and build a result
based on the internal processing requested. The types of
internal functions that will be available through this thread
are date, time, etc. Once the thread has built and sent the
result to the connection thread, this thread will exit.

[0137] The Transaction Processing Thread 1209 is created
by the Connection Thread 1203 once a message has been
identified as being a transaction processing message. This
thread will take the message data and initiate the Transaction
Plugin 1210 which will perform all the steps associated with
performing a transaction. The thread will wait for a result
from the plugin, the result will then be returned to the
Connection Thread 1203 before this thread exits.

US 2024/0249285 Al

[0138] The Transaction Plugin 1210 is intended to handle
all the transaction processing functionality for the external
application 1201. A plugin is used to isolating the transaction
processing from the core functionality of hector, as this is an
ever changing entity tied to how financial institutes update
and revise their method of transaction processing.

[0139] The Transaction Database 1211 is configured with
all the tables used by Hector to do transaction processing. It
is isolated from the Hector Database 1207 for security
reasons, but it is accessed in the same way.

[0140] Gateway Widget(s) 1212 are used to access a
specific gateway provider 1220. Each one can be customized
based on the specific interface details for the provider. This
method is transparent to the user and the external application
has the Transaction Plugin 1210 formats the data as appro-
priate for the provider.

[0141] The External Processing Thread 1213 is created by
the Connection Thread 1203 once a message has been
identified as being an external processing message. This
thread will take the message data and determine the method
of external processing as appropriate involving an external
program/script 1222. It is expected that external processing
will support php scripts, perl scripts, javascript and com-
mand line executables. Once the external processing is
determined and called, the thread will wait for a result for the
external processing. On receipt of the result the thread will
generate a result and return it to the connection thread,
before exiting.

Software Architecture: Data Configuration Singleton

[0142] There is a singleton class 1204 that holds all the
static configuration data for Hector, it is loaded into memory
when hector starts and can be accessed by any Hector thread
as appropriate.

[0143] The Message Schema 1205 is an XML schema file
that contains the definition of all messages used by hector.
The schema itself is validated for correctness at time of
loading into memory.

[0144] The Message Processing Definition 1214 is an
XML Configuration file that is used to determine how a
received message is to the processed and what data within
the message is used for processing.

[0145] The Transaction Processing Definition 1215 is an
XML Configuration file that is used to determine what
internal data is used by a gateway provider and how it is to
be structured for sending a message through to the gateway.
[0146] The Database Processing Definition is an XML
configuration file that is used 15 to translate incoming
messages to a SQL query and then SQL responses back into
a response message.

Software Architecture: Plugin Data Configuration Interface.

[0147] The Data Configuration singleton 1204 cannot be
accessed directly by a plugin. Thus, for all the plugin access
to the data, a plugin interface class 1221 is generated from
the Data Configuration Singleton 1204 allowing a hector
plugin indirect access to the configuration data.

Software Architecture: Monitor Communications Server

[0148] The monitoring communication thread 1216 is
used to allow connections from the external app and internal
threads for the purposes of monitoring and reporting on 25

Jul. 25, 2024

the health and security of the system. On connection the
server will create a Monitor Connection Thread.

[0149] The Monitor Connection Thread 1217, once cre-
ated, will check the message received for validity before
creating a Monitoring Thread to process the message.
[0150] The Monitoring Thread 1218 will process the mes-
sage received and perform the appropriate action associated
with the message. This thread will form the bases of the
attestation monitoring for hector and the external app.
[0151] The Monitoring Database 1219 will record all the
data associated with the monitoring of hector and the
external app. The data within the database can be used to
generate the attestation reporting guidelines.

Example Sequence Drawings

[0152] With reference to FIG. 13 through FIG. 22, shown
are sequence drawings showing example signaling and
processing for a financial transaction system. These
sequence drawings show interaction between a Felix SDK
(client device) and Hector (authentication server) as
described in further detail below. It is to be understood that
FIG. 13 through FIG. 22 are very specific and are provided
merely for illustrative purposes, and that other embodiments
are possible and within the scope of this disclosure.

Establish Connection

[0153] The following describes in detail the sequence
represented in FIG. 13:

[0154] Step 13-1: The Felix Application will request a
connection to Hector

[0155] Step 13-2: Hector will create a connection thread

[0156] Step 13-3: Hector will return a secure handshake
response to the Felix Application

[0157] Step 13-4: The Felix Application will confirm
this result (Handshake Result is True) with Hector
Assuming the Handshake Result is True:

[0158] Steps 13-5 & 13-6: Hector will create a secure
connection with the Felix Application

[0159] Steps 13-7 & 13-8: The Felix Application will
respond with an ApplicationiD

[0160] If the Handshake Result is False:

[0161] Step 13-9: The Hector connection thread will
close the connection with Hector

[0162] Step 13-10: Hector will close the connection
with the Felix Application

[0163] Step 13-11: If the Handshake Result was True
above, the Hector connection thread will return the
application]DResult (the session key) to the Felix
Application and the connection is established User
Login

[0164] The following describes in detail the sequence
represented in FIG. 14:

[0165] Step 14-1: The Felix Application will send user
login details via Hector to establish a Hector connec-
tion thread

[0166] Step 14-2: The Hector connection thread will
validate the message, returning three possible out-
comes—Generic response of False, user login response
of false or user login response of True

[0167] Step 14-3: If the response is a generic response
of False, a general error message of message structure
validation failed will be returned via the Felix Appli-
cation and this process ends

US 2024/0249285 Al

[0168] Step 14-4: If the response is user login response
is False, an error message of message content valida-
tion failed will be returned via the Felix Application
and this process ends

[0169] Step 14-5: If the response is user login response
is True, a success message will be returned via the Felix
Application and the process continues

[0170] Step 14-6: The Hector connection thread will
now create a processing thread with the Hector Data-
base Processing Thread

[0171] Step 14-7: Hector Database Processing Thread
will build the Database query (DBQuery)

[0172] Step 14-8: Hector Database Processing Thread
will send the DBQuery to the Database with User
Login details

[0173] Steps 14-9 & 14-10: The Database will process
the query and return the response to the Hector Data-
base Processing Thread

[0174] Step 14-11: Hector Database Processing Thread
will return the login result to the Hector Connection
Thread

[0175] Step 14-12: The Hector Connection Thread will
return this login result to the Felix Application via
Hector

[0176] Step 14-13: The Hector Connection Thread will
generate a session key for the database query

[0177] Step 14-14: The Hector Connection Thread will
build the database query

[0178] Step 14-15: The Hector Connection Thread will
send the database query to the Database with the
session key

[0179] Steps 14-16 & 14-17: The Database will process
the query and send the database query response to the
Hector Connection Thread

[0180] Step 14-18: The Hector Connection Thread will
send the Session Key Details back to Hector

Initiate Transaction

[0181] The following describes in detail the sequence
represented in FIG. 15:

[0182] Step 15-1: The Felix Application will send a
request to initiate a transaction via Hector to the Hector
Connection Thread

[0183] Steps 15-2 & 15-3: The Hector Connection
Thread will validate the message and send a response
back to the Felix Application via Hector

[0184] Step 15-4: The Hector Connection Thread will
then create a processing thread for the transaction by
calling the Transaction Processing Thread

[0185] Step 15-5: The Transaction Processing Thread
will load the plugin for the transaction

[0186] Step 15-6: The Transaction Processing Thread
will then initiate the transaction with the Hector Trans-
action Plugin

[0187] Steps 15-7 & 15-8: The Hector Transaction
Plugin will initialize the transaction and will send a
response to the Transaction Processing Thread

[0188] Steps 15-9 & 15-10 The Transaction Processing
Thread will return this result to the Hector Connection
Thread, which will in turn send this response to the
Felix Application via Hector

Jul. 25, 2024

Tag Details

[0189] The following describes in detail the sequence
represented in FIG. 16:

[0190] Step 16-1: The Felix Application will send trans-
action details to the Hector Connection Thread via
Hector

[0191] Step 16-2: The Hector Connection Thread will
validate the message

[0192] Step 16-3: The Hector Connection Thread will
send the response to the Felix Application via Hector

[0193] Step 16-4: The Hector Connection Thread will
create a processing thread via the Transaction Process-
ing Thread

[0194] Steps 16-5 & 16-6: The Transaction Processing
Thread will load the transaction plugin module and
send transaction tag details

[0195] Step 16-7: The Hector Transaction Plugin will
validate the transaction key

[0196] If the transaction key is valid:

[0197] Step 16-8: The Hector Transaction Plugin will
store the transaction data

[0198] Step 16-9: The Hector Transaction Plugin will
return the transaction tag details result as True/Ac-
cepted

[0199] If the transaction key is not valid:

[0200] Step 16-10: The Hector Transaction Plugin will
return the transaction tag details result as False/Re-
jected

[0201] Step 16-11: The Hector Processing Thread will
return the transaction tag details result to the Hector
Connection Thread

[0202] Step 16-12: The Hector Connection Thread will
then return the transaction tag details result to the Felix
Application via Hector

PIN Details

[0203] The following describes in detail the sequence
represented in FIG. 17:

[0204] Step 17-1: The Felix Application will send trans-
action details to the Hector Connection Thread via
Hector

[0205] Step 17-2: The Hector Connection Thread will
validate the message

[0206] Step 17-3: The Hector Connection Thread will
send the response to the Felix Application via Hector

[0207] Step 17-4: The Hector Connection Thread will
create a processing thread via the Transaction Process-
ing Thread

[0208] Steps 17-5 & 17-6: The Transaction Processing
Thread will load the transaction plugin module and
send transaction tag details

[0209] Step 17-7: The Hector Transaction Plugin will
validate the transaction key If the transaction key is
valid:

[0210] Step 17-8: The Hector Transaction Plugin will
store the transaction data

[0211] Step 17-9: The Hector Transaction Plugin will
return the transaction tag details result as True/Ac-
cepted to the Hector Processing Thread

[0212] Step 17-10: The Hector Processing Thread will
pass this response back to the Hector Connection
Thread

US 2024/0249285 Al

[0213] Step 17-11: The Hector Connection Thread will
pass this response back to the Felix Application via
Hector

[0214] If the transaction key is not valid:

[0215] Step 17-12: The Hector Transaction Plugin will
return the transaction tag details result as False/Re-
jected

[0216] Step 17-13: The Hector Processing Thread will
return the transaction tag details result to the Hector
Connection Thread

[0217] Step 17-14: The Hector Connection Thread will
then return the transaction tag details result to the Felix
Application via Hector

Signature Details

[0218] The following describes in detail the sequence
represented in FIG. 18:

[0219] Step 18-1: The Felix Application will send trans-
action sign details to the Hector Connection Thread via
Hector

[0220] Step 18-2: The Hector Connection Thread will
validate the message

[0221] Step 18-3: The Hector Connection Thread will
send the transaction sign response to the Felix Appli-
cation via Hector

[0222] Step 18-4: The Hector Connection Thread will
create a processing thread via the Transaction Process-
ing Thread

[0223] Step 18-5 & 18-6: The Transaction Processing
Thread will load the transaction plugin module and
send transaction tag details

[0224] Step 18-7: The Hector Transaction Plugin will
validate the transaction key

[0225] If the transaction key is valid:

[0226] Step 18-8: The Hector Transaction Plugin will
store the transaction data

[0227] Step 18-9: The Hector Transaction Plugin will
return the transaction sign details result as True/Ac-
cepted

[0228] If the transaction key is not valid:

[0229] Step 18-10: The Hector Transaction Plugin will
return the transaction sign details result as False/Re-
jected

[0230] Step 18-11: The Hector Processing Thread will
return the transaction sign details result to the Hector
Connection Thread

[0231] Step 18-12: The Hector Connection Thread will
then return the transaction sign details result to the
Felix Application via Hector

Process

[0232] The following describes in detail the sequence
represented in FIG. 19:

[0233] Step 19-1: The Felix Application will send a
process transaction request to the Hector Connection
Thread via Hector

[0234] Step 19-2: The Hector Connection Thread will
validate the message

[0235] Step 19-3: The Hector Connection Thread will
send the process transaction response to the Felix
Application via Hector

Jul. 25, 2024

[0236] Step 19-4: The Hector Connection Thread will
create a processing thread (type transaction) via the
Transaction Processing Thread

[0237] Steps 19-5 & 19-6: The Transaction Processing
Thread will load the transaction plugin module and
send a process transaction request to the Hector Trans-
action Plugin

[0238] Step 19-7: The Hector Transaction Plugin will
validate the transaction key

[0239] Step 19-8: If the transaction key is invalid the
Hector Transaction Plugin will send a result of False/
Rejected to the Hector Processing Thread

[0240] If the transaction key is valid:

[0241] Step 19-9: The Hector Transaction Plugin will
check the process flag If the flag is set to Cancel
Transaction

[0242] Steps 19-10 & 19-11: The Hector Transaction
Plugin will cancel the transaction send the response
back to the Transaction Processing Thread

[0243] If the flag is set to Process Transaction the Hector
Transaction Plugin will check EMV Processing (step 19-12)
and call one of three processes:

[0244] Step 19-13: Process as Card Not Present (see
FIG. 20)
[0245] Step 19-14: Process as Card Present—Signature

(see FIG. 21)

[0246] Step 19-15: Process ad Card Present—EMYV (see

FIG. 22) Card Not Present
[0247] The following describes in detail the sequence
represented in FIG. 20:

[0248] Step 20-1: The Hector Transaction Plugin will
receive a request to process a transaction as Card Not
Present

[0249] Step 20-2: The Hector Transaction Plugin will
build the transaction query

[0250] Step 20-3: The Hector Transaction Plugin will
send the dbquery (type transaction) to the Database

[0251] Step 20-4 & 20-5: The Database will process the
query and will return the query result

[0252] Step 20-6: The Hector Transaction Plugin will
then process the query result

[0253] Step 20-7: The Hector Transaction Plugin will
determine the Gateway Provider

[0254] Step 20-8: The Hector Transaction Plugin will
build the transaction data

[0255] Step 20-9: The Hector Transaction Plugin will
then send the transaction data to the Gateway Widget

[0256] Step 20-10: The Gateway Widget will send a
request to process the transaction data to the appropri-
ate Gateway

[0257] Step 20-11: The Gateway will process the trans-
action and send the result to the Gateway Widget

[0258] Step 20-12: The Gateway Widget will send this
result to the Hector Transaction Plugin

[0259] Step 20-13: The Hector Transaction Plugin will
process this result

[0260] Step 20-14: The Hector Transaction Plugin will
send a request to the Database to process the query

[0261] Steps 20-15 & 20-16: The Database will send the
result of the query back to the Hector Transaction
Plugin

[0262] Step 20-17: The Hector Transaction Plugin will
then send this result back to Transaction Processing
Thread

US 2024/0249285 Al

[0263] Step 20-18: The Transaction Processing Thread
will then send this result back to the Hector Connection
Thread

[0264] Step 20-19: The Hector Connection Thread will
send the result of processing with Card Not Present
back to the Felix Application

Signature

[0265] The following describes in detail the sequence
represented in FIG. 21:

[0266] Step 21-1: The Hector Transaction Plugin will
receive a request to process a transaction as Card
Present—Signature

[0267] Step 21-2: The Hector Transaction Plugin will
check if signature data is available

[0268] If signature data is available:

[0269] Steps 21-3 & 21-4: The Hector Transaction
Plugin will send the dbquery (type transaction) to the
Database

[0270] Steps 21-5 & 21-6: The Database will process
the query and will return the query result

[0271] Step 21-7: The Hector Transaction Plugin will
then process the query result

[0272] Step 21-8: The Hector Transaction Plugin will
determine the Gateway Provider

[0273] Step 21-9: The Hector Transaction Plugin will
build the transaction data

[0274] Step 21-10: The Hector Transaction Plugin will
then send the transaction data to the Gateway Widget

[0275] Step 21-11: The Gateway Widget will send a
request to process the transaction data to the appropri-
ate Gateway

[0276] Step 21-12: The Gateway will process the trans-
action and send the result to the Gateway Widget

[0277] Step 21-13: The Gateway Widget will send this
result to the Hector Transaction Plugin

[0278] Step 21-14: The Hector Transaction Plugin will
process this result

[0279] Step 21-15: The Hector Transaction Plugin will
send a request to the Database to process the query

[0280] Steps 21-16 & 21-17: The Database will process
the query and will send the result of the query back to
the Hector Transaction Plugin If signature data is not
available:

[0281] Step 21-18: The Hector Transaction Plugin will
process Transaction as cancelled

[0282] Step 21-19: The Hector Transaction Plugin will
then send this result back to the Transaction Processing
Thread

[0283] Step 21-20: The Transaction Processing Thread
will send the result of processing to the Hector Con-
nection Thread

[0284] Step 21-21: The Hector Connection Thread will
send this result back to the calling Felix Application

EMV & PIN

[0285] The following describes in detail the sequence
represented in FIG. 22:

[0286] Step 22-1: The Hector Transaction Plugin will
receive a request to process a transaction as Card
Present—EMV

[0287] Step 22-2: The Hector Transaction Plugin will
check if tag data is available

Jul. 25, 2024

[0288] Step 22-3: The Hector Transaction Plugin will
check if PIN data is available
[0289] If PIN data is present:
[0290] Step 22-4: The Hector Transaction Plugin will
process the tag data
[0291] Step 22-5: The Hector Transaction Plugin will
build the transaction query
[0292] Step 22-6: The Hector Transaction Plugin will
send the dbquery (type transaction) to the Database
[0293] Steps 22-7 & 22-8: The Database will process
the query and will return the query result
[0294] Step 22-9: The Hector Transaction Plugin will
then process the query result
[0295] Step 22-10: The Hector Transaction Plugin will
determine the Gateway Provider
[0296] Step 22-11: The Hector Transaction Plugin will
build the transaction data details
[0297] Step 22-12: The Hector Transaction Plugin will
then send the transaction data to the Gateway Widget
[0298] Step 22-13: The Gateway Widget will send a
request to process the transaction data to the appropri-
ate Gateway
[0299] Step 22-14: The Gateway will process the trans-
action and send the result back to the Gateway Widget
[0300] Step 22-15: The Gateway Widget will send this
result to the Hector Transaction Plugin
[0301] Step 22-16: The Hector Transaction Plugin will
process this result
[0302] Step 22-17: The Hector Transaction Plugin will
send a request to the Database to finalise the transaction
[0303] Step 22-18 & 22-19: The Database will process
the query and will return the result of finalising the
transaction to the Hector Transaction Plugin
[0304] If PIN data is not present:
[0305] Step 22-20: The Hector Transaction Plugin will
call for processing as a Card Present & PIN transaction
[0306] If tag data is not available:
[0307] Step 22-21: The Hector Transaction Plugin will
process Transaction as cancelled
[0308] Step 22-22: The Hector Transaction Plugin will
then send this result back to the Transaction Processing
Thread
[0309] Step 22-23: The Transaction Processing Thread
will send the result of processing to the Hector Con-
nection Thread
[0310] Step 22-24: The Hector Connection Thread will
send this result back to the calling Felix Application

Additional Example Implementations

[0311] 29. A method for execution by a compression node,
comprising: receiving EMV (Europay, Mastercard and Visa)
data from a financial gateway; compressing the EMV data to
produce compressed EMV data; and transmitting the com-
pressed EMV data to an authentication server.

[0312] 30. The method of claim 29, wherein transmitting
the compressed EMV data comprises:

[0313] transmitting first compressed data used for
authentication before transmitting second compressed
data that is not used for authentication.

[0314] 31. The method of claim 30, wherein the first
compressed data comprises at least one of EMV card aid,
EMYV card track, and EMV dynamic data.

US 2024/0249285 Al

[0315] 32. The method of claim 30, comprising: determin-
ing an order for the compressed EMV data by prioritizing
the first compressed data ahead of the second compressed
data.

[0316] 33. A non-transitory computer readable medium
having recorded thereon statements and instructions that,
when executed by a processor of a compression node,
implement the method of claim 29.

[0317] 34. A compression node comprising means for
implementing the method of claim 29.

[0318] 35. A compression node comprising means for
implementing the method of any one of claim 29.

0319] 36. A compression node comprising:
p prising
[0320] a network adapter;
[0321] compression circuitry coupled to the network

adapter and configured to:

[0322] receive, from a financial gateway via the net-
work adapter, EMV (Europay, Mastercard and Visa)
data;

[0323] compress the EMV data to produce com-

pressed EMV data; and transmit, to an authentication
server via the network adapter, the compressed EMV
data.
[0324] 37. The compression node of claim 35, wherein the
compression circuitry is configured to transmit the com-
pressed EMV data by transmitting first compressed data
used for authentication before transmitting second com-
pressed data that is not used for authentication.
[0325] Numerous modifications and variations of the pres-
ent disclosure are possible in light of the above teachings. It
is therefore to be understood that within the scope of the
appended claims, the disclosure may be practised otherwise
than as specifically described herein.

What is claimed is:

1. A method for execution by an authentication server,
comprising:

(1) receiving, from a client device, information for a

financial transaction;

(ii) executing in a kernel-based environment at least one

authentication step based on the information; and

(iii) transmitting, to a financial gateway, a request for the

financial transaction.

2. The method of claim 1, wherein:

receiving information comprises receiving personal iden-

tification data; and

executing at least one authentication step comprises gen-

erating a personal identification block based on the
personal identification data and additional information,
and

transmitting the personal identification block to the finan-

cial gateway.

3. The method of claim 2, wherein the personal identifi-
cation data comprises a PIN (personal identification num-
ber), and the personal identification block comprises a PIN
block.

4. The method of claim 2, wherein the personal identifi-
cation data comprises biometric data, and the personal
identification block comprises a biometric block.

5. The method of claim 2, wherein the request for the
financial transaction and the personal identification block are
transmitted together in a single message.

6. The method of claim 2, wherein the additional infor-
mation for the personal identification block comprises a
terminal key.

Jul. 25, 2024

7. The method of claim 6, wherein:

receiving information further comprises receiving user

login details; and

the terminal key is retrieved from a database using the

user login details.

8. The method of claim 7, wherein the authentication
server is a first server and the database is stored on a second
server separate from the first server.

9. The method of claim 6, wherein the additional infor-
mation for the personal identification block further com-
prises a card certificate and sequencing information.

10. The method of claim 9, further comprising:

acquiring the card certificate from a card issuer and

generating the sequencing information.

11. The method of claim 6, wherein:

receiving information further comprises receiving card

data; and

executing at least one authentication step further com-

prises:

sending the card data to the financial gateway;

receiving EMV (Europay, Mastercard and Visa) data from

the financial gateway responsive to the card data; and
processing the EMV data and authenticating the EMV
data using the terminal key.

12. The method of claim 11, wherein receiving the EMV
data comprises receiving data that has been compressed by
an intermediate node.

13. The method of claim 11, comprising:

receiving, from the financial gateway, a token generated

by the financial gateway based on the card data; and
providing the token to a card issuer for storage in a vault
for future use.

14. The method of claim 2, wherein a token previously
generated based on card data is stored in a vault of a card
issuer, and wherein:

executing at least one authentication step further com-

prises matching current data for the transaction against
previously stored data, releasing and obtaining the
token from the vault, and transmitting the token to the
financial gateway.

15. The method of claim 14, wherein matching the current
data against the previously stored data comprises:

matching current user login data against previously stored

login data; and/or

matching the personal identification data against previ-

ously stored personal identification data.

16. The method of claim 14, wherein executing at least
one authentication step further comprises comparing the
personal identification block to the token.

17. The method of claim 15, wherein the request for the
financial transaction, the personal identification block, and
the token are all transmitted together in a single message.

18. The method of claim 1, wherein:

receiving information comprises receiving user login

details and card data; and

executing at least one authentication step comprises:

retrieving a terminal key from a database using the user
login details;

sending the card data to the financial gateway;

receiving EMV (Europay, Mastercard and Visa) data
from the financial gateway responsive to the card
data; and

processing and authenticating the EMV data using the
terminal key.

US 2024/0249285 Al

19. The method of claim 18, wherein receiving the EMV
data comprises receiving data that has been compressed by
an intermediate node.

20. The method of claim 1, further comprising:

receiving an encryption key from the client device; and

verifying, based on the encryption key, that the client
device may operate with the authentication server.

21. The method of claim 1, further comprising:

receiving, from the financial gateway, a result of the

financial transaction; and

transmitting, to the client device, the result of the financial

transaction.

22. The method of claim 1, wherein steps (i)-(iii) are
performed by an authentication server.

23. The method of claim 1, wherein steps (i)-(iii) are
implemented by a processor of a compression node, the
compression node comprising:

a network adapter; and

compression circuitry coupled to the network adapter and

configured to:

receive, from a financial gateway via the network
adapter, EMV (Europay, Mastercard and Visa) data;

compress the EMV data to produce compressed EMV
data; and

transmit, to an authentication server via the network
adapter, the compressed EMV data.

24. The method of claim 23, wherein the compression
circuitry is configured to transmit the compressed EMV data
by transmitting first compressed data used for authentication
before transmitting second compressed data that is not used
for authentication.

25. A non-transitory computer readable medium having
recorded thereon statements and instructions that, when
executed by a processor of an authentication server, perform
operations to:

receive, from a client device, information for a financial

transaction;

execute in a kernel-based environment at least one

authentication step based on the information; and
transmit, to a financial gateway, a request for the financial
transaction.

Jul. 25, 2024

26. An authentication server comprising:

a network adapter;

authentication circuitry coupled to the network adapter

and configured to:

receive, from a client device via the network adapter,
information for a financial transaction;

execute in a kernel-based environment at least one
authentication step based on the information; and

transmit, to a financial gateway via the network adapter,
a request for the financial transaction.

27. The authentication server of claim 26, wherein the
authentication circuitry is configured to receive a PIN (per-
sonal identification number) from the client device via the
network adapter, generate a PIN block based on the PIN and
additional information, and transmit the PIN block to the
financial gateway via the network adapter.

28. The authentication server of claim 26, wherein the
authentication circuitry is configured to receive biometric
data from the client device via the network adapter, generate
a biometric block based on the biometric data and additional
information, and transmit the biometric block to the finan-
cial gateway via the network adapter.

29. The authentication server of claim 26, wherein the
authentication circuitry is configured to:

receive, from the client device via the network adapter,

user login details and card data;

retrieve a terminal key from a database using the user

login details;

send, to the financial gateway via the network adapter, the

card data;

receive, from the financial gateway via the network

adapter, EMV (Europay, Mastercard and Visa) data
responsive to the card data; and

process and authenticate the EMV data using the terminal

key.

30. The authentication server of claim 26, wherein:

the authentication circuitry comprises a processor, and

the authentication server further comprises a non-transi-

tory computer readable medium having recorded
thereon statements and instructions that, when executed
by the processor, configures the processor as the
authentication circuitry.

#* #* #* #* #*

