a2 United States Patent

Swan et al.

US012045693B2

ao) Patent No.: US 12,045,693 B2

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

PACKAGING AND DEPLOYING
ALGORITHMS FOR FLEXIBLE MACHINE
LEARNING

Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

Inventors: Charles Drummond Swan, Seattle,
WA (US); Edo Liberty, New York, NY
(US); Steven Andrew Loeppky,
Seattle, WA (US); Stefano Stefani,
Issaquah, WA (US); Alexander
Johannes Smola, Sunnyvale, CA (US);
Swaminathan Sivasubramanian,
Sammamish, WA (US); Craig Wiley,
Redmond, WA (US); Richard Shawn
Bice, Sammamish, WA (US); Thomas
Albert Faulhaber, Jr., Seattle, WA
(US); Taylor Goodhart, Issaquah, WA

us)

Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 779 days.

Appl. No.: 16/001,548
Filed: Jun. 6, 2018

Prior Publication Data

US 2020/0311617 Al Oct. 1, 2020

Related U.S. Application Data

Provisional application No. 62/590,242, filed on Nov.
22, 2017.

Int. CL.
GO6N 20/00 (2019.01)
GO6F 9/455 (2018.01)

45) Date of Patent: Jul. 23, 2024
(52) US.CL
CPC GOG6N 20/00 (2019.01); GO6F 9/45558

(2013.01); GO6F 2009/45595 (2013.01)
(58) Field of Classification Search

CPC .o GOGF 9/455-45558; GOGF
2009/45562-45595
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
8,521,664 B1* 82013 Lin ..ccccoovvveieennns GO6N 5/04
706/12
9,378,044 Bl 6/2016 Gaurav et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 105378667 A 3/2016
EP 3182280 Al 6/2017
WO 2015/085475 Al 6/2015

OTHER PUBLICATIONS

Yash. Single versus Multiple Containers. May 17, 2016. StackOverflow.
https://stackoverflow.com/questions/37268790/single-versus-multiple-
containers (Year: 2016).*

(Continued)

Primary Examiner — Liang Y Li
(74) Attorney, Agent, or Firm — NICHOLSON DE VOS
WEBSTER & ELLIOTT LLP

(57) ABSTRACT

Techniques for using scoring algorithms utilizing containers
for flexible machine learning inference are described. In
some embodiments, a request to host a machine learning
(ML) model within a service provider network on behalf of
a user is received, the request identifying an endpoint to
perform scoring using the ML, model. An endpoint is ini-
tialized as a container running on a virtual machine based on
a container image and used to score data and return a result
of said scoring to a user device.

20 Claims, 13 Drawing Sheets

TODEL TRAINING SYSTER

2 INSTANGES 122

RUNTIME 125

L TRANING
CONTAINER(S) 130

]

| COMTAINER
[| DATASTORE 1 RUNTHSE 148
170

™ owtasToRe [V
75
D

MODEL HOSTING SYSTEM
40

VR INSTANCES 142

M. SCORING
CONTAINER(S} 150

TRAINING MODEL

EG,
“MODEL”

MODEL
PREDICTION
DATASTORE

METRICS DATA 180

STORE
= _

TRAINING

PROVIDER ¢

NETWORK 138 |

US 12,045,693 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

9,454,733 Bl 9/2016 Purpura et al.
11,080,435 B2* 82021 Bourhani GO6F 30/00

2008/0288622 Al 11/2008 Gordon et al.
2013/0144819 Al* 6/2013 Lin ..., GO6N 5/02
706/12
2014/0137111 Al* 5/2014 Dees, Jr. GO6F 9/45558
718/1

2014/0344194 Al 11/2014 Lee et al.

2015/0379072 Al* 12/2015 Diracccccoevvvennee GO6N 20/00
707/693

2016/0148115 Al
2016/0294870 Al
2016/0359622 Al
2017/0017903 Al
2017/0052807 Al
2017/0177413 Al
2017/0178027 Al*
2017/0213156 Al*
2017/0220949 Al
2017/0223190 Al
2017/0249141 Al
2018/0089592 Al 3/2018 Zeiler

2018/0095778 Al* 4/2018 Aydelott GO06Q 10/0637
2018/0300653 Al* 10/2018 Srinivasan HO4L 67/06
2019/0081955 Al* 3/2019 Chugtu HO4L 63/0236
2019/0114370 Al 4/2019 Cerino

5/2016 Sirosh et al.
10/2016 Banerjee et al.
12/2016 Bunch
1/2017 Gray et al.
2/2017 Kristiansson et al.
6/2017 Wisniewski et al.
6/2017 Duggan GO6F 9/543
7/2017 Hammond GOGF 18/2148
8/2017 Feng
8/2017 Mandel et al.
8/2017 Parees et al.

OTHER PUBLICATIONS

Stringfellow, Angela. Soap vs. Rest: Differences in Performance,
APIs, and More. Dzone. https://dzone.com/articles/differences-in-
performance-apis-amp-more (Year: 2017).*

Bezgachev, Vitaly. How to deploy Machine Learning models with
TensorFlow Parts 1-4. Nov. 12, 2017. TowardsDataScience.com.
<https://towardsdatascience.com/how-to-deploy-machine-learning-
models-with-tensorflow-part-1-make-your-model-ready-for-serving-
776al4ec3198> (Year: 2017).*

Cozannet, Samueal. GPUs & Kubernetes for Deep Learning Parts
1-3. Feb. 15, 2017. Medium.com. <https://medium.com/hackernoon/
gpus-kubernetes-for-deep-learning-part- 1-3-d8eebe0dd6fe> (Year:
2017).*

Blaise, “How to add a custom domain for a serverless-1.0.0 frame-
work defined/deployed API?”, StackOverflow, Sep. 20, 2016. <https://
stackoverflow.com/questions/39507004/how-to-add-a-custom-domain-
for-a-serverless- 1-0-0-framework-defined-deployed-api> (Year: 2016).*
Casalboni, Alex. How we use AWS for Machine Learning and Data
Collection. Cloud Academy. May 5, 2016. <https://cloudacademy.

com/webinars/cloud-academy-and-aws-how-we-use-aws-machine-
learning-and-data-collection-10/> <https://www.youtube.com/watch?
v=fdIDn3hr2 7k&t=2193s> (Year: 2016).*

Avrahman, Shif Ben. What is Rest—A Simple Explanation for
Beginners. Medium.com. <https://medium.com/extend/what-is-rest-
a-simple-explanation-for-beginners-part-1-introduction-
b4a07218740f> (Year: 2017).*

Communication pursuant to Article 94(3) EPC, EP App. No. 18815886.
9, Sep. 15, 2020, 11 pages.

International Preliminary Report on Patentability, PCT App. No.
PCT/US2018/061869, Jun. 4, 2020, 13 pages.

International Preliminary Report on Patentability, PCT App. No.
PCT/US2018/062223, Jun. 4, 2020, 8 pages.

Notice of Allowance, U.S. Appl. No. 15/901,751, Jul. 2, 2020, 9
pages.

International Search Report and Written Opinion issued in related
International Patent Application No. PCT/US2018/062223, mailed
Feb. 25, 2019, 11 pages.

International Search Report and Written Opinion for related Inter-
national Patent Application No. PCT/US2018/061869, mailed Mar.
11, 2019, 18 pages.

Final Office Action for related U.S. Appl. No. 15/901,751, mailed
Feb. 14, 2020, 27 pages.

Non-Final Office Action for related U.S. Appl. No. 15/901,751,
mailed Aug. 12, 2019, 30 pages.

Benedicic et al., “Shifter: Fast and consistent HPC workflows using
containers”, Containers in HPC Workshop, Jun. 29, 2017, 11 pages.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC,
EP App. No. 18815886.9, Mar. 23, 2021, 13 pages.

Anonymous, “Understand Images, Containers, and Storage Driv-
ers”, Docker Inc., XP055444825, Oct. 23, 2016, 22 pages.
Non-Final Office Action, U.S. Appl. No. 17/067,285, Mar. 16, 2022,
31 pages.

Preliminary Opinion, EP App. No. 18815886.9, Nov. 9, 2021, 16
pages.

Notice of Allowance, U.S. Appl. No. 17/067,285, Sep. 14, 2022, 9
pages.

Notice on the First Office Action, CN App. No. 2018800753549,
Mar. 31, 2023, 18 pages (8 pages of English Translation and 10
pages of Original Document).

Zhao, et al., “Performance of Container Networking Technologies”,
HotConNet ’17, Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems, Aug. 25, 2017, pp.
1-6.

Office Action, CN App. No. 201880075354.9, Jan. 19, 2024, 13
pages (6 pages of English Translation and 7 pages of Original
Document).

* cited by examiner

US 12,045,693 B2

Sheet 1 of 13

Jul. 23, 2024

U.S. Patent

L OI4

B61 MHOMLIN

HIAAONd

oar
OIS Viva
NOILOIA3Yd
300N

T
HOLS
Vivad SORL3N
ONINIVHL

oIt
HHOMLIN

J3A0N,

v ¥

TGT (SIHINIVINGD
ONIHOIS W

vl NLINAY ¥pl SO

271 SFONVISNI WA

ol
WILSAS ONILSOH T3A0NW

713
JHOLS Yiva
300N ONINIVYL

2%
OIS VIVE
H3INIVINGD

v
s

HOLVOIWAZ 1300NW TN

OET (SMHANIVINOD
ONINIVEL TN

¢L 3NIINNY ¥2l SO

ZZT SFONVLSNI WA

43
NZLSAS ONINIVHL 300N

097
048
ViV(Q ONINIVEL

0ol

US 12,045,693 B2

Sheet 2 of 13

Jul. 23, 2024

U.S. Patent

Z "OI4
-7 lal_\l N _
_ | A
I JY0LS {
| V1Ya SORLAN | N30 3sN
| ONINWVYL |
o T T T T Ty viva
S - ONINIVYL 30 NOILYOO1
4 NV FOVI ¥3NIVINOD
/ 30 NOILYOOT LINSNYL
/
I OrLaw
LI ALIVND 35018 -
VL) 9T
NG VIva oL ONILNOYA
JELIN ALITYNO V ININGZL3C " NOLLYTIVAZ _ 1Y ONINIVAL
OL Y1¥Q NOILYNTVAZ 3HL _ MMy - | VYO ONIM
NI GIONTIONI SLINST NMONY _ T
HLM V1VQ 300N AB G3NIZ3G Yy | (gl
300N ONINSYITINIHOVN '~/ \ =
3IHLH0 SLNdLNO IVANOD |———=Lt-———5
A 4] _ NOILYOO1
V1va (] ¥oLvMWA3 _\ G3NIZOZY ONISN V1Va vivd
ONINIVML IHLNIG3anToNT ~~] THGON T | ONINIVEL IAILTY ONINIYHL 40 NOILYIOT
7270 Sintuind” atulntube ONY 3OV Y3NIVINOD
VLYQ LN ONISN YAV (6™ 4 1O NGLLYO0T LINGNTIL
300N AG GINIZ30 T3AON '« /
ONINYYIT INIHOVW 3LND3X3 @ V1YG T3G0N -
AL JONVLSNI WA

\

O o
HIANIVINOD

&I

FH0LS Viva Viva YLVG ONINIVYEL ONISH ALY
T3A0N ONINIVEL HINIVINOD ONINIVEL 0Ll
300N
OLS T NI G3H048 FHOIS Viva
3000 34N03X3 HANIVINOD

US 12,045,693 B2

Sheet 3 of 13

Jul. 23, 2024

U.S. Patent

£ OI4
a7
IHOLS ,
YLVQ SOIMLIN
ONINIYEL DIYL3N ALIWND =0T
NI 30IA3C HISN
JOVINI HIANIVINOD
Q31ICON ¥
40 NOILYDOT LINSNYML
[:¥4)
ONZLNOY
_ FOVAI HINIVINOD G0N
ccl V 40 NOILYOOT LINSNYXL
- IONYLSNI WA
SIT
3HOLS YIVA

o

T2A0W ONINIVYL

Y1vQ13a0W ONINIVHL ONISO HIANIVINOD 39V
G3LVQdn LINSNVYL ONINIVEL TN Q3O HANIVINOD
NI G3¥0LS 3002 34n03X3 Q310N
ENENIE
HANIVINOD ONINIVHL @ —
TN TYNIDINO NI GIHOLS 01
33009 40 NOWNOINI dO1S FHOLSYLIVA

HIANIVINOD

US 12,045,693 B2

Sheet 4 of 13

Jul. 23, 2024

U.S. Patent

v1vQa 1300N

v Ol

NOILYOOT
G2AIE03 ONISN VLVE
ONINIVHL ALY

091
JH0LS
V1V ONINIVEL

NOILVOOT m

G3AI303Y ONISN Y.LYE
ONINIVEL 40 NOILHOd
1S4 3N

748
FA0LS YIVQ
T3G0W ONINIVHL

vivd
130N LINSNYYL

gécl
JONVLSNI WA

‘H viva

ONINIVEL 40 NOLLMOd
GNOOJ3S ONISH
HINIVINOD ONINIVYL
TN NI G3H01LS
3002 31n03X3

veel
JONVLISNI NA

%@z_zzmb 40
NOILYOJ 1Sui4 ONISH
HINIVINOD ONINIVHL

T NEG3HOLS
3000 31R03X3

viva
ONINIVHL 40 NOILYOd
(GNOD3S 40 NOILYOOT
(NV NOULYOOT 20V
YANIVINOO LINSNYYL

521 o0t

GNZINOYS /@\ 30IA30 H3SN

NOILYOOT VLAVA ONINIVHL
e ONV NOILYOOT 20V
HINIVINOD LINSNYHL

viva
ONINIVYL 4O NOILYOJ
18y 40 NOILYOOT
ONY NOHLVYIOT IOV
HANIVINOD LINSNVHL

US 12,045,693 B2

Sheet 5 of 13

Jul. 23, 2024

U.S. Patent

VS "OId

ININAOTHIC

T3A0N ONINYYIT
ANIHOVIN 183N03Y

200
3030 ¥3sH

JONVLSNI 5T
WA 3ZITY1LINI ONIINOYA _ \
e flm\ Y]
E 4 INYN LNIOJANT
HINIVINOD 183003 e LINSNYL
ONIHOOS INSINAOT43a

TN YLVE

1INSNYHL @
300N 2HOLS @

O 27 < - INYN INIOJANS
JONVLSNI A LINSNYSL

HINIVINOD
ONIYOOS
T 3ZIVILIN

Y1ivQa 1300NW
AL

FOVN
HANIVINOD
AN3YLTE

SIr
018 Yiva
T3A0N ONINIVHL

oIt
FHOLS VLVE
HINIVINOD

US 12,045,693 B2

Sheet 6 of 13

Jul. 23, 2024

U.S. Patent

1NdiNO NY 31YHIN3D
04 1S3N03Y NOILNOIX3 NI 0 77T
G30NTONI YAva LNdNI ONISH
HANIVINOD ONIMOOS TN SONVASNIA
NIGZ¥0LS 2000 31n03X3 @ \

\

Vs ~
f ")
) 1AdLno

\ FHOLS

<+ b———

28
OIS VIva
NOILOId3dd

13200W

g9 "9ld

183N03Y NOLLADIX3
T3A0N ONINYYIT
INIHOVINL LINSNYXL

ek ad
}
\)/W\
1Ndino
JINSNYHL

143
ONIINOYA

183n03d

NOLLAOIX3 ONINGYIT
INIHOVIA LINSNVHL

200
30IA30 ¥3sH

~
TN~

/
\\A@u
1INdino
1INSNYHL

US 12,045,693 B2

Sheet 7 of 13

Jul. 23, 2024

U.S. Patent

9 "'OId

1S3N03d NOLLAO3XI
T3C0N ONINYVIT
INIHOVIN LINSNYHL

@ V3T o -
1Nd1NO 1SHI ¥ IAVHINTD O Y3LNIVINOD der
013000 18¥14 3Ln03%3 ONMOOS Wi | ——=="" "~/
N aNOD3S
N LINSNYAL
AS
h ~
1ndLNO S
1814 LINSNYL N
1NdLNO SNl
ONOO3S Sy
LINSNVL ‘A
10d1A0
10d1LN0 @ T QNOD3S 3HOLS
ONOO3S ¥ ILYH3NID O
0L 1NdLNO 1SHI4 ONISN B
3000 GNOJ3S 3LNOIX3

183N03Y [
NOILND3X3 30IA3G ¥3sN
T2A0W ONINYYET

INIHOYI)
LINSNYML R
rd
J— /7
) A6
ANIINONS |_ - 1410
aNoo3s
LINSNYHL

[s:78
FHOLS ViVa
NOILOId3Nd
300N

U.S. Patent Jul. 23, 2024 Sheet 8 of 13 US 12,045,693 B2

700

D /

(BEGIN ML MODEL TRAINING RCUTINE)

704 '\ i

RECEIVE A CONTAINER IMAGE LOCATION AND A TRAINING
DATA LOCATION

702

RETRIEVE THE TRAINING DATA FROM THE LOCATION

710
-\ Y

INITIALIZE AN ML TRAINING CONTAINER IN THE VM
INSTANCE

712
N Y

EXECUTE CODE STORED IN THE ML TRAINING CONTAINER
USING THE TRAINING DATA

714
\ Y

STORE MODEL DATA GENERATED AS ARESULT OF
EXECUTION OF THE CODE

~

-~ RECENENEW ~~_ YES

716 ,l\ .
\/,/ \\ |

=~ |

|

i

REPLACE ORIGINAL ML TRAINING :
I

|

I

I

< D o o e » CONTAINER WITH A NEW ML TRAINING
~ i 7 e
- \C\ONTAENER iMAGE/. - : CONTAINER
NP e !
NO
720 \
FINISH ML MODEL TRAINING ROUTINE)

FIG. 7

US 12,045,693 B2

Sheet 9 of 13

Jul. 23, 2024

U.S. Patent

8 "OId

818 ININOJWOD NOLLNDIXS 1300

18 ININOJNOO ONINIVHL TECON

18 WILSAS ONILYH3dO

AHOWIN

018 -/

FOVAEIINI 3UAZA LN LN0MANGNI

0z8 /\

ARG WNIA3N 318VAVY3YH H3LNdNOD

s

FOVAYIINI MHOMLIN

moww

LINA ONISS300Ud

>

008 W3LSAS 13q0N

US 12,045,693 B2

Sheet 10 of 13

Jul. 23, 2024

U.S. Patent

6 ‘DI
06 026
TN 391A30 LdN AY1dSIG \)
— JOVAILNS IDINIA LNALNO/LNGNI
w5
- IANA WNIGIW TTEVAYIY ¥ILNAWOD
_ -« 106 J
76 NOILYOITddY YHOMLIN
- JOVAUTLNI HUOMLIN
76 WILSAS ONILYNIO S
906
_ LINA ONISSI00Nd
76 TVMLI0S IOVAHILNI
AHONIN 06
0e ~"

201 30IA3Q 438N

U.S. Patent

Jul. 23, 2024

Sheet 11 of 13

US 12,045,693 B2

RESOURCE INSTANCES 1012

LOCALIP

PUBLIC-TO-
PROVIDER LOCAL
NETWORK NETWORK
1000 ADDRESS
T MAPPING

X
T N
-, -~
(\ CUSTOMER ;‘
- NETWORK “\
~ 16508 ’
{ Vit
~

- v

— -

CUSTOMER
NETWORK

1050A

A
h 4

PUBLIC IP
ADDRESS(ES) 1014

4
k

A
]

VIRTUALIZATION
SERVICE(S) 1010

A

INTERMEDIATE
NETWORK
1040

CUSTOMER
DEVICE(S) 1052

FIG. 10

ADDRESS(ES) 1018 | w*

~ 1050C

OTHER
NETWORK
ENTITIES
1020

~
- /\&“\

/7 ~

~ - ~

CUSTOMER
NETWORK -

. T

U.S. Patent Jul. 23, 2024 Sheet 12 of 13 US 12,045,693 B2

VIRTUALIZED DATA STORE 1116

COMPUTATION
RESCURCES 1124
PROVIDER
NETWORK
1100 /
STORAGE VIRTUALIZATION HARDWARE VIRTUALIZATION
SERVICE 1110 SERVICE 1120
API(8} 1102
A
INTERMEDIATE
NETWORK
1140
< 4
| i
j VIRTUALIZED :
: STORAGE |
AN
x~ i
LOCAL
NETWORK
1156
CUSTOMER

DEVICE(S) 1190

SO VIRTUAL
‘} COMPUTING
| SYSTEM(S)1192

CUSTOMER NETWORK 115

(e}

FIG. 11

U.S. Patent

ELECTRONIC
DEVICE
1202

Jul. 23, 2024 Sheet 13 of 13

US 12,045,693 B2

NETWORK(S)
1204

WEB SERVER
1206

APPLICATION
SERVER
1208

PRODUCTION
DATA DATA
1212 1214 1216

LOG / SESSION USER

INFORMATION

DATA STORE 1210

FIG. 12

US 12,045,693 B2

1
PACKAGING AND DEPLOYING
ALGORITHMS FOR FLEXIBLE MACHINE
LEARNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/590,242, filed Nov. 22, 2017, which is
hereby incorporated by reference.

BACKGROUND

Computing devices can utilize communication networks
to exchange data. Companies and organizations operate
computer networks that interconnect a number of computing
devices to support operations or to provide services to third
parties. The computing systems can be located in a single
geographic location or located in multiple, distinct geo-
graphic locations (e.g., interconnected via private or public
communication networks). Specifically, data centers or data
processing centers, herein generally referred to as a “data
center,” may include a number of interconnected computing
systems to provide computing resources to users of the data
center. To facilitate increased utilization of data center
resources, virtualization technologies allow a single physical
computing device to host one or more instances of virtual
machines that appear and operate as independent computing
devices to users of a data center.

BRIEF DESCRIPTION OF DRAWINGS

Various embodiments in accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 is a block diagram of an illustrative operating
environment in which machine learning models are trained
and hosted, in some embodiments.

FIG. 2 is a block diagram of the operating environment of
FIG. 1 illustrating the operations performed by the compo-
nents of the operating environment to train a machine
learning model, according to some embodiments.

FIG. 3 is a block diagram of the operating environment of
FIG. 1 illustrating the operations performed by the compo-
nents of the operating environment to modifying machine
learning model training, according to some embodiments.

FIG. 4 is a block diagram of the operating environment of
FIG. 1 illustrating the operations performed by the compo-
nents of the operating environment to parallelize the
machine learning model training process, according to some
embodiments.

FIG. 5A is a block diagram of the operating environment
of FIG. 1 illustrating the operations performed by the
components of the operating environment to deploy a
trained machine learning model, according to some embodi-
ments.

FIG. 5B is a block diagram of the operating environment
of FIG. 1 illustrating the operations performed by the
components of the operating environment to execute a
trained machine learning model, according to some embodi-
ments.

FIG. 6 is a block diagram of the operating environment of
FIG. 1 illustrating the operations performed by the compo-
nents of the operating environment to execute related
machine learning models, according to some embodiments.

10

30

40

45

50

55

2

FIG. 7 is a flow diagram depicting a machine learning
model training routine illustratively implemented by a
model training system, according to some embodiments.

FIG. 8 depicts some embodiments of an architecture of an
illustrative model system, such as the model training system
and the model hosting system, that train and/or host machine
learning models in accordance with the present application.

FIG. 9 depicts some embodiments of an architecture of an
illustrative end user device that can receive data, prepare
data, transmit training requests to the model training system,
and transmit deployment and/or execution requests to the
model hosting system in accordance with the present appli-
cation.

FIG. 10 illustrates an example provider network environ-
ment according to some embodiments.

FIG. 11 is a block diagram of an example provider
network that provides a storage virtualization service and a
hardware virtualization service to customers according to
some embodiments.

FIG. 12 illustrates an example of an environment for
implementing aspects in accordance with various embodi-
ments.

DETAILED DESCRIPTION

Various embodiments of methods, apparatus, systems,
and non-transitory computer-readable storage media for
packaging and deploying algorithms using containers for
flexible machine learning. In some embodiments, users can
create or utilize relatively simple containers adhering to a
specification of a provider network, where the containers
include code for how a machine learning model is to be
trained and/or executed. The provider network can automati-
cally train a model and/or host a model using the containers.
The containers can use a wide variety of algorithms and use
a variety of types of languages, libraries, data types, etc.
Accordingly, users can simply perform machine learning
training and hosting with extremely minimal knowledge of
how the overall training and/or hosting is actually per-
formed.

As described above, embodiments enable a single physi-
cal computing device (or multiple physical computing
devices) to host one or more instances of virtual machines
that appear and operate as independent computing devices to
users. In some embodiments, a service provider can leverage
virtualization technologies to provide a network-accessible
machine learning service, such as the network-accessible
machine learning model training and hosting system
described herein. For example, the service provider can
operate one or more physical computing devices accessible
to user devices via a network. These physical computing
device(s) can host virtual machine instances that are con-
figured to train and/or execute machine learning models in
response to commands received from user devices.

The embodiments described herein provide several tech-
nical benefits over conventional computing systems config-
ured to train machine learning models. For example, training
machine learning models can result in the usage of a large
amount of processing power because machine learning
models can be very complex and the amount of data used to
train the models can be very large (e.g., in the gigabytes,
terabytes, petabytes, etc.). Thus, some users acquire physi-
cally large conventional computing machines to perform the
training. Users, however, may customize these conventional
computing machines with specific software to execute the
desired model training. On the other hand, embodiments
described herein provide an environment in which users do

US 12,045,693 B2

3

not have to generate and implement a large amount of
customized code. Rather, users can simply provide just
enough information to define a type of machine learning
model to train, and the embodiments described herein can
automatically initialize virtual machine instances, initialize
containers, and/or perform other operations to implement a
model training service.

On the other hand, embodiments described herein are
configured to distribute the training across different physical
computing devices in some embodiments. Thus, the time to
train a model can be significantly reduced.

Valuable time can be lost if the resulting trained model
turns out to be inaccurate. On the other hand, embodiments
described herein can periodically evaluate models during the
training process and output metrics corresponding to the
evaluation. Thus, users can review the metrics to determine
if, for example, a machine learning model being trained is
inaccurate and whether it may be beneficial for the training
job to be stopped.

Users can experience significant machine learning model
training delays if a conventional computing machine is
already in the process of training another model. On the
other hand, embodiments described herein dynamically allo-
cate computing resources to perform model training based
on user demand in some embodiments. Thus, if a single user
or multiple users desire to train multiple machine learning
models during an overlapping time period, the trainings can
be performed simultaneously.

These conventional services, however, are generally
restricted to a single type of machine learning model and
only allow prescribed data input formats. Users, on the other
hand, may desire to train and use many different types of
machine learning models that can receive different types of
input data formats. Unlike these conventional services,
embodiments described herein provide a flexible execution
environment in which machine learning models can be
trained and executed irrespective of the type of machine
learning model, the programming language in which the
machine learning model is defined, the data input format of
the machine learning model, and/or the data output format of
the machine learning model.

Example Machine Learning Model Training and
Hosting Environment

FIG. 1 is a block diagram of an illustrative operating
environment 100 in which machine learning models are
trained and hosted, in some embodiments. The operating
environment 100 includes end user devices 102, a model
training system 120, a model hosting system 140, a training
data store 160, a training metrics data store 165, a container
data store 170, a training model data store 175, and a model
prediction data store 180.

Example Model Training System

In some embodiments, users, by way of user devices 102,
interact with the model training system 120 to provide data
that causes the model training system 120 to train one or
more machine learning models. A machine learning (ML)
model, generally, may be thought of as one or more equa-
tions that are “trained” using a set of data. In some embodi-
ments, the model training system 120 provides ML func-
tionalities as a Web service, and thus messaging between
user devices 102 and the model training system 120 (or
provider network 199), and/or between components of the
model training system 120 (or provider network 199), may

20

25

40

45

55

4

utilize HyperText Transfer Protocol (HTTP) messages to
transfer data in a machine-readable file format, such as
eXtensible Markup Language (XML) or JavaScript Object
Notation (JSON).

The user devices 102 can interact with the model training
system 120 via frontend 129 of the model training system
120. For example, a user device 102 can provide a training
request to the frontend 129 that includes a container image
(or multiple container images, or an identifier of one or
multiple locations where container images are stored), an
indicator of input data (e.g., an address or location of input
data), one or more hyperparameter values (e.g., values
indicating how the algorithm will operate, how many algo-
rithms to run in parallel, how many clusters into which to
separate data, etc.), and/or information describing the com-
puting machine on which to train a machine learning model
(e.g., a graphical processing unit (GPU) instance type, a
central processing unit (CPU) instance type, an amount of
memory to allocate, a type of virtual machine instance to use
for training, etc.).

In some embodiments, the container image can include
one or more layers, where each layer represents an execut-
able instruction. Some or all of the executable instructions
together represent an algorithm that defines a machine
learning model. The executable instructions (e.g., the algo-
rithm) can be written in any programming language (e.g.,
Python, Ruby, C++, Java, etc.). In some embodiments, the
algorithm is pre-generated and obtained by a user, via the
user device 102, from an algorithm repository (e.g., a
network-accessible marketplace, a data store provided by a
machine learning training service, etc.). In some embodi-
ments, the algorithm is completely user-generated or par-
tially user-generated (e.g., user-provided code modifies or
configures existing algorithmic code).

In some embodiments, instead of providing a container
image (or identifier thereof) in the training request, the user
device 102 may provide, in the training request, an algo-
rithm written in any programming language. The model
training system 120 then packages the algorithm into a
container (optionally with other code, such as a “base” ML
algorithm supplemented with user-provided code) that is
eventually loaded into a virtual machine instance 122 for
training a machine learning model, as described in greater
detail below. For example, a user, via a user device 102, may
develop an algorithm/code using an application (e.g., an
interactive web-based programming environment) and cause
the algorithm/code to be provided—perhaps as part of a
training request (or referenced in a training request)—to the
model training system 120, where this algorithm/code may
be containerized on its own or used together with an existing
container having a machine learning framework, for
example.

In some embodiments, instead of providing a container
image in the training request, the user device 102 provides,
in the training request, an indicator of a container image
(e.g., an indication of an address or a location at which a
container image is stored). For example, the container image
can be stored in a container data store 170, and this container
image may have been previously created/uploaded by the
user. The model training system 120 can retrieve the con-
tainer image from the indicated location and create a con-
tainer using the retrieved container image. The container is
then loaded into a virtual machine instance 122 for training
a machine learning model, as described in greater detail
below.

The model training system 120 can use the information
provided by the user device 102 to train a machine learning

US 12,045,693 B2

5

model in one or more pre-established virtual machine
instances 122 in some embodiments. In particular, the model
training system 120 includes a single physical computing
device or multiple physical computing devices that are
interconnected using one or more computing networks (not
shown), where the physical computing device(s) host one or
more virtual machine instances 122. The model training
system 120 can handle the acquisition and configuration of
compute capacity (e.g., containers, instances, etc., which are
described in greater detail below) based on the information
describing the computing machine on which to train a
machine learning model provided by the user device 102.
The model training system 120 can then train machine
learning models using the compute capacity, as is described
in greater detail below. The model training system 120 can
automatically scale up and down based on the volume of
training requests received from user devices 102 via fron-
tend 129, thereby relieving the user from the burden of
having to worry about over-utilization (e.g., acquiring too
little computing resources and suffering performance issues)
or under-utilization (e.g., acquiring more computing
resources than necessary to train the machine learning
models, and thus overpaying).

In some embodiments, the virtual machine instances 122
are utilized to execute tasks. For example, such tasks can
include training a machine learning model. As shown in
FIG. 1, each virtual machine instance 122 includes an
operating system (OS) 124, a language runtime 126, and one
or more machine learning (ML) training containers 130.
Generally, the ML training containers 130 are logical units
created within a virtual machine instance using the resources
available on that instance, and can be utilized to isolate
execution of a task from other processes (e.g., task execu-
tions) occurring in the instance. In some embodiments, the
ML training containers 130 are formed from one or more
container images and a top container layer. Each container
image may further include one or more image layers, where
each image layer represents an executable instruction. As
described above, some or all of the executable instructions
together represent an algorithm that defines a machine
learning model. Changes made to the ML training containers
130 (e.g., creation of new files, modification of existing files,
deletion of files, etc.) are stored in the top container layer. If
a ML training container 130 is deleted, the top container
layer is also deleted. However, the container image(s) that
form a portion of the deleted ML training container 130 can
remain unchanged. The ML training containers 130 can be
implemented, for example, as Linux containers (LXC),
Docker containers, and the like.

The ML training containers 130 may include individual
copies of an OS 132 (e.g., portions of an OS, while OS
kernel code may not be included within a container but
instead be “shared” amongst containers), runtime 134, and
code 136 in some embodiments. The OS 132 and/or the
runtime 134 can be defined by one or more executable
instructions that form at least a portion of a container image
that is used to form the ML training container 130 (e.g., the
executable instruction(s) in the container image that define
the operating system and/or runtime to run in the container
formed from the container image). The code 136 includes
one or more executable instructions that form at least a
portion of a container image that is used to form the ML
training container 130. For example, the code 136 includes
the executable instructions in the container image that
represent an algorithm that defines a machine learning
model. The OS 132 and/or runtime 134 are configured to
execute the code 136 in response to an instruction to begin

10

15

20

25

30

35

40

45

50

55

60

65

6

machine learning model training. Execution of the code 136
results in the generation of model data, as described in
greater detail below.

In some embodiments, the code 136 includes executable
instructions that represent algorithms that define different
machine learning models. For example, the code 136
includes one set of executable instructions that represent a
first algorithm that defines a first machine learning model
and a second set of executable instructions that represent a
second algorithm that defines a second machine learning
model. In some embodiments, the virtual machine instance
122 executes the code 136 and trains all of the machine
learning models. In some embodiments, the virtual machine
instance 122 executes the code 136, selecting one of the
machine learning models to train. For example, the virtual
machine instance 122 can identify a type of training data
indicated by the training request and select a machine
learning model to train (e.g., execute the executable instruc-
tions that represent an algorithm that defines the selected
machine learning model) that corresponds with the identified
type of training data.

In some embodiments, the OS 132 and the runtime 134
are the same as the OS 124 and runtime 126 utilized by the
virtual machine instance 122. In some embodiments, the OS
132 and/or the runtime 134 are different than the OS 124
and/or runtime 126 utilized by the virtual machine instance
122.

In some embodiments, the model training system 120
uses one or more container images included in a training
request (or a container image retrieved from the container
data store 170 in response to a received training request) to
create and initialize a ML training container 130 in a virtual
machine instance 122. For example, the model training
system 120 creates a ML training container 130 that includes
the container image(s) and/or a top container layer.

Prior to beginning the training process, in some embodi-
ments, the model training system 120 retrieves training data
from the location indicated in the training request. For
example, the location indicated in the training request can be
a location in the training data store 160. Thus, the model
training system 120 retrieves the training data from the
indicated location in the training data store 160. In some
embodiments, the model training system 120 does not
retrieve the training data prior to beginning the training
process. Rather, the model training system 120 streams the
training data from the indicated location during the training
process. For example, the model training system 120 can
initially retrieve a portion of the training data and provide
the retrieved portion to the virtual machine instance 122
training the machine learning model. Once the virtual
machine instance 122 has applied and used the retrieved
portion or once the virtual machine instance 122 is about to
use all of the retrieved portion (e.g., a buffer storing the
retrieved portion is nearly empty), then the model training
system 120 can retrieve a second portion of the training data
and provide the second retrieved portion to the virtual
machine instance 122, and so on.

To perform the machine learning model training, the
virtual machine instance 122 executes code 136 stored in the
ML training container 130 in some embodiments. For
example, the code 136 includes some or all of the executable
instructions that form the container image of the ML training
container 130 initialized therein. Thus, the virtual machine
instance 122 executes some or all of the executable instruc-
tions that form the container image of the ML training
container 130 initialized therein to train a machine learning
model. The virtual machine instance 122 executes some or

US 12,045,693 B2

7

all of the executable instructions according to the hyperpa-
rameter values included in the training request. As an
illustrative example, the virtual machine instance 122 trains
a machine learning model by identifying values for certain
parameters (e.g., coeflicients, weights, centroids, etc.). The
identified values depend on hyperparameters that define how
the training is performed. Thus, the virtual machine instance
122 can execute the executable instructions to initiate a
machine learning model training process, where the training
process is run using the hyperparameter values included in
the training request. Execution of the executable instructions
can include the virtual machine instance 122 applying the
training data retrieved by the model training system 120 as
input parameters to some or all of the instructions being
executed.

In some embodiments, executing the executable instruc-
tions causes the virtual machine instance 122 (e.g., the ML
training container 130) to generate model data. For example,
the ML training container 130 generates model data and
stores the model data in a file system of the ML training
container 130. The model data includes characteristics of the
machine learning model being trained, such as a number of
layers in the machine learning model, hyperparameters of
the machine learning model, coefficients of the machine
learning model, weights of the machine learning model,
and/or the like. In particular, the generated model data
includes values for the characteristics that define a machine
learning model being trained. In some embodiments, execut-
ing the executable instructions causes a modification to the
ML training container 130 such that the model data is
written to the top container layer of the ML training con-
tainer 130 and/or the container image(s) that forms a portion
of the ML training container 130 is modified to include the
model data.

The virtual machine instance 122 (or the model training
system 120 itself) pulls the generated model data from the
ML training container 130 and stores the generated model
data in the training model data store 175 in an entry
associated with the virtual machine instance 122 and/or the
machine learning model being trained. In some embodi-
ments, the virtual machine instance 122 generates a single
file that includes model data and stores the single file in the
training model data store 175. In some embodiments, the
virtual machine instance 122 generates multiple files during
the course of training a machine learning model, where each
file includes model data. In some embodiments, each model
data file includes the same or different model data informa-
tion (e.g., one file identifies the structure of an algorithm,
another file includes a list of coefficients, etc.). The virtual
machine instance 122 can package the multiple files into a
single file once training is complete and store the single file
in the training model data store 175. Alternatively, the virtual
machine instance 122 stores the multiple files in the training
model data store 175. The virtual machine instance 122
stores the file(s) in the training model data store 175 while
the training process is ongoing and/or after the training
process is complete.

In some embodiments, the virtual machine instance 122
regularly stores model data file(s) in the training model data
store 175 as the training process is ongoing. Thus, model
data file(s) can be stored in the training model data store 175
at different times during the training process. Each set of
model data files corresponding to a particular time or each
set of model data files present in the training model data
store 175 as of a particular time could be checkpoints that
represent different versions of a partially-trained machine
learning model during different stages of the training pro-

10

15

20

25

30

35

40

45

50

55

60

65

8

cess. Accordingly, before training is complete, a user, via the
user device 102 can submit a deployment and/or execution
request in a manner as described below to deploy and/or
execute a version of a partially trained machine learning
model (e.g., a machine learning model trained as of a certain
stage in the training process). A version of a partially-trained
machine learning model can be based on some or all of the
model data files stored in the training model data store 175.

In some embodiments, a virtual machine instance 122
executes code 136 stored in a plurality of ML training
containers 130. For example, the algorithm included in the
container image can be in a format that allows for the
parallelization of the training process. Thus, the model
training system 120 can create multiple copies of the con-
tainer image provided in a training request and cause the
virtual machine instance 122 to load each container image
copy in a separate ML training container 130. The virtual
machine instance 122 can then execute, in parallel, the code
136 stored in the ML training containers 130. The virtual
machine instance 122 can further provide configuration
information to each ML training container 130 (e.g., infor-
mation indicating that N ML training containers 130 are
collectively training a machine learning model and that a
particular ML training container 130 receiving the configu-
ration information is ML training container 130 number X of
N), which can be included in the resulting model data. By
parallelizing the training process, the model training system
120 can significantly reduce the training time in some
embodiments.

In some embodiments, a plurality of virtual machine
instances 122 execute code 136 stored in a plurality of ML
training containers 130. For example, the resources used to
train a particular machine learning model can exceed the
limitations of a single virtual machine instance 122. How-
ever, the algorithm included in the container image can be in
a format that allows for the parallelization of the training
process. Thus, the model training system 120 can create
multiple copies of the container image provided in a training
request, initialize multiple virtual machine instances 122,
and cause each virtual machine instance 122 to load a
container image copy in one or more separate ML training
containers 130. The virtual machine instances 122 can then
each execute the code 136 stored in the ML training con-
tainers 130 in parallel. The model training system 120 can
further provide configuration information to each ML train-
ing container 130 via the virtual machine instances 122 (e.g.,
information indicating that N ML training containers 130 are
collectively training a machine learning model and that a
particular ML training container 130 receiving the configu-
ration information is ML training container 130 number X of
N, information indicating that M virtual machine instances
122 are collectively training a machine learning model and
that a particular ML training container 130 receiving the
configuration information is initialized in virtual machine
instance 122 number Y of M, etc.), which can be included in
the resulting model data. As described above, by paralleliz-
ing the training process, the model training system 120 can
significantly reduce the training time in some embodiments.

In some embodiments, the model training system 120
includes a plurality of physical computing devices and two
or more of the physical computing devices hosts one or more
virtual machine instances 122 that execute the code 136.
Thus, the parallelization can occur over different physical
computing devices in addition to over different virtual
machine instances 122 and/or ML training containers 130.

In some embodiments, the model training system 120
includes a ML model evaluator 128. The ML model evalu-

US 12,045,693 B2

9

ator 128 can monitor virtual machine instances 122 as
machine learning models are being trained, obtaining the
generated model data and processing the obtained model
data to generate model metrics. For example, the model
metrics can include quality metrics, such as an error rate of
the machine learning model being trained, a statistical
distribution of the machine learning model being trained, a
latency of the machine learning model being trained, a
confidence level of the machine learning model being
trained (e.g., a level of confidence that the accuracy of the
machine learning model being trained is known, etc. The
ML model evaluator 128 can obtain the model data for a
machine learning model being trained and evaluation data
from the training data store 160. The evaluation data is
separate from the data used to train a machine learning
model and includes both input data and expected outputs
(e.g., known results), and thus the ML model evaluator 128
can define a machine learning model using the model data
and execute the machine learning model by providing the
input data as inputs to the machine learning model. The ML
model evaluator 128 can then compare the outputs of the
machine learning model to the expected outputs, and deter-
mine one or more quality metrics of the machine learning
model being trained based on the comparison (e.g., the error
rate can be a difference or distance between the machine
learning model outputs and the expected outputs).

The ML model evaluator 128 periodically generates
model metrics during the training process and stores the
model metrics in the training metrics data store 165 in some
embodiments. While the machine learning model is being
trained, a user, via the user device 102, can access and
retrieve the model metrics from the training metrics data
store 165. The user can then use the model metrics to
determine whether to adjust the training process and/or to
stop the training process. For example, the model metrics
can indicate that the machine learning model is performing
poorly (e.g., has an error rate above a threshold value, has a
statistical distribution that is not an expected or desired
distribution (e.g., not a binomial distribution, a Poisson
distribution, a geometric distribution, a normal distribution,
Gaussian distribution, etc.), has an execution latency above
a threshold value, has a confidence level below a threshold
value)) and/or is performing progressively worse (e.g., the
quality metric continues to worsen over time). In response,
in some embodiments, the user, via the user device 102, can
transmit a request to the model training system 120 to
modify the machine learning model being trained (e.g.,
transmit a modification request). The request can include a
new or modified container image, a new or modified algo-
rithm, new or modified hyperparameter(s), and/or new or
modified information describing the computing machine on
which to train a machine learning model. The model training
system 120 can modify the machine learning model accord-
ingly. For example, the model training system 120 can cause
the virtual machine instance 122 to optionally delete an
existing ML training container 130, create and initialize a
new ML training container 130 using some or all of the
information included in the request, and execute the code
136 stored in the new ML training container 130 to restart
the machine learning model training process. As another
example, the model training system 120 can cause the virtual
machine instance 122 to modify the execution of code stored
in an existing ML training container 130 according to the
data provided in the modification request. In some embodi-
ments, the user, via the user device 102, can transmit a
request to the model training system 120 to stop the machine
learning model training process. The model training system

10

15

20

25

30

35

40

45

50

55

60

65

10

120 can then instruct the virtual machine instance 122 to
delete the ML training container 130 and/or to delete any
model data stored in the training model data store 175.

As described below, in some embodiments, the model
data stored in the training model data store 175 is used by the
model hosting system 140 to deploy machine learning
models. Alternatively or in addition, a user device 102 or
another computing device (not shown) can retrieve the
model data from the training model data store 175 to
implement a learning algorithm in an external device. As an
illustrative example, a robotic device can include sensors to
capture input data. A user device 102 can retrieve the model
data from the training model data store 175 and store the
model data in the robotic device. The model data defines a
machine learning model. Thus, the robotic device can pro-
vide the captured input data as an input to the machine
learning model, resulting in an output. The robotic device
can then perform an action (e.g., move forward, raise an
arm, generate a sound, etc.) based on the resulting output.

While the virtual machine instances 122 are shown in
FIG. 1 as a single grouping of virtual machine instances 122,
some embodiments of the present application separate vir-
tual machine instances 122 that are actively assigned to
execute tasks from those virtual machine instances 122 that
are not actively assigned to execute tasks. For example,
those virtual machine instances 122 actively assigned to
execute tasks are grouped into an “active pool,” while those
virtual machine instances 122 not actively assigned to
execute tasks are placed within a “warming pool.” In some
embodiments, those virtual machine instances 122 within
the warming pool can be pre-initialized with an operating
system, language runtimes, and/or other software required to
enable rapid execution of tasks (e.g., rapid initialization of
machine learning model training in ML training container(s)
130) in response to training requests.

In some embodiments, the model training system 120
includes a processing unit, a network interface, a computer-
readable medium drive, and an input/output device interface,
all of which can communicate with one another by way of
a communication bus. The network interface can provide
connectivity to one or more networks or computing systems.
The processing unit can thus receive information and
instructions from other computing systems or services (e.g.,
user devices 102, the model hosting system 140, etc.). The
processing unit can also communicate to and from a memory
of a virtual machine instance 122 and further provide output
information for an optional display via the input/output
device interface. The input/output device interface can also
accept input from an optional input device. The memory can
contain computer program instructions (grouped as modules
in some embodiments) that the processing unit executes in
order to implement one or more aspects of the present
disclosure.

Example Model Hosting System

In some embodiments, the model hosting system 140
includes a single physical computing device or multiple
physical computing devices that are interconnected using
one or more computing networks (not shown), where the
physical computing device(s) host one or more virtual
machine instances 142. The model hosting system 140 can
handle the acquisition and configuration of compute capac-
ity (e.g., containers, instances, etc.) based on demand for the
execution of trained machine learning models. The model
hosting system 140 can then execute machine learning
models using the compute capacity, as is described in greater

US 12,045,693 B2

11

detail below. The model hosting system 140 can automati-
cally scale up and down based on the volume of execution
requests received from user devices 102 via frontend 149 of
the model hosting system 140, thereby relieving the user
from the burden of having to worry about over-utilization
(e.g., acquiring too little computing resources and suffering
performance issues) or under-utilization (e.g., acquiring
more computing resources than necessary to run the
machine learning models, and thus overpaying).

In some embodiments, the virtual machine instances 142
are utilized to execute tasks. For example, such tasks can
include executing a machine learning model. As shown in
FIG. 1, each virtual machine instance 142 includes an
operating system (OS) 144, a language runtime 146, and one
or more ML scoring containers 150. The ML scoring con-
tainers 150 are similar to the ML training containers 130 in
that the ML scoring containers 150 are logical units created
within a virtual machine instance using the resources avail-
able on that instance, and can be utilized to isolate execution
of a task from other processes (e.g., task executions) occur-
ring in the instance. In some embodiments, the ML scoring
containers 150 are formed from one or more container
images and a top container layer. Each container image
further includes one or more image layers, where each image
layer represents an executable instruction. As described
above, some or all of the executable instructions together
represent an algorithm that defines a machine learning
model. Changes made to the ML scoring containers 150
(e.g., creation of new files, modification of existing files,
deletion of files, etc.) are stored in the top container layer. If
a ML scoring container 150 is deleted, the top container
layer is also deleted. However, the container image(s) that
form a portion of the deleted ML scoring container 150 can
remain unchanged. The ML scoring containers 150 can be
implemented, for example, as Linux containers.

The ML scoring containers 150 each include individual
copies of an OS 152, runtime 154, and code 156 in some
embodiments. The OS 152 and/or the runtime 154 can be
defined by one or more executable instructions that form at
least a portion of a container image that is used to form the
ML scoring container 150 (e.g., the executable instruction(s)
in the container image that define the operating system
and/or runtime to run in the container formed from the
container image). The code 156 includes one or more
executable instructions that form at least a portion of a
container image that is used to form the ML scoring con-
tainer 150. For example, the code 156 includes the execut-
able instructions in the container image that represent an
algorithm that defines a machine learning model. The code
156 can also include model data that represent characteris-
tics of the defined machine learning model, as described in
greater detail below. The OS 152 and/or runtime 154 are
configured to execute the code 156 in response to an
instruction to begin execution of a machine learning model.
Execution of the code 156 results in the generation of
outputs (e.g., predicted results), as described in greater detail
below.

In some embodiments, the OS 152 and the runtime 154
are the same as the OS 144 and runtime 146 utilized by the
virtual machine instance 142. In some embodiments, the OS
152 and/or the runtime 154 are different than the OS 144
and/or runtime 146 utilized by the virtual machine instance
142.

In some embodiments, the model hosting system 140 uses
one or more container images included in a deployment
request (or a container image retrieved from the container
data store 170 in response to a received deployment request)

10

15

20

25

30

35

40

45

50

55

60

65

12

to create and initialize a ML scoring container 150 in a
virtual machine instance 142. For example, the model host-
ing system 140 creates a ML scoring container 150 that
includes the container image(s) and/or a top container layer.

As described above, a user device 102 can submit a
deployment request and/or an execution request to the model
hosting system 140 via the frontend 149 in some embodi-
ments. A deployment request causes the model hosting
system 140 to deploy a trained machine learning model into
a virtual machine instance 142. For example, the deploy-
ment request can include an identification of an endpoint
(e.g., an endpoint name, such as an HTTP endpoint name)
and an identification of one or more trained machine learn-
ing models (e.g., a location of one or more model data files
stored in the training model data store 175). Optionally, the
deployment request also includes an identification of one or
more container images stored in the container data store 170.

Upon receiving the deployment request, the model host-
ing system 140 initializes ones or more ML scoring con-
tainers 150 in one or more hosted virtual machine instance
142. In embodiments in which the deployment request
includes an identification of one or more container images,
the model hosting system 140 forms the ML scoring con-
tainer(s) 150 from the identified container image(s). For
example, a container image identified in a deployment
request can be the same container image used to form an ML,
training container 130 used to train the machine learning
model corresponding to the deployment request. Thus, the
code 156 of the ML scoring container(s) 150 includes one or
more executable instructions in the container image(s) that
represent an algorithm that defines a machine learning
model. In embodiments in which the deployment request
does not include an identification of a container image, the
model hosting system 140 forms the ML scoring container
(s) 150 from one or more container images stored in the
container data store 170 that are appropriate for executing
the identified trained machine learning model(s). For
example, an appropriate container image can be a container
image that includes executable instructions that represent an
algorithm that defines the identified trained machine learn-
ing model(s).

The model hosting system 140 further forms the ML
scoring container(s) 150 by retrieving model data corre-
sponding to the identified trained machine learning model(s)
in some embodiments. For example, the deployment request
can identity a location of model data file(s) stored in the
training model data store 175. In embodiments in which a
single model data file is identified in the deployment request,
the model hosting system 140 retrieves the identified model
data file from the training model data store 175 and inserts
the model data file into a single ML scoring container 150,
which forms a portion of code 156. In some embodiments,
the model data file is archived or compressed (e.g., formed
from a package of individual files). Thus, the model hosting
system 140 unarchives or decompresses the model data file
to obtain multiple individual files, and inserts the individual
files into the ML scoring container 150. In some embodi-
ments, the model hosting system 140 stores the model data
file in the same location as the location in which the model
data file was stored in the ML training container 130 that
generated the model data file. For example, the model data
file initially was stored in the top container layer of the ML
training container 130 at a certain offset, and the model
hosting system 140 then stores the model data file in the top
container layer of the ML scoring container 150 at the same
offset.

US 12,045,693 B2

13

In embodiments in which multiple model data files are
identified in the deployment request, the model hosting
system 140 retrieves the identified model data files from the
training model data store 175. The model hosting system
140 can insert the model data files into the same ML scoring
container 150, into different ML scoring containers 150
initialized in the same virtual machine instance 142, or into
different ML scoring containers 150 initialized in different
virtual machine instances 142. As an illustrative example,
the deployment request can identify multiple model data
files corresponding to different trained machine learning
models because the trained machine learning models are
related (e.g., the output of one trained machine learning
model is used as an input to another trained machine
learning model). Thus, the user may desire to deploy mul-
tiple machine learning models to eventually receive a single
output that relies on the outputs of multiple machine learn-
ing models.

In some embodiments, the model hosting system 140
associates the initialized ML scoring container(s) 150 with
the endpoint identified in the deployment request. For
example, each of the initialized ML scoring container(s) 150
can be associated with a network address. The model hosting
system 140 can map the network address(es) to the identified
endpoint, and the model hosting system 140 or another
system (e.g., a routing system, not shown) can store the
mapping. Thus, a user device 102 can refer to trained
machine learning model(s) stored in the ML scoring con-
tainer(s) 150 using the endpoint. This allows for the network
address of an ML scoring container 150 to change without
causing the user operating the user device 102 to change the
way in which the user refers to a trained machine learning
model.

Once the ML scoring container(s) 150 are initialized, the
ML scoring container(s) 150 are ready to execute trained
machine learning model(s). In some embodiments, the user
device 102 transmits an execution request to the model
hosting system 140 via the frontend 149, where the execu-
tion request identifies an endpoint and includes an input to
a machine learning model (e.g., a set of input data). The
model hosting system 140 or another system (e.g., a routing
system, not shown) can obtain the execution request, iden-
tify the ML scoring container(s) 150 corresponding to the
identified endpoint, and route the input to the identified ML
scoring container(s) 150.

In some embodiments, a virtual machine instance 142
executes the code 156 stored in an identified ML scoring
container 150 in response to the model hosting system 140
receiving the execution request. In particular, execution of
the code 156 causes the executable instructions in the code
156 corresponding to the algorithm to read the model data
file stored in the ML scoring container 150, use the input
included in the execution request as an input parameter, and
generate a corresponding output. As an illustrative example,
the algorithm can include coefficients, weights, layers, clus-
ter centroids, and/or the like. The executable instructions in
the code 156 corresponding to the algorithm can read the
model data file to determine values for the coefficients,
weights, layers, cluster centroids, and/or the like. The
executable instructions can include input parameters, and
the input included in the execution request can be supplied
by the virtual machine instance 142 as the input parameters.
With the machine learning model characteristics and the
input parameters provided, execution of the executable
instructions by the virtual machine instance 142 can be
completed, resulting in an output.

10

15

20

25

30

35

40

45

50

55

60

65

14

In some embodiments, the virtual machine instance 142
stores the output in the model prediction data store 180.
Alternatively or in addition, the virtual machine instance
142 transmits the output to the user device 102 that submit-
ted the execution result via the frontend 149.

In some embodiments, the execution request corresponds
to a group of related trained machine learning models. Thus,
the ML scoring container 150 can transmit the output to a
second ML scoring container 150 initialized in the same
virtual machine instance 142 or in a different virtual machine
instance 142. The virtual machine instance 142 that initial-
ized the second ML scoring container 150 can then execute
second code 156 stored in the second ML scoring container
150, providing the received output as an input parameter to
the executable instructions in the second code 156. The
second ML scoring container 150 further includes a model
data file stored therein, which is read by the executable
instructions in the second code 156 to determine values for
the characteristics defining the machine learning model.
Execution of the second code 156 results in a second output.
The virtual machine instance 142 that initialized the second
ML scoring container 150 can then transmit the second
output to the model prediction data store 180 and/or the user
device 102 via the frontend 149 (e.g., if no more trained
machine learning models are needed to generate an output)
or transmit the second output to a third ML scoring container
150 initialized in the same or different virtual machine
instance 142 (e.g., if outputs from one or more additional
trained machine learning models are needed), and the above-
referenced process can be repeated with respect to the third
ML scoring container 150.

While the virtual machine instances 142 are shown in
FIG. 1 as a single grouping of virtual machine instances 142,
some embodiments of the present application separate vir-
tual machine instances 142 that are actively assigned to
execute tasks from those virtual machine instances 142 that
are not actively assigned to execute tasks. For example,
those virtual machine instances 142 actively assigned to
execute tasks are grouped into an “active pool,” while those
virtual machine instances 142 not actively assigned to
execute tasks are placed within a “warming pool.” In some
embodiments, those virtual machine instances 142 within
the warming pool can be pre-initialized with an operating
system, language runtimes, and/or other software required to
enable rapid execution of tasks (e.g., rapid initialization of
ML scoring container(s) 150, rapid execution of code 156 in
ML scoring container(s), etc.) in response to deployment
and/or execution requests.

In some embodiments, the model hosting system 140
includes a processing unit, a network interface, a computer-
readable medium drive, and an input/output device interface,
all of which can communicate with one another by way of
a communication bus. The network interface can provide
connectivity to one or more networks or computing systems.
The processing unit can thus receive information and
instructions from other computing systems or services (e.g.,
user devices 102, the model training system 120, etc.). The
processing unit can also communicate to and from a memory
of a virtual machine instance 142 and further provide output
information for an optional display via the input/output
device interface. The input/output device interface can also
accept input from an optional input device. The memory can
contain computer program instructions (grouped as modules
in some embodiments) that the processing unit executes in
order to implement one or more aspects of the present
disclosure.

US 12,045,693 B2

15

Additional Embodiments of the Example Training and Host-
ing Environment

In some embodiments, the operating environment 100
supports many different types of machine learning models,
such as multi arm bandit models, reinforcement learning
models, ensemble machine learning models, deep learning
models, and/or the like.

The model training system 120 and the model hosting
system 140 depicted in FIG. 1 are not meant to be limiting.
For example, the model training system 120 and/or the
model hosting system 140 could also operate within a
computing environment having a fewer or greater number of
devices than are illustrated in FIG. 1. Thus, the depiction of
the model training system 120 and/or the model hosting
system 140 in FIG. 1 may be taken as illustrative and not
limiting to the present disclosure. For example, the model
training system 120 and/or the model hosting system 140 or
various constituents thereof could implement various Web
services components, hosted or “cloud” computing environ-
ments, and/or peer-to-peer network configurations to imple-
ment at least a portion of the processes described herein. In
some embodiments, the model training system 120 and/or
the model hosting system 140 are implemented directly in
hardware or software executed by hardware devices and
may, for instance, include one or more physical or virtual
servers implemented on physical computer hardware con-
figured to execute computer-executable instructions for per-
forming the various features that are described herein. The
one or more servers can be geographically dispersed or
geographically co-located, for instance, in one or more
points of presence (POPs) or regional data centers.

The frontend 129 processes all training requests received
from user devices 102 and provisions virtual machine
instances 122. In some embodiments, the frontend 129
serves as a front door to all the other services provided by
the model training system 120. The frontend 129 processes
the requests and makes sure that the requests are properly
authorized. For example, the frontend 129 may determine
whether the user associated with the training request is
authorized to initiate the training process.

Similarly, frontend 149 processes all deployment and
execution requests received from user devices 102 and
provisions virtual machine instances 142. In some embodi-
ments, the frontend 149 serves as a front door to all the other
services provided by the model hosting system 140. The
frontend 149 processes the requests and makes sure that the
requests are properly authorized. For example, the frontend
149 may determine whether the user associated with a
deployment request or an execution request is authorized to
access the indicated model data and/or to execute the
indicated machine learning model.

The training data store 160 stores training data and/or
evaluation data. The training data can be data used to train
machine learning models and evaluation data can be data
used to evaluate the performance of machine learning mod-
els. In some embodiments, the training data and the evalu-
ation data have common data. In some embodiments, the
training data and the evaluation data do not have common
data. In some embodiments, the training data includes input
data and expected outputs. While the training data store 160
is depicted as being located external to the model training
system 120 and the model hosting system 140, this is not
meant to be limiting. For example, in some embodiments not
shown, the training data store 160 is located internal to at
least one of the model training system 120 or the model
hosting system 140.

25

35

40

45

55

16

In some embodiments, the training metrics data store 165
stores model metrics. While the training metrics data store
165 is depicted as being located external to the model
training system 120 and the model hosting system 140, this
is not meant to be limiting. For example, in some embodi-
ments not shown, the training metrics data store 165 is
located internal to at least one of the model training system
120 or the model hosting system 140.

The container data store 170 stores container images, such
as container images used to form ML training containers 130
and/or ML scoring containers 150, that can be retrieved by
various virtual machine instances 122 and/or 142. While the
container data store 170 is depicted as being located external
to the model training system 120 and the model hosting
system 140, this is not meant to be limiting. For example, in
some embodiments not shown, the container data store 170
is located internal to at least one of the model training
system 120 and the model hosting system 140.

The training model data store 175 stores model data files.
In some embodiments, some of the model data files are
comprised of a single file, while other model data files are
packages of multiple individual files. While the training
model data store 175 is depicted as being located external to
the model training system 120 and the model hosting system
140, this is not meant to be limiting. For example, in some
embodiments not shown, the training model data store 175
is located internal to at least one of the model training
system 120 or the model hosting system 140.

The model prediction data store 180 stores outputs (e.g.,
execution results) generated by the ML scoring containers
150 in some embodiments. While the model prediction data
store 180 is depicted as being located external to the model
training system 120 and the model hosting system 140, this
is not meant to be limiting. For example, in some embodi-
ments not shown, the model prediction data store 180 is
located internal to at least one of the model training system
120 and the model hosting system 140.

While the model training system 120, the model hosting
system 140, the training data store 160, the training metrics
data store 165, the container data store 170, the training
model data store 175, and the model prediction data store
180 are illustrated as separate components, this is not meant
to be limiting. In some embodiments, any one or all of these
components can be combined to perform the functionality
described herein. For example, any one or all of these
components can be implemented by a single computing
device, or by multiple distinct computing devices, such as
computer servers, logically or physically grouped together
to collectively operate as a server system. Any one or all of
these components can communicate via a shared internal
network, and the collective system (e.g., also referred to
herein as a machine learning service) can communicate with
one or more of the user devices 102 via the network 110.

Various example user devices 102 are shown in FIG. 1,
including a desktop computer, laptop, and a mobile phone,
each provided by way of illustration. In general, the user
devices 102 can be any computing device such as a desktop,
laptop or tablet computer, personal computer, wearable
computer, server, personal digital assistant (PDA), hybrid
PDA/mobile phone, mobile phone, electronic book reader,
set-top box, voice command device, camera, digital media
player, and the like. In some embodiments, the model
training system 120 and/or the model hosting system 140
provides the user devices 102 with one or more user inter-
faces, command-line interfaces (CLI), application program-
ing interfaces (API), and/or other programmatic interfaces
for submitting training requests, deployment requests, and/

US 12,045,693 B2

17

or execution requests. In some embodiments, the user
devices 102 can execute a stand-alone application that
interacts with the model training system 120 and/or the
model hosting system 140 for submitting training requests,
deployment requests, and/or execution requests.

In some embodiments, the network 110 includes any
wired network, wireless network, or combination thereof.
For example, the network 110 may be a personal area
network, local area network, wide area network, over-the-air
broadcast network (e.g., for radio or television), cable net-
work, satellite network, cellular telephone network, or com-
bination thereof. As a further example, the network 110 may
be a publicly accessible network of linked networks, possi-
bly operated by various distinct parties, such as the Internet.
In some embodiments, the network 110 may be a private or
semi-private network, such as a corporate or university
intranet. The network 110 may include one or more wireless
networks, such as a Global System for Mobile Communi-
cations (GSM) network, a Code Division Multiple Access
(CDMA) network, a Long Term Evolution (LTE) network,
or any other type of wireless network. The network 110 can
use protocols and components for communicating via the
Internet or any of the other aforementioned types of net-
works. For example, the protocols used by the network 110
may include HTTP, HTTP Secure (HTTPS), Message Queue
Telemetry Transport (MQTT), Constrained Application Pro-
tocol (CoAP), and the like. Protocols and components for
communicating via the Internet or any of the other afore-
mentioned types of communication networks are well
known to those skilled in the art and, thus, are not described
in more detail herein.

Example Block Diagram for Training a Machine
Learning Model

FIG. 2 is a block diagram of the operating environment
100 of FIG. 1 illustrating the operations performed by the
components of the operating environment 100 to train a
machine learning model, according to some embodiments.
As illustrated in FIG. 2, the user device 102 transmits a
location of a container image and a location of training data
to the frontend 129 at (1). The frontend 129 then causes a
virtual machine instance 122 to be initialized and forwards
the container image location and the training data location to
the initialized virtual machine instance 122 at (2). In some
embodiments, the container image location and the training
data location are transmitted as part of a training request.

In some embodiments, the virtual machine instance 122
retrieves training data from the training data store 160 using
the received location at (3). Before, during, or after retriev-
ing the training data, the virtual machine instance 122
retrieves the container image from the container data store
170 using the received location at (4).

The virtual machine instance 122 initializes an ML train-
ing container within the virtual machine instance 122 using
the received container image in some embodiments. The
virtual machine instance 122 then executes code stored in
the ML training container using the retrieved training data at
(5) to train a machine learning model. For example, the code
can include executable instructions originating in the con-
tainer image that represent an algorithm that defines a
machine learning model that is yet to be trained. The virtual
machine instance 122 executes the code according to hyper-
parameter values that are provided by the user device 102.

Executing the executable instructions causes the ML
training container to generate model data that includes
characteristics of the machine learning model being trained.

10

20

25

30

35

40

45

50

55

60

65

18

The virtual machine instance 122 stores the model data in
the training model data store 175 at (6) in some embodi-
ments. In some embodiments, the virtual machine instance
122 generates multiple model data files that are packaged
into a single file stored in the training model data store 175.

During the machine learning model training process, the
ML model evaluator 128 can retrieve the model data from
the training model data store 175 at (7). The ML model
evaluator 128 further retrieves evaluation data from the
training data store 160 at (8). For example, the evaluation
data can be data that is separate from the data used to train
machine learning models. The evaluation data can include
input data and known results that occurred or were formed
as a result of the input data. In some embodiments, the ML
model evaluator 128 executes a machine learning model
defined by the retrieved model data using input data
included in the evaluation data at (9). The ML model
evaluator 128 then compares outputs of the machine learn-
ing model defined by the retrieved model data with known
results included in the evaluation data to determine a quality
metric of the machine learning model at (10). For example,
the quality metric can be determined based on an aggregated
difference (e.g., average difference, median difference, etc.)
between the machine learning model outputs and the known
results. The ML model evaluator 128 can then store the
quality metric in the training metrics data store 165 at (11).

In some embodiments, the ML model evaluator 128 also
stores additional information in the training metrics data
store 165. For example, the ML, model evaluator 128 can
store the input data (or tags that represent the input data), the
machine learning model outputs, and the known results.
Thus, a user, via the user device 102, can not only identify
the quality metric(s), but can also identify which inputs
resulted in small or no differences between machine learning
model outputs and known results, which inputs resulted in
large differences between machine learning model outputs
and known results, etc.

Example Block Diagram for Modifying Machine
Learning Model Training

FIG. 3 is a block diagram of the operating environment
100 of FIG. 1 illustrating the operations performed by the
components of the operating environment 100 to modifying
machine learning model training, according to some
embodiments. As illustrated in FIG. 3, the user device 102
retrieves a quality metric stored in the training metrics data
store 165 at (1). In some embodiments, a user, via the user
device 102, retrieves the quality metric to determine the
accuracy of a machine learning model still being trained.

In some embodiments, the user device 102 transmits a
location of a modified container image to the frontend 129
at (2). The frontend 129 then forwards the location of
modified container image to the virtual machine instance
122 at (3). The user device 102 can transmit the modified
container image as part of a modification request to modify
the machine learning model being trained. In response, the
virtual machine instance 122 stops execution of the code
stored in the original ML training container formed from the
original container image at (4). The virtual machine instance
122 then retrieves the modified container image from the
container data store 170 at (5) using the received location.
The virtual machine instance 122 can then form a modified
ML training container from the modified container image,
and execute code stored in the modified ML training con-
tainer using previously retrieved training data at (6) to
re-train a machine learning model.

US 12,045,693 B2

19

Execution of the code causes the modified ML training
container to generate updated model data, which the virtual
machine instance 122 then stores in the training model data
store 175 at (7). In some embodiments, not shown, the
virtual machine instance 122 causes the training model data
store 175 to delete any model data stored as a result of
training performed using the original ML training container.

In some embodiments, not shown, while the user desires
to modify a machine learning model being trained, the user,
via the user device 102, does not provide a location of a
modified container image because the user does not want to
initialize a new ML training container. Rather, the user
desires to modify the existing ML training container at
runtime so that the machine learning model can be modified
without re-starting the training process. Thus, the user
device 102 instead provides code that the virtual machine
instance 122 adds to the existing ML training container (or
uses to replace other code already existing in the ML
training container). For example, the original container
image used to form the existing ML training container can
include executable instructions that are constructed such that
the executable instructions retrieve and execute additional
code when executed. Such additional code can be provided
by the user device 102 in conjunction with the container
image (e.g., when the ML training container is initialized)
and/or after the virtual machine instance 122 has already
begun to execute code stored within the ML training con-
tainer. In this embodiment, the container image, together
with the additional code, form a complete ML training
container.

Example Block Diagram for Parallelized Machine
Learning Model Training

FIG. 4 is a block diagram of the operating environment
100 of FIG. 1 illustrating the operations performed by the
components of the operating environment 100 to parallelize
the machine learning model training process, according to
some embodiments. As illustrated in FIG. 4, user device 102
transmits a container image location and a training data
location to the frontend 129 at (1). In response, the frontend
129 initializes a first virtual machine instance 122A and a
second virtual machine instance 122B such that the first
virtual machine instance 122 A can perform a partial training
of a machine learning model using a first portion of the
training data and the second virtual machine instance 122B
can perform a partial training of the machine learning model
using a second portion of the training data. The frontend 129
then transmits the container image location and the location
of a first portion of the training data to the virtual machine
instance 122A at (2A). Before, during, or after transmitting
the container image location and the location of the first
portion of the training data to the virtual machine instance
122A, the frontend 129 transmits the container image loca-
tion and the location of a second portion of the training data
to the virtual machine instance 122B at (2B). In some
embodiments, the container image location and the training
data location are transmitted as part of training requests.

In some embodiments, the virtual machine instance 122A
retrieves the first portion of the training data from the
training data store 160 using the received location at (3A).
Before, during, or after the virtual machine instance 122A
retrieves the first portion of the training data, the virtual
machine instance 122B retrieves the second portion of the
training data from the training data store 160 using the

10

15

20

25

30

35

40

45

50

55

60

65

20

received location at (3B). In some embodiments, not shown,
the virtual machine instances 122A-122B retrieve the same
training data.

The virtual machine instance 122A then forms an ML
training container using a container image retrieved from the
indicated location in some embodiments, and executes code
stored in the ML training container using the retrieved first
portion of the training data at (4A). Before, during, or after
the virtual machine instance 122A executes the code, the
virtual machine instance 122B forms an ML training con-
tainer using a container image retrieved from the indicated
location and executes code stored in the ML training con-
tainer using the retrieved second portion of the training data
at (4B). Thus, the virtual machine instances 122A-122B
each include a copy of the same ML training container.

Executing the code causes the virtual machine instances
122A-122B (e.g., the ML training containers included
therein) to generate model data. Thus, the virtual machine
instance 122A transmits model data to the training model
data store 175 at (5A) and the virtual machine instance 122B
transmits model data to the training model data store 175 at
(5B). In some embodiments, not shown, the model data
generated by each virtual machine instance 122A-122B is
packaged into a single model data file (e.g., by the training
model data store 175).

In some embodiments, the virtual machine instances
122A-122B communicate with each other during the
machine learning model training. For example, the virtual
machine instances 122A-122B can share coefficients,
weights, training strategies, and/or the like during the train-
ing process.

Example Block Diagram for Deploying and
Executing a Machine Learning Model

FIG. 5A is a block diagram of the operating environment
100 of FIG. 1 illustrating the operations performed by the
components of the operating environment 100 to deploy a
trained machine learning model, according to some embodi-
ments. As illustrated in FIG. 5A, user device 102 transmits
a machine learning model deployment request to the fron-
tend 149 at (1). The frontend 149 can initialize a virtual
machine instance 142 at (2) and transmit the deployment
request to the virtual machine instance 142 at (3). The
deployment request includes a location of one or more
model data files stored in the training model data store 175.
In some embodiments, the deployment request includes an
endpoint name. In some embodiments, the deployment
request does not include an endpoint name.

In some embodiments, the virtual machine instance 142
retrieves model data from the training model data store 175
at (4). For example, the virtual machine instance 142
retrieves the model data corresponding to the location iden-
tified in the deployment request. In some embodiments, not
shown, the virtual machine instance 142 does not retrieve
the model data. Rather, the model data can be embedded in
the container image retrieved by the virtual machine
instance 142. The virtual machine instance 142 also retrieves
a container image from the container data store 170 at (5).
The container image can correspond to a container image
identified in the deployment request.

The virtual machine instance 142 can initialize an ML
scoring container at (6) in some embodiments. For example,
the virtual machine instance 142 can form the ML scoring
container using the retrieved container image. The virtual
machine instance 142 can further store the model data in the
ML scoring container (e.g., in a location that is the same as

US 12,045,693 B2

21

the location in which the model data is stored in an ML
training container 130 when a machine learning model is
trained) at (7).

In some embodiments, if the deployment request did not
include an endpoint name, the virtual machine instance 142
can transmit an endpoint name to the frontend 149 at (8).
The frontend 149 can then forward the endpoint name to the
user device 102 at (9). Thus, the user device 102 can use the
endpoint name to access the initialized ML scoring container
in the future (e.g., to submit a machine learning model
execution request).

FIG. 5B is a block diagram of the operating environment
100 of FIG. 1 illustrating the operations performed by the
components of the operating environment 100 to execute a
trained machine learning model, according to some embodi-
ments. As illustrated in FIG. 5B, user device 102 transmits
a machine learning model execution request to the frontend
149 at (1). The frontend 149 then forwards the execution
request to the virtual machine instance 142 at (2). In some
embodiments, the execution request includes an endpoint
name, which the model hosting system 140 uses to route the
execution request to the appropriate virtual machine instance
142.

In some embodiments, the virtual machine instance 142
executes code stored in an ML scoring container initialized
in the virtual machine instance 142 using input data included
in the execution request to generate an output at (3). In some
embodiments, the virtual machine instance 142 stores the
output in the model prediction data store 180 at (4). Alter-
natively or in addition, the virtual machine instance 142
transmits the output to the frontend 149 at (5), and the
frontend 149 transmits the output to the user device 102 at

(6).

Example Block Diagram for Executing Related
Machine Learning Models

FIG. 6 is a block diagram of the operating environment
100 of FIG. 1 illustrating the operations performed by the
components of the operating environment 100 to execute
related machine learning models, according to some
embodiments. As illustrated in FIG. 6, user device 102
transmits a machine learning model execution request to the
frontend 149 at (1). The frontend 149 then forwards the
execution request to a first ML scoring container 150A
initialized in a virtual machine instance 142 at (2). In some
embodiments, the execution request can include a request
for an output from a second machine learning model
executed by a second ML scoring container 150B initialized
in the virtual machine instance 142. However, to generate an
output, the ML scoring container 150B needs data from the
execution of a first machine learning model executed by the
ML scoring container 150A. Thus, the virtual machine
instance 142 initially routes the execution request to the ML
scoring container 150A. In some embodiments, the ML
scoring container 150A servers as a master container, man-
aging communications to and from other ML scoring con-
tainers (e.g., ML scoring container 150B).

In some embodiments, virtual machine instance 142
causes the ML scoring container 150A to execute first code
to generate a first output at (3). For example, execution of
the first code represents the execution of a first machine
learning model using input data included in the execution
request. The ML scoring container 150A then transmits the
first output to the ML scoring container 150B at (4).

The virtual machine instance 142 then causes the second
ML scoring container 150B to execute second code using the

10

15

20

25

30

35

40

45

50

55

60

65

22

first output to generate a second output at (5). For example,
execution of the second code represents the execution of a
second machine learning model using the first output as an
input to the second machine learning model. The second ML
scoring container 150B then transmits the second output to
the first ML scoring container 150A at (6).

In some embodiments, the virtual machine instance 142
pulls the second output from the first ML scoring container
150A and stores the second output in the model prediction
data store 180 at (7). Alternatively or in addition, the virtual
machine instance 142 pulls the second output from the first
ML scoring container 150A and transmits the second output
to the frontend 149 at (8). The frontend 149 then transmits
the second output to the user device 102 at (9).

In some embodiments, not shown, the ML scoring con-
tainers 150A-150B are initialized in different virtual
machine instances 142. Thus, the transmissions of the first
output and the second output can occur between virtual
machine instances 142.

Example Machine Learning Model Accuracy
Improvement Routine

FIG. 7 is a flow diagram depicting a machine learning
model training routine 700 (e.g., a method) illustratively
implemented by a model training system, according to some
embodiments. As an example, the model training system 120
of FIG. 1 can be configured to execute the machine learning
model training routine 700. The machine learning model
training routine 700 begins at block 702.

At block 704, in some embodiments, a container image
location and a training data location are received. For
example, the container image location and the training data
location are received as part of a training request.

At block 706, in some embodiments, a virtual machine
instance is initialized. For example, the initialized virtual
machine instance is the instance that will perform the
machine learning model training.

At block 708, in some embodiments, the container image
and training data are retrieved. For example, the container
image can be retrieved from the container data store 170 and
the training data can be retrieved from the training data store
160.

At block 710, in some embodiments, an ML training
container is initialized in the virtual machine instance. For
example, the ML training container is formed using the
received container image. The container image includes
executable instructions that define an algorithm. Thus, the
ML training container includes code that includes execut-
able instructions that define an algorithm.

At block 712, in some embodiments, code stored in the
ML training container is executed using the retrieved train-
ing data. For example, the retrieved training data (e.g., input
data in the training data) is supplied as inputs to the
executable instructions that define the algorithm (e.g., using
as values for input parameters of the executable instruc-
tions).

At block 714, in some embodiments, model data gener-
ated as a result of execution of the code is stored. For
example, the model data is stored in the training model data
store 175. Model data can be periodically generated during
the machine learning model training process.

At block 716, in some embodiments, a determination is
made as to whether a new container image is received during
the machine learning model training process. If a new
container image is received, the machine learning model
training routine 700 proceeds to block 718. Otherwise, if no

US 12,045,693 B2

23

new container image is received during the machine learning
model training process, the machine learning model training
routine 700 proceeds to block 720 and ends.

At block 718, in some embodiments, the original ML
training container is replaced with a new ML training
container. For example, the new ML training container is
formed using the new container image. Once the original
ML ftraining container is replaced, the machine learning
model training routine 700 proceeds back to block 712 such
that code stored in the new ML training container is
executed using the training data.

In some embodiments, not shown, a new container image
is not received. However, one or more new hyperparameters
(e.g., a change to the number of clusters, a change to the
number of layers, etc.), new code, and/or the like is received.
The model training system 120 can modify the original ML
training container during runtime (instead of replacing the
original ML training container with a new ML training
container) to train the machine learning model using the new
hyperparameter(s), using the new code, and/or the like.

Example Architecture of Model Training and
Hosting Systems

FIG. 8 depicts some embodiments of an architecture of an
illustrative model system 800, such as the model training
system 120 and the model hosting system 140, that train
and/or host machine learning models in accordance with the
present application. The general architecture of the model
system depicted in FIG. 8 includes an arrangement of
computer hardware and software components that can be
used to implement aspects of the present disclosure. As
illustrated, the model system 800 includes a processing unit
804, a network interface 806, a computer-readable medium
drive 807, an input/output device interface 820, all of which
may communicate with one another by way of a communi-
cation bus.

In some embodiments, the network interface 806 provides
connectivity to one or more networks or computing systems,
such as the network 110 of FIG. 1. The processing unit 804
can thus receive information and instructions from other
computing systems or services via a network. The process-
ing unit 804 can also communicate to and from memory 810
and further provide output information. In some embodi-
ments, the model system 800 includes more (or fewer)
components than those shown in FIG. 8.

In some embodiments, the memory 810 includes com-
puter program instructions that the processing unit 804
executes in order to implement one or more embodiments.
The memory 810 generally includes RAM, ROM, or other
persistent or non-transitory memory. The memory 810 can
store an operating system 814 that provides computer pro-
gram instructions for use by the processing unit 804 in the
general administration and operation of the functionality
implemented by the model training system 120 and/or the
model hosting system 140. The memory 810 can further
include computer program instructions and other informa-
tion for implementing aspects of the present disclosure. For
example, in some embodiments, the memory 810 includes a
model training component 816 that corresponds to function-
ality provided by the model training system 120 illustrated
in FIG. 1. In some embodiments, the memory 810 includes
a model execution component 818 that corresponds to
functionality provided by the model hosting system 140.

Example Architecture of an End User Device

FIG. 9 depicts some embodiments of an architecture of an
illustrative end user device 102 that can receive data, prepare

10

15

20

25

30

35

40

45

50

55

60

65

24

data, transmit training requests to the model training system
120, and transmit deployment and/or execution requests to
the model hosting system 140 in accordance with the present
application. The general architecture of the end user device
102 depicted in FIG. 9 includes an arrangement of computer
hardware and software components that can be used to
implement and access aspects of the present disclosure. As
illustrated, the end user device 102 includes a processing
unit 904, a network interface 906, a computer readable
medium drive 907, an input/output device interface 920, an
optional display 930, and an input device 940, all of which
may communicate with one another by way of a communi-
cation bus.

In some embodiments, the network interface 906 provides
connectivity to one or more networks or computing systems,
such as the network 110 of FIG. 1. The processing unit 904
can thus receive information and instructions from other
computing systems or services via a network. The process-
ing unit 904 can also communicate to and from memory 910
and further provide output information for the optional
display 930 via the input/output device interface 920. The
input/output device interface 920 can also accept input from
the optional input device 940, such as a keyboard, mouse,
digital pen, touchscreen, etc. In some embodiments, the end
user devices 102 include more (or fewer) components than
those shown in FIG. 9.

In some embodiments, the memory 910 includes com-
puter program instructions that the processing unit 904
executes in order to receive data, prepare data, and transmit
the requests described herein. The memory 910 generally
includes RAM, ROM, or other persistent or non-transitory
memory. The memory 910 can store an operating system
914 that provides computer program instructions and inter-
face software 912 for use by the processing unit 904 in the
general administration and operation of the end user device
102. The memory 910 can further include computer program
instructions and other information for implementing aspects
of the present disclosure. For example, in some embodi-
ments, the memory 910 includes a network application 916,
such as browser application, media player, CLI, stand-alone
application, etc., for accessing content and communicating
with the model training system 120 and/or the model hosting
system 140.

FIG. 10 illustrates an example provider network (or
“service provider system”) environment according to some
embodiments. A provider network 1000 may provide
resource virtualization to customers via one or more virtu-
alization services 1010 that allow customers to purchase,
rent, or otherwise obtain instances 1012 of virtualized
resources, including but not limited to computation and
storage resources, implemented on devices within the pro-
vider network or networks in one or more data centers. Local
Internet Protocol (IP) addresses 1016 may be associated
with the resource instances 1012; the local IP addresses are
the internal network addresses of the resource instances
1012 on the provider network 1000. In some embodiments,
the provider network 1000 may also provide public IP
addresses 1014 and/or public IP address ranges (e.g., Inter-
net Protocol version 4 (IPv4) or Internet Protocol version 6
(IPv6) addresses) that customers may obtain from the pro-
vider 1000.

Conventionally, the provider network 1000, via the vir-
tualization services 1010, may allow a customer of the
service provider (e.g., a customer that operates one or more
client networks 1050A-1050C including one or more cus-
tomer device(s) 1052) to dynamically associate at least some
public IP addresses 1014 assigned or allocated to the cus-

US 12,045,693 B2

25

tomer with particular resource instances 1012 assigned to
the customer. The provider network 1000 may also allow the
customer to remap a public IP address 1014, previously
mapped to one virtualized computing resource instance 1012
allocated to the customer, to another virtualized computing
resource instance 1012 that is also allocated to the customer.
Using the virtualized computing resource instances 1012
and public IP addresses 1014 provided by the service
provider, a customer of the service provider such as the
operator of customer network(s) 1050A-1050C may, for
example, implement customer-specific applications and
present the customer’s applications on an intermediate net-
work 1040, such as the Internet. Other network entities 1020
on the intermediate network 1040 may then generate traffic
to a destination public IP address 1014 published by the
customer network(s) 1050A-1050C; the traffic is routed to
the service provider data center, and at the data center is
routed, via a network substrate, to the local IP address 1016
of the virtualized computing resource instance 1012 cur-
rently mapped to the destination public IP address 1014.
Similarly, response traffic from the virtualized computing
resource instance 1012 may be routed via the network
substrate back onto the intermediate network 1040 to the
source entity 1020.

Local IP addresses, as used herein, refer to the internal or
“private” network addresses, for example, of resource
instances in a provider network. Local IP addresses can be
within address blocks reserved by Internet Engineering Task
Force (IETF) Request for Comments (RFC) 1918 and/or of
an address format specified by IETF RFC 4193, and may be
mutable within the provider network. Network traffic origi-
nating outside the provider network is not directly routed to
local IP addresses; instead, the traffic uses public IP
addresses that are mapped to the local IP addresses of the
resource instances. The provider network may include net-
working devices or appliances that provide network address
translation (NAT) or similar functionality to perform the
mapping from public IP addresses to local IP addresses and
vice versa.

Public IP addresses are Internet mutable network
addresses that are assigned to resource instances, either by
the service provider or by the customer. Traffic routed to a
public IP address is translated, for example via 1:1 NAT, and
forwarded to the respective local IP address of a resource
instance.

Some public IP addresses may be assigned by the provider
network infrastructure to particular resource instances; these
public IP addresses may be referred to as standard public IP
addresses, or simply standard IP addresses. In some embodi-
ments, the mapping of a standard IP address to a local IP
address of a resource instance is the default launch configu-
ration for all resource instance types.

At least some public IP addresses may be allocated to or
obtained by customers of the provider network 1000; a
customer may then assign their allocated public IP addresses
to particular resource instances allocated to the customer.
These public IP addresses may be referred to as customer
public IP addresses, or simply customer IP addresses.
Instead of being assigned by the provider network 1000 to
resource instances as in the case of standard IP addresses,
customer [P addresses may be assigned to resource instances
by the customers, for example via an API provided by the
service provider. Unlike standard IP addresses, customer 1P
addresses are allocated to customer accounts and can be
remapped to other resource instances by the respective
customers as necessary or desired. A customer IP address is
associated with a customer’s account, not a particular

20

30

40

45

55

26

resource instance, and the customer controls that IP address
until the customer chooses to release it. Unlike conventional
static IP addresses, customer IP addresses allow the cus-
tomer to mask resource instance or availability zone failures
by remapping the customer’s public IP addresses to any
resource instance associated with the customer’s account.
The customer 1P addresses, for example, enable a customer
to engineer around problems with the customer’s resource
instances or software by remapping customer IP addresses to
replacement resource instances.

FIG. 11 is a block diagram of an example provider
network that provides a storage virtualization service and a
hardware virtualization service to customers, according to
some embodiments. Hardware virtualization service 1120
provides multiple computation resources 1124 (e.g., VMs)
to customers. The computation resources 1124 may, for
example, be rented or leased to customers of the provider
network 1100 (e.g., to a customer that implements customer
network 1150). Each computation resource 1124 may be
provided with one or more local IP addresses. Provider
network 1100 may be configured to route packets from the
local TP addresses of the computation resources 1124 to
public Internet destinations, and from public Internet
sources to the local IP addresses of computation resources
1124.

Provider network 1100 may provide a customer network
1150, for example coupled to intermediate network 1140 via
local network 1156, the ability to implement virtual com-
puting systems 1192 via hardware virtualization service
1120 coupled to intermediate network 1140 and to provider
network 1100. In some embodiments, hardware virtualiza-
tion service 1120 may provide one or more APIs 1102, for
example a web services interface, via which a customer
network 1150 may access functionality provided by the
hardware virtualization service 1120, for example via a
console 1194 (e.g., a web-based application, standalone
application, mobile application, etc.). In some embodiments,
at the provider network 1100, each virtual computing system
1192 at customer network 1150 may correspond to a com-
putation resource 1124 that is leased, rented, or otherwise
provided to customer network 1150.

From an instance of a virtual computing system 1192
and/or another customer device 1190 (e.g., via console
1194), the customer may access the functionality of storage
virtualization service 1110, for example via one or more
APIs 1102, to access data from and store data to storage
resources 1118 A-1118N of a virtual data store 1116 provided
by the provider network 1100. In some embodiments, a
virtualized data store gateway (not shown) may be provided
at the customer network 1150 that may locally cache at least
some data, for example frequently accessed or critical data,
and that may communicate with virtualized data store ser-
vice 1110 via one or more communications channels to
upload new or modified data from a local cache so that the
primary store of data (virtualized data store 1116) is main-
tained. In some embodiments, a user, via a virtual computing
system 1192 and/or on another customer device 1190, may
mount and access virtual data store 1116 volumes, which
appear to the user as local virtualized storage 1198.

While not shown in FIG. 11, the virtualization service(s)
may also be accessed from resource instances within the
provider network 1100 via API(s) 1102. For example, a
customer, appliance service provider, or other entity may
access a virtualization service from within a respective
virtual network on the provider network 1100 via an API
1102 to request allocation of one or more resource instances
within the virtual network or within another virtual network.

US 12,045,693 B2

27

As discussed, different approaches can be implemented in
various environments in accordance with the described
embodiments. For example, FIG. 12 illustrates an example
of an environment 1200 for implementing aspects in accor-
dance with various embodiments. For example, in some
embodiments requests and responses are HyperText Trans-
fer Protocol (HTTP) messages that are received/sent by a
web server (e.g., web server 1206), and the users, via
electronic devices, may interact with the provider network
via a web portal provided via the web server 1206 and
application server 1208. As will be appreciated, although a
web-based environment is used for purposes of explanation,
different environments may be used, as appropriate, to
implement various embodiments. The system includes an
electronic client device 1202, which may also be referred to
as a client device and can be any appropriate device operable
to send and receive requests, messages or information over
an appropriate network 1204 and convey information back
to a user of the device 1202. Examples of such client devices
include personal computers (PCs), cell phones, handheld
messaging devices, laptop computers, set-top boxes, per-
sonal data assistants, electronic book readers, wearable
electronic devices (e.g., glasses, wristbands, monitors), and
the like. The one or more networks 1204 can include any
appropriate network, including an intranet, the Internet, a
cellular network, a local area network, or any other such
network or combination thereof. Components used for such
a system can depend at least in part upon the type of network
and/or environment selected. Protocols and components for
communicating via such a network are well known and will
not be discussed herein in detail. Communication over the
network can be enabled via wired or wireless connections
and combinations thereof. In this example, the network 1204
includes the Internet, as the environment includes a web
server 1206 for receiving requests and serving content in
response thereto, although for other networks an alternative
device serving a similar purpose could be used, as would be
apparent to one of ordinary skill in the art.

The illustrative environment includes at least one appli-
cation server 1208 and a data store 1210. It should be
understood that there can be several application servers,
layers, or other elements, processes or components, which
may be chained or otherwise configured, which can interact
to perform tasks such as obtaining data from an appropriate
data store. As used herein the term “data store” refers to any
device or combination of devices capable of storing, access-
ing and retrieving data, which may include any combination
and number of data servers, databases, data storage devices
and data storage media, in any standard, distributed or
clustered environment. The application server 1208 can
include any appropriate hardware and software for integrat-
ing with the data store 1210 as needed to execute aspects of
one or more applications for the client device 1202 and
handling a majority of the data access and business logic for
an application. The application server 1208 provides access
control services in cooperation with the data store 1210 and
is able to generate content such as text, graphics, audio,
video, etc., to be transferred to the client device 1202, which
may be served to the user by the web server in the form of
HyperText Markup Language (HTML), Extensible Markup
Language (XML), JavaScript Object Notation (JSON), or
another appropriate unstructured or structured language in
this example. The handling of all requests and responses, as
well as the delivery of content between the client device
1202 and the application server 1208, can be handled by the
web server 1206. It should be understood that the web server
1206 and application server 1208 are not required and are

10

15

20

25

30

35

40

45

50

55

60

65

28

merely example components, as structured code discussed
herein can be executed on any appropriate device or host
machine as discussed elsewhere herein.

The data store 1210 can include several separate data
tables, databases, or other data storage mechanisms and
media for storing data relating to a particular aspect. For
example, the data store illustrated includes mechanisms for
storing production data 1212 and user information 1216,
which can be used to serve content for the production side.
The data store 1210 also is shown to include a mechanism
for storing log or session data 1214. It should be understood
that there can be many other aspects that may need to be
stored in the data store, such as page image information and
access rights information, which can be stored in any of the
above listed mechanisms as appropriate or in additional
mechanisms in the data store 1210. The data store 1210 is
operable, through logic associated therewith, to receive
instructions from the application server 1208 and obtain,
update, or otherwise process data in response thereto. In one
example, a user might submit a search request for a certain
type of item. In this case, the data store 1210 might access
the user information 1216 to verify the identity of the user
and can access a production data 1212 to obtain information
about items of that type. The information can then be
returned to the user, such as in a listing of results on a web
page that the user is able to view via a browser on the user
device 1202. Information for a particular item of interest can
be viewed in a dedicated page or window of the browser.

The web server 1206, application server 1208, and/or data
store 1210 may be implemented by one or more electronic
devices 1220, which can also be referred to as electronic
server devices or server end stations, and may or may not be
located in different geographic locations. Each of the one or
more electronic devices 1220 may include an operating
system that provides executable program instructions for the
general administration and operation of that device and
typically will include computer-readable medium storing
instructions that, when executed by a processor of the
device, allow the device to perform its intended functions.
Suitable implementations for the operating system and gen-
eral functionality of the devices are known or commercially
available and are readily implemented by persons having
ordinary skill in the art, particularly in light of the disclosure
herein.

The environment in one embodiment is a distributed
computing environment utilizing several computer systems
and components that are interconnected via communication
links, using one or more computer networks or direct
connections. However, it will be appreciated by those of
ordinary skill in the art that such a system could operate
equally well in a system having fewer or a greater number
of components than are illustrated in FIG. 12. Thus, the
depiction of the environment 1200 in FIG. 12 should be
taken as being illustrative in nature and not limiting to the
scope of the disclosure.

Various embodiments discussed or suggested herein can
be implemented in a wide variety of operating environ-
ments, which in some cases can include one or more user
computers, computing devices, or processing devices which
can be used to operate any of a number of applications. User
or client devices can include any of a number of general
purpose personal computers, such as desktop or laptop
computers running a standard operating system, as well as
cellular, wireless, and handheld devices running mobile
software and capable of supporting a number of networking
and messaging protocols. Such a system also can include a
number of workstations running any of a variety of com-

US 12,045,693 B2

29

mercially-available operating systems and other known
applications for purposes such as development and database
management. These devices also can include other elec-
tronic devices, such as dummy terminals, thin-clients, gam-
ing systems, and/or other devices capable of communicating
via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for supporting com-
munications using any of a variety of commercially-avail-
able protocols, such as Transmission Control Protocol/In-
ternet Protocol (TCP/IP), File Transfer Protocol (FTP),
Universal Plug and Play (UPnP), Network File System
(NFS), Common Internet File System (CIFS), Extensible
Messaging and Presence Protocol (XMPP), AppleTalk, etc.
The network(s) can include, for example, a local area
network (LAN), a wide-area network (WAN), a virtual
private network (VPN), the Internet, an intranet, an extranet,
a public switched telephone network (PSTN), an infrared
network, a wireless network, and any combination thereof.

In embodiments utilizing a web server, the web server can
run any of a variety of server or mid-tier applications,
including HTTP servers, File Transfer Protocol (FTP) serv-
ers, Common Gateway Interface (CGI) servers, data servers,
Java servers, business application servers, etc. The server(s)
also may be capable of executing programs or scripts in
response requests from user devices, such as by executing
one or more Web applications that may be implemented as
one or more scripts or programs written in any programming
language, such as Java®, C, C # or C++, or any scripting
language, such as Perl, Python, PHP, or TCL, as well as
combinations thereof. The server(s) may also include data-
base servers, including without limitation those commer-
cially available from Oracle®, Microsoft®, Sybase®,
IBM®, etc. The database servers may be relational or
non-relational (e.g., “NoSQL”), distributed or non-distrib-
uted, etc.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation may reside in a storage-area network (SAN) familiar
to those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, serv-
ers, or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware
elements that may be electrically coupled via a bus, the
elements including, for example, at least one central pro-
cessing unit (CPU), at least one input device (e.g., a mouse,
keyboard, controller, touch screen, or keypad), and/or at
least one output device (e.g., a display device, printer, or
speaker). Such a system may also include one or more
storage devices, such as disk drives, optical storage devices,
and solid-state storage devices such as random-access
memory (RAM) or read-only memory (ROM), as well as
removable media devices, memory cards, flash cards, etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed,
and/or removable storage devices as well as storage media
for temporarily and/or more permanently containing, stor-

10

15

20

25

30

35

40

45

50

55

60

65

30

ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will
include a number of software applications, modules, ser-
vices, or other elements located within at least one working
memory device, including an operating system and appli-
cation programs, such as a client application or web browser.
It should be appreciated that alternate embodiments may
have numerous variations from that described above. For
example, customized hardware might also be used and/or
particular elements might be implemented in hardware,
software (including portable software, such as applets), or
both. Further, connection to other computing devices such as
network input/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used in the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules, or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (EEPROM), flash memory or other
memory technology, Compact Disc-Read Only Memory
(CD-ROM), Digital Versatile Disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by a system device. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

In the preceding description, various embodiments are
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to
obscure the embodiment being described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) are used herein to
illustrate optional operations that add additional features to
some embodiments. However, such notation should not be
taken to mean that these are the only options or optional
operations, and/or that blocks with solid borders are not
optional in certain embodiments.

Reference numerals with suffix letters may be used to
indicate that there can be one or multiple instances of the
referenced entity in various embodiments, and when there
are multiple instances, each does not need to be identical but
may instead share some general traits or act in common
ways. Further, the particular suffixes used are not meant to
imply that a particular amount of the entity exists unless
specifically indicated to the contrary. Thus, two entities
using the same or different suffix letters may or may not have
the same number of instances in various embodiments.

References to “one embodiment,” “an embodiment,” “an
example embodiment,” etc., indicate that the embodiment
described may include a particular feature, structure, or
characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic.
Moreover, such phrases are not necessarily referring to the
same embodiment. Further, when a particular feature, struc-
ture, or characteristic is described in connection with an
embodiment, it is submitted that it is within the knowledge
of one skilled in the art to affect such feature, structure, or

US 12,045,693 B2

31

characteristic in connection with other embodiments
whether or not explicitly described.

Moreover, in the various embodiments described above,
unless specifically noted otherwise, disjunctive language
such as the phrase “at least one of A, B, or C” is intended to
be understood to mean either A, B, or C, or any combination
thereof (e.g., A, B, and/or C). As such, disjunctive language
is not intended to, nor should it be understood to, imply that
a given embodiment requires at least one of A, at least one
of B, or at least one of C to each be present.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the disclosure as set forth in the
claims.

What is claimed is:

1. A computer-implemented method comprising:

receiving, at a service provider network, a first request to

train a machine learning (ML) model; wherein the first
request to train identifies a first ML training container
image; wherein the first request to train identifies a set
of training data; wherein the service provider network
is implemented by one or more electronic devices;

in response to receiving the first request to train:

retrieving the first ML training container image from a
container data store,

using the first ML training container image to initialize
a first ML training container on a virtual machine
instance, the first ML training container image com-
prising a first training algorithm code, and

executing the first training algorithm code and using the
set of training data to train the ML, model in the first
ML training container to yield a first trained ML
model;

evaluating the first trained ML model to obtain a first set

of output data;

determining a first quality metric based on comparing the

first set of output data to a set of evaluation data;
receiving, at the service provider network, a second
request to train the machine learning (ML) model;
wherein the second request to train identifies a second
ML training container image; wherein the second
request to train identifies the set of training data;

in response to receiving the second request to train:

retrieving the second ML training container image from
a container data store,

using the second ML training container image to ini-
tialize a second ML training container on the virtual
machine instance, the second ML training container
image comprising a second training algorithm,

executing the second training algorithm code and using
the set of training data to train the ML, model in the
second ML ftraining container to yield a second
trained ML model, and

storing the second trained ML model in a training
model data store;

evaluating the second trained ML model to obtain a

second set of output data;

determining a second quality metric based on comparing

the second set of output data to the set of evaluation
data;

receiving, at the service provider network, a request to

deploy the second trained ML model, wherein the
request to deploy identifies a ML scoring container
image, wherein the request to deploy identifies the
second trained ML model;

10

15

20

25

30

35

40

45

50

65

32

in response to receiving the request to deploy:
retrieving the ML scoring container image from a
container data store,
using the ML scoring container image to initialize an
ML scoring container, the ML scoring container
image comprising a scoring algorithm code,
retrieving the second trained ML model from the train-
ing model data store,
storing the second trained ML model in the ML scoring
container, and
returning an endpoint name for the ML scoring con-
tainer;
receiving, at the service provider network, a request to
perform scoring, the request to perform scoring com-
prising the endpoint name, the request to perform
scoring identifying input data;
and
in response to receiving the request to perform scoring:
executing the scoring algorithm code and using the
second trained ML model on the input data in the ML,
scoring container to yield a result, and
returning the result.
2. The computer-implemented method of claim 1,

wherein the set of training data is provided to the first ML,
training container as one or more files in a first local
directory in the first ML training container or as one or more
input streams accessible within the first ML training con-
tainer, and wherein the method further comprises:

storing a set of one or more model artifacts at a storage
location, wherein the storing comprises:
obtaining the set of one or more model artifacts from a
second local directory in the first ML training con-
tainer; and
sending the set of one or more model artifacts or an
archived version of the set of one or more model
artifacts to the storage location.
3. The computer-implemented method of claim 1,

wherein a front end of the service provider network is to
receive the request to perform scoring and return the result
using HyperText Transfer Protocol (HTTP) messages.

4. A computer-implemented method comprising:
receiving, at a service provider network, a request to train
a machine learning (ML) model; wherein the request to
train identifies a set of training data; wherein the
request to train identifies a ML training container
image; wherein the service provider network is imple-
mented by one or more electronic devices;
in response to receiving the request to train:
retrieving the ML training container image from a
container data store,
using the ML training container image to initialize a
ML training container,
executing training algorithm code and using the set of
training data to train the ML model in the ML
training container to yield a trained ML model, and
storing the trained ML model in a training model data
store;
receiving, at the service provider network, a request to
deploy the trained ML model wherein the request to
deploy identifies a ML scoring container image,
wherein the request to deploy identifies the trained ML
model,;
in response to receiving the request to deploy:
retrieving the ML scoring container image from a
container data store,

US 12,045,693 B2

33

using the ML scoring container image to initialize an
ML scoring container, the ML scoring container
image comprises a scoring algorithm code,

retrieving the trained ML model from the training
model data store,

storing the trained ML model in the ML scoring con-
tainer, and

returning an endpoint name for the ML scoring con-
tainer;

receiving, at the service provider network, a request to

perform scoring, the request to perform scoring com-
prising the endpoint name, the request to perform
scoring identifying input data;

and

in response to receiving the request to perform scoring:

executing scoring algorithm code and using the trained
ML model on the input data in the ML scoring
container to yield a result, and

returning the result.

5. The computer-implemented method of claim 4,
wherein the request to deploy identifies a location of the ML,
scoring container image.

6. The computer-implemented method of claim 4,
wherein the ML scoring container further includes a run-
time.

7. The computer-implemented method of claim 4,
wherein training the ML model based on the set of training
data is based on obtaining the set of training data from a
storage service in the service provider network.

8. The computer-implemented method of claim 4,
wherein training the ML model further comprises:

providing the set of training data to the ML training

container as one or more files in a local directory in the
ML training container or as one or more input streams
accessible within the ML training container.

9. The computer-implemented method of claim 4,
wherein the request to train the ML model identifies one or
more hyperparameters to be used for training the ML model,
and wherein the training the ML model further comprises
providing the one or more hyperparameters to the ML
training container as one or more files in a local directory in
the ML training container.

10. The computer-implemented method of claim 4, fur-
ther comprising:

performing scoring using a graphical processing unit.

11. The computer-implemented method of claim 4,
wherein a front end of the service provider network is to
receive the request to perform scoring and provide the result.

12. The computer-implemented method of claim 4,
wherein the request to perform scoring and result are trans-
mitted using HyperText Transfer Protocol (HTTP) mes-
sages.

13. The computer-implemented method of claim 4,
wherein the request to perform scoring comprises an HT'TP
endpoint name.

14. The computer-implemented method of claim 4,
wherein the result is stored in a model prediction data store.

15. A system comprising:

a first one or more electronic devices to implement a

storage service in a service provider network; and

a second one or more electronic devices to implement a

machine learning service in the service provider net-

10

15

20

25

30

35

40

45

50

55

60

34

work, the machine learning service including instruc-
tions that upon execution cause the machine learning
service to:

receive a request to train a machine learning (ML) model;

wherein the request to train identifies a ML training

container image; wherein the request to train identifies

a set of training data stored at the storage service;

responsive to receiving the request to train:

retrieve the ML training container image from a con-
tainer data store,

use the ML training container image to initialize a ML,
training container,

execute training algorithm code and using the set of
training data to train the ML model in the ML
training container to yield a trained ML model, and

store the trained ML model in a training model data
store;

receive a request to deploy the trained ML model, wherein

the request to deploy identifies a ML scoring container
image, wherein the request to deploy identifies the
trained ML model;

response to receiving the request to deploy:

retrieve the ML scoring container image from a con-
tainer data store,

initialize an ML scoring container using the ML scoring
container image, the ML scoring container image
comprises a scoring algorithm code,

retrieving the trained ML model from the training
model data store,

storing the trained ML model in the ML scoring con-
tainer, and

returning an endpoint name for the ML scoring con-
tainer;

receive a request to perform scoring, the request to

perform scoring comprising the endpoint name, the
request to perform scoring identifying input data;

in response to receiving the request to perform scoring:

executing the scoring algorithm code and using the
trained ML model on the input data in the ML
scoring container to yield a result, and

return the result.

16. The system of claim 15, wherein the request to deploy
identifies a location of the ML scoring container image
comprising the scoring algorithm code.

17. The system of claim 15, wherein the request to train
the ML model comprises an identifier of the set of training
data usable to obtain the set of training data from the storage
service.

18. The system of claim 15, wherein the machine learning
service is further to provide the set of training data to the ML,
training container as one or more files in a local directory in
the ML training container or as one or more input streams
accessible within the ML training container.

19. The system of claim 15, wherein the request to train
the ML model is to identify one or more hyperparameters to
be used for training the ML model, and wherein the machine
learning service is to provide the one or more hyperparam-
eters to the ML training container as one or more files in a
local directory in the ML training container.

20. The system of claim 15, wherein the request to
perform scoring and result are to be transmitted using
HyperText Transfer Protocol (HTTP) messages.

#* #* #* #* #*

