US 20240248791A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0248791 Al

Biswal et al. 43) Pub. Date: Jul. 25, 2024
(54) METHODS AND APPARATUS FOR GOG6F 11/30 (2006.01)
DATACENTER MONITORING GOG6F 11/34 (2006.01)
]] (52) US. CL
(71) Applicant: Walmart Apollo, LLC, Bentonville, CPC ... GOGF 11/0793 (2013.01); GOG6F 9/45558
AR (US) (2013.01); GO6F 11/0709 (2013.01); GO6F
11/3086 (2013.01); GO6F 11/3423 (2013.01);
(72) Inventors: Swapna Kumar Biswal, Bangalore (é06F 2009/4559]1 ((2013.01))
(IN); Narendran Somasundaram,
Erode (IN); Saurabh Sandeep Jain,
San Jose, CA (US); Shriniwas Phalke, &7 ABSTRACT
Mountain H CA (US); Satheesh
chljllﬁlaiull}lazzlslithan,(Fre)I,noZt, gi: This. application relate.s to apparatus and methods for the
(US) monitoring of nodes within datacenters. In some examples,
a computing device, such as a node, receives a monitoring
(21) Appl. No.: 18/608,075 file from a monitoring server, where the monitoring file
] includes a plurality of node health checks. The computing
(22) Filed: Mar. 18, 2024 device is configured to execute the monitoring file based on
Related U.S. Application Data a type.of the computipg Qevice. Further, and .based on the
execution of the monitoring file, the computing device is
(63) Continuation of application No. 17/655,295, filed on configured to determine that at least one of the plurality of
Mar. 17, 2022, now Pat. No. 11,966,280. node health checks failed. In response to determining that
A . . the at least one of the plurality of node health checks failed,
Publication Classification the computing device is configured to generate an alert
(51) Int. CL message identifying the node health checks that failed.
GO6F 11/07 (2006.01) Further, the computing device is configured to transmit the
GO6F 9/455 (2006.01) alert message to the monitoring server for display.
602 605
l OPTION SELECTION r-
604 - 620
CHECK LIST DATACENTER LIST
CHECK 606 CODE 608 622 '\{ FIRST DATACENTERID |
| FIRsTcHECK | || [FIRsTcoDE |
| SECOND DATACENTERID |
[SECOND CHECK | || [SECOND CODE | [THIRD DATACENTERID |
| THIRD CHECK l | THIRD CODE l

Patent Application Publication Jul. 25,2024 Sheet 1 of 12 US 2024/0248791 A1

L=
(=
-

[an)}
0
O H L0
~ B0 s o
\/ ©
©
A <~
=

L

[

118

-
I
X Z
%0:
LLi
S E
- Z
-
Z0
W

pa
o
=
<
)
z
)
=
=
o
O

FIG. 1

Patent Application Publication Jul. 25,2024 Sheet 2 of 12 US 2024/0248791 A1

102 N
201
~
204 ~ 20\8
Tx/Rx Processor(s)
Device -
QL
§ 202 ~
2PN 2 Working
Communication | Memory
Port(s)
203 ~
206 ~
: I/O Device(s
Display (s)
205
— 207 ~
User _
Interface Instruction
Memory

FIG. 2

= ¢ 'Old
-
(=2}
~
“ T —
m 0o 0%
= 8G€ dWVLS TNIL
o
z 95¢ v1lva lyaw
$O¢ SHIALINVHV ¥S€ 3dAL 3AON
o pom——
. _ﬂm_ 7% s34 ¢S QI 3IAoN
0 i 1
« v1vad 9OI4NOD V1vd HL1v3H 3aON
7]
[-?)
K-
H o= e = —
h
S 9Ll !
o
st = | ANIONS
= M:: LINIWIDOYNYIN
= 5 Oce NOILYHYNOIANOD
4011 goc dno1o
g 250€
= = N 450¢ v
= E[I ANION3
= 5 ¥3a¥003y \
z ¢
- 301) 2608 7O V.ivd g50¢
E — v
= °o » <
2 _ INIONT C
e —— asoe ONINOLINOW vS0e
< aoLr” 208 ANO1O
=
2 m_moﬁ\ —7
g Zol

“lli

[]

gl

m
—
-
—

°l

= ¥ 'Ol
-
(=2}
~
= ‘1
M J—
< 05¢ 0%e
= 8GE dINVLS INIL
o
z 9%t V.ivd Ly¥31v
7O SHILINVHVYC ¥S€ 3dAL 3IAON
o pr—
- 29¢ SERE 0S¢ a1 3AaON
(=]
= v1vd 914NOD v1vd HL1v3H 3AON
3
K-
wn
e ———

-
= @:\ »
o
vy — ANIONT
o o ONIMOLINOW
= dill Z0¢ anono

7 3
- 0L _ 510b
= = 410t IANIONS
z S 5o t3AN003 V1va
S b 4
A glov
= 041 alov INIONT LNIWIOVYNYIN
2 = | NOILYHNOIINOD
S 30¢ -
S ST avor~ e dNOTo viop
= S
= 4
< aok o5 HIWIL
= S/
3 g801 —
g 201

<
-
—
P

US 2024/0248791 Al

Jul. 25,2024 Sheet 5 of 12

Patent Application Publication

G 'Old
4]
\ 1dI¥90S
A_‘ ONIYOLINOW 31NO3AXT
ANION3T womK
ONIYOLINOW q
Z0S anoTd
q 1Nnd
3NIONS Cozs 1dI¥0S ONIHOLINOW
roc J3QH003d V1va Dy
) 905
ANIONT INIWIDVYNVIN q
NOILYHNOIANOD
90¢ anoo
2 | LN3WTTOUNZ 3AON
ob J3ANIL v0s
201~ q
1004 3AON
| H0SIAY3dAH ANO1D
205
ol r\

US 2024/0248791 Al

Jul. 25,2024 Sheet 6 of 12

Patent Application Publication

g9 'Old

ze9 ; HOVY _

A

NOILOZT3S NOILdJO

\- 209
anoTo
ogo A0 |
G09
V9 'Old
| 3cooaumr | || [soaHoaumL |
|__QI¥3IN30VLva QuiHL | | 3a00anoo3s | || [xoaHo anooss |
al ¥3LNIOVLYA ANOD3S
| | | 3aooisud | |[| @oaHolsuid |
al ¥3LNIOV.LVA LSHI 809 IA0D 309 SIOFAD
_ _/. cec9
ISTTEIINTOVIVA ISTTSaAD

G09

029~

NOILO3T3S NOILdO

209 -/

09

US 2024/0248791 Al

Jul. 25,2024 Sheet 7 of 12

Patent Application Publication

a9 'oid

099

STIAON/SSOVISIINTOVIVA ISYSE[TW)
pog

\- z99

(S)AAON/(SIMOVH/A(S)HYILNIOVLIYA IHL HOA
SMOIHD ONIMOT104 IHL a319vSIa/a3a1gvNa IAVH NOA

09 "OId

o9

J19VN4

318vSsId

py9 ~/

zv9

00, -~

-

-

-

[=))

7 |]

% L Old

=

=

=

ol

wn

-

a

[

[=]

]

g

K-

wn

o JDIAY3S HO4 NOISSY JAQON 13S3Y
>

ol

" oL 80/, -
ol

=

J

=

.m

z 3009 LYY al 3aoN YILINIOVLIVA
=

=1

= 90, -~ y0L -~ z0. -~
[=]

5 JDILON 1y3 TV

2

(=9

-

E

=

=W

US 2024/0248791 Al

Jul. 25,2024 Sheet 9 of 12

Patent Application Publication

V8 "Old

SHMOIHD IdAL IAON ddIHL

SX03HD IdAL FAON ANOO3S

SHXO3HD ddAL 2AON LSyl

ocg - 3 818~ ﬂ 18-/ ﬁ
_ A
¢3dAL
L¥TTY AN3S 300N arvA
pig”

gOr M3N I1NA3HOS

> IddAL AAON MOFHD

og~

808 / a
CONINNNY
gor 1 T111S gor
908 -/
SNLYLS 90r ¥O3HD
008 A z0s

US 2024/0248791 Al

Jul. 25,2024 Sheet 10 of 12

Patent Application Publication

g8 "Old

‘|

1NO3INIL

998

¢MO3HD

—P® Ly3TV AN3S

HIHLONY

zo8 -
A

A 4

IDILLON dNIS

¢03Ssvd
TW3H 47138

848

0Z8 \

‘sL8
‘918

098 —

¢d38s8vd

TV3IH 47138 LdNTLLY MOIHD

968

MOIHD WHOAMAd |
zs8 — »

MOIHD TVILINI ANINY3AL3A
osg

&Aa1dvNA
ONRIOLINOW

818

Patent Application Publication Jul. 25,2024 Sheet 11 of 12 US 2024/0248791 A1l

900
Csmar > ;

902
RECEIVE A MONITORING SCRIPT COMPRISING A PLURALITY OF MONITORINGS
Il 904
STORE THE MONITORING SCRIPT IN MEMORY
| 906
EXECUTE THE MONITORING SCRIPT D

908

HAVE ANY OF
THE PLURALITY
OF HEALTH CHECKS
FAILED?

/-910

GENERATE AN ALERT BASED ON THE FAILURE

l 912
TRANSMIT THE ALERT

914

HAS A
PREDETERMINED
AMOUNT OF TIME
EXPIRED?

FIG. 9

Patent Application Publication Jul. 25,2024 Sheet 12 of 12 US 2024/0248791 A1l

1000
Csmar > 4

1002

TRANSMIT A MONITORING SCRIPT TO A PLURALITY OF NODES OF
A DATACENTER
l 1004
RECEIVE AN ALERT FROM AT LEAST ONE OF THE PLURALITY OF
NODES
l 1006

DISPLAY THE ALERT

l 1008

RECEIVE AN INPUT IN RESPONSE TO THE DISPLAYED ALERT

i 1010

TRANSMIT A RESET MESSAGE TO THE AT LEAST ONE OF THE
PLURALITY OF NODES

l

FIG. 10

US 2024/0248791 Al

METHODS AND APPARATUS FOR
DATACENTER MONITORING

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 17/655,295, filed on Mar. 17, 2022, and
entitled “METHODS AND APPARATUS FOR DATACEN-
TER MONITORING,” which is incorporated herein in its
entirety by reference.

TECHNICAL FIELD

[0002] The disclosure relates generally to datacenters such
as cloud-based datacenters and, more specifically, to moni-
toring hardware, such as servers, within datacenters.

BACKGROUND

[0003] Some datacenters, such as cloud datacenters, may
employ multiple servers to handle various data processing
tasks. For example, a cloud datacenter may employ hun-
dreds of servers to process large amounts of data. Each
server may be associated with a rack of the datacenter, where
a rack is a collection of servers. Datacenters may also
include data storage capabilities, such as memory devices
that allow for the storage of data, and networking resources
that allow for communication among and with the servers.
In some datacenter examples, servers may execute one or
more hypervisors that run one or more virtual machines
(VMs). The VMs may be scheduled to execute one or more
processing tasks. To manage datacenters including the vari-
ous servers, some data systems employ software tools such
as Openstack®. These tools may require the installation of
one or more files, such as agent plugins, on each of the
servers of a datacenter that can provide information about
the servers. There are opportunities to address drawbacks
associated with datacenter monitoring.

SUMMARY

[0004] The embodiments described herein are directed to
datacenters, such as cloud datacenters, and the monitoring of
nodes (e.g., compute hosts, servers) within the datacenters.
The embodiments may allow for the generation and trans-
mission of node status information can be used to better
manage the nodes of a datacenter, as well as a more efficient
mechanism of obtaining information from the nodes. For
example, the embodiments may include transmitting a moni-
toring script and one or more supporting configuration files
to the nodes. The monitoring script executes locally on each
node and periodically performs one or more health checks of
the node. In some examples, if an issue (e.g., error) is
determined, the monitoring script may perform operations to
attempt to resolve the issue (e.g., self-heal operations). In
some examples, if an issue persists, or if no self-heal
operations are performed, the monitoring script may cause
the node to generate an alert identifying the issue. The alert
may be, for example, and email message to be sent to one or
more predetermined email addresses, a text message to be
sent to one or more predetermined destinations (phone
number, etc.), a message for display, or any other suitable
alert.

[0005] In some examples, the monitoring script identifies
a type of the node, and performs health checks in accordance
with the determined type. The embodiments may further

Jul. 25, 2024

allow for the enabling and disabling of one or more health
checks for the nodes of a datacenter. For example, the
embodiments may allow for the disabling of any health
monitoring (e.g., the health checks performed by the moni-
toring script) for a particular node, for a rack (e.g., a
collection of servers) of the datacenter, or for the datacenter
(e.g., all the nodes of the datacenter).

[0006] Among other advantages, the embodiments may
reduce the number of install files, such as plugins, required
to monitor the status of nodes of a datacenter. Moreover, the
embodiments may provide more robust health check infor-
mation, and may perform operations to act on the health
check information to more reliably and efficiently manage
the nodes of the datacenter. Further, the embodiments may
provide for the more efficient generation and transmission of
the health check information, the benefits of which may
scale as the number of monitored nodes, racks, and data-
centers increase. Persons of ordinary skill in the art having
the benefit of these disclosures may recognize these and
other benefits as well.

[0007] In accordance with various embodiments, exem-
plary systems may be implemented in any suitable hardware
or hardware and software, such as in any suitable computing
device. For example, in some embodiments, a computing
device, such as a node, is configured to receive a monitoring
file, where the monitoring file includes a plurality of node
health checks. The computing device is configured to
execute the monitoring file based on a type of the computing
device. Further, and based on the execution of the monitor-
ing file, the computing device is configured to determine that
at least one of the plurality of node health checks failed. In
response to determining that the at least one of the plurality
of node health checks failed, the computing device is
configured to generate an alert message, where the alert
message identifies the at least one of the plurality of node
health checks that failed. Further, the computing device is
configured to transmit the alert message to a monitoring
computing device.

[0008] Insomeembodiments, a method includes receiving
a monitoring file, where the monitoring file includes a
plurality of node health checks. The method also includes
executing the monitoring file based on a type of the com-
puting device. Further, and based on the execution of the
monitoring file, the method includes determining that at
least one of the plurality of node health checks failed. In
response to determining that the at least one of the plurality
of'node health checks failed, the method includes generating
an alert message, where the alert message identifies the at
least one of the plurality of node health checks that failed.
Further, the method includes transmitting the alert message
to a monitoring computing device.

[0009] In yet other embodiments, a non-transitory com-
puter readable medium has instructions stored thereon,
where the instructions, when executed by at least one
processor, cause a computing device to perform operations
that include receiving a monitoring file, where the monitor-
ing file includes a plurality of node health checks. The
operations also include executing the monitoring file based
on a type of the computing device. Further, and based on the
execution of the monitoring file, the operations include
determining that at least one of the plurality of node health
checks failed. In response to determining that the at least one
of the plurality of node health checks failed, the operations
include generating an alert message, where the alert message

US 2024/0248791 Al

identifies the at least one of the plurality of node health
checks that failed. Further, the operations include transmit-
ting the alert message to a monitoring computing device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The features and advantages of the present disclo-
sures will be more fully disclosed in, or rendered obvious by
the following detailed descriptions of example embodi-
ments. The detailed descriptions of the example embodi-
ments are to be considered together with the accompanying
drawings wherein like numbers refer to like parts and further
wherein:

[0011] FIG. 1 is a block diagram of a datacenter manage-
ment system in accordance with some embodiments;
[0012] FIG. 2 is a block diagram of an exemplary moni-
toring server in accordance with some embodiments;
[0013] FIG. 3 is a block diagram illustrating examples of
various portions of the datacenter management system of
FIG. 1 in accordance with some embodiments;

[0014] FIG. 4 is another block diagram illustrating
examples of various portions of the datacenter management
system of FIG. 1 in accordance with some embodiments;
[0015] FIG. 5 is yet another block diagram illustrating
examples of various portions of the datacenter management
system of FIG. 1 in accordance with some embodiments;
[0016] FIGS. 6A, 6B, 6C, and 6D illustrate examples of
digital interfaces that may be provided for display in accor-
dance with some embodiments;

[0017] FIG. 7 illustrates an alert message in accordance
with some embodiments;

[0018] FIGS. 8A and 8B illustrate flowcharts of example
methods that can be carried out by a node in accordance with
some embodiments;

[0019] FIG. 9 illustrates a flowchart of another example
method that can be carried out by a node in accordance with
some embodiments; and

[0020] FIG. 10 illustrates a flowchart of an example
method that can be carried out by a monitoring server in
accordance with some embodiments.

DETAILED DESCRIPTION

[0021] The description of the preferred embodiments is
intended to be read in connection with the accompanying
drawings, which are to be considered part of the entire
written description of these disclosures. While the present
disclosure is susceptible to various modifications and alter-
native forms, specific embodiments are shown by way of
example in the drawings and will be described in detail
herein. The objectives and advantages of the claimed subject
matter will become more apparent from the following
detailed description of these exemplary embodiments in
connection with the accompanying drawings.

[0022] It should be understood, however, that the present
disclosure is not intended to be limited to the particular
forms disclosed. Rather, the present disclosure covers all
modifications, equivalents, and alternatives that fall within
the spirit and scope of these exemplary embodiments.
[0023] The terms “couple,” “coupled,” “operatively
coupled,” “operatively connected,” and the like should be
broadly understood to refer to connecting devices or com-
ponents together either mechanically, electrically, wired,
wirelessly, or otherwise, such that the connection allows the

Jul. 25, 2024

pertinent devices or components to operate (e.g., commu-
nicate) with each other as intended by virtue of that rela-
tionship.

[0024] Turning to the drawings, FIG. 1 illustrates a block
diagram of a datacenter management system 100 that
includes a monitoring server 102, a database 116, datacen-
ters 108A, 108B, and alert devices 114 communicatively
coupled over network 118. Datacenters 108A, 108B may be
cloud-based datacenters, for example, and may include one
or more compute nodes 110 (e.g., servers). Each compute
node 110 may include, for example, processing resources,
such as general processing units (GPUs) or central process-
ing units (CPUs), as well as memory devices for storing
digital data.

[0025] Monitoring server 102, compute nodes 110, and
alert devices 114 can each be any suitable computing device
that includes any hardware or hardware and software com-
bination that allow for the processing of data. For example,
each of monitoring server 102, compute nodes 110, and alert
devices 114 can include one or more processors, one or more
field-programmable gate arrays (FPGAs), one or more appli-
cation-specific integrated circuits (ASICs), one or more state
machines, digital circuitry, or any other suitable circuitry.
Each of monitoring server 102, compute nodes 110, and alert
devices 114 can also include executable instructions stored
in non-volatile memory that can be executed by one or more
processors. For instance, any of monitoring server 102,
compute nodes 110, and alert devices 114 can be a computer,
a workstation, a laptop, a server such as a cloud-based
server, a web server, a smartphone, or any other suitable
device. In addition, each monitoring server 102, compute
nodes 110, and alert devices 114 can transmit data to, and
receive data from, communication network 118.

[0026] Although FIG. 1 illustrates two datacenters 108A,
108B, datacenter management system 100 can include any
number of datacenters. Further, each datacenter 108A, 1088
can include any number of compute nodes 110. In some
examples, the compute nodes 110 are organized by racks,
where each rack includes one or more compute nodes 110.
For example, each compute node 110 may be configured
(e.g., by monitoring server 102) to operate as part of a
particular rack. Further, datacenter management system 100
can include any number of monitoring servers 102, alert
devices 114, and databases 116.

[0027] Communication network 118 can be a WiFi net-
work, a cellular network such as a 3GPP° network, a
Bluetooth® network, a satellite network, a wireless local area
network (LAN), a network utilizing radio-frequency (RF)
communication protocols, a Near Field Communication
(NFC) network, a wireless Metropolitan Area Network
(MAN) connecting multiple wireless LANs, a wide area
network (WAN), or any other suitable network.

[0028] Communication network 118 can provide access
to, for example, the Internet.

[0029] Each compute node 110 may execute one or more
processing tasks, such as hypervisors that execute one or
more virtual machines (VMs). For example, a compute node
110 may configure a hypervisor to execute one or more
VMs. Each VM may be based on a virtual machine operating
system, such as a Microsoft®, Linux®, Red Hat®,
MacOS®, or any other VM operating system. Each hyper-
visor may run one or more of the same, or differing, VMs.
Compute nodes 110 may be operable to obtain executable
instructions from for example, non-volatile memory, and

US 2024/0248791 Al

may execute the instructions to establish the one or more
processing tasks, including the VMs. Each processing task
may execute among one or more processing cores of a
processor, such as a CPU, of a compute node 110. In some
examples, a processing task may execute among one or more
processors of a compute node 110, or among processors of
multiple servers 111.

[0030] Database 116 can be any suitable non-volatile
memory, such as a remote storage device, a memory device
of a cloud-based server, a memory device on another appli-
cation server, a memory device of a networked computer, or
any other suitable non-transitory data storage device. In
some examples, database 116 can be a local storage device,
such as a hard drive, a non-volatile memory, or a USB stick.
Database 116 may store datacenter network data such as
compute node 110 status information, and may also store
compute node 110 configuration data. For example, moni-
toring server 102 may obtain compute node 110 configura-
tion data from database 116, and “push” the configuration
data to one or more compute nodes 110 for install.

[0031] Database 116 may also store monitoring files, such
as the monitoring script described herein, which may be
“pushed” by monitoring server 102 to each compute node
110. In some examples, each compute node 110 (e.g., as part
of a startup/bootup sequence) may obtain the monitoring
files from database 116. In some examples, each compute
node 110 may obtain the monitoring files from monitoring
server 102. For example, each compute node 110 may
request the monitoring files from monitoring server 102
through an application interface (API) call to a particular
endpoint maintained and supported by monitoring server
102.

[0032] The monitoring script may execute locally on each
compute node 110 and perform operations to check the
“health” of each compute node 110. For example, and as
described herein, the executed monitoring script may per-
form operations to: check whether a previous job is still
executing, check whether the compute node 110 is of a valid
node type, whether all dependent files are available, whether
node monitoring, or monitoring of any particular health
check, is disabled, whether the node “uptime” is beyond a
threshold, whether previous service processes are still
executing, whether a file system is in a valid (e.g., read-only)
state, whether CPU usage is beyond a threshold, whether
enough disk space (e.g., memory) is available, whether disk
usage is beyond a threshold, whether various services are
executing, and determine container status, among other
health checks.

[0033] In some examples, if an error is encountered (e.g.,
a health check failed), the monitoring script may attempt to
“self-heal” by performing operations to cure the error. In
some examples, compute nodes 110 generate an alert mes-
sage identifying an error, and transmit the error message to
monitoring server 102. The alert message may include, for
example, a datacenter identifier (ID), a node ID, an alert
code, where the alert code identifies the error. In some
examples, the alert message is an email. The compute node
110 may generate the email to one or more predetermined
email addresses. For example, the email may be viewed on
a display of one or more of monitoring server 102 and alert
devices 114. Alert devices 114 may be operated by a
datacenter management department 115 that employs one or
more information technology (IT) professionals, for
example.

Jul. 25, 2024

[0034] In some examples, a user may via one or more of
monitoring server 102 and alert devices 114, disable, or
enable, one or more health checks performed by the
executed monitoring script. For example, an alert device 114
may display a digital interface that identifies each datacenter
108A, 108B, racks within each datacenter 108A, 108B, and
nodes assigned to each rack. The digital interface may
further include icons that, when engaged by the user, allow
the user to disable or enable one or more health checks for
one or more datacenters 108A, 108B (e.g., for a cloud
region), a rack of a datacenter 108A, 108B, or a node of a
datacenter 108A, 108B.

[0035] In some embodiments, a compute node 110 is
configured to receive a monitoring file, where the monitor-
ing file includes a plurality of node health checks. The
compute node 110 is configured to execute the monitoring
file based on a type of the computing device. Further, and
based on the execution of the monitoring file, the compute
node 110 is configured to determine that at least one of the
plurality of node health checks failed. In response to deter-
mining that the at least one of the plurality of node health
checks failed, the compute node 110 is configured to gen-
erate an alert message, where the alert message identifies the
at least one of the plurality of node health checks that failed.
Further, the compute node 110 is configured to transmit the
alert message to monitoring server 102.

[0036] In some examples, the compute node 110 is con-
figured to determine whether each of the plurality of node
health checks are enabled, and execute each of the plurality
of node health checks when they are enabled.

[0037] In some examples, in response to determining that
the at least one of the plurality of node health checks failed,
the compute node 110 is configured to execute again the at
least one of the plurality of node health checks that failed
after a predetermined amount of time.

[0038] In some examples, the compute node 110 is con-
figured to determine that a first of the plurality of node health
checks passed, and based on the determination, execute a
second of the plurality of node health checks.

[0039] In some examples, the compute node 110 is con-
figured to determine that a first of the plurality of node health
checks failed, and exit the monitoring script.

[0040] In some examples, the compute node 110 is con-
figured to determine that the type of the computing device
does not match any of a plurality of node types identified
within the monitoring script, generate a second alert mes-
sage identifying an unsupported node type, transmit the
second alert message, and exit the monitoring script.
[0041] In some examples, the alert message is an email
message to a predetermined email address.

[0042] In some examples, executing the monitoring file
comprises executing an operating system (OS) that calls the
monitoring file.

[0043] FIG. 2 illustrates the monitoring server 102 of FIG.
1. Monitoring server 102 can include one or more processors
201, working memory 202, one or more input/output devices
203, instruction memory 207, a transceiver 204, one or more
communication ports 207, and a display 206, all operatively
coupled to one or more data buses 208. Data buses 208 allow
for communication among the various devices. Data buses
208 can include wired, or wireless, communication chan-
nels.

[0044] Processors 201 can include one or more distinct
processors, each having one or more processing cores. Each

US 2024/0248791 Al

of the distinct processors can have the same or different
structure. Processors 201 can include one or more central
processing units (CPUs), one or more graphics processing
units (GPUs), application specific integrated circuits
(ASICs), digital signal processors (DSPs), and the like.
[0045] Instruction memory 207 can store instructions that
can be accessed (e.g., read) and executed by processors 201.
For example, instruction memory 207 can be a non-transi-
tory, computer-readable storage medium such as a read-only
memory (ROM), an electrically erasable programmable
read-only memory (EEPROM), flash memory, a removable
disk, CD-ROM, any non-volatile memory, or any other
suitable memory.

[0046] Processors 201 can be configured to perform a
certain function or operation by executing the instructions
stored on instruction memory 207 embodying the function
or operation. For example, processors 201 can be configured
to perform one or more of any function, method, or opera-
tion disclosed herein.

[0047] Processors 201 can store data to, and read data
from, working memory 202. For example, processors 201
can store a working set of instructions to working memory
202, such as instructions loaded from instruction memory
207. Processors 201 can also use working memory 202 to
store dynamic data created during the operation of monitor-
ing server 102. Working memory 202 can be a random
access memory (RAM) such as a static random access
memory (SRAM) or dynamic random access memory
(DRAM), or any other suitable memory.

[0048] Input-output devices 203 can include any suitable
device that allows for data input or output. For example,
input-output devices 203 can include one or more of a
keyboard, a touchpad, a mouse, a stylus, a touchscreen, a
physical button, a speaker, a microphone, or any other
suitable input or output device.

[0049] Communication port(s) 209 can include, for
example, a serial port such as a universal asynchronous
receiver/transmitter (UART) connection, a Universal Serial
Bus (USB) connection, or any other suitable communication
port or connection. In some examples, communication port
(s) 209 allows for the programming of executable instruc-
tions stored in instruction memory 207. In some examples,
communication port(s) 209 allow for the transfer (e.g.,
uploading or downloading) of data, such as datacenter
configuration files.

[0050] Display 206 can display user interface 205. User
interfaces 205 can enable user interaction with monitoring
server 102. For example, user interface 205 can be a user
interface for an application of a retailer that allows a
customer to initiate the return of an item to the retailer. In
some examples, a user can interact with user interface 205
by engaging input-output devices 203. In some examples,
display 206 can be a touchscreen, where user interface 205
is displayed on the touchscreen.

[0051] Transceiver 204 allows for communication with a
network, such as the communication network 118 of FIG. 1.
For example, if communication network 118 of FIG. 1 is a
cellular network, transceiver 204 is configured to allow
communications with the cellular network. In some
examples, transceiver 204 is selected based on the type of
communication network 118 monitoring server 102 will be
operating in. Processor(s) 201 is operable to receive data
from, or send data to, a network, such as communication
network 118 of FIG. 1, via transceiver 204.

Jul. 25, 2024

[0052] FIG. 3 is a block diagram illustrating examples of
various portions of the datacenter management system 100
of FIG. 1. As indicated in FIG. 3, monitoring server 102 is
communicatively coupled to database 116 and alert device
114. Further, monitoring server 102 is communicatively
coupled to compute nodes 110A, 110B, 110C of datacenter
108A, and compute nodes 110D, 110E, 110F of datacenter
108B. For example, monitoring server 102 may store data to,
and retrieve data from, database 116. Monitoring server 102
may also transmit data to, and receive data from, each
compute node 110A, 110B, 110C of datacenter 108A, each
compute node 110D, 110E, 110F of datacenter 108B, and
alert device 114.

[0053] In this example, monitoring server 102 includes a
cloud monitoring engine 302, a data recorder engine 304,
and a cloud configuration management engine 306. In some
examples, each of cloud monitoring engine 302, data
recorder engine 304, and cloud configuration management
engine 306 are implemented in hardware. In some examples,
each of cloud monitoring engine 302, data recorder engine
304, and cloud configuration management engine 306 are
implemented by the execution of instructions by one or more
processors, such as by processor 201 executing instructions
stored in instruction memory 207.

[0054] Database 116 stores node health data 350 for each
compute node 110, which may include a node ID 352 and a
node type 354 for each compute node 110 of each datacenter
108A, 108B. Database 116 further stores configuration data
360 that may include one or more files 362, including a
monitoring script, and one or more parameters 364. The
monitoring script may include, for example, one or more
health checks. Each compute node 110 may obtain, during
bootup, at least portions of configuration data 360, which
may include the monitoring script, and may execute the
monitoring script. For example, in response to a request,
cloud configuration management engine 306 may be con-
figured to obtain at least portions of configuration data 360,
which may include the monitoring script, from database 116,
and may transmit the portions of configuration data 360 to
the requesting compute node 110. In some examples, as
described herein, cloud configuration management engine
306 may transmit the portions of configuration data 360 to
each compute node 110 periodically.

[0055] For example, and as described herein, each com-
pute node 110A, 110B, 110C, 110D, 110E, 110F may
execute the monitoring script to perform the one or more
health checks of the corresponding compute node 110. The
monitoring script may be loaded during a boot sequence of
the corresponding compute node 110. For example, each
compute node 110 may obtain the monitoring script from
monitoring server 102 during the boot sequence, and an
operating system (OS) of the compute node 110 may peri-
odically execute the monitoring script. In some examples,
the OS runs the monitoring script every few minutes, such
as every 5, 10, 15, or 60 minutes.

[0056] The monitoring script may include one or more
health checks, such as one or more of the following: a check
of whether a previous job is still executing, a check of
whether the compute node 110 is of a valid node type, a
check of whether all dependent files are available, a check
of whether node monitoring, or monitoring of any particular
health check, is disabled, a check of whether the node
“uptime” is beyond a threshold, a check of whether previous
service processes are still executing, a check of whether a

US 2024/0248791 Al

file system is in a valid (e.g., read-only) state, a check of
whether CPU usage is beyond a threshold, a check of
whether enough disk space (e.g., memory) is available, a
check of whether disk usage is beyond a threshold, a check
of whether various services are executing, and a determina-
tion of container status, among others. In this example, cloud
monitoring engine 302 may receive, from each compute
node 110A, 110B, 110C, 110D, 110E, 110F, a corresponding
alert message 305A, 305B, 305C, 305D, 305E, 305F if one
or more of the health checks fail.

[0057] For example, for the check of whether a previous
job is still executing, the executed monitoring script may
generate an alert message 305 if a previous job, such as one
previously assign to the compute node 110, is still under
operation. If the previous job is not running, the executed
monitoring script may proceed to the next health check.
Otherwise, if the previous job is still running, the executed
monitoring script may kill the previous job process and, in
some examples, schedule, or launch, a new job process.
Further, the executed monitoring script may generate an
alert message 305 identifying that the previous job has been
terminated (e.g., via an alert code).

[0058] For the check of whether the compute node 110 is
of a valid node type, an alert message 305 may be generated
if a configured node type for the compute node 110 is not of
a predetermined node type. For example, the executed
monitoring script may compare the node type of the com-
pute node 110 (which may be a parameter 364) to one of a
plurality of node types defined in the monitoring script. For
example, the monitoring script may define controller,
deployment, and compute node types, where nodes of each
type perform particular operations. If the node type of the
compute node 110 is not one of the controller, deployment,
and compute node types, the executed monitoring script may
generate an alert message 305 identifying that the configured
node type of the compute node 110 is invalid. In some
examples, the compute node 110 also stops executing (e.g.,
exits) the monitoring script. Otherwise, if the node type of
the compute node 110 is one of the controller, deployment,
and compute node types, the executed monitoring script may
proceed to the next health check.

[0059] In some examples, and based on the configured
node type (when the node type is valid), the executed
monitoring script may determine a set of health checks to
perform on the compute node 110. For example, the moni-
toring script may perform a first set of health checks for
controller node type compute nodes 110, a second set of
health checks for deployment node type compute nodes 110,
and a third set of health checks for compute node type
compute nodes 110. Some health checks may be included in
two or more of the set of health checks.

[0060] The compute node 110 may further generate an
alert message 305 if all dependent files, which may be define
within one of the files 362, are available (e.g., within a
directory of a file system of compute node 110). Dependent
files may include, for example, a predetermined number of
files deemed necessary for operation. If any of the dependent
files are missing (e.g., not within the directory), the executed
monitoring script may cause the execution of a “re-install”
script to attempt to recover the missing files. Once complete,
the executed monitoring script may check again to deter-
mine if the predetermined number of files are located within
the directory. If the files are still not available, the executed

Jul. 25, 2024

monitoring script may generate an alert message 305. Oth-
erwise, the executed monitoring script may proceed to the
next health check.

[0061] In some examples, the executed monitoring script
determines if a particular health check is disabled. For
example, at least one of the files 362 may identify health
checks that have been disabled for either the particular
compute node 110 (e.g., using a node ID), for a rack of the
particular compute node 110, or for the datacenter 108A,
108B of the compute node 110. If a particular health check
is disabled, the executed monitoring script does not perform
the health check (e.g., the health check is skipped).

[0062] In some examples, a user may provide input to a
particular compute node 110 to disable a health check. For
example, the user may modify a configuration file locally
stored within the compute node 110, such as one obtained
from files 362 of configuration data 360 during bootup, to
disable a particular health check. If the health check is
disabled, as noted above, the executed monitoring script will
not perform the health check. However, in some examples,
each compute node 110 overwrites the modified configura-
tion file with a “clean” version (e.g., the one received at
bootup, or one pushed to, or pulled by, the compute node 110
after startup) periodically. As such, if the particular health
check is enabled in the “clean” version of the file, the
particular health check will be performed during the next
execution of the monitoring script.

[0063] In some examples, the executed monitoring script
may determine if an uptime of the compute node 110 (e.g.,
amount of time since the compute node 110 booted up) is
greater than a predetermined threshold. If the uptime is not
greater than the predetermined threshold, the executed
monitoring script exits, and is re-run the next time it is
invoked (e.g., by the OS). As such, the monitoring script
may not execute fully if the uptime of the compute node 110
is not at least the predetermined threshold. The predeter-
mined threshold may be received as a parameter 364. For
example, the parameter 364 may be obtained at bootup
during the bootup sequence of the compute node 110.
[0064] In some examples, the executed monitoring script
may determine if a load average of the compute node 110
(e.g., number of processes using or waiting for a processing
core) is greater than a predetermined threshold. If the load
average is not greater than the predetermined threshold, the
executed monitoring script proceeds to the next health
check. If, however, the load average is the same or greater
than the predetermined threshold, the executed monitoring
script may generate an alert message 305.

[0065] In some examples, the executed monitoring script
may determine if CPU usage of the compute node 110 (e.g.,
percent of time a CPU is processing) is greater than a
predetermined threshold. If the CPU usage is not greater
than the predetermined threshold, the executed monitoring
script proceeds to the next health check. If, however, the
CPU usage is the same or greater than the predetermined
threshold, the executed monitoring script may generate an
alert message 305.

[0066] In some examples, the executed monitoring script
may determine whether a service process is still executing
(e.g., so not completed). For example, the executed moni-
toring script may determine that the service process is still
executing, and may initiate a timer for a predetermined
amount of time (e.g., five minutes). The predetermined
amount of time may be received as part of the parameters

US 2024/0248791 Al

364. The executed monitoring script may determine when
the time expires (e.g., the executed monitoring script may
pool the time, or may receive a signal from the timer when
the timer expires), and may check again whether the service
process is still executing. If the service process is still
executing, the executed monitoring script may generate an
alert message 305 identifying that the service process is still
running. In some examples, the executed monitoring script
may attempt to self-heal by, for example, attempting to end
the service process. If successful (e.g., the service process
ended), the executed monitoring script may proceed to the
next health check. Otherwise, if not successful, the executed
monitoring script may generate the alert message 305.

[0067] Insome examples, as described above, the services
processes checked by the executed monitoring script depend
on the node type of the corresponding compute node 110.
For example, the monitoring script may determine whether
a first set of service process are executing for controller node
type compute nodes 110, a second set of service process are
executing for deployment node type compute nodes 110, and
a third set of service process are executing for compute node
type compute nodes 110.

[0068] In some examples, for compute nodes 110 of a
particular node type, such as deployment and controller
node types, the executed monitoring script may determine
whether one or more file directories are configured as
read-only. The identification of the file directories may be
predetermined and defined within files 362. If the file
directories are read-only, the executed monitoring script
may proceed to the next health check. Otherwise, the
executed monitoring script may generate an alert message
305 identifying that the file directories are not read-only.

[0069] In some examples, the executed monitoring script
may determine a usage of disk space, such disk space usage
of directories mounted on one or more disks (e.g.,/root,/boot
directories) of the corresponding compute node 110. If the
disk space usage is below a predetermined threshold (e.g.,
75%), the executed monitoring script may proceed to the
next health check. The predetermined threshold may be
defined within parameters 364. If, however, the disk space
usage is at or above the predetermined threshold, the
executed monitoring script may attempt a self-heal by
performing cleanup operations, such as deleting files in the
directories. Once the cleanup operations are complete, the
executed monitoring script may again determine the disk
space usage. If the disk space usage is now below the
predetermined threshold (e.g., 75%), the executed monitor-
ing script may proceed to the next health check. Otherwise,
the executed monitoring script may generate an alert mes-
sage 305 identifying that the disk space usage is at or above
the threshold. In some examples, the alert message 305
includes the disk space usage.

[0070] In some examples, the executed monitoring script
may determine memory usage, such as amount of working
memory currently utilized. If the memory usage is above a
predetermined threshold (e.g., 25%), the executed monitor-
ing script may proceed to the next health check. The
predetermined threshold may be defined within parameters
364. If, however, the memory usage is at or below the
predetermined threshold, the executed monitoring script
may generate an alert message 305 identifying that the
memory usage is at or below the threshold. In some
examples, the alert message 305 includes the memory usage.

Jul. 25, 2024

[0071] In some examples, the executed monitoring script
may determine whether a keep-alive process is executing,
such as without error. The keep-alive process may include,
for example, checking a keep-alive value stored in memory.
The keep-alive value may be set upon the reception of a
message or signal, and the periodic verification of the set
value. For example, upon the expiration of an amount of
time, the keep-alive value may be checked. If the keep-alive
value is not set in accordance with a received message or
signal, a keep-alive status may be set to indicate a failure.
Otherwise, if the keep-alive value is set in accordance with
the received message or signal, the keep-alive status may be
set to indicate a passing status, and the keep-alive value may
be cleared (e.g., to allow the setting of the keep-alive value
upon the next received message or signal). The executed
monitoring script may determine whether the keep-alive
process is executing without error based on the keep-alive
status. For example, the executed monitoring script may
determine that the keep-alive process is not executing with-
out error if the keep-alive status indicates a failure. If the
executed monitoring script determines the keep-alive pro-
cess is executing without error, the executed monitoring
script may proceed to the next health check. If, however, the
executed monitoring script determines the keep-alive pro-
cess failed, the executed monitoring script may attempt to
self-heal by restarting the keep-alive process. If, after
restraint the keep-alive process, the keep-alive process again
indicates failure, the executed monitoring script may gen-
erate an alert message 305.

[0072] After the final health check is performed, the
executed monitoring script may wait until the next periodic
health check is performed. In some examples, the monitor-
ing script may be executed (e.g., by the compute node’s 110
OS) every few minutes, such as every 5, 10, 15, or 60
minutes. Further, as described herein, monitoring server 102
may receive, from each compute node 110A, 110B, 110C,
110D, 110E, 110F, one or more corresponding alert mes-
sages 305A, 305B, 305C, 305D, 305E, 305F if one or more
of the health checks fail.

[0073] Monitoring server 102 may generate alert data 356
for each compute node 110 based, at least in part, on the
corresponding received alert messages 305. For example,
monitoring server 102 may parse a received alert message
305 to determine alert data 356, which may include an alert
code. Monitoring server 102 may also determine a time-
stamp 358 identifying when the alert message 305 was
received. For example, monitoring server 102 may read an
internal clock register upon receiving an alert message 305
to determine the timestamp 358, or may obtain the time-
stamp 358 over network 118 from a time provider (e.g., a
server that provides current dates/times) upon receiving an
alert message 305. Monitoring server 102 may store the alert
data 356 and timestamp 358 in database 116 for the corre-
sponding compute node 110 identified by node ID 350. In
some examples, monitoring server 102 may display at least
portions of the node health data, such as by displaying the
portions within user interface 205.

[0074] Insome examples, monitoring server 102 generates
an alert notice 320, which may include portions of node
health data 350. For example, alert notice 320 may include
node ID 350 and alert data 356 corresponding to a particular
received alert message 305. In some examples, the alert
notice 320 may also include the node type 354 of the
reporting compute node 110, and the timestamp 358 of when

US 2024/0248791 Al

the alert message 305 was received. Monitoring server 102
may transmit the alert notice 320 to one or more alert
devices 114. In some examples, the alert notice 320 is an
email message with a destination address of one or more
predetermined email addresses.

[0075] FIG. 4 is a block diagram illustrating examples of
various portions of the datacenter management system 100
of FIG. 1. As indicated in FIG. 4, cloud configuration
management engine 306 of monitoring server 102 may
transmit (e.g., push), to each compute node 110A, 110B,
110C of datacenter 108A, and each compute node 110D,
110E, 110F of datacenter 108B, a corresponding monitoring
package 401A, 401B, 401C, 401D, 401E, 401F. Each moni-
toring package 401 may include, for example, a monitoring
script obtained from files 362, as well as one or more
parameters 364. Each monitoring package 401 may also
include the node ID 350 of the corresponding compute node
110, and the node type 354 of the corresponding compute
node 110.

[0076] In some examples, each compute node 110 config-
ures itself to be of the node type 354 received in the
monitoring package 401. Each compute node 110 may also
configure thresholds, such as those discussed herein, based
on the received parameters 364. Further, each compute node
110 may install a received monitoring script in a directory to
be called, for example, by the compute node’s 110 OS.
[0077] Insome examples, each compute node 110 requests
their corresponding monitoring package 401 as part of a
bootup sequence. For example, each compute node 110 may
poll an API endpoint maintained by monitoring server 102
to request the monitoring package 401 (e.g., API “pull”). In
response, cloud configuration management engine 306 may
transmit the requested monitoring package 401. In some
examples, cloud configuration management engine 306
transmits the monitoring package 401 to each compute node
110 periodically (e.g., once a day, once an hour, once a
month, etc.). For example, cloud configuration management
engine 306 may initialize a timer 405 to a predetermined
amount of time (e.g., which may be configured by a user and
stored in database 116), and may start the timer 405. Upon
the timer 405 expiring (e.g., reaching 0), cloud configuration
management engine 306 may transmit the monitoring pack-
ages 401 to each of the compute nodes 110.

[0078] FIG. 5 illustrates a block diagram of an exemplary
monitoring server 102 in communication with an exemplary
compute node 110. FIG. 5 further illustrates bootup steps
(e.g., a bootup sequence) of the compute node 110. For
example, at startup (e.g., bootup), the compute node 110
may execute a cloud hypervisor node boot 502, which
includes operations to boot one or more hypervisors on the
compute node 110. Further, the compute node may execute
operations to perform a node enrollment 504, which may
include performing operations to register the compute node
110 with the monitoring server 102 as a particular node type
(e.g., node type 354).

[0079] In addition, the compute node 110 may perform
monitoring script pull 506 operations to obtain, from moni-
toring server 102, monitoring files 520 (e.g., files 362,
parameters 364) such as the monitoring script described
herein. For example, the compute node 110 may perform an
API call destined to a particular endpoint supported by
monitoring server 102, and in response receive the moni-
toring script as well as any corresponding parameters, such
as the thresholds described herein.

Jul. 25, 2024

[0080] Further, the compute node 100 may execute the
monitoring script 508 as described herein. For example, the
compute node 110 may execute the monitoring script to
perform a plurality of health checks of the compute node 110
periodically. If any of the health checks fail (e.g., a fault or
error is detected), the compute node 110 may generate an
alert message 522 characterizing the failure, and may trans-
mit the alert message 522 to monitoring server 102.
[0081] FIGS. 6A, 6B, 6C, and 6D illustrate examples of
digital interfaces that may be provided for display by, for
example, monitoring server 102 or alert device 114. For
example, FIG. 6A illustrates a digital interface 605 that
includes an option selection icon 602, a checklist 604, and
a datacenter list 620. Datacenter list 620 may identify one or
more datacenters, such as datacenters 108A, 108B, by
datacenter 1Ds 622. For example, datacenter list 620 may
identify a first datacenter with a first datacenter ID, a second
datacenter with a second datacenter ID, and a third datacen-
ter with a third datacenter ID.

[0082] Checklist 604 may identify health checks 606 and
corresponding codes 608. Each code 608 may be a value that
identifies a corresponding health check 606 performed by a
compute node 110. For example, a first code (e.g., 0x0001)
may identify a first health check, a second code (e.g.,
0x0010) may identify a second health check, and a third
code (e.g., 0x0100) may identify a third health check.
[0083] Option selection icon 602 allows a user to enable,
or disable, any health checks 606 for any datacenter iden-
tified in the datacenter list 620, or any compute node or rack
of any of the identified datacenters. A user may select one or
more of the health checks, and one or more of the datacen-
ters of the datacenter list (e.g., by engaging the correspond-
ing health checks 606 and datacenter ID 622 icons). Further,
the user may engage the option selection icon 602 of digital
interface 605 to select whether to apply the change to the
selected cloud 630 (e.g., the selected datacenter), a rack 632
of the selected datacenter, or a node 634 of the selected
datacenter, as illustrated in FIG. 6B. Further, if engaging
rack icon 632 or node icon 634, the digital interface may
provide an additional menu allowing the user to select one
or more racks, or one or more nodes, of the selected
datacenter.

[0084] FIG. 6C illustrates a digital interface 640 that
allows the user to select whether to disable, or enable, the
selected health checks for the selected datacenters, racks,
and nodes. For example, the user may disable the selected
health checks by engaging the disable icon 642. Alterna-
tively, the user may enable the selected health checks by
engaging the enable icon 644.

[0085] Upon engaging the disable icon 642 or enable icon
644, as illustrated in FIG. 6D, a digital interface 660 may be
displayed that identifies the health checks 662 to be disabled
or enabled for the selected datacenters, racks, and nodes 664.
If a datacenter is selected, monitoring server 102 selects all
compute nodes 110 for the datacenter. If a rack is selected,
monitoring server 102 selects all compute nodes 110 belong-
ing to the selected rack of the datacenter. Further, monitoring
server 102 may transmit (e.g., push) a notification to the
corresponding compute nodes 110, causing the compute
nodes 110 to enable or disable the health checks. For
example, monitoring server 102 may adjust one or more
parameters 364 to indicate whether the selected health
checks 662 are enabled or disabled, and may transmit the
one or more parameters 364 to the corresponding compute

US 2024/0248791 Al

nodes 110. In some examples, monitoring server 102 may
transmit the one or more parameters 364 to the correspond-
ing compute nodes 110 periodically (e.g., upon the expira-
tion of timer 405). In some examples, monitoring server 102
may transmit the one or more parameters 364 to a corre-
sponding compute node 110 upon receiving a request (e.g.,
API pull) from the compute node 110.

[0086] FIG. 7 illustrates an alert interface 700 that may be
displayed by monitoring server 102 or alert device 115, and
which may display information from one of the alert mes-
sages 305 generated by one of the compute nodes 110 and
transmitted to, and received by, monitoring server 102. In
this example, alert interface 700 identifies the datacenter 702
(e.g., via a datacenter ID), the node ID 704 (e.g., node 1D
350), and the alert code 706 (e.g., alert data 356). Further,
alert interface 700 may include a reset node icon 708 and an
assign for service icon 710. Upon engaging reset node icon
708, monitoring server 102 may transmit a reset message to
the compute node 110 identified by node 1D 704.

[0087] Once received, the reset message may cause the
compute node to perform a reset. By resetting the compute
node 110, the fault identified by the alert code 706 may be
cured. Otherwise, if the user engages the assign for service
icon 710, monitoring server 102 may generate a service
request for the compute node 110. For example, the moni-
toring server 102 may generate and submit the service
request within a service database maintained within database
116. In some examples, monitoring server 102 transmits a
notification to one or more computing devices of one or
more IT professionals. For example, monitoring server 102
may generate and transmit an email, a text message, or any
other suitable message type indicating the node ID 704 and
the alert code 706. The message, when received, may cause
the computing devices of the IT professionals to display the
notification. The IT professionals may then become aware of
the issue, and may attempt to solve the issue with the
compute node 110.

[0088] FIG. 8A illustrates a flowchart 800 of a method that
may be performed by a compute node, such as compute node
110, when executing a monitoring script as described herein.
Beginning at step 802, the compute node checks the job
status of a previous job. At step 804, a determination is made
as to whether the job is still executing (e.g., running). If the
job is still executing, the method proceeds to step 806, where
the job is terminated (e.g., killed). In some examples, the
compute node 110 may generate an alert message 305
identifying that the previous job was terminated. The
method then proceeds to step 810. The method then pro-
ceeds to step 808, where a new job is scheduled. If, however,
at step 804, the job is not executing, the method proceeds to
step 810.

[0089] At step 810, the compute node 110 checks its node
type. For example, the compute node 110 may read a
register, or read a value defining its node type from memory.
At step 812, the compute node 110 determines whether the
node type is valid. For example, the compute node 110 may
compare its node type to one or more node types received
within a monitoring package obtained during bootup.

[0090] For example, a received monitoring script may
define controller, deployment, and compute node types,
where nodes of each type perform particular operations. If
the node type of the compute node 110 is not one of the
controller, deployment, and compute node types, the
executed monitoring script may send an alert at step 814,

Jul. 25, 2024

such as an alert message 305 identifying that the configured
node type of the compute node 110 is invalid. In some
examples, the compute node 110 also stops executing (e.g.,
exits) the monitoring script.

[0091] Otherwise, if the node type of the compute node
110 is one of the controller, deployment, and compute node
types, the compute node 110 proceeds to perform one or
more additional health checks based on the node type. For
example, if the compute node’s 100 node type is a first node
type, the method proceeds to step 816, where one or more
first node type health checks are performed. If, however, the
compute node’s 100 node type is a second node type, the
method proceeds to step 818, where one or more second
node type health checks are performed. If the compute
node’s 100 node type is a third node type, the method
proceeds to step 820, where one or more third node type
health checks are performed.

[0092] FIG. 8B illustrates an example of steps 816, 818,
and 820 of FIG. 8A, which illustrate a method that may be
performed by a compute node, such as compute node 110,
when executing a monitoring script. The compute node 110
may execute an operating system (OS) that calls the moni-
toring script, for example. Beginning at step at step 848,
compute node 110 may determine if monitoring is enabled.
For example, compute node 110 may obtain a value stored
in memory, such as a value in stored within a configuration
file in memory (e.g., received as a file 362 or parameter 364),
and determine, based on the value, whether a monitoring
script should be executed. If, based on the value, the
compute node 110 determines that the monitoring script is
not to be executed, the method proceeds to step 866. If,
however, the compute node 110 determines that the moni-
toring script is to be executed, the method proceeds to step
850. At step 850, an initial health check is determined. For
example, the compute node 110 may execute the monitoring
script, where an initial health check is performed first. The
initial health check may be, for example, to determine the
compute node’s 110 node type, and determine if it’s a valid
node type, as described herein. At step 852, the health check
is performed.

[0093] Proceeding to step 854, the compute node 110
determines if the health check passed. If the health check
passes (e.g., the health check does not fail), the method
proceeds to step 864. If, however, the health check does not
pass (e.g., failure), the method proceeds to step 856, where
the compute node 110 attempts to self-heal. For example,
based on the health check that failed, the compute node 110
may perform operations to cure the failure, such as by
restarting a process (e.g., program, script, etc.), by restarting,
or by any other suitable self-heal operation.

[0094] At step 858, if the self-heal passed (e.g., the health
check passed after attempting the self-heal operations), the
method proceeds to step 860, where a notice is generated
and transmitted to, for example, monitoring server 102. The
notice may indicate the failing health check, and may further
indicate that the failure was resolved. Upon receiving the
notice, the monitoring server 102 may display the notice,
and may further store the notice in a database, such as
database 116 (e.g., the monitoring server 102 may log the
notice). If, however, at step 858 the self-heal failed, the
method proceeds to step 862 where an alert is generated and
transmitted to, for example, monitoring server 102. The alert
may be, for example, a corresponding alert message 305A,
305B, 305C, 305D, 305E, 305F. Upon receiving the notice,

US 2024/0248791 Al

the monitoring server 102 may display the alert, and may
further store the alert in a database, such as database 116
(e.g., the monitoring server 102 may log the alert). The
method then proceeds to step 864.

[0095] At step 864, the compute node 110 determines if
there is another health check to perform. If there is another
health check to perform, the method proceeds back to step
852 to perform the health check. If, however, there is no
other health check to perform, the method proceeds to step
866.

[0096] At step 866, the compute node 110 stops executing
the monitoring script for a predetermined amount of time
(e.g., such as one programmed into timer 405). For example,
the OS may not call the monitoring script until the prede-
termined amount of time has passed. Once the predeter-
mined amount of time has expired, the method proceeds
back to step 848 to determine whether monitoring is
enabled.

[0097] FIG. 9 illustrates a flowchart 900 of a method that
may be performed by a compute node, such as a compute
node 110. At step 902, a monitoring script comprising a
plurality of health checks is received. For example, the
monitoring script may be requested and received during a
bootup sequence of the compute node 110. As described
herein, the health checks may include: checking whether a
previous job is still executing, checking whether the com-
pute node 110 is of a valid node type, determining whether
all dependent files are available, determining whether node
monitoring, or monitoring of any particular health check, is
disabled, determining whether the node “uptime” is beyond
a threshold, determining whether previous service processes
are still executing, determining whether a file system is in a
valid (e.g., read-only) state, determining whether CPU usage
is beyond a threshold, whether enough disk space (e.g.,
memory) is available, determining whether disk usage is
beyond a threshold, determining whether one or more ser-
vices are executing, and determining container status,
among other health checks.

[0098] At step 904, the compute node 110 stores the
monitoring script in memory. For example, the compute
node 110 may store the monitoring script within working
memory 202. Further, at step 906, the compute node 110
executes the monitoring script.

[0099] Proceeding to step 908, the compute node 110
determines whether any of the plurality of health checks
failed. For example, the compute node 110 may perform
operations to execute each health check, and determines
whether each health check failed. If a health check has
failed, the method proceeds to step 910, where an alert is
generated based on the failure. For example, the compute
node 110 may generate a corresponding alert message 305A,
305B, 305C, 305D, 305E, 305F. The method then proceeds
to step 912, where the alert is transmitted. For example, the
compute node 110 may transmit the alert to monitoring
server 102. Monitoring server 102 may transmit a notifica-
tion (e.g., alert notice 320) to one or more alert devices 114
based on the received alert, and monitoring server 102 may
display the alert. The method proceeds to step 914 from step
912. If, however, at step 908 no health checks fail, the
method proceeds to step 914.

[0100] At step 914, a determination is made as to whether
a predetermined amount of time has expired. For example,
the compute node 100 may initialize the timer 405 the
predetermined amount of time, and may start the time 405.

Jul. 25, 2024

Upon expiration of the predetermined amount of time, the
timer 405 may expire, and issue an interrupt, which causes
an interrupt service routine (ISR) to execute. The ISR may
toggle a flag value, indicating that the time has expired. The
OS may periodically check the flag to determine when the
predetermined amount of time has expired. Once the pre-
determined amount of time has expired, the method pro-
ceeds back to step 906, where the monitoring script is
executed.

[0101] FIG. 10 illustrates a flowchart 1000 of a method
that can be carried out by a computing device, such as the
monitoring server 102. Beginning at step 1002, the moni-
toring server 110 transmits a monitoring script to a plurality
of nodes (e.g., compute nodes 110) of a datacenter (e.g.,
datacenter 108A, 108B). At step 1004, the monitoring server
102 receives an alert from at least one of the plurality of
nodes. For example, the monitoring server 102 may receive,
from a compute node 110A, 110B, 110C, 110D, 110E, 110F,
a corresponding alert message 305A, 305B, 305C, 305D,
305E, 305F if one or more of health checks performed by the
executed monitoring script fail.

[0102] Proceeding to step 1004, the monitoring server 102
displays the alert. For example, the monitoring server 102
may generate an alert notice 700 based on the received alert
message 305, and may display the alert notice 700. At step
1006, the monitoring server 102 receives an input in
response to the displayed alert. For example, the monitoring
server 102 may receive an input via user interface 205
indicating that the reset node icon 708 has been engaged
(e.g., touched). At step 1008, the monitoring server 102
transmits a reset message to the at least one of the plurality
of nodes. The reset message causes the at least one of the
plurality of nodes to reset (e.g., bootup), which may cure the
failure. The method then ends.

[0103] Although the methods described above are with
reference to the illustrated flowcharts, it will be appreciated
that many other ways of performing the acts associated with
the methods can be used. For example, the order of some
operations may be changed, and some of the operations
described may be optional.

[0104] In addition, the methods and system described
herein can be at least partially embodied in the form of
computer-implemented processes and apparatus for practic-
ing those processes. The disclosed methods may also be at
least partially embodied in the form of tangible, non-tran-
sitory machine-readable storage media encoded with com-
puter program code. For example, the steps of the methods
can be embodied in hardware, in executable instructions
executed by a processor (e.g., software), or a combination of
the two. The media may include, for example, RAMs,
ROMs, CD-ROMs, DVD-ROMs, BD-ROMs, hard disk
drives, flash memories, or any other non-transitory machine-
readable storage medium. When the computer program code
is loaded into and executed by a computer, the computer
becomes an apparatus for practicing the method. The meth-
ods may also be at least partially embodied in the form of a
computer into which computer program code is loaded or
executed, such that, the computer becomes a special purpose
computer for practicing the methods. When implemented on
a general-purpose processor, the computer program code
segments configure the processor to create specific logic
circuits. The methods may alternatively be at least partially
embodied in application specific integrated circuits for per-
forming the methods.

US 2024/0248791 Al

[0105] The foregoing is provided for purposes of illustrat-
ing, explaining, and describing embodiments of these dis-
closures. Modifications and adaptations to these embodi-
ments will be apparent to those skilled in the art and may be
made without departing from the scope or spirit of these
disclosures.

What is claimed is:

1. A system comprising:

a computing device configured to:

upon receipt of a selection of a subset of a plurality of
nodes, receive a monitoring file comprising a plu-
rality of health checks, the plurality of health checks
being associated with the subset of the plurality of
nodes;

execute the monitoring file based on a type associated
with the computing device;

based on the execution of the monitoring file, compare
one or more node attributes to a predetermined
threshold to generate a comparison and identify a
failed health check of the plurality of health checks,
wherein the failed health check is associated with a
failed node of the subset of the plurality of nodes;

in response to identifying the failed health check,
generate an alert message based on the comparison,
the alert message identifying the failed node and data
associated with the failed health check; and

transmit the alert message to a monitoring computing
device.

2. The system of claim 1, wherein executing the moni-
toring file comprises:

determining whether each of the plurality of health checks

are enabled; and

executing each of the plurality of health checks when they

are enabled.

3. The system of claim 1, wherein the computing device
is configured to, in response to identifying the failed health
check of the plurality of health checks, execute the failed
health check after a predetermined amount of time.

4. The system of claim 1, wherein the computing device
is configured to:

initialize a timer with a predetermined amount of time;

determine when the predetermined amount of time has

passed based on the timer; and

in response to the determining that the predetermined

amount of time has passed, execute the monitoring file.

5. The system of claim 1, wherein the computing device
is configured to:

determine that a first of the plurality of health checks

passed; and

based on the determination, execute a second of the

plurality of health checks.

6. The system of claim 1, wherein the computing device
is configured to:

determine that a first of the plurality of health checks

failed; and

terminate the monitoring file.

7. The system of claim 1, wherein the computing device
is configured to:

determine that the type associated with the computing

device does not match any of a plurality of types
identified within the monitoring file;

generate a second alert message identifying the type

associated with the computing device; and

transmit the second alert message.

Jul. 25, 2024

8. The system of claim 1, wherein the computing device
is configured to:

receive a message identifying a disabled one of the

plurality of health checks; and

execute the monitoring file without executing the disabled

one of the plurality of health checks.

9. The system of claim 1, wherein the computing device
is configured to:

in response to identifying the failed health check of the

plurality of health checks, execute a self-heal operation
at the failed node; and

upon execution of the self-heal operation, executing a

subsequent health check at the failed node.
10. The system of claim 1, wherein the one or more node
attributes include: an uptime of a computer node, a load
average of the computer node, CPU usage, disk space usage,
and memory usage.
11. A method comprising:
upon receipt of a selection of a subset of a plurality of
nodes, receiving a monitoring file comprising a plural-
ity of health checks, the plurality of health checks being
associated with the subset of the plurality of nodes;

executing the monitoring file based on a type associated
with a computing device;
based on the execution of the monitoring file, comparing
one or more node attributes to a predetermined thresh-
old to generate a comparison and identifying a failed
health check of the plurality of health checks, wherein
the failed health check is associated with a failed node
of the plurality of nodes;
in response to identifying the failed health check, gener-
ating an alert message based on the comparison, the
alert message identifying the failed node and data
associated with the failed health check; and

transmitting the alert message to a monitoring computing
device.

12. The method of claim 11, further comprising:

determining whether each of the plurality of health checks

are enabled; and

executing each of the plurality of health checks when they

are enabled.

13. The method of claim 11, further comprising, in
response to identifying the failed health check of the plu-
rality of health checks, executing the failed health check
after a predetermined amount of time.

14. The method of claim 11, further comprising:

initializing a timer with a predetermined amount of time;

determining when the predetermined amount of time has
passed based on the timer; and

in response to the determining that the predetermined

amount of time has passed, executing the monitoring
file.

15. The method of claim 11, further comprising:

determining that a first of the plurality of health checks

passed; and

based on the determination, executing a second of the

plurality of health checks.

16. The method of claim 11, further comprising:

determining that a first of the plurality of health checks

failed; and

terminating the monitoring file.

US 2024/0248791 Al

17. The method of claim 11, further comprising:

determining that the type associated with the computing

device does not match any of a plurality of types
identified within the monitoring file;

generating a second alert message identifying the type

associated with the computing device; and
transmitting the second alert message.

18. The method of claim 11, further comprising:

receiving a message identifying a disabled one of the

plurality of health checks; and

executing the monitoring file without executing the dis-

abled one of the plurality of health checks.
19. A non-transitory computer readable medium having
instructions stored thereon, wherein the instructions, when
executed by at least one processor, cause a device to perform
operations comprising:
upon receipt of a selection of a subset of a plurality of
nodes, receiving a monitoring file comprising a plural-
ity of health checks, the plurality of health checks being
associated with the subset of the plurality of nodes;

executing the monitoring file based on a type associated
with a computing device;

Jul. 25, 2024

based on the execution of the monitoring file, comparing
one or more node attributes to a predetermined thresh-
old to generate a comparison and identifying a failed
health check of the plurality of health checks, wherein
the failed health check is associated with a failed node
of the plurality of nodes;
in response to identifying the failed health check, gener-
ating an alert message based on the comparison, the
alert message identifying the failed node and data
associated with the failed health check; and

transmitting the alert message to a monitoring computing
device.

20. The non-transitory computer readable medium of
claim 19, further comprising instructions stored thereon that,
when executed by at least one processor, further cause the
device to perform operations comprising:

determining whether each of the plurality of health checks

are enabled; and

executing each of the plurality of health checks when they

are enabled.

