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DETERMINING COMPOSITE MATRIX-FRACTURE PROPERTIES OF NATURALLY

FRACTURED RESERVOIRS IN NUMERICAL RESERVOIR SIMULATION

CLAIM OF PRIORITY
[0001] This application claims priority to U.S. Patent Application No. 17/140,327
filed on January 4, 2021, the entire contents of which are hereby incorporated by

reference.

TECHNICAL FIELD
[0002] This description relates generally to hydrocarbon reservoirs, for example, to
determining composite matrix-fracture properties of naturally fractured reservoirs in

numerical reservoir simulation.

BACKGROUND
[0003] Hydrocarbon reservoir modeling and simulation can pose several challenges.
Fractures occur as visible structural features in the Earth’s upper crust. Fractures can be
apparent at most rock ridges. Many hydrocarbon reservoirs contain natural fractures.
However, traditional simulation methods are unable to effectively history match
measured data sets from naturally fractured reservoirs because of deficiencies in logs

obtained from simulation.

SUMMARY
[0004] Methods for determining composite matrix-fracture properties of naturally
fractured reservoirs in numerical reservoir simulation include obtaining, by a computer
system, measured hydrocarbon data from one or more hydrocarbon wells using one or
more formation evaluation tools. The computer system generates composite matrix-
fracture properties of the one or more hydrocarbon wells using numerical simulation.
The composite matrix-fracture properties include at least one of composite matrix-
fracture permeability, composite matrix-fracture water saturation, composite matrix-
fracture pressure, or composite matrix-fracture mobility of the one or more hydrocarbon
wells. The computer system performs history matching for the one or more hydrocarbon
wells by comparing the measured hydrocarbon data to the composite matrix-fracture
properties. A display device of the computer system generates a graphical

representation of results of the history matching.
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[0005] In some implementations, generating the composite matrix-fracture
properties includes obtaining, by the computer system, a first grid and a second grid
representing the one or more hydrocarbon wells. The first grid includes matrix
properties of the one or more hydrocarbon wells and the second grid includes fracture
properties of the one or more hydrocarbon wells. The numerical simulation is based on
the first grid and the second grid.

[0006] In some implementations, the one or more formation evaluation tools include
at least a Modular Dynamics Tester (MDT) pressure-mobility probe.

[0007] In some implementations, the computer system calibrates a first
transmissivity of a fracture model of the one or more hydrocarbon wells based on a
second transmissivity obtained from pressure transient analysis (PTA). The calibrating
uses the composite matrix-fracture permeability. The measured hydrocarbon data
includes the second transmissivity.

[0008] In some implementations, the measured hydrocarbon data includes measured
Pulsed Neutron Log (PNL) data. The history matching includes comparing the
measured PNL data to the composite matrix-fracture water saturation.

[0009] In some implementations, the measured hydrocarbon data includes measured
MDT data. The history matching comprises comparing the measured MDT data to the
composite matrix-fracture pressure.

[00010] In some implementations, the measured hydrocarbon data includes measured
mobility data. The history matching includes comparing the measured mobility data to

the composite matrix-fracture mobility.

BRIEF DESCRIPTION OF THE DRAWINGS

[00011] FIG. 1 illustrates an example of the Dual Porosity Dual Permeability (DPDP)
approach for incorporating natural fractures into geologic models, in accordance with
one or more implementations.

[00012] FIG. 2A illustrates an example matrix and an example natural fracture, in
accordance with one or more implementations.

[00013] FIG. 2B illustrates example fluid flow through a fracture, in accordance with
one or more implementations.

[00014] FIG. 2C illustrates an example Modular Dynamics Tester (MDT) pressure-

mobility probe, in accordance with one or more implementations.
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[00015] FIGS. 3A-3B illustrate an example numerical simulation, in accordance with
one or more implementations.

[00016] FIGS. 4A-4C illustrate an example numerical simulation, in accordance with
one or more implementations.

[00017] FIGS. 5A-5D illustrate example MDT and Pulsed Neutron Log (PNL) output
from numerical simulation, in accordance with one or more implementations.

[00018] FIG. 6 illustrates a process for determining composite matrix-fracture
properties of naturally fractured reservoirs in numerical reservoir simulation, in
accordance with one or more implementations.

[00019] FIGS. 7A-7B illustrate a graphical representation of a flow rate against
elapsed time, in accordance with one or more implementations.

[00020] FIGS. 8A-8D illustrate examples of numerical well testing for different
fracture models, in accordance with one or more implementations.

[00021] FIG. 9 illustrates example PNL history matching, in accordance with one or
more implementations.

[00022] FIG. 10 illustrates example MDT history matching, in accordance with one
or more implementations.

[00023] FIG. 11 illustrates example mobility history matching, in accordance with
one or more implementations.

[00024] FIG. 12 illustrates example PTA-kh history matching, in accordance with
one or more implementations.

[00025] FIG. 13 illustrates example PTA-kh history matching, in accordance with
one or more implementations.

[00026] FIG. 14 illustrates example mobility history matching, in accordance with
one or more implementations.

[00027] FIG. 15 illustrates example PNL history matching, in accordance with one
or more implementations.

[00028] FIG. 16 illustrates example MDT history matching, in accordance with one
or more implementations.

[00029] FIG. 17 illustrates experimental results for determining composite matrix-
fracture properties of naturally fractured reservoirs in numerical reservoir simulation, in

accordance with one or more implementations.
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[00030] FIG. 18 illustrates an example computer system, in accordance with one or

more implementations.

DETAILED DESCRIPTION

[00031] The implementations disclosed provide methods, apparatus, and systems for
determining composite matrix-fracture properties of naturally fractured reservoirs in
numerical reservoir simulation. Fractures occur as visible structural features in the
Earth’s upper crust. Fractures can be apparent at most rock ridges. Many hydrocarbon
reservoirs contains natural fractures. Natural fractures can be caused by stress in the
formation usually from tectonic forces such as folds and faults. Fractures occur in
preferential directions, determined by the direction of regional stress. This is usually
parallel to the direction of nearby faults or folds, but in the case of faults, they may be
perpendicular to the fault or there may be two orthogonal directions. In the
implementations disclosed, a computer system obtains measured hydrocarbon data from
one or more hydrocarbon wells using one or more formation evaluation tools. The
formation evaluation tools include at least a Modular Dynamics Tester (MDT) pressure-
mobility probe. The computer system generates composite matrix-fracture properties of
the one or more hydrocarbon wells using numerical simulation. The composite matrix-
fracture properties include at least one of composite matrix-fracture permeability,
composite matrix-fracture water saturation, composite matrix-fracture pressure, or
composite matrix-fracture mobility of the one or more hydrocarbon wells. The
computer system performs history matching for the one or more hydrocarbon wells by
comparing the measured hydrocarbon data to the composite matrix-fracture properties.
A display device of the computer system generates a graphical representation of results
of the history matching.

[00032] Among other benefits and advantages, the methods provide a flexible and
integrated framework for determining composite matrix-fracture properties of naturally
fractured reservoirs in reservoir simulation. Unlike traditional methods that address only
the implication of double porosity systems to pressure build-up, the implementations
disclosed herein enable the determination of composite matrix-fracture properties in
numerical simulation. The composite matrix-fracture permeability is also determined.
Moreover, unlike traditional methods that address only the assumptions and equations

for theoretical models of naturally fractured systems, the implementations disclosed
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herein perform history matching in naturally fractured reservoirs by determining
composite matrix-fracture properties.

[00033] FIG. 1 illustrates an example of the Dual Porosity Dual Permeability (DPDP)
approach for incorporating natural fractures into geologic models, in accordance with
one or more implementations. Natural fractures are typically associated with increased
oil or water productivity as well as increased vulnerability to contaminants. In some
implementations, methods are developed for mmodeling fractured formations. For
example, the DPDP approach uses Darcian flow through both matrix and fractures.
Numerical simulation methods use the DPDP approach to incorporate natural fractures
into geologic models.

[00034] FIG. 2A illustrates an example matrix and an example natural fracture, in
accordance with one or more implementations. The numerical simulation methods
based on DPDP lead to different grids, each having identical dimensions and
communicating with each other through a parameter denoted as sigma. For example,
one grid is used for the matrix properties (porosity, permeability, and saturation) and a
second grid for the fracture properties (porosity, permeability, and saturation).

[00035] FIG. 2B illustrates example fluid flow through a fracture, in accordance with
one or more implementations. Fluid flow occurs through the fractures, through the
matrix, as well as through a matrix-fracture inter-flow. An example grid 100 using
numerical simulation based on DPDP is shown in FIG. 1. In some implementations, a
computer system solves fluid flow equations for the fracture grid and leads to results
such as fracture water-saturation and fracture pressure at each time step. An example
computer system is illustrated and described in more detail with reference to FIG. 18.
At the same time, fluid flow equations are also solved for the matrix grid leading to
results such as matrix water-saturation and matrix pressure at each time step. The
simulated fracture grids and matrix grids results are reported as outputs of the numerical
simulation. In naturally fractured reservoirs, the fracture opening (apertures) are small
and are typically measured in microns, where 1 micron = 10 meters (m). The formation
evaluation tools have a vertical resolution in the order of inches. Because the vertical
resolution of the formation evaluation tools is larger with respect to the fracture
apertures, the formation evaluation tools are not used to merely measure the independent
matrix and fracture properties in naturally fractured reservoirs. Instead, the formation

evaluation tools are used to measure the composite (average) matrix-fracture property
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value. For example, a well-test involves initiating a flow-rate history on a hydrocarbon
well and using a gauge to measure the associated wellbore pressure transients. The
resulting pressure transient is representative of both the fracture and matrix properties
within the tested interval.

[00036] FIG. 2C illustrates an example Modular Dynamics Tester (MDT) pressure-
mobility probe, in accordance with one or more implementations. An MDT pressure-
mobility probe can be used to measure and interpret the resulting pressure that reflects
a combined matrix-fracture. An MDT pressure-mobility probe typically has a surface
area of about 3 square inches, which is larger than the fracture apertures. Hence, the
MDT pressure-mobility probe can be used to measure a composite matrix-fracture
pressure. An MDT pressure-mobility probe used for MDT-mobility measurement is
larger than fracture apertures. Hence, the MDT pressure-mobility probe cannot typically
differentiate between mobility resulting from a fracture and mobility resulting from a
matrix. Hence, the MDT pressure-mobility probe reflects the composite matrix-fracture
mobility. In addition, Pulsed Neutron Log (PNL) tools have a vertical resolution of
about 5-8 inches, which is several times larger than fracture apertures. Hence, PNL tools
also measures the composite matrix-fracture water saturation.

[00037] FIG. 3A illustrates an example numerical simulation, in accordance with one
or more implementations. Three-dimensional (3D) output arrays provided for matrix
and fracture permeability are shown in FIG. 3A. No output is generated for composite
matrix-fracture permeability. FIG. 3B illustrates an example numerical simulation, in
accordance with one or more implementations. The simulation outputs in FIG. 3B show
the matrix and fracture permeability logs independently. No output log for the
composite matrix-fracture permeability is generated. History matching refers to a
process of comparing numerical simulation results to measured data. The simulator
inputs are then modified if necessary until the simulator output matches the measured
data. Thus, in order to history match measured data sets obtained from hydrocarbon
wells or reservoirs, the numerical simulation is used to determine and output composite
matrix-fracture properties to be compared with the measured data.

[00038] FIG. 4A illustrates an example numerical simulation, in accordance with one
or more implementations. The example numerical simulation results shown in FIG. 4A
displays 3D output arrays for the numerical matrix and fracture pressure as well as water

saturation. No output is generated for the composite matrix-fracture pressure and water
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saturation. FIG. 4B illustrates an example numerical simulation, in accordance with one
or more implementations. FIG. 4C illustrates an example numerical simulation, in
accordance with one or more implementations. The matrix and fracture pressure and
saturation log are shown independently in FIGS. 4B and 4C. No output log is provided
for the composite matrix-fracture pressure or saturation.

[00039] FIGS. 5SA-5B illustrate example MDT and Pulsed Neutron Log (PNL) output
from numerical simulation, in accordance with one or more implementations. The MDT
and PNL output from numerical simulation provides the matrix block pressure and
water-saturation results. The simulation does not provide the fracture pressure and
saturation. FIGS. 5C-5D illustrate example MDT and Pulsed Neutron Log (PNL) output
from numerical simulation, in accordance with one or more implementations. The MDT
and PNL outputs from the simulator contain both the matrix and grid results at each
depth, thus giving rise to a wiggly output.

[00040] FIG. 6 illustrates a process for determining composite matrix-fracture
properties of naturally fractured reservoirs in numerical reservoir simulation, in
accordance with one or more implementations. In some implementations, the process
is performed by the computer system illustrated and described in more detail with
reference to FIG. 18.

[00041] In step 604, the computer system obtains measured hydrocarbon data from
one or more hydrocarbon wells using one or more formation evaluation tools. The
formation evaluation tools include at least a Modular Dynamics Tester (MDT) pressure-
mobility probe. In step 608, the computer system generates composite matrix-fracture
properties of the one or more hydrocarbon wells using numerical simulation. The
composite matrix-fracture properties include at least one of composite matrix-fracture
permeability, composite matrix-fracture water saturation, composite matrix-fracture
pressure, or composite matrix-fracture mobility of the one or more hydrocarbon wells.
In some implementations, the computer system obtains a first grid and a second grid
representing the one or more hydrocarbon wells. The first grid includes matrix
properties of the one or more hydrocarbon wells and the second grid includes fracture
properties of the one or more hydrocarbon wells. The numerical simulation is based on
the first grid and the second grid. The first grid and the second grid are illustrated and
described in more detail with reference to FIGS. 1, 2A, and 2B.

PCT/US2022/011171
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[00042] In some implementations, the computer system uses analytical formulations
for determination of the matrix-fracture composite properties in numerical simulation.
For example, the composite matrix-fracture permeability is determined as k = kf + k™,
wherein k denotes the composite matrix-fracture permeability, k! denotes a fracture
permeability, and k™ denotes a matrix permeability. The properties are used during
history matching of naturally fractured reservoirs.

[00043] In step 612, the computer system performs history matching for the one or
more hydrocarbon wells by comparing the measured hydrocarbon data to the composite
matrix-fracture properties. The determined composite matrix-fracture permeability,
water saturation, mobility, and pressure in naturally fractured reservoirs are used in
comparison to measured data during history matching. In some implementations, the
measured hydrocarbon data includes measured Pulsed Neutron Log (PNL) data. The
history matching includes comparing the measured PNL data to the composite matrix-
fracture water saturation. In some implementations, the measured hydrocarbon data
includes measured MDT data. The history matching includes comparing the measured
MDT data to the composite matrix-fracture pressure. In some implementations, the
measured hydrocarbon data includes measured mobility data. The history matching
includes comparing the measured mobility data to the composite matrix-fracture
mobility.

[00044] In step 616, a display device 1824 of the computer system generates a
graphical representation of results of the history matching. The display device 1824 is
illustrated and described in more detail with reference to FIG. 18. In some
implementations, the computer system calibrates a first transmissivity of a fracture
model of the one or more hydrocarbon wells based on a second transmissivity obtained
from pressure transient analysis (PTA). The calibrating uses the composite matrix-
fracture permeability. = The measured hydrocarbon data includes the second
transmissivity.

[00045] FIG. 7A illustrates a graphical representation of a flow rate against elapsed
time, in accordance with one or more implementations. The computer system,
illustrated and described in more detail with reference to FIG. 18, determines the
composite matrix-fracture permeability using numerical simulation. For example, the

computer system uses Darcy’s radial flow method in equation (1) as follows.
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2mkhAP
= ”ﬁT(rrTev) (D

As described in more detail with reference to FIG. 1, the DPDP representation of natural
fractures assumes that both the matrix and the fracture grid dimensions are the same,
however, the properties of the two grids are different. Hence, the computer system

5  generates the fracture properties (equation (2)) and matrix properties (equation (3)) as

follows.
2k hAP
= - 2
qr Hﬁln(ﬁ) 2
2TkMhAP
= 3
dm Hﬁln(r‘f/) (3)

[00046] The total flow-rate at the wellbore, represented in equations (2) and (3) can
10 be determined as a sum of flow through the matrix and flow through the fracture, and

represented as in equation (4).

q=qt+ qm 4

Here, q denotes the total flow-rate, qr denotes the flow through the fracture, and qm

denotes the flow through the matrix, as illustrated and described in more detail with
15 reference to FIG. 2B. Therefore, the computer system combines equations (2), (3), and

@ to obtain equation &) as follows.

2mkhAP _ anthPf+2nkmhAPm )
uﬁln(rr—i) uﬁln(rr—vi) uﬁln(rr—vi)

[00047] From equation (5), the computer system makes the following definitions.

20 AP = P; — P, (6)
In equation (6), P; denotes an average pressure of the composite matrix-fracture system.
Similarly, the computer system defines an equation (7) as follows.
APf =P{ - P,; (M
In equation (7), AP/ denotes an average pressure of the fracture system. Similarly, the
25 computer system defines an equation (8) as follows.
AP™ = P — P, (8)
In equation (8), APJ* denotes an average pressure of the matrix system. Further the value
of Py is the same across both the fracture system and the matrix system.
[00048] Permeability is an initial property. Hence, it needs to be calculated only once

30 at the beginning of the numerical simulation. At simulation time zero, there is no flow
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and the matrix-fracture system is in static pressure equilibrium, as expressed in equation
(9) as follows.
P/ =Py =P ©)

As the numerical simulation advances to time-step tl, the same bottom-hole flowing
pressure Pwtis imposed on both the matrix and fracture systems, as expressed in equation
(10) as follows.

AP/ = AP = AP (10)
[00049] In some implementations, the composite matrix-fracture permeability is
determined as k = k' + k™ Here, k denotes the composite matrix-fracture permeability,
kf denotes a fracture permeability, and km denotes a matrix permeability. Because the
same value of AP is imposed across the matrix and fracture systems, the expression in
equation (5) can be simplified as shown in equation (11) as follows.

k=K + k™ ¢8))
Here, £ denotes the composite matrix-fracture permeability. The value of % is
comparable to the interpreted results obtained from PTA. In order to validate equation
(11), numerical well-testing was used as shown in FIGS. 7A-7B. A synthetic geo-model
with ten layers was created having a homogeneous matrix property: Ax = Ay = 100 feet
(ft) and Az=20 ft. The rock and fluid properties associated with FIG. 7A are ¢ = 0.15,

k™ =10md, B, = 1.65, u, = 0.28, and h = 200ft. Permeability is related to the

[T 1]

log-log  derivative  stabilization m” by equation (12) as follows.

| = 706aBu (12)

mxh
[00050] FIG. 7B illustrates a graphical representation of a flow rate against elapsed
time, in accordance with one or more implementations. As shown in FIG. 7B, the
derivative stabilization “m” = 3.3. Further, equation (12) is used to obtain the value k =
9.9 md (millidarcy). The original input geo-model permeability was 10 md and the
numerical well-testing results lead to 9.9 md. Hence, the numerical well testing can be
used to determine the geo-model permeability.

[00051] FIG. 8A illustrates an example of numerical well testing for a fracture model,
in accordance with one or more implementations. The fracture model associated with
FIG. 8A has a value of k' = 1000 md. Numerical well testing was conducted using the
same rate history as described previously. For the case in FIG. 8A, m=0.032. The use
of equation (12) leads to a value of k = 1012 md. For the scenario shown in FIG. 8A,

10
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the average permeability determined using equation (11) is 10 + 1000 = 1010 md.
Hence, equation (11) can be used to predict the composite matrix-fracture permeability
determined using PTA.

[00052] FIG. 8B illustrates an example of numerical well testing for a fracture model,
in accordance with one or more implementations. The fracture model associated with
FIG. 8A has a value of k' = 100 md. Numerical well testing was conducted using the
same rate history as described previously. For the case in FIG. 8B, m = 0.3. The use of
equation (12) leads to a value of k = 109 md. For the scenario shown in FIG. 8A, the
average permeability determined using equation (11) is 10 + 100 = 110 md. Hence,
equation (11) can be used to predict the composite matrix-fracture permeability
determined using PTA.

[00053] FIG. 8C illustrates an example of numerical well testing for a fracture model,
in accordance with one or more implementations. The fracture model associated with
FIG. 8C has a value of kf = 10 md. Numerical well testing was conducted using the
same rate history as described previously. For the case in FIG. 8C, m=1.6. The use of
equation (12) leads to a value of k = 20.3 md. For the scenario shown in FIG. 8C, the
average permeability determined using equation (11) is 10 + 10 = 20 md. Hence,
equation (11) can be used to predict the composite matrix-fracture permeability
determined using PTA.

[00054] FIG. 8D illustrates an example of numerical well testing for a fracture model,
in accordance with one or more implementations. The fracture model associated with
FIG. 8D has a value of k' = 1 md. Numerical well testing was conducted using the same
rate history as described previously. For the case in FIG. 8D, m= 3. The use of equation
(12) leads to a value of k = 10.9 md. For the scenario shown in FIG. 8D, the average
permeability determined using equation (11) is 10 + 1 =11 md. Hence, equation (11)
can be used to predict the composite matrix-fracture permeability determined using
PTA. The experiments illustrated in FIGS. 8 A-8D demonstrate that while the well test
interpretation leads to a combined permeability of the fracture and matrix systems, the
computer system can use equation (11) to provide equivalent determinations that can be
used to estimate the composite matrix-fracture permeability in numerical simulation.
[00055] In some implementations, the computer system, illustrated and described in
more detail with reference to FIG. 18 determines a composite matrix-fracture pressure

using numerical simulation. The computer system uses two equations as follows. A

11
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first equation is based on the compressibility equation and applicable when a
hydrocarbon well is shut-in. A second equation is based on Darcy’s equation and
applicable when the well is flowing. For example, the computer system begins at the
compressibility equation, which relates the pressure depletion within an initial volume
to a cumulative production as shown in equations (13)-(14).
Av = cVAP (13)
AP = P} — P; (14
Here, equation (14) is used to determine a change in the composite matrix-fracture
pressure between the beginning and end of a time-step.
[00056] An equivalent expression can be determined independently for the matrix
and the fracture networks as follows. A fracture aperture (opening) is estimated from
geo-mechanical studies. The fracture aperture is converted into an average fracture
porosity, which is the parameter used by numerical simulators. The implementations
disclosed to determine reservoir oil-in-place assumes that the storage resides in the
matrix while the fracture serves for transport. Therefore, in order to satisfy numerical
simulation requirements for the fracture porosity while maintaining consistency with
geological volume estimation, the matrix volume is reduced by the volume attributed to
fracture due to its porosity. Therefore, if the fracture porosity is ¢/, the matrix porosity
is determined by expression (15) as follows.
" — ! (15)
[00057] The computer system determines compressibility expressions for the fracture
and matrix systems as follows in equations (17) and (18).
Avl = cVIAPS (17)
Av™ = c(V™ —V/)AP™ (18)
The total production is the sum of production from the fracture and production from the
matrix, expressed as follows in equation (19).
Av = Av/ + Av™ (19)
Thus, the computer system, from equation (19), can determine equations (20) and (21)
as follows.
cVAP = cVIAPT + c(V™ = VI)AP™ (20)

_viapf | (vm-v/)ap™
Ty v

AP

02y
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[00058] In some implementations, generating the composite matrix-fracture
properties includes obtaining, by the computer system, a first grid and a second grid
representing the one or more hydrocarbon wells. The first grid includes matrix
properties of the one or more hydrocarbon wells and the second grid includes fracture
properties of the one or more hydrocarbon wells. The numerical simulation is based on
the first grid and the second grid. For each grid block, as illustrated and described with

reference to FIG. 1, the computer system determines equations (22), (23), and (24) as

follows.
VI =Ax« Ay hx @l (22)
V™ = Ax * Ay * h* (o™ — ¢7) (23)
V=Ax*Ay+«hx*@m™ (24)
[00059] Therefore, the computer system transforms equation (21) into equation (25)
as follows. AP = Afpfn(f ! + AP™ (25)

Thus, the composite matrix-fracture pressure change during any time-step is determined
as the matrix pressure change in equation (26) as follows.

AP™ = p; — P* (26)
The expression in equation (26) is summed with the product of the fracture pressure
change (see equation (27)) and the fracture-matrix porosity ratio. The composite matrix-
fracture pressure change is larger than that of the grid only and not as large as that of the
fracture only.

APf = p; — P/ (27)
[00060] The computer system uses equation (14) to obtain the composite matrix-

fracture pressure at the end of the current time-step as shown in equation (28) as follows.

1= Py — AP (28)
The composite matrix-fracture pressure at the end of a time-step is the composite matrix-
fracture pressure at the start of the time-step less the composite matrix-fracture AP
determined using equation (25). The value of P, determined at the end of the time-step
n is used as the P; for the start of the time-step n+1. Returning to the equation (5)
obtained from Darcy’s equation and expressing the total flow-rate into the wellbore as

the sum of the flow-rate through the fracture and the flow-rate through the matrix, the
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computer system obtains equation (29) as follows.

2khAP 2nkfhapf  2mk™hap™
= 29
P Ry e 3 M

In accordance with equation (29), the computer system determines equations (30),
(31), and (32) as follows.

AP =P — P, (30)
AP/ =R/ - P, (31)
AP™ = Pi" — P, (32)

[00061] At simulation time-step t0, the values are determined as P/ = P} because of
the initial static equilibrium. However, as simulation advances, the pressure in the
matrix and the fracture at the start of any time-step can be different. The computer
system determines an equivalent single value of the matrix-fracture pressure for history-
matching purposes. Hence, the computer system modifies equation (29) as equations

(33) and (34) as follows.

kAP = kfAPS + k™AP™ (33)
fapS +xmapm
AP = k7 AP -I;Ck AP (34)

Here, k denotes the composite matrix-fracture permeability as determined by equation
(11). The composite matrix-fracture pressure can be obtained using equation (35) as
follows.
Py =AP + Py (35)

Numerical simulation reports the value of Pwr for each gridblock as the connection-
pressure.

[00062] In some implementations, the computer system determines a composite
matrix-fracture water-saturation using numerical simulation. At atime-step, the volume

of water contained within a fracture grid is determined by equation (36) as follows.

v‘{,=Ax*Ay*AZ*<pf*s‘f, (36)
The volume of water contained within a matrix grid is determined by equation (37) as
follows.
vt = Ax x Ay + Az + (o™ — @f) x5} (37)
The matrix volume is reduced by the amount of volume allocated to the fracture. The
total volume of water in the matrix-fracture system is therefore determined using

equations (36) and (37) as shown in equation (38).
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vh = Axx Ay + Az + ((@f * ) + (9™ — ) * 57 (38)
The total pore volume of grid-block is given by equation (39).
vy = Ax x Ay x Az x @™ (39)
[00063] Therefore, the composite matrix-fracture water saturation is given by

equations (40), (41), and (42).

s =t _ (s )romool)s (40)
w vg’ (pm
f f_om
Pl Sy =S @Msit
Sw = ((;Vm W) + (pmw (41)
fl(f _m
ol (s),—s
Sy = (:m i) + sm (42)

[00064] FIG. 9 illustrates example PNL history matching, in accordance with one or
more implementations. Natural fractures are a component part of most carbonate
reservoirs. Typically, a carbonate reservoir is fractured unless otherwise stated. In some
implementations, the computer system obtains measured hydrocarbon data from one or
more hydrocarbon wells using one or more formation evaluation tools. The formation
evaluation tools include at least a Modular Dynamics Tester (MDT) pressure-mobility
probe. The implementations disclosed herein enable history matching PTA-kh, MDT-
pressure, MDT-mobility, and PNL saturation measurements in fractured reservoirs. The
implementations provide relevant numerical outputs to be compared with the measured
data. PNL tools track evolution of the water saturation in the near well-bore areas. This
information is used to detect or track an advancing water-oil contact or to track the zones
where water is arriving to the well. For a well that is producing at a high water-cut,
these tools can detect if there are areas of bypassed oil that could warrant a re-perforation
or a side-track.

[00065] The PNL tools have a vertical resolution of about 5 inches. FIG. 9 shows a
simulated matrix-grid saturation, fracture-grid saturation, and the simulator water-
saturation log output. While the simulator outputs the grid and fracture water saturation
values independently, other simulators can investigate both matrix and fracture results
at each depth, thereby resulting in a wiggly plot. The implementations enable history-
matching four-dimensional (4D) saturation in naturally fractured reservoirs by
generating a composite matrix-fracture water saturation that can be compared to

measured PNL data.
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[00066] FIG. 10 illustrates example MDT history matching, in accordance with one
or more implementations. In some implementations, the computer system performs
history matching for the one or more hydrocarbon wells by comparing the measured
hydrocarbon data to the composite matrix-fracture properties. MDT tools are used to
measure reservoir pressure at various depths during drilling. The pressure versus depth
information can be used to detect changes in the reservoir fluid gradient and thus infer
the reservoir fluid contacts. The data also provides information about vertical
communication barriers within the reservoir. The MDT tool include a three square inch
surface area probe (as illustrated and described in more detail with reference to FIG. 2C)
through which flow is initiated before subsequent shut-in and corresponding pressure
build-up. From the size of the tool and the measurement procedure, the measured
pressure does not discriminate between pressure in the fracture network and pressure in
the matrix blocks. A first simulator used outputs pressures in the matrix and pressures
in the fracture independently, while a second simulator outputs the two pressure values
for each depth (fracture pressure and grid pressure) resulting in the wiggly plot shown
with reference to FIGS. 5A and 5B. To history-match the measured MDT pressures, a
composite matrix-fracture pressure is required as disclosed herein.

[00067] FIG. 11 illustrates example mobility history matching, in accordance with
one or more implementations. In some implementations, the measured hydrocarbon
data includes measured mobility data. The history matching includes comparing the
measured mobility data to the composite matrix-fracture mobility. A display device of
the computer system generates a graphical representation of results of the history
matching. In some implementations, the mobility is measured while conducting an
MDT survey. The mobility measurements include initiating flow through a three square
inch probe followed with a build-up. The measured pressure responses during the flow
and build-up are interpreted for drawdown-mobility or build-up mobility. From the
manner the test is conducted, the resulting data does not distinguish between mobility
of fracture and that of matrix. The resulting mobility interpretation captures the mobility
of the composite matrix-fracture system. For example, the mobility can be determined

as % For a single-phase flow situation, the determination reduces to K/u. The

numerical simulators output the matrix permeability and fracture permeability for each
grid block. Hence, the mobility is determined using either the matrix permeability or

the fracture permeability as shown in FIG. 11. The appropriate parameter for history
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matching of mobility data in naturally fractured reservoirs is the composite matrix-
fracture mobility.

[00068] FIG. 12 illustrates example PTA-kh history matching, in accordance with
one or more implementations. Natural fractures provide additional well productivity
beyond what the matrix properties can provide. The fractures constitute small apertures
but high permeability pathways within otherwise predominantly tight reservoir rocks.
A measure of a well’s productive capacity is the product of connected permeability and
height (kh). The average connected kh is measured through Pressure Transient Analysis

(PTA). From well-testing, kh is interpreted from the derivative plot stabilization of a

log-log diagnostic plot using kh = 7033[3“'

In a naturally fractured reservoir, the
stabilization of the derivative plot is indicative of the combined kh of the matrix and
fracture systems.

[00069] In some implementations, the computer system calibrates a first
transmissivity of a fracture model of the one or more hydrocarbon wells based on a
second transmissivity obtained from pressure transient analysis (PTA). The calibrating
uses the composite matrix-fracture permeability. The measured hydrocarbon data
includes the second transmissivity. The PTA-kh parameter is history matched in the
simulation model in order to calibrate the properties of the reservoir. FIG. 12 shows that
the simulation model permeability is adequately matching the measured core
permeability data. However, the PTA test conducted on this well indicates an average
kh of 35,000 md-ft (h =100 ft and k = 350 md). In the implementations disclosed herein,
analytical methods are used to determine the composite matrix-fracture parameters to
be compared to measured values during history matching. Both the tool configuration
and the process of acquiring the measured data are used.

[00070] FIG. 13 illustrates example PTA-kh history matching, in accordance with
one or more implementations. For a fracture permeability of 300 md defined in the
reservoir, the matrix-fracture composite permeability is as shown in FIG. 13. The
numerical composite-K is directly compared to the measured PTA-kh. The model
permeability matches the measured cored data. Hence, a mismatch with the PTA-kh is
history-matched by adjusting the permeability of fractures. The K-composite denotes
the numerical results to be compared with the PTA-kh. FIG. 14 illustrates example

mobility history matching, in accordance with one or more implementations. A fracture
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model is introduced into the reservoir and a numerical composite mobility is determined
to be compared with the measured data. FIG. 15 illustrates example PNL history
matching, in accordance with one or more implementations. In some implementations,
the measured hydrocarbon data includes measured Pulsed Neutron Log (PNL) data. The
history matching includes comparing the measured PNL data to the composite matrix-
fracture water saturation. As shown, the composite-sw is compared to the measured
PNL data and not to the matrix-sw or the fracture-sw.
[00071] FIG. 16 illustrates example MDT history matching, in accordance with one
or more implementations. In some implementations, the measured hydrocarbon data
includes measured MDT data. The history matching includes comparing the measured
MDT data to the composite matrix-fracture pressure. To determine the composite
pressure for MDT matching at time t1, the composite pressure for t0 is used. This is
either the initial reservoir pressure if the time t1 is the first simulation time-step or the
already calculated composite pressure prior to the time-step of interest. FIG. 17
illustrates experimental results for determining composite matrix-fracture properties of
naturally fractured reservoirs in numerical reservoir simulation, in accordance with one
or more implementations. The equation (28) is used because the well is shut in at the
period of determination. For a flowing period, equation (35) is used. For each grid
depth, equations (43) and (44) are determined.

P} = Py — AP (43)

Py =AP + Py (44)
[00072] The implementations disclosed herein thus enable history matching of the
available PTA-kh, PNL saturation, MDT mobility, and MDT pressure in naturally
fractured reservoirs. Further, composite matrix-fracture properties are determined in
numerical simulation. History matching, the process of comparing simulator results to
observed data, is performed. Simulator inputs are modified if necessary until the
measured data is matched. The implementations enable the numerical equivalent
matrix-fracture properties to be compared to measured data in naturally fractured
reservoirs.
[00073] FIG. 18 illustrates an example computer system, in accordance with one or
more implementations. In the example implementation, the computer system is a special
purpose computing device. The special-purpose computing device is hard-wired or

includes digital electronic devices such as one or more application-specific integrated
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circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently
programmed to perform the techniques herein, or can include one or more general
purpose hardware processors programmed to perform the techniques pursuant to
program instructions in firmware, memory, other storage, or a combination. Such
special-purpose computing devices can also combine custom hard-wired logic, ASICs,
or FPGAs with custom programming to accomplish the techniques. In various
embodiments, the special-purpose computing devices are desktop computer systems,
portable computer systems, handheld devices, network devices or any other device that
incorporates hard-wired and/or program logic to implement the techniques.

[00074] In an embodiment, the computer system includes a bus 1802 or other
communication mechanism for communicating information, and one or more computer
hardware processors 1808 coupled with the bus 1802 for processing information. The
hardware processors 1808 are, for example, general-purpose microprocessors. The
computer system also includes a main memory 1806, such as a random-access memory
(RAM) or other dynamic storage device, coupled to the bus 1802 for storing information
and instructions to be executed by processors 1808. In one implementation, the main
memory 1806 is used for storing temporary variables or other intermediate information
during execution of instructions to be executed by the processors 1808. Such
instructions, when stored in non-transitory storage media accessible to the processors
1808, render the computer system into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[00075] In an embodiment, the computer system further includes a read only memory
(ROM) 1810 or other static storage device coupled to the bus 1802 for storing static
information and instructions for the processors 1808. A storage device 1812, such as a
magnetic disk, optical disk, solid-state drive, or three-dimensional cross point memory
is provided and coupled to the bus 1802 for storing information and instructions.
[00076] In an embodiment, the computer system is coupled via the bus 1802 to a
display 1824, such as a cathode ray tube (CRT), a liquid crystal display (LCD), plasma
display, light emitting diode (LED) display, or an organic light emitting diode (OLED)
display for displaying information to a computer user. An input device 1814, including
alphanumeric and other keys, is coupled to bus 1802 for communicating information
and command selections to the processors 1808. Another type of user input device is a

cursor controller 1816, such as a mouse, a trackball, a touch-enabled display, or cursor
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direction keys for communicating direction information and command selections to the
processors 1808 and for controlling cursor movement on the display 1824. This input
device typically has two degrees of freedom in two axes, a first axis (e.g., x-axis) and a
second axis (e.g., v-axis), that allows the device to specify positions in a plane.

[00077] According to one embodiment, the techniques herein are performed by the
computer system in response to the processors 1808 executing one or more sequences
of one or more instructions contained in the main memory 1806. Such instructions are
read into the main memory 1806 from another storage medium, such as the storage
device 1812. Execution of the sequences of instructions contained in the main memory
1806 causes the processors 1808 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry is used in place of or in combination with
software instructions.

[00078] The term "storage media" as used herein refers to any non-transitory media
that store data and/or instructions that cause a machine to operate in a specific fashion.
Such storage media includes non-volatile media and/or volatile media. Non-volatile
media includes, for example, optical disks, magnetic disks, solid-state drives, or three-
dimensional cross point memory, such as the storage device 1812. Volatile media
includes dynamic memory, such as the main memory 1806. Common forms of storage
media include, for example, a floppy disk, a flexible disk, hard disk, solid-state drive,
magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, NV-RAM, or any other memory chip or
cartridge.

[00079] Storage media is distinct from but can be used in conjunction with
transmission media. Transmission media participates in transferring information
between storage media. For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that include the bus 1802. Transmission
media can also take the form of acoustic or light waves, such as those generated during
radio-wave and infrared data communications.

[00080] In an embodiment, various forms of media are involved in carrying one or
more sequences of one or more instructions to the processors 1808 for execution. For
example, the instructions are initially carried on a magnetic disk or solid-state drive of

aremote computer. The remote computer loads the instructions into its dynamic memory
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and send the instructions over a telephone line using a modem. A modem local to the
computer system receives the data on the telephone line and use an infrared transmitter
to convert the data to an infrared signal. An infrared detector receives the data carried in
the infrared signal and appropriate circuitry places the data on the bus 1802. The bus
1802 carries the data to the main memory 1806, from which processors 1808 retrieves
and executes the instructions. The instructions received by the main memory 1806 can
optionally be stored on the storage device 1812 either before or after execution by
processors 1808.

[00081] The computer system also includes a communication interface 1818 coupled
to the bus 1802. The communication interface 1818 provides a two-way data
communication coupling to a network link 1820 that is connected to a local network
1822. For example, the communication interface 1818 is an integrated service digital
network (ISDN) card, cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of telephone line. As another
example, the communication interface 1818 is a local area network (LAN) card to
provide a data communication connection to a compatible LAN. In some
implementations, wireless links are also implemented. In any such implementation, the
communication interface 1818 sends and receives electrical, electromagnetic, or optical
signals that carry digital data streams representing various types of information.
[00082] The network link 1820 typically provides data communication through one
or more networks to other data devices. For example, the network link 1820 provides a
connection through the local network 1822 to a host computer 1824 or to a cloud data
center or equipment operated by an Internet Service Provider (ISP) 1826. The ISP 1826
in turn provides data communication services through the world-wide packet data
communication network now commonly referred to as the "Internet" 1828. The local
network 1822 and Internet 1828 both use electrical, electromagnetic or optical signals
that carry digital data streams. The signals through the various networks and the signals
on the network link 1820 and through the communication interface 1818, which carry
the digital data to and from the computer system , are example forms of transmission
media.

[00083] The computer system sends messages and receives data, including program
code, through the network(s), the network link 1820, and the communication interface

1818. In an embodiment, the computer system receives code for processing. The
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received code is executed by the processors 1808 as it is received, and/or stored in

storage device 1812, or other non-volatile storage for later execution.
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WHAT IS CLAIMED IS:
1. A method comprising:
obtaining, by a computer system, measured hydrocarbon data from one or more
hydrocarbon wells using one or more formation evaluation tools;

5 generating, by the computer system, composite matrix-fracture properties of
the one or more hydrocarbon wells using numerical simulation, the
composite matrix-fracture properties comprising at least one of
composite matrix-fracture permeability, composite matrix-fracture
water saturation, composite matrix-fracture pressure, or composite

10 matrix-fracture mobility of the one or more hydrocarbon wells;
performing, by the computer system, history matching for the one or more
hydrocarbon wells by comparing the measured hydrocarbon data to the
composite matrix-fracture properties; and
generating, by a display device of the computer system, a graphical

15 representation of results of the history matching.

2. The method of claim 1, wherein generating the composite matrix-fracture
properties comprises obtaining, by the computer system, a first grid and a
second grid representing the one or more hydrocarbon wells, the first grid
comprising matrix properties of the one or more hydrocarbon wells and the

20 second grid comprising fracture properties of the one or more hydrocarbon
wells, wherein the numerical simulation is based on the first grid and the

second grid.

3. The method of claim 1, wherein one or more formation evaluation tools

comprise at least a Modular Dynamics Tester (MDT) pressure-mobility probe.

25 4. The method of claim 1, further comprising calibrating, by the computer system,
a first transmissivity of a fracture model of the one or more hydrocarbon wells
based on a second transmissivity obtained from pressure transient analysis
(PTA), the calibrating using the composite matrix-fracture permeability,

wherein the measured hydrocarbon data comprises the second transmissivity.
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The method of claim 1, wherein the measured hydrocarbon data comprises
measured Pulsed Neutron Log (PNL) data, and wherein the history matching
comprises comparing the measured PNL data to the composite matrix-fracture

water saturation.

The method of claim 1, wherein the measured hydrocarbon data comprises
measured MDT data, and wherein the history matching comprises comparing

the measured MDT data to the composite matrix-fracture pressure.

The method of claim 1, wherein the measured hydrocarbon data comprises
measured mobility data, and wherein the history matching comprises
comparing the measured mobility data to the composite matrix-fracture

mobility.

A non-transitory computer-readable storage medium storing instructions

executable by one or more computer processors, the instructions when

executed by the one or more computer processors cause the one or more

computer processors to:

obtain measured hydrocarbon data from one or more hydrocarbon wells using
one or more formation evaluation tools;

generate composite matrix-fracture properties of the one or more hydrocarbon
wells using numerical simulation, the composite matrix-fracture
properties comprising at least one of composite matrix-fracture
permeability, composite matrix-fracture water saturation, composite
matrix-fracture pressure, or composite matrix-fracture mobility of the
one or more hydrocarbon wells;

perform history matching for the one or more hydrocarbon wells by comparing
the measured hydrocarbon data to the composite matrix-fracture
properties; and

generate, by a display device of the computer system, a graphical

representation of results of the history matching.
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10.

11.

12.

13.

14.

The non-transitory computer-readable storage medium of claim 8§, wherein
generating the composite matrix-fracture properties comprises obtaining a first
grid and a second grid representing the one or more hydrocarbon wells, the first
grid comprising matrix properties of the one or more hydrocarbon wells and
the second grid comprising fracture properties of the one or more hydrocarbon
wells, wherein the numerical simulation is based on the first grid and the

second grid.

The non-transitory computer-readable storage medium of claim 8, wherein the
one or more formation evaluation tools comprise at least a Modular Dynamics

Tester (MDT) pressure-mobility probe.

The non-transitory computer-readable storage medium of claim 8, wherein the
instructions further cause the one or more computer processors to calibrate a
first transmissivity of a fracture model of the one or more hydrocarbon wells
based on a second transmissivity obtained from pressure transient analysis
(PTA), the calibrating using the composite matrix-fracture permeability,

wherein the measured hydrocarbon data comprises the second transmissivity.

The non-transitory computer-readable storage medium of claim 8, wherein the
measured hydrocarbon data comprises measured Pulsed Neutron Log (PNL)
data, and wherein the history matching comprises comparing the measured

PNL data to the composite matrix-fracture water saturation.

The non-transitory computer-readable storage medium of claim 8, wherein the
measured hydrocarbon data comprises measured MDT data, and wherein the
history matching comprises comparing the measured MDT data to the

composite matrix-fracture pressure.

The non-transitory computer-readable storage medium of claim 8, wherein the

measured hydrocarbon data comprises measured mobility data, and wherein the
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15.

16.

history matching comprises comparing the measured mobility data to the

composite matrix-fracture mobility.

A computer system comprising:
one or more computer processors; and
a non-transitory computer-readable storage medium storing instructions
executable by the one or more computer processors, the instructions
when executed by the one or more computer processors cause the one
Oor more computer processors to:
obtain measured hydrocarbon data from one or more hydrocarbon wells
using one or more formation evaluation tools;
generate composite matrix-fracture properties of the one or more
hydrocarbon wells using numerical simulation, the composite
matrix-fracture properties comprising at least one of composite
matrix-fracture permeability, composite matrix-fracture water
saturation, composite matrix-fracture pressure, or composite
matrix-fracture mobility of the one or more hydrocarbon wells;
perform history matching for the one or more hydrocarbon wells by
comparing the measured hydrocarbon data to the composite
matrix-fracture properties; and
generate, by a display device of the computer system, a graphical

representation of results of the history matching.

The computer system of claim 15, wherein generating the composite matrix-
fracture properties comprises obtaining a first grid and a second grid
representing the one or more hydrocarbon wells, the first grid comprising
matrix properties of the one or more hydrocarbon wells and the second grid
comprising fracture properties of the one or more hydrocarbon wells, wherein

the numerical simulation is based on the first grid and the second grid.
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17.

18.

10 19.

20.

15

The computer system of claim 15, wherein the one or more formation
evaluation tools comprise at least a Modular Dynamics Tester (MDT) pressure-

mobility probe.

The computer system of claim 15, wherein the instructions further cause the
one or more computer processors to calibrate a first transmissivity of a fracture
model of the one or more hydrocarbon wells based on a second transmissivity
obtained from pressure transient analysis (PTA), the calibrating using the
composite matrix-fracture permeability, wherein the measured hydrocarbon

data comprises the second transmissivity.

The computer system of claim 15, wherein the measured hydrocarbon data
comprises measured Pulsed Neutron Log (PNL) data, and wherein the history
matching comprises comparing the measured PNL data to the composite

matrix-fracture water saturation.

The computer system of claim 15, wherein the measured hydrocarbon data
comprises measured MDT data, and wherein the history matching comprises

comparing the measured MDT data to the composite matrix-fracture pressure.
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Obtain, by a computer system, measured hydrocarbon data from one or more hydrocarbon wells
using one or more formation evaluation tools
604

v

Generate, by the computer system, composite matrix-fracture properties of the one or more
hydrocarbon wells using numerical simulation, the composite matrix-fracture properties
comprising at least one of composite matrix-fracture permeability, composite matrix-fracture water
saturation, composite matrix-fracture pressure, or composite matrix-fracture mobility of the one or
more hydrocarbon wells
608

v

Perform, by the computer system, history matching for the one or more hydrocarbon wells by
comparing the measured hydrocarbon data to the composite matrix-fracture properties
612

v

Generate, by a display device of the computer system, a graphical representation of results of the
history matching
616

FIG. 6
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