a2 United States Patent

US012050267B2

ao) Patent No.:  US 12,050,267 B2

Armstrong-Crews et al. 45) Date of Patent: Jul. 30, 2024
(54) DOPPLER-ASSISTED OBJECT MAPPING (56) References Cited
FOR AUTONOMOUS VEHICLE
APPLICATIONS U.S. PATENT DOCUMENTS
(71) Applicant: Waymo LLC, Mountain View, CA 8,112,223 B2 2/2012 Jordan et al.
US) 9,851,470 B2  12/2017 H_enderson et al.
10,262,234 B2 4/2019 Li et al.
. 10,620,631 B1 4/2020 Abel
(72) Inventors: g'iChOICaZ A(anl)stli\(;ll.lg-Clll'ews,(lj\;[lountaln 10884422 B2 12021 Zh:n (})geet i
iew, ; Mingcheng Chen, :
Sunnyvale, CA (US); Xiaoxiang Hu, (Continued)
Mountain View, CA (US); Colin
Andrew Braley, Sunnyvale, CA (US); FOREIGN PATENT DOCUMENTS
Yunshan Jiang, Mountain View, CA CN 106560725 A 4/2017
(US) CN 108027440 A 5/2018
Continued
(73) Assignee: Waymo LLC, Mountain View, CA ( )
Us
(US) OTHER PUBLICATIONS
(*)  Notice: S:ggfti;Oeirtlzn(gsgl2?:;52;?%5;%1; International Search Report and Written Opinion dated Feb. 18,
% S.C. 154(b) by 934 daJy . 2022, on application No. PCT/US2021/057622, 12 pages.
o . (Continued)
(21) Appl. No.: 16/949,657
Primary Examiner — Hovhannes Baghdasaryan
. v 2 ry
(22)  Filed: Nov. 9, 2020 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(65) Prior Publication Data
(57) ABSTRACT
US 2022/0146676 Al May 12, 2022
Aspects and implementations of the present disclosure
(51) Int. CL address shortcomings of the existing technology by enabling
GO1S 17/89 (2020.01) efficient object identification and tracking in autonomous
B6OW 40/02 (2006.01) vehicle (AV) applications by using velocity data-assisted
GO1S 1726 (2020.01) mapping of first set of points obtained for a first sensing data
GO1S 17/58 (2006.01) frame by a sensing system of the AV to a second set of points
32) US. CL obtained for a second sensing data frame by the sensin
(52) 2 y g
CPC oo GO1S 17/89 (2013.01); B6OW 40/02 system of the AV, the first set of points and the second set of
(2013.01); GOLS 17/26 (2020.01); GO1S 17/58 points corresponding to an object in an environment of the
(2013.01); B6OW 2420/408 (2024.01) AV, .and causing a driving path pf the AV to be determined
(58) Field of Classification Search in view of the performed mapping.

None
See application file for complete search history.

500
N

Obtain sensor data frames, each frame having a
plurality of points 510

\ 4
Evaluate a hypothesis that a first set of points

23 Claims, 7 Drawing Sheets

Select a hypothesis that an object is
—> moving in a certain way
€g. V. Q )52

A

(frame 1) corresponds to a second set of points
(frame 2) 520

Y

Identify an object corresponding to the first and
second sets of points 530

y

Cause a driving path of the autonomous vehicle to
be determined 540

Map the first set of points to the second set
T of points using the hypothesized object’s
- motion 524

\ 4

L—— Compute an evaluation measure 526




US 12,050,267 B2
Page 2

(56)

10,891,744
11,029,395
11,328,210
11,448,735
2005/0099637
2005/0285774
2007/0219720
2010/0161225

2012/0064949
2014/0307247
2014/0347207
2015/0198711
2017/0097410
2018/0136321
2018/0283851
2018/0335787
2018/0348343
2019/0011541
2019/0079193
2019/0120955
2019/0138822
2019/0302767
2019/0317219
2019/0318206
2020/0041619
2020/0182992
2020/0201351
2020/0301013
2020/0302237
2020/0309957
2020/0371228
2020/0398894
2020/0400821
2021/0001868
2021/0024069
2021/0049779
2021/0056713
2021/0097723
2021/0141092
2021/0173055
2021/0229657
2021/0255307
2021/0256321
2021/0261152
2021/0261159
2021/0339738
2021/0396887
2022/0058402
2022/0119002
2022/0122363
2022/0128995
2022/0146676

References Cited

U.S. PATENT DOCUMENTS

Bl
Bl
B2
B2
Al
Al
Al
Al

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

1/2021
6/2021
5/2022
9/2022
5/2005
12/2005
9/2007
6/2010

3/2012
10/2014
11/2014

7/2015

4/2017

5/2018
10/2018
11/2018
12/2018

1/2019

3/2019

4/2019

5/2019
10/2019
10/2019
10/2019

2/2020

6/2020

6/2020

9/2020

9/2020
10/2020
11/2020
12/2020
12/2020

1/2021

1/2021

2/2021

2/2021

4/2021

5/2021

6/2021

7/2021

8/2021

8/2021

8/2021

8/2021
11/2021
12/2021

2/2022

4/2022

4/2022

4/2022

5/2022

Wiyffels
Barber et al.
Mondello et al.
O’Keeffe
Kacyra et al.
Wittenberg et al.
Trepagnier et al.
Hyung GO5D 1/0274
345/420

Kavounas

Zhu et al.

Zeng et al.

Zeng et al.

Liu et al.
Verghese et al.
Watanabe et al.
Zeng et al.
Achour et al.
O’Keeffe
Gunnam

Zhong et al.

Yao et al.

Sapp

Smith et al.
Smith et al.
Maheshwari et al.
Kellner et al.
Armstrong-Crews et al.
Banerjee et al.
Hennings Yeomans et al.
Bhaskaran et al.
Wang

Hudecek et al.
Baker et al.

Ahn

Herman
Harviainen
Rangesh

Kim et al.

Chen et al.

Jian et al.
Herman et al.
Bongio et al.
Gerardo et al.
Meijburg et al.
Pazhayampallil et al.
Lashkari et al.
Schmalenberg
Hunt

Ladd

Liong et al.

Chen
Armstrong-Crews

2022/0229164 Al
2022/0276375 Al
2022/0327719 Al
2023/0076905 Al

7/2022 Steinberg et al.
9/2022 Armstrong-Crews

10/2022 Shaag et al.
3/2023 Wyffels

FOREIGN PATENT DOCUMENTS

CN 111612818 A 9/2020
CN 112041702 A 12/2020
EP 3151034 Al 4/2017
EP 3252501 A1 12/2017
EP 3346287 Al 7/2018
EP 3367121 Al 8/2018
EP 3525000 Al 8/2019
EP 3367121 Bl 4/2020
EP 3745158 A1 12/2020
EP 3775997 A2 2/2021
JP 2012518793 A 8/2012
JP 2015035019 A 2/2015
JP 2019049774 A 3/2019
KR 20200011813 A 2/2020
KR 20200139779 A 12/2020
WO 2014168851 Al  10/2014
WO 2017038659 Al 3/2017
WO 2018127789 Al 7/2018
WO 2019154536 Al 8/2019
WO 2019199473 A2 10/2019
WO 2020210276 Al 10/2020
WO 2022087308 Al 4/2022
WO 2022094429 Al 5/2022

OTHER PUBLICATIONS

International Search Report and Written Opinion dated Feb. 15,

2022, on application No. PCT/US2021/056105, 10 pages.
International Search Report and Written Opinion dated Feb. 23,
2022, on application No. PCT/US2021/057623, 10 pages.
Cameron O., “An Introduction to LIDAR: The Key Self-Driving
Car Sensor,” Voyage, May 9, 2017, pp. 1-21.

Extended European Search Report for European Application No.
22175897.2, mailed Nov. 2, 2022, 10 Pages.

Office Action for Japanese Patent Application No. JP20230520411,
mailed Dec. 26, 2023, 13 Pages.

Aeye iDAR “iDAR is Smarther than LiDAR”, aeye.ai/idar/, retrieved
Oct. 20, 2020, 11 pages.

Aurora “FMCW Lidar: The Self-Driving Game-Changer” medium.
com/aurora-blog/fmcw-lidar-the-self-driving-game-changer-
194£d311£d0e9, Apr. 9, 2020, retreived on Oct. 20, 2020, 6 pages.
GreenCarCongress.com “Aeva Announces Aeries 4D FMCW Lidar-
on-chip for Autonomous Driving; Recent Porsche Investment”,
greecarcongress.com/2019/12/20191212.aeva.html, Dec. 12, 2019,
11 pages.

* cited by examiner



U.S. Patent Jul. 30, 2024 Sheet 1 of 7 US 12,050,267 B2

; Driving Environment \
N 10 /
Sensing System 120
LiDAR Radar Sonar Camera(s)
122 126 128 129
Y
GPS Map Info
Velocity-Assisted Point 134 135
Cloud Module (PCM) 133
Environment Monitoring &
Perception System 132 Prediction 136

Data Processing System 130

Y

Autonomous Vehicle Control
System (AVCS) 140

v v v

Powertrain & Steering | Vehicle Electronics Signaling
150 B 160 " 170

FIG. 1



US 12,050,267 B2

Sheet 2 of 7

Jul. 30, 2024

U.S. Patent

g¢ 'Old

¥9¢ Pnoi)
JuI0d puooas

¢9¢ Pnoio
jiodisid g .-

V¢ 'Old

i 902
(4var) sosusg

— (D0z

012 08lao




U.S. Patent Jul. 30, 2024 Sheet 3 of 7 US 12,050,267 B2

First Point Cloud
301 \

Second Point Cloud

302 \

/ 300

Sensor (LIDAR)
206 ~—
N
=0

FIG. 3



US 12,050,267 B2

Sheet 4 of 7

Jul. 30, 2024

U.S. Patent

gy 'Old

0¥
1osuag puoseg

a1

0S¥ \

90¥
10suag Jsil4

T

444
Juiod uinjey

Vv "Old
20% Y

\1 D SR
0% Josuag jsilq

10suag puooeg

60¥

~

/ —
JuI04 UInay

(1147

\
J 13)8n9 Wiod

0119800

4

00y



US 12,050,267 B2

Sheet 5 of 7

Jul. 30, 2024

U.S. Patent

TZG ainseaw uonen|eas ue aindwon

G uonow
s 108lqo pazisayiodAy ay Buisn sjuiod Jo
188 puodas ayy 0} sjuiod Jo 18s i8Il ay) depy

ﬂ A d f O> ..m.mv
Aem uiena0 e ul buinow
s1 109(qo ue jey; sisayjodAy e j09|9g

S "Old

0%G paulwialep aq
0) 3|9IyaA snowouojne ay} jo yied Buiaup e asne)

0%G spiod Jo sjas puodas
pue 1s1y 8y} 0} Buipuodsaliod 10a(qo ue Aypuap)

025 (z awey)

A

sjuiod Jo }as puodas e 0} spuodsaliod (|, swely)
sjuiod Jo Jas Jsu e Jey) sisayjodAy e sjenjea

A

0TS sjuod jo Ayjeinid
e Buiney sweuy yoea ‘sawely elep JOSUSS UIRYIO

v/ 005



U.S. Patent

Jul.

600
N

30, 2024 Sheet 6 of 7

Select a hypothesis that a first set of points from a first sensor
data frame corresponds to a second set of points from a second
sensor data frame 610

\J

Obtain an estimate for at least one component of a translational
velocity or of a rotational velocity of an object hypothesized to be
associated with the first set of points 620

Y

Predict a position of the hypothesized object after a time
increment corresponding to a time difference between the first
sensor data frame and the second sensor data frame 630

Compare the predicted position with the second set of points 640

FIG. 6

US 12,050,267 B2



U.S. Patent

700
\‘

Processing Device 702

‘ Processing Logic

Jul. 30, 2024

Sheet 7 of 7

US 12,050,267 B2

Video Display

A

A

A

Y

10

126
Main Memory 704

Alpha-Numeric
Instructions - - > Input Device

2 12

2~ 730

Static Memory _ |l L Curg)gv(i:c(;ntrol

706 - > - > e

Network Interface
Device
108

Signal Generation
Device

\\

A

A

A

Y

116

Data Storage Device 718

Computer-Readable
Storage Medium 728

A

Y

Instructions
122

FIG.7



US 12,050,267 B2

1
DOPPLER-ASSISTED OBJECT MAPPING
FOR AUTONOMOUS VEHICLE
APPLICATIONS

TECHNICAL FIELD

The instant specification generally relates to autonomous
vehicles. More specifically, the instant specification relates
to improving autonomous driving systems and components
using velocity sensing data to assist in detection, identifi-
cation, and tracking of objects encountered in autonomous
driving environments.

BACKGROUND

Autonomous (fully and partially self-driving) vehicles
operate by sensing an outside environment with various
electromagnetic (e.g., radar and optical) and non-electro-
magnetic (e.g., audio and humidity) sensors. Some autono-
mous vehicles chart a driving path through the environment
based on the sensed data. The driving path can be deter-
mined based on Global Positioning System (GPS) data and
road map data. While the GPS and the road map data can
provide information about static aspects of the environment
(buildings, street layouts, road closures, etc.), dynamic
information (such as information about other vehicles,
pedestrians, street lights, etc.) is obtained from contempo-
raneously collected sensing data. Precision and safety of the
driving path and of the speed regime selected by the autono-
mous vehicle depend on timely and accurate identification of
various objects present in the driving environment and on
the ability of a driving algorithm to process the information
about the environment and to provide instructions to the
vehicle controls and the drivetrain.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of examples,
and not by way of limitation, and can be more fully
understood with references to the following detailed descrip-
tion when considered in connection with the figures, in
which:

FIG. 1 is a diagram illustrating components of an example
autonomous vehicle that uses Doppler-assisted object iden-
tification and tracking, in accordance with some implemen-
tations of the present disclosure.

FIG. 2A is an illustration of a Doppler-assisted object
determination and tracking that utilizes point cloud map-
ping, as part of a perception system of an autonomous
vehicle, in accordance with some implementations of the
present disclosure.

FIG. 2B illustrates a mapping of a first point cloud
(corresponding to a first sensing data frame) to a second
point cloud (corresponding to a second sensing data frame),
in accordance with some implementations of the present
disclosure.

FIG. 3 is an illustration of a rolling shutter correction, for
precise point cloud mapping, as part of a perception system
of an autonomous vehicle, in accordance with some imple-
mentations of the present disclosure.

FIG. 4A is an illustration of a double sensor setup that
utilizes point cloud mapping, as part of a perception system
of an autonomous vehicle, in accordance with some imple-
mentations of the present disclosure.

FIG. 4B is an illustration of a determination of the lateral
velocity associated with a return point using a double lidar
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2

triangulation scheme, in accordance with some implemen-
tations of the present disclosure.

FIG. 5 depicts a flow diagram of an example method of
using Doppler-assisted object identification and point cloud
tracking for autonomous driving vehicle applications, in
accordance with some implementation of the present dis-
closure.

FIG. 6 depicts a flow diagram of an example method of
evaluating a hypothesis that a set of point of the first sensing
frame corresponds to a set of points of the second sensing
frame, in accordance with some implementations of the
present disclosure.

FIG. 7 depicts a block diagram of an example computer
device capable of enabling Doppler-assisted object identi-
fication and tracking for autonomous driving vehicle appli-
cation, in accordance with some implementations of the
present disclosure.

SUMMARY

In one implementation, disclosed is a method that
includes obtaining, by a computing device, a plurality of
sensing data frames of an environment around an autono-
mous vehicle (AV), each of the plurality of sensing data
frames comprising a plurality of points, wherein each of the
plurality of points corresponds to a reflection, from a surface
of an object of the environment, of a signal emitted by a
sensing system of the AV, and comprises a distance to a
respective reflecting surface, and wherein one or more of the
plurality of points comprise a velocity data for the respective
reflecting surface. The disclosed method further includes
evaluating, by the computing device, a hypothesis that a first
set of points from a first sensing data frame of the plurality
of sensing data frames corresponds to a second set of points
from a second sensing data frame of the plurality of sensing
data frames, wherein evaluating the hypothesis comprises
mapping, in view of the velocity data for one or more of the
first set of points or the second set of points, the first set of
points to the second set of points, and determining, based on
performed mapping, an evaluation measure for the hypoth-
esis. The method disclosed further includes causing a driv-
ing path of the AV to be determined in view of the evaluation
measure.

In another implementation, disclosed is a system that
includes a memory that stores instructions and a computing
device to execute the instructions from the memory to obtain
a plurality of sensing data frames of an environment around
an autonomous vehicle (AV), each of the plurality of sensing
data frames comprising a plurality of points, wherein each of
the plurality of points corresponds to a reflection, from a
surface of an object of the environment, of a signal emitted
by a sensing system of the AV, and comprises a distance to
a respective reflecting surface, and wherein one or more of
the plurality of points comprise a velocity data for the
respective reflecting surface. The computing device is fur-
ther to evaluate a hypothesis that a first set of points from a
first sensing data frame of the plurality of sensing data
frames corresponds to a second set of points from a second
sensing data frame of the plurality of sensing data frames,
wherein to evaluate the hypothesis the computing device is
to map, in view of the velocity data for one or more of the
first set of points or the second set of points, the first set of
points to the second set of points, and determine, based on
performed mapping, an evaluation measure for the hypoth-
esis. The computing device is further to cause a driving path
of the AV to be determined in view of the evaluation
measure.
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In another implementation, disclosed is a non-transitory
computer-readable medium having instructions stored
thereon that, when executed by a computing device, cause
the computing device to obtain a plurality of sensing data
frames of an environment around an autonomous vehicle
(AV), each of the plurality of sensing data frames compris-
ing a plurality of points, wherein each of the plurality of
points corresponds to a reflection, from a surface of an
object of the environment, of a signal emitted by a sensing
system of the AV, and comprises a distance to a respective
reflecting surface, and wherein one or more of the plurality
of points comprise a velocity data for the respective reflect-
ing surface. The instructions are further to cause the com-
puting device to evaluate a hypothesis that a first set of
points from a first sensing data frame of the plurality of
sensing data frames corresponds to a second set of points
from a second sensing data frame plurality of sensing data
frames, wherein to evaluate the hypothesis the computing
device it to map, in view of the velocity data for one or more
of the first set of points or the second set of points, the first
set of points to the second set of points, and determine, based
on performed mapping, an evaluation measure for the
hypothesis. The instructions are further to cause the com-
puting device to cause a driving path of the AV to be
determined in view of the evaluation measure.

DETAILED DESCRIPTION

An autonomous vehicle can employ a light detection and
ranging (lidar) technology to detect distances to various
objects in the environment and sometimes the velocities of
such objects. A lidar emits one or more laser signals (pulses)
that travel to an object and then detects arrived signals
reflected from the object. By determining a time delay
between the signal emission and the arrival of the reflected
waves, a time-of-flight (ToF) lidar can determine the dis-
tance to the object. A typical lidar emits signals in multiple
directions to obtain a wide view of the outside environment.
For example, a lidar device can cover the entire 360-degree
view by scanning to collect in a series of consecutive frames
identified with time stamps. As a result, each sector in space
is sensed in time increments At, which are determined by the
angular velocity of the lidar’s scanning speed. “Frame” or
“sensing data frame,” as used herein, can refer to an entire
360-degree view of the environment obtained over a scan of
the lidar or, alternatively, to any smaller sector, e.g., a
1-degree, 5-degree, a 10-degree, or any other angle obtained
over a fraction of the scan, or over a scan designed to cover
a limited angle.

Each frame can include numerous return points (or simply
“points™) corresponding to reflections from various objects
of the environment. Each point can be associated with the
distance to the corresponding object or, more specifically,
with the distance to an element of the surface of the object
responsible for the respective return point. A set of points
can be rendered or otherwise associated with a frame and
sometimes referred to as a “point cloud.” A point cloud can
include returns from multiple objects. Typically, it is not
known a priori how many objects are within a given frame.
A single object, such as another vehicle, a road sign, a
pedestrian, and so on, can generate multiple return points.
For example, a 10-degree frame can include returns from
one or more road signs, multiple vehicles located at various
distances from the lidar device (which may be mounted on
the autonomous vehicle) and moving with different speeds
in different directions, a pedestrian crossing a roadway,
walking along a sidewalk, or standing by the roadside, and
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many other objects. Segmenting (which may be performed
by a perception system of the autonomous vehicle) a given
point cloud into clusters that correspond to different objects
can be useful in autonomous driving applications. Points
that are close (e.g., are separated by a small angular distance
and correspond to reflections from similar distances) can
nonetheless belong to different objects. For example, a
traffic sign and a pedestrian standing close to the sign can
generate close return points. Similarly, a car moving along
a bicycle in the adjacent lane can generate close return
points.

Identification of points that correspond to different objects
is typically performed using mapping of point clusters
belonging to different frames, such as frames having con-
secutive time stamps. Specifically, a hypothesis can be made
that a selected first set (cluster) of points of a frame
identified by its time stamp t and a selected second set of
points of frame t+At belong to the same object (e.g. a car or
a pedestrian). The first set of points is then mapped, using a
suitable (e.g., best-fit) geometric transform, onto the second
set of points and a determination is made whether the
obtained mapping is within an acceptable accuracy, to assess
whether the hypothesis is confirmed or invalidated, in which
case a different hypothesis can be chosen and the process
repeated. Such hypotheses selection and verification can be
performed in parallel, with multiple hypotheses evaluated
concurrently.

Various algorithms can be used for finding the optimal
geometric transform, such as iterative closest point (ICP)
algorithms that are capable of identifying the optimal trans-
form using a series of steps (iterations) of a gradually
improving convergence. The conventional ICP (or other
mapping) algorithms are based on point mapping in coor-
dinate space using angular (or linear lateral) coordinates and
longitudinal (or radial) range (distance) values and are
subject to a number of shortcomings. In particular, selecting
smaller or larger time increments At has respective short-
comings. For example, smaller At can diminish the ability of
the algorithm to invalidate incorrect hypotheses based on a
small number of frames. Conversely, larger At can reduce
the speed of perception. Additionally, objects that are closely
located can require a considerable time to distinguish from
each other, using ToF lidar technology that can detect
gradual separation of the objects over several (or more)
consecutive time frames.

ToF lidars are typically used for ranging. ToFs can also be
capable of determining the velocity (speed and direction of
motion) of a return point by emitting two or more signals (as
part of different sensing frames) in a quick succession and
detecting the position of the reflecting surface as the surface
moves between each additional frame. The intervals
between successive signals can be short enough so that
between consecutive signals (frames) the object does not
change its position appreciably in relation to other objects of
the environment, but still long enough to allow the lidar to
accurately detect the changes in the object’s position. How-
ever, ToF lidar devices are generally incapable of determin-
ing velocities of objects based on a single sensing frame.

Aspects and implementations of the present disclosure
enable methods of identification of objects in environments
of the autonomous vehicles using Doppler-assisted velocity
sensing. Specifically, coherent lidars take advantage of
phase information encoded into transmitted signals and
carried by the emitted electromagnetic waves to the target
and back and provide additional functionality unavailable in
standard ToF lidar technology. A coherent lidar detects
changes in the frequency (and the accompanying phase) of
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the reflected wave induced by the motion of the reflecting
surface, a phenomenon known as the Doppler effect. The
frequency/phase of the reflected wave is sensitive to the
component of the velocity of the reflecting surface V, that is
parallel to the direction of the wave propagation, herein
referred to as the “radial” or “longitudinal” velocity. A
coherent lidar allows, in addition to obtaining the range
information, associating a radial velocity with the return
points of the point cloud. This additional information, as
described in more detail below, facilitates a more efficient
object identification and tracking. In particular, the radial
velocity data allows a more efficient formation of hypoth-
eses. For example, based on the radial velocity V, of at least
some points of the first set of the first frame and the locations
of the corresponding points of the second set of the second
frame, the perception system can quickly discard some of
the hypotheses that are inconsistent with the measured
velocities (e.g., a hypothesis can be discarded if the second
set of points is shifted from the first set of points by the
distances that are too large or too small in view of the
measured velocities). Conversely, in some instances, a
hypothesis can be formed based on a cluster of points having
close radial velocities or having radial velocities that are
different from each other yet consistent with an object
(corresponding to the cluster of points) performing a com-
bination of a linear motion and a rotation.

The use of the velocity information can also be advanta-
geous for verification of formed hypotheses. For example, a
hypothesis that was formed based on a single sensing frame
can be tested (evaluated) when the second sensing frame
data is collected: the locations of the points in the second
frame can be compared to the locations of the points in the
first frame and the hypothesis can be confirmed or invali-
dated based on how consisted the movement of the corre-
sponding object is with the velocities of the points of the first
frame. Similarly, if the hypothesis was formed based on
mapping of the points of the first frame and points of the
second frame, it can be subsequently verified using radial
velocities of the subsequent (third, fourth, etc.) frame(s) by
comparing the distances actually travelled by various points
of the (hypothetical) object against the displacements as
predicted by the velocity measurements.

FIG. 1 is a diagram illustrating components of an example
autonomous vehicle (AV) 100 that uses Doppler-assisted
object identification and tracking, in accordance with some
implementation of the present disclosure. FIG. 1 illustrates
operations of the example autonomous vehicle. Autonomous
vehicles can include motor vehicles (cars, trucks, buses,
motorcycles, all-terrain vehicles, recreational vehicle, any
specialized farming or construction vehicles, and the like),
aircraft (planes, helicopters, drones, and the like), naval
vehicles (ships, boats, yachts, submarines, and the like), or
any other self-propelled vehicles (e.g., sidewalk delivery
robotic vehicles) capable of being operated in a self-driving
mode (without a human input or with a reduced human
input).

A driving environment 110 can include any objects (ani-
mated or non-animated) located outside the AV, such as
roadways, buildings, trees, bushes, sidewalks, bridges,
mountains, other vehicles, pedestrians, and so on. The
driving environment 110 can be urban, suburban, rural, and
so on. In some implementations, the driving environment
110 can be an off-road environment (e.g. farming or agri-
cultural land). In some implementations, the driving envi-
ronment can be an indoor environment, e.g., the environ-
ment of an industrial plant, a shipping warchouse, a
hazardous area of a building, and so on. In some implemen-
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tations, the driving environment 110 can be substantially
flat, with various objects moving parallel to a surface (e.g.,
parallel to the surface of Earth). In other implementations,
the driving environment can be three-dimensional and can
include objects that are capable of moving along all three
directions (e.g., balloons, leaves, etc.). Hereinafter, the term
“driving environment” should be understood to include all
environments in which an autonomous motion of self-
propelled vehicles can occur. For example, “driving envi-
ronment” can include any possible flying environment of an
aircraft or a marine environment of a naval vessel. The
objects of the driving environment 110 can be located at any
distance from the AV, from close distances of several feet (or
less) to several miles (or more).

The example AV 100 can include a sensing system 120.
The sensing system 120 can include various electromagnetic
(e.g., optical) and non-electromagnetic (e.g., acoustic) sens-
ing subsystems and/or devices. The terms “optical” and
“light,” as referenced throughout this disclosure, are to be
understood to encompass any electromagnetic radiation
(waves) that can be used in object sensing to facilitate
autonomous driving, e.g., distance sensing, velocity sensing,
acceleration sensing, rotational motion sensing, and so on.
For example, “optical” sensing can utilize a range of light
visible to a human eye (e.g., the 380 to 700 nm wavelength
range), the UV range (below 380 nm), the infrared range
(above 700 nm), the radio frequency range (above 1 m), etc.
In implementations, “optical” and “light” can include any
other suitable range of the electromagnetic spectrum.

The sensing system 120 can include a radar unit 126,
which can be any system that utilizes radio or microwave
frequency signals to sense objects within the driving envi-
ronment 110 of the AV 100. The radar unit can be configured
to sense both the spatial locations of the objects (including
their spatial dimensions) and their velocities (e.g., using the
Doppler shift technology). Hereinafter, “velocity” refers to
both how fast the object is moving (the speed of the object)
as well as the direction of the object’s motion. The term
“angular velocity” refers to how fast the object is rotating
around some axis as well as the direction of this axis of
rotation. For example, a car that is making a left (right) turn
has the axis of rotation pointed up (down) and the value of
the angular velocity is equal to the rate of change of the
angle of rotation (e.g., measured in radians per second).

The sensing system 120 can include one or more lidar
sensors 122 (e.g., lidar rangefinders), which can be a laser-
based unit capable of determining distances (e.g., using ToF
technology) to the objects in the driving environment 110.
The lidar sensor(s) can utilize wavelengths of electromag-
netic waves that are shorter than the wavelength of the radio
waves and can, therefore, provide a higher spatial resolution
and sensitivity compared with the radar unit. The lidar
sensor(s) can include a coherent lidar sensor, such as a
frequency-modulated continuous-wave (FMCW) lidar sen-
sor. The lidar sensor(s) can use optical heterodyne detection
for velocity determination. In some implementations, the
functionality of a ToF and coherent lidar sensor(s) is com-
bined into a single (e.g., hybrid) unit capable of determining
both the distance to and the radial velocity of the reflecting
object. Such a hybrid unit can be configured to operate in an
incoherent sensing mode (ToF mode) and/or a coherent
sensing mode (e.g., a mode that uses heterodyne detection)
or both modes at the same time. In some implementations,
multiple lidar sensor(s) 122 units can be mounted on AV,
e.g., at different locations separated in space, to provide
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additional information about a transverse component of the
velocity of the reflecting object, as described in more detail
below.

The lidar sensor(s) 122 can include one or more laser
sources producing and emitting signals and one or more
detectors of the signals reflected back from the objects. The
lidar sensor(s) 122 can include spectral filters to filter out
spurious electromagnetic waves having wavelengths (fre-
quencies) that are different from the wavelengths (frequen-
cies) of the emitted signals. In some implementations, the
lidar sensor(s) 122 can include directional filters (e.g.,
apertures, diffraction gratings, and so on) to filter out elec-
tromagnetic waves that can arrive at the detectors along
directions different from the retro-reflection directions for
the emitted signals. The lidar sensor(s) 122 can use various
other optical components (lenses, mirrors, gratings, optical
films, interferometers, spectrometers, local oscillators, and
the like) to enhance sensing capabilities of the sensors.

In some implementations, the lidar sensor(s) 122 can scan
a 360-degree view, e.g., in a horizontal direction. In some
implementations, the lidar sensor(s) 122 can be capable of
spatial scanning along both the horizontal and vertical
directions. In some implementations, the field of view can be
up to 90 degrees in the vertical direction (e.g., with at least
a part of the region above the horizon being scanned by the
lidar signals). In some implementations, the field of view
can be a full sphere (consisting of two hemispheres). For
brevity and conciseness, when a reference to “lidar technol-
ogy,” “lidar sensing,” “lidar data,” and “lidar,” in general, is
made in the present disclosure, such reference shall be
understood also to encompass other sensing technology that
operate at generally in the near-infrared wavelength, but
may include sensing technology that operates at other wave-
lengths as well.

The sensing system 120 can further include one or more
cameras 129 to capture images of the driving environment
110. The images can be two-dimensional projections of the
driving environment 110 (or parts of the driving environ-
ment 110) onto a projecting plane (flat or non-flat, e.g.
fisheye) of the cameras. Some of the cameras 129 of the
sensing system 120 can be video cameras configured to
capture a continuous (or quasi-continuous) stream of images
of the driving environment 110. The sensing system 120 can
also include one or more sonars 128, which can be ultrasonic
sonars, in some implementations.

The sensing data obtained by the sensing system 120 can
be processed by a data processing system 130 of AV 100. For
example, the data processing system 130 can include a
perception system 132. The perception system 132 can be
configured to detect and track objects in the driving envi-
ronment 110 and to recognize the detected objects. For
example, the perception system 132 can analyze images
captured by the cameras 129 and can be capable of detecting
traffic light signals, road signs, roadway layouts (e.g.,
boundaries of traffic lanes, topologies of intersections, des-
ignations of parking places, and so on), presence of
obstacles, and the like. The perception system 132 can
further receive the lidar sensing data (coherent Doppler data
and incoherent ToF data) to determine distances to various
objects in the environment 110 and velocities (radial and, in
some implementations, transverse, as described below) of
such objects. In some implementations, the perception sys-
tem 132 can use the lidar data in combination with the data
captured by the camera(s) 129. In one example, the
camera(s) 129 can detect an image of a rock partially
obstructing a traffic lane. Using the data from the camera(s)
129, the perception system 132 can be capable of determin-
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ing the angular size of the rock, but not the linear size of the
rock. Using the lidar data, the perception system 132 can
determine the distance from the rock to the AV and, there-
fore, by combining the distance information with the angular
size of the rock, the perception system 132 can determine the
linear dimensions of the rock as well.

In another implementation, using the lidar data, the per-
ception system 132 can determine how far a detected object
is from the AV and can further determine the component of
the object’s velocity along the direction of the AV’s motion.
Furthermore, using a series of quick images obtained by the
camera, the perception system 132 can also determine the
lateral velocity of the detected object in a direction perpen-
dicular to the direction of the AV’s motion. In some imple-
mentations, the lateral velocity can be determined from the
lidar data alone, for example, by recognizing an edge of the
object (using horizontal scanning) and further determining
how quickly the edge of the object is moving in the lateral
direction. The perception system 132 can have a point cloud
module (PCM) 133 to perform mapping of return points of
different sensing frames in order to identify and track
various objects in the driving environment 110. PCM 133
can be a velocity-assisted (Doppler-assisted) module that
uses velocity data to augment range data for more efficient
and reliable detection and tracking of objects, as described
in more detail below.

The perception system 132 can further receive informa-
tion from a GPS transceiver (not shown) configured to
obtain information about the position of the AV relative to
Earth. The GPS data processing module 134 can use the GPS
data in conjunction with the sensing data to help accurately
determine location of the AV with respect to fixed objects of
the driving environment 110, such as roadways, lane bound-
aries, intersections, sidewalks, crosswalks, road signs, sur-
rounding buildings, and so on, locations of which can be
provided by map information 135. In some implementa-
tions, the data processing system 130 can receive non-
electromagnetic data, such as sonar data (e.g., ultrasonic
sensor data), temperature sensor data, pressure sensor data,
meteorological data (e.g., wind speed and direction, precipi-
tation data), and the like.

The data processing system 130 can further include an
environment monitoring and prediction component 136,
which can monitor how the driving environment 110 evolves
with time, e.g., by keeping track of the locations and
velocities of the animated objects (relative to Earth). In some
implementations, the environment monitoring and predic-
tion component 136 can keep track of the changing appear-
ance of the environment due to motion of the AV relative to
the environment. In some implementations, the environment
monitoring and prediction component 136 can make predic-
tions about how various animated objects of the driving
environment 110 will be positioned within a prediction time
horizon. The predictions can be based on the current loca-
tions and velocities of the animated objects as well as on the
tracked dynamics of the animated objects during a certain
(e.g., predetermined) period of time. For example, based on
stored data for object 1 indicating accelerated motion of
object 1 during the previous 3-second period of time, the
environment monitoring and prediction component 136 can
conclude that object 1 is resuming its motion from a stop
sign or a red traffic light signal. Accordingly, the environ-
ment monitoring and prediction component 136 can predict,
given the layout of the roadway and presence of other
vehicles, where object 1 is likely to be within the next 3 or
5 seconds of motion. As another example, based on stored
data for object 2 indicating decelerated motion of object 2
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during the previous 2-second period of time, the environ-
ment monitoring and prediction component 136 can con-
clude that object 2 is stopping at a stop sign or at a red traffic
light signal. Accordingly, the environment monitoring and
prediction component 136 can predict where object 2 is
likely to be within the next 1 or 3 seconds. The environment
monitoring and prediction component 136 can perform
periodic checks of the accuracy of its predictions and modify
the predictions based on new data obtained from the sensing
system 120.

The data generated by the perception system 132, the GPS
data processing module 134, and the environment monitor-
ing and prediction component 136 can be used by an
autonomous driving system, such as AV vehicle control
system (AVCS) 140. The AVCS 140 can include one or more
algorithms that control how AV is to behave in various
driving situations and environments. For example, the AVCS
140 can include a navigation system for determining a
global driving route to a destination point. The AVCS 140
can also include a driving path selection system for selecting
a particular path through the immediate driving environ-
ment, which can include selecting a traffic lane, negotiating
a traffic congestion, choosing a place to make a U-turn,
selecting a trajectory for a parking maneuver, and so on. The
AVCS 140 can also include an obstacle avoidance system for
safe avoidance of various obstructions (rocks, stalled
vehicles, a jaywalking pedestrian, and so on) within the
driving environment of the AV. The obstacle avoidance
system can be configured to evaluate the size of the obstacles
and the trajectories of the obstacles (if obstacles are ani-
mated) and select an optimal driving strategy (e.g., braking,
steering, accelerating, etc.) for avoiding the obstacles.

Algorithms and modules of AVCS 140 can generate
instructions for various systems and components of the
vehicle, such as the powertrain and steering 150, vehicle
electronics 160, signaling 170, and other systems and com-
ponents not explicitly shown in FIG. 1. The powertrain and
steering 150 can include an engine (internal combustion
engine, electric engine, and so on), transmission, differen-
tials, axles, wheels, steering mechanism, and other systems.
The vehicle electronics 160 can include an on-board com-
puter, engine management, ignition, communication sys-
tems, carputers, telematics, in-car entertainment systems,
and other systems and components. The signaling 170 can
include high and low headlights, stopping lights, turning and
backing lights, horns and alarms, inside lighting system,
dashboard notification system, passenger notification sys-
tem, radio and wireless network transmission systems, and
so on. Some of the instructions output by the AVCS 140 can
be delivered directly to the powertrain and steering 150 (or
signaling 170) whereas other instructions output by the
AVCS 140 are first delivered to the vehicle electronics 160,
which generate commands to the powertrain and steering
150 and/or signaling 170.

In one example, the AVCS 140 can determine that an
obstacle identified by the data processing system 130 is to be
avoided by decelerating the vehicle until a safe speed is
reached, followed by steering the vehicle around the
obstacle. The AVCS 140 can output instructions to the
powertrain and steering 150 (directly or via the vehicle
electronics 160) to 1) reduce, by modifying the throttle
settings, a flow of fuel to the engine to decrease the engine
rpm, 2) downshift, via an automatic transmission, the drive-
train into a lower gear, 3) engage a brake unit to reduce
(while acting in concert with the engine and the transmis-
sion) the vehicle’s speed until a safe speed is reached, and
4) perform, using a power steering mechanism, a steering
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maneuver until the obstacle is safely bypassed. Subse-
quently, the AVCS 140 can output instructions to the pow-
ertrain and steering 150 to resume the previous speed
settings of the vehicle.

FIG. 2A is an illustration of a Doppler-assisted object
determination and tracking 200 that utilizes point cloud
mapping, as part of a perception system of an autonomous
vehicle, in accordance with some implementations of the
present disclosure. Depicted in FIG. 2A is AV 202 (which
can be AV 100 or any other AV) approaching an intersection.
The AV 202 has a sensor 206, which can be a lidar, such as
a coherent lidar, an FMCW lidar, a hybrid coherent/ToF
lidar, a combination of a coherent and incoherent lidar, etc.,
or any other device that allows to sense the radial velocity
information in addition to the range (distance) information.
The sensor 206 performs scanning of the driving environ-
ment of AV 202. In particular, the sensor 206 can sense
multiple return points (“points”) for each sensing frame
(sensing data frame). The sensing frames can be separated
by time increments At. The time increments refer to time
differentials between signals emitted into (or returned from)
the same direction, as different directions can be probed with
signals at slightly different times. More specifically, At can
be a period of the sensor (e.g., lidar transmitter) revolution;
and with N points around the 360-degree horizontal view,
any two adjacent directions of sensing can be probed with
the time lead/lag of At/N.

An object 210 (e.g., a car, a truck, a bus, a motorcycle, or
any other object) is approaching the intersection and making
a left turn, as depicted in FIG. 2A. Two consecutive loca-
tions of the AV, e.g., 204(1) and 204(2), corresponding to
two consecutive lidar frames taken at times t and t+At are
shown. Similarly, the locations of object 210 for the two
frames t and t+At are shown as 212(1) and 212(2), respec-
tively.

It should be understood that the displacement of AV 202
and object 210 shown in FIG. 2A between two consecutive
frames is exaggerated for illustrative purposes and that, in
reality, various objects can change their locations over the
time increment At much less significantly. For example,
there can be numerous frames sensed by sensor 206 while
object 210 completes the left-hand turn depicted in FIG. 2A.

Object 210 performs a combination of a translational
motion and a rotational motion. For example, some refer-

ence point of the object 210 is translated by vector AR and
the object 210 is rotated around this reference point by angle
A¢. (As explained below, and conductive to the efficacy of
the described methods, the choice of the reference point is
rather arbitrary). In a flat driving environment, it can be
sufficient to describe rotational motion via a single-compo-
nent value A¢, but in non-flat 3D (in particular, flying or
nautical) environments, the rotation angle can be a vector A

—
¢ whose three components describe pitch angle, yaw angle,
and roll angle, respectively. The angular velocity of the
object 210 characterizes the rate at which the object 210 is

rotating (turning), §ZA$/AL The linear velocity of the
reference point similarly determines the rate at which the

object 210 is translating, VOZAK/AL Provided that the
object 210 is rigid, the knowledge of the angular velocity

and the linear velocity Vo of some reference point O (with

coordinates ﬁo) allows to determine velocity of any other
point of the body according to the equation (herein referred
to as the rigid body equation):

T=T 1 Ox(B-Ro).
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The choice of the reference point O can be arbitrary since
the same relation exists for any other reference point O' as

V=V, +§x(§—ﬁ0/ -Ro +§0/):Vo/ +§x(ﬁ—§0/),

where V O,ZVO+§><(§0,—§0) is the linear reference veloc-
ity of the reference point O'. Although the linear reference
velocity changes when the reference point is changed, the
angular velocity is independent of the choice of the refer-
ence point. This independence provides additional flexibility
when point cloud mapping is performed.

Reference point O can be regarded as a center of object’s
rotation. A freedom to choose a reference point reflects a
possibility to represent an arbitrary displacement of a rigid
object via an infinite number of possible combinations of a
rotation (about an arbitrarily chosen center of rotation but to
the same angle and around the same axis) and a translation.
(An exception is a purely translational motion.) Accordingly,
in some implementations, it can be convenient to choose
reference point O to be somewhere inside the object (albeit
not necessarily chosen to be close to the object’s geometric
center or center of mass). In other implementations, it can be
convenient to represent object’s motion as a pure rotation

around an axis parallel to 5 (with no translations within the
plane perpendicular to this axis) and a translation along this
axis. Such choice of the rotation center (hereinafter referred
to as “pure rotation” setup) is unique (up to arbitrary
translation along the axis) and can be determined from the

.. - - =4 . .
condition, VO,ZVO+Q><(RO,—RO):O, which gives

- — 1 - - — o .
Ry =CO+ ﬁ(ﬂx Vo +(QxRo)x 0},

where C is an arbitrary number. (In instanced of a two-
dimensional motion, C is zero.) At small angular velocities
(when the object performs mostly translational motion), as
seen from the last expression, rotation center is located at
large distances. Accordingly, for the sake of numerical
accuracy, in some implementations, distances from an object
to its center of rotation can be limited, e.g., a pure rotation
setup can be changed to a combined rotational-translational
setup once it is determined that the center of rotation is
farther than some predetermined distance (e.g., a certain
number of the object’s longest dimension). Alternatively
biases against large distances to the center of rotation can be
used, as described in more detail below.

As shown in FIG. 2A, at location 212(1) object 210 can
reflect a number of signals (indicated by solid lines) output
by the sensor 206 and generate a number of return points
(shown with black circles) of the first frame. The return
points should be understood as data entries (e.g., indexed by
the angular directions of the output signals or in any other
way) generated by the perception system 132 based on the
measurements performed by sensor 206, as part of the
sensing system 120. Each return point can include (or be
associated with) distance r to the actual physical point of
reflection and the radial velocity V, equal to the component

of the velocity V along the direction (described by unit

vector H) towards the sensor 206: V,:V~H. In some imple-
mentations, only some of the return points can include the
radial velocity values. For example, while ToF range mea-
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surements can be performed for each return point, only some
(e.g., every fifth, tenth, and so on) of the points can be
probed with the coherent lidar and include the velocity data.
The radial velocity V, is the velocity measured in the
reference frame of the AV 202. Accordingly, because in a
general case the AV 202 is moving, the measured velocity V,.
can be different from the velocity of the respective physical
point of reflection relative to the ground, which can then be
determined by adding (in vector form) the velocity of the
object 210 measured in the AV 202 frame to the velocity of
the AV 202 with respect to the ground (which can be known
independently, e.g., from speedometer/odometer data, map/
GPS data, etc.).

At location 212(2) the object 210 can similarly reflect a
new set of signals (indicated by dashed lines) output by the
sensor 206 and generate a number of return points of the
second frame. One or more mapping algorithms imple-
mented by PCM 133 can determine a geometric transfor-
mation that maps the point cloud of the first frame onto the
point cloud of the second frame. FIG. 2B illustrates a
mapping 250 of a first point cloud 262 (e.g., corresponding
to the first frame) to a second point cloud 264 (e.g.,
corresponding to the second frame), in accordance with
implementations of the present disclosure. The mapping
shown amounts to a geometric transformation of a point
cloud associated with a rigid object, e.g., object 260. Map-
ping 250 is determined by identifying the translation vector

=4 . - . . .
AR and the rotation angle A ¢ which, given the duration of

the time increment At also identifies the linear V=AR/At and

angular §ZA$/At velocities of the object (e.g., average
velocities over the time interval At). Mapping 250 can use
the iterative closest point (ICP) algorithm which iteratively
revises the transformation and minimizes an error metric
(e.g., the mean squared error or some other pre-determined
metric) based on the comparison of the transformed first
point cloud 262 with the second point cloud 264 (or vice
versa). In some implementations, other mapping algorithms
can be used, such as the Kabsch algorithm, the Procrustes
superimposition, and the like. Although only two sensing
frames (with respective points clouds) are depicted for
conciseness, similar mappings can be generated between
various consecutive sensing frames (e.g., between the sec-
ond frame and the third frame, between the third frame and
the fourth frame, etc.) for both object identification and
tracking.

With the recurring reference to FIG. 2A, as the object 210
is moving from location 212(1) to location 212(2), the return
points in the second frame correspond to reflection surfaces
of the object 210 that can be different from the surfaces
causing reflections of the signals of the first frame. For
example, as depicted in FIG. 2A, when parts of the rotating
object 210 previously obscured come within a field of view
of sensor 206, additional return points can be detected.
Conversely, some of the previously exposed return points
can be absent (as the respective physical reflecting surfaces
disappear from view), and so on. To address such dynamic
aspect of point clouds, the algorithms executed by PCM 133
can draw a bounding box, which can be a projection of a 3D
bounding box onto the field of view. The projection of the
bounding box dynamically evolves as the bounding box is
being rotated relative to the field of view. Having set the
bounding box around a point cloud (e.g., as part of a
hypothesis formation), PCM 133 can map both the actual
(currently visible) as well as currently obscured points in
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order to anticipate when such obscured points can come into
the field of view, for faster and more efficient point cloud
mapping.

Excluding or validating hypotheses using the radial veloc-
ity data can be performed before, after, or concurrently with
point cluster mapping (e.g. ICP mapping). For example, to
reduce computational costs of mapping, hypotheses that are
inconsistent with the radial velocity data can be discarded
prior to mapping. In some implementations, mapping can be
performed for outlines of two point clouds. In some imple-
mentations, PCM 133 can retain those hypotheses whose
point clouds pass the velocity verification and are amenable
to a successful mapping, within a set alignment accuracy.

In one example implementation, point cloud mapping
assisted by radial velocity data can be performed as follows.
Perception system 132 can identify a first point cloud 262
(e.g., a source point cloud) obtained at a moment of time t
and a second point cloud 264 (e.g., a target point cloud)
obtained at a moment of time t+At. PCM 133 can make a
hypothesis that associates points in the first point cloud 262
with points in the second point cloud 264 using various
methods of mapping, such as ICP mapping. For example,
among formed hypotheses can be a hypothesis that matches
each point in the first point cloud to the closest to it point in
the second point cloud. In some implementations, such a
hypothesis can merely be only one of many hypotheses as
motion of the underlying object can be such (especially over
longer times) that points that map onto each other are not the
closest points. For example, point A' of the second point
cloud 264 can be closest to point B but is correctly mapped
to point A of the first point cloud 262.

Having formed one or more hypotheses, PCM 133 can
identify pairs of points (enumerated with index j) in the two
clouds that are mapped onto each other R,(1)—R,(2). Addi-
tionally, PCM 133 can identify a set of fitting parameters
{B}=B1, B> . . . that parameterize a motion of a body (e.g.,
a rigid body) that corresponds to the hypothesized mapping.
The parameters can include translational velocity, rotational
velocity, center of rotation, etc. The number of parameters
can depend on the motion that is being mapped. For
example, a planar two-dimensional motion (e.g., motion of
vehicles over a flat surface) can be characterized by a single
angular velocity value (a rate of rotation around a vertical
axis) whereas a three-dimensional motion (e.g., motion of
flying objects) can be characterized by three components of
the angular velocity. The table below provides examples of
parameters that can be used to describe mappings of point
clouds.

2D motion 3D motion
Arbitrary center of rotation Q3 Vo Vo, Qu Q; Q
Vo V0y§ Vo.
Pure rotation (fixed center of Q,, Ro,s R, Q; Q5 Q;
rotation Roxs Roys Voo

Here, the plane x'y' is perpendicular to the direction of the
—
angular velocity €; V4 is a component of the translational

velocity along the direction of 5

Based on actual coordinates R (1) of points at time t (first
frame) and using the fitting parameters, e.g., V, and €,
PCM 133 can predict future coordinates f{j(t+At) of the first
point cloud at time t+At (e.g., time of second frame):

R(1—=2)=R (14 VoAre QxR (1)-R 1AL,
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where for ease of notation, vectors are denoted with bold-
faced letters rather than with arrows. Likewise, in some
implementations, PCM 133 can also make a backward
“prediction” of the past locations (at time of first frame) of
the coordinates of points in the second point cloud:

R(12)=R(2)-VoAr-Qx[R(2)-RJAL.

Having made such predictions, PCM 133 can compare
how well predicted coordinates f{j(l—>2) of the first point
cloud at a future instance of time approximate actual coor-
dinates of the points in the second cloud R (2) (as obtained
by the sensing system 120). The accuracy of prediction can
be characterized by a forward-looking residual

S>=ZSJ>-,
7

that is a sum of residuals for various points j. The residuals
S,” can include a number of contributions. For example, S;”
can include a penalty for errors in predicted coordinates:

Sj>(0920rd):a[RjH(z)_RjH(l_)2)]2+b[RjL(2)_RjL(1_)2)]

where R denotes a radial component of the radius-vector
(radial distance) to point j and R;, denotes components of
the same radius vector in the transverse plane. Depending on
whether the motion is two-dimensional or three-dimen-
sional, R;, can have one component or two components,
respectively. Weights a and b can be different from each
other, in some implementations, in order to take into account
that radial and transverse distances can be known with
different precision. In some implementations, weights a and
b can be taken to be equal to each other.

The residuals S;” can further include a penalty for errors
in predicting of radial velocities V,, which can be known
from coherent lidar sensor(s):

S (vely=c[R;(1)-R;(2)+V (DAL,

where R (1)+V(1)At is a predicted radial distance at time
t+At (based on previously measured radial distance R, (1)
and anticipated increment V(1)At. Weight ¢ can differ from
weights a and b. In some implementations, relative values of
a and b and ¢ can depend on relative precisions with which
radial distances, azimuthal distances, and radial velocities
can be known. The total residuals Sj> can, therefore, be
represented as a sum,

S;7=8;"(coord)+S;”(vel).

In some implementations, backward-looking residuals
can similarly be defined. For example, backward-looking
residuals

55=3787,
7

can similarly include a penalty for errors in predictions of
coordinates,

S (coord)=a[Ry(1)-Ry(1<=2)1*+b[R;, (1)-K;, (1<2)]
.
and can also include a penalty for errors in predictions of

radial velocities which can be known from lidar sensing
system:

5}<(V€Z):C[Rju(2)—Rju(1)— VjH(z)Al]za
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where R;(2)-V(2)At is a “predicted” radial distance at the
past time t based on subsequently measured radial distance
R;(2) and decrement-V;(2)At. The total backward-looking
residuals S;” can be a sum S,7=S “(coord)+S,~(vel). The total
residual error of the mapping can be the sum S({f})=S~
({BH+S~({B}), whose optimization (e.g., minimization) can
determine the optimal values of the fitting parameters, e.g.,
1B}=V 6, ©, Ry, In some implementations, instead of defin-
ing forward-looking S, ~(vel) and backward-looking residual
S,"(vel) velocity errors, a combinet error that uses the
average velocity values can be used, e.g.,

Si(ve)=c[Ry(1)=R;(2)+At(V(1)+ VjH(Z))/2]2.

Because the residual error S is a non-linear function of the
fitting parameters f§,, optimization of S can be performed
using various iterative methods, such as gradient descent
method, Gauss-Newton method, Levenberg-Marquart
method, and the like. For example, in the gradient descent
method, parameters [, are iterated (f,—f,+Ap,) in the
direction defined by the gradient 3S/3f,, which is expressed
via the Jacobian matrix J,=8S /3. At each iteration of the
gradient descent method, a system of linear equations (in
matrix form)

AAPB=JTAS,

determines the vector of fitting parameter increments Ap=
(AB, AB,, . . . ) based on the residual errors occurring at the
respective iterations, AS=(AS,, AS,, . . . ); a tunable param-
eter A can be chosen for maximum accuracy, fastest con-
vergence, or based on other considerations.

In Gauss-Newton method, a local minimum can be deter-
mined at each iteration using a system of linear equations:

(JEDAB=JFAS.

In Levenberg-Marquart method (damped Gauss-Newton
method), increments can be determined at each iteration
using a system of equations that interpolate between equa-
tions in the gradient descent and Gauss-Newton methods:

(JITADAR=JTAS.

Tterations can be continued until a sufficient degree of
convergence is achieved, e.g., when further improvement
from additional iterations is below a predetermined target
level. The determined optimal fitting parameters {{},,,,, can
approximate a minimum residual error S,,,,=S({B},...) for
the specific hypothesis under consideration. In some imple-
mentations, if the obtained residual error S,,, is within a
target range, PCM 133 can accept the hypothesis as a current
working hypothesis. In other implementations, PCM 133
can form multiple hypotheses and perform the mapping
procedure described above for each of the formed hypoth-
esis with a hypothesis having the smallest minimum residual
error accepted as the current working hypothesis. Different
hypotheses can include different associations of points in the
first point cloud to points in the second point cloud. In some
implementations, various hypotheses can involve different
number of points. For example, some points can be included
in some hypotheses but excluded from other hypotheses. In
some implementations, if hypotheses include different num-
ber of points, the respective determined minimum residual
errors S,,,, can be normalized (e.g., divided by the number
of points) prior to comparison with other hypotheses.

In some implementations, rather than selecting a single
working hypothesis, PCM 133 can maintain multiple
hypotheses for subsequent verification. For example,
hypotheses that are maintained can be subsequently verified
using a third point cloud from frame t+2At, a fourth frame
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t+3At, and so on. The mapping can be performed between
any (or each) pair of consecutive frames until a final
hypothesis is confirmed. In some implementations, PCM
133 can also identify (e.g., using a shape of the point cloud)
atype of the object (e.g., a car, a truck, a bicycle, a road sign,
etc.). In some implementations, PCM 133 can continue
mapping point clouds of subsequent frames for object track-
ing, after the object has been identified.

In some implementations, residual error S({B}) can
include some but not all of the above-described contribu-
tions. For example, in some implementations, the coordinate
error S(coord) can be included in residual error whereas the
velocity error S(vel) can initially not be included. Instead,
S(vel) can be used for verification of hypotheses. Specifi-
cally, after hypotheses are formed and mapping is performed
with one or more hypotheses selected as viable possible
hypotheses of point cloud mapping, S(vel) can be computed
using the determined optimal sets of parameters for the
respective hypotheses. Hypotheses that result in a residual
error S(vel) that exceeds a certain predetermined threshold
can be discarded. Hypotheses that have the residual error
S(vel) that is below the threshold, can be maintained (e.g.,
for subsequent verification using additional frames). In some
implementations, a hypothesis with the lowest residual error
S(vel) can be accepted (and used for object tracking/subse-
quent verification using additional frames). In some imple-
mentations, instead of using radial velocity for computing
residual errors, such as S(vel), radial velocity data can be
used to filter out hypothesis that are inconsistent with the
radial data. Specifically, an error,

1
E= WZ [Rji(1) = Rjy(2) + VAd7,

J

can be computed for each mapping hypothesis 1—2 and
those hypotheses for which the error exceeds a preset
threshold (e.g., determined empirically), E>E,, can be dis-
carded. In some implementations, velocity data can be used
both for initial exclusion of non-viable hypotheses and for
evaluating the retained hypotheses (e.g., using S(vel) residu-
als, as described above).

In various implementations, ambiguity of choosing the
center of rotation versus identifying the translational veloc-
ity (both in the plane perpendicular to the direction of the
angular axis) can be addressed using a variety of approaches.
In one implementation, rotation center can be chosen ran-
domly, e.g., near a center of the first point cloud (or the
second point cloud). In some implementations, the mapping
performed can be biased in a way that favors smaller
translational velocities or, alternatively (depending on pre-
ferred settings), smaller radii of rotation. For example, the
residual forward-looking error can include a contribution

S(center) = Nd[Vo. 1% + gz [R;.(1)— Ro. 1* + gz [Rin(2) - Ro.T,

J J

where d and g are biases disfavoring, respectively, high
translational velocities and high distances to the center of
rotation (from the two point clouds), and N is the number
points in the hypothesis. Higher values of d favor pure
rotation setups whereas higher value of g favor centers of
rotation that are close to a center of the point cloud(s).
Specific values of d and g can be chosen empirically, e.g., by
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maximizing resulting accuracy and efficiency of point cloud
mapping. In some implementations, one (or both) of the
coefficients d and g can be small or zero. A small but
nonetheless non-zero coefficient g can prevent R, from
becoming too large and thus can help avoiding a situation of
large R, but small €2 while the product R Q2 is being neither
small nor large, in which errors in Q can be amplified by
large values R,,.

FIG. 3 is an illustration of a rolling shutter correction, for
precise point cloud mapping, as part of a perception system
of an autonomous vehicle, in accordance with some imple-
mentations of the present disclosure. In some implementa-
tions, a time increment between detection of a point in the
first cloud and a corresponding point in the second cloud can
differ from the time separation At between different sensing
frames. For example, while lidar sensor 206 can be probing
the same spatial directions with period At (e.g., the lidar
transmitter can be rotating with angular velocity 8=w=2n/
At), different spatial direction can receive attention of lidar
sensor at different times within one period of lidar transmit-
ter revolutions (rolling shutter). Accordingly, motion of an
object which generates return points (reflections) can lead to
time shifts between consecutive frames that are different
from At. For example, j-th point 301 of the first point cloud
can be identified (during cloud point mapping, e.g., as part
of a formed hypothesis) as mapping on a point 302 of the
second point cloud. Although some reference direction is
probed at times t (first frame) and t+At (second frame), j-th
point 301 of the first point cloud can be probed at a time
t+6j(1)/u) that differs from time t by an angle lag (or lead,
depending on the relative position to the reference direction)
determined by the angular coordinate 6].(1) of j-th point 301
of the first point cloud. Likewise, j-th point 302 of the
second point cloud can be probed at a time t+At+0 j(z)/  that
differs from time t+At by an amount determined by the
angular coordinate 6].(2) of j-th point 302 of the second point
cloud. As a result, the time difference between detection of
the two points can be At+0t, e.g., modified by a point-
specific correction atj:(ej@)-ej(l))/ o whose magnitude and
sign can depend on the speed and direction of motion of j-th
point. For additional precision in point cloud mapping, such
correction can be taken into account during mapping. For
example, predicted locations of the points of the first point
cloud at the time of the second data frame can be determined
using modified times,

R (1 —>2=R(1+V (A1) +Qx [R,(1)-Ro] (Ar+d1)),

while the residual error in radial velocity can be computed
according to:

S (vely=c[R;(1)-Ry(2)+Vy(1)x (Ar+1) .

Similar modifications can be made to other quantities (e.g.,
backward-looking) that are encountered during mapping.
The corrections dt, can be positive, negative, or zero,
depending on a specific point in the cloud.

FIG. 4A is an illustration of a double lidar setup 400 that
utilizes point cloud mapping, as part of a perception system
of an autonomous vehicle, in accordance with some imple-
mentations of the present disclosure. Depicted in FIG. 4A is
AV 402 that has multiple lidar sensors (two are shown for
specificity), such as a first sensor 406 and a second sensor
407, which can be any type of a coherent (or a combination
of a coherent and incoherent) lidar devices capable of
sensing the distance to a reflecting surface and the radial
velocity of the reflecting surface of an object in the driving
environment. The sensors 406 and 407 can performs scan-
ning of the driving environment and generate return points
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corresponding to various objects. Each sensor can output
signals that have imparted phase signatures (e.g., chirps or
any other phase or frequency modulation features) that are
unique for the sensor, so that the return signals from the
sensors do not interfere with each other. Sensors 406 and
407 can be located at some distance (the baseline distance)
from each other to improve lateral velocity resolution. In
some implementations, the baseline distance can be made as
large as practical (e.g., as limited by the length or width of
AV 402). In some implementations, because lateral velocity
resolution is maximal in the direction perpendicular to the
baseline and minimal in the direction parallel to the baseline,
more than two sensors can be utilized, placed in a non-
collinear (e.g., triangular) arrangement. For example, a third
sensor can be located near the midline of AV 402 (e.g., near
the front or back of the vehicle).

In some implementations, a processing logic of the sens-
ing system (e.g., sensing system 120) can synchronize the
sensing frames of sensor 406 and sensor 407 so that the
sensing signals are output at the same instances of time, e.g.,
at t, t+At, t+2At, t+3At, etc. In other implementations the
sensing frames can be staggered (for example, to reduce
possible interference or to improve temporal resolution) so
that one sensor outputs signals at times t, t+At, t+2At, t+3At,
whereas the other sensor outputs sensing signals at times
t+At/2, t+3A1/2, t+5At/2, and so on. Each sensor can detect
its respective point cloud which can be—due to different
positioning and timing of the sensing frames—somewhat
different from the point cloud of the other sensor(s) even at
the same times. A processing logic of the perception system
(e.g., perception system 132) can identify, for each point of

the first sensor cloud ﬁl, the closest point of the second

=4 . . .
sensor cloud R, and associate the two points with the same
reflecting part of the object 410. In some implementations,
the processing logic can approximate that the reflecting part

is located at the halfway point, (§1+§2)/2. Shown in FIG.
4A is a point cluster 420 corresponding to the object 410
(only one point cluster is shown for the sake of conciseness,
e.g., as detected by the first sensor 406).

Because the two sensors have different locations, the
radial velocity V| measured along the first radial direction
408 by the first sensor 406 for a return point 422 of the point
cluster 420 can be different from the radial velocity V,
measured along the second radial direction 409 for the same
(or close) return point of the cluster sensed by the second
sensor 407. The difference V|-V, is indicative of the lateral
velocity of the return point 422. When V,=V,, the lateral
velocity of the return point 422 is zero (within the measure-
ment accuracy) whereas a situation of V,>V,, (or vice versa,
V,<V,) is indicative of the return point 422 moving to the
left (or right). FIG. 4B is an illustration of a determination
of the lateral velocity associated with a return point using a
double lidar triangulation scheme 400, in accordance with
some implementations of the present disclosure. Shown is
the x-axis that coincides with the baseline between the first
sensor 406 and the second sensor 407 which are located at
distance b from each other. The y-axis is perpendicular to the
x-axis with the origin of the coordinate system located at the
middle point between the sensors. (Any other choice of the
coordinate axes can be used by the processing logic, depend-
ing on an implementation.) As shown, the first sensor 406
can be capable of determining a first distance r, to the return
point 422, the angular direction a to the return point, and the
radial velocity V,. Likewise, the second sensor 407 can be
capable of determining a second distance r, from the second
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sensor to the return point 422, the angular direction { to the
return point, and the respective radial velocity V,. Assuming
that the velocity is pointed within the xy-plane (which is the
most common situation in driving applications), the com-

ponents of the velocity v:(\/ V) can be determined based
on the fact that the projection of the velocity onto the
direction 408 is V, and onto the direction 409 is V, (as
depicted with dashed lines). Specifically, from

Vi==V, sin a-V, cos a,

V5=V, sin p-V, cos f,

it can be concluded that the lateral velocity is

Vacosa—Vicos B L
= =(V, -V},
sin(e + ) r

=

where the approximation applies in the instances of small
angles o and p for which cos a=~cos =1 and sin (a+f)=~c+
p=L/r, where r is any of the distances r, or r, (which are, to
the degree of accuracy used, almost the same). In a similar
fashion, three or more lidar sensors can determine all three

components of the velocity VZ(VX,Vy,VZ) associated with a
return point. Such a determination can be especially advan-
tageous in autonomous flying or nautical applications
involving objects capable of moving in all three directions.

Lateral velocity data obtained using the multi-sensor
setup can be used for hypotheses formation as well as the
subsequent verification. In one implementation, the lateral
velocity data can be used to augment evaluation of hypoth-
eses based on the radial velocity field, as disclosed in
relation to FIGS. 2A-B. Based on the lateral velocity data,
PCM 133 can separate the objects that have similar radial
velocities but distinct lateral velocities (e.g., vehicles pass-
ing each other in opposite directions). In the instances where
the lateral velocities of different objects are sufficiently
distinct, a viable hypothesis can be formed based already on
a single sensing frame. In some instances, ability of the PCM
133 to use lateral velocity data can be range-specific. This
can be predicated on the fact that the accuracy of the lateral
velocity determination can be less than the accuracy of the
radial velocity measurements. According to the equation for
V, obtained above, if the radial velocity is known with
precision 0V, (meaning that measured value V, indicates
that the actual velocity is within the [V,-8V,,V, 40V, ]
interval) and assuming that the distance r is known exactly
or with a high precision, the triangulation-based measure-
ment of the lateral velocity illustrated in FIG. 4B has
accuracy

L
oVy = =4V,
r

For example, if 8V,=0.1 m/s, the lidar sensors 406 and 407
are located at distance [.=1.2 m, the accuracy of the lateral
velocity determination at distance r=60 m would be 8V,=5.0
m/s., The accuracy would be higher (lower) for larger
(smaller) distances. Such precision can be quite satisfactory
to distinguish (based on a single sensing frame) vehicles that
move in opposite directions or to distinguish a car and a
bicycle (pedestrian) regardless of the direction of their
motion.

In some implementations, lateral velocity data can be
used for cloud point mapping (as described in relation to
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FIGS. 2A-B) for hypotheses formation and/or verification in
a similar manner how radial velocity is used. For example,
lateral velocity can be used as a constraint on possible
mappings, quantified with one or more additional residual
error, e.g., a forward-looking lateral velocity error,

S (laty=h[ X+ AD-X,(D) -V, (DAL,
and similarly for the backward-looking error,
S (laty=h[ X()-X,(t+A0)+V, (-+ADAL]

with a coefficient h describing a weight assigned to an error
of the lateral velocity. In some implementations, weight h
can be smaller than the weight ¢ assigned to the errors in
radial velocity, for example in the inverse proportion to the
ratio of the respective accuracies in determination of the
lateral velocity and the radial velocity, h/a~(8V,/8V ),
where the sign ~ indicates an order-of-magnitude estimate
rather than exact identity.

In some implementations, various other evaluation met-
rics can be designed to evaluate errors in point cloud
mapping. For example, while quadratic residuals are
described in relation to the above implementations, any one
or more functions (e.g., monotonic functions) can be used to
quantify errors in coordinate matching, radial velocity
matching, lateral velocity matching, as well as biases used in
identifying the translational velocity and the center of rota-
tion.

In some implementations, evaluation metrics, such as
weights a (given to radial distance mismatches), b (given to
lateral distance mismatches), ¢ (given to radial velocity
mismatches), h (given to lateral velocity mismatches), and
biases, such as d (against large translational velocities) and
g (against large radii of rotations), or other metrics used in
the evaluation measures, can be determined using a machine
learning model. More specifically, the model can be trained
using a number of point clouds and two or more sensing
frames having respective point clouds with correct point
associations used as training (target) mappings. The correct
associations can be marked up by a human operator/devel-
oper, or previously obtained using various point cloud
mapping algorithms (such as ICP), or any combinations
thereof. Evaluation metrics can be determined during train-
ing of the machine learning models (e.g., neural networks).

After one or more objects in the sensing frames are
identified and the information about the identified objects
and their motion is provided by the data processing system
132 to the AVCS 140, the AVCS 140 can determine the
driving path of the AV and provide corresponding instruc-
tions (e.g., speed, acceleration, braking, steering instructions
and the like) to the powertrain and steering 150 and vehicle
electronics 160 in view of the motion of the identified
objects.

FIG. 5 depicts a flow diagram of an example method 500
of using Doppler-assisted object identification and point
cloud tracking for autonomous driving vehicle applications,
in accordance with some implementation of the present
disclosure. Method 500, as well as method 600 described
below, and/or each of their individual functions, routines,
subroutines, or operations can be performed by a computing
device, having one or more processing units (CPU) and
memory devices communicatively coupled to the CPU(s). In
certain implementations, methods 500 and 600 can be per-
formed by a single processing thread. Alternatively, methods
500 and 600 can be performed by two or more processing
threads, each thread executing one or more individual func-
tions, routines, subroutines, or operations of the method. In
an illustrative example, the processing threads implementing
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method 500 can be synchronized (e.g., using semaphores,
critical sections, and/or other thread synchronization mecha-
nisms). Alternatively, the processing threads implementing
methods 500 and 600 can be executed asynchronously with
respect to each other. Various operations of methods 500 and
600 can be performed in a different order compared with the
order shown in FIGS. 5 and 6. Some operations of the
methods can be performed concurrently with other opera-
tions. Some operations can be optional.

Method 500 can be directed to systems and components
of an autonomous driving vehicle, such as the autonomous
vehicle 100 of FIG. 1. Method 500 can be used to identify
and track objects present in the driving environment by the
data processing system 130, using the sensing data obtained
by the sensing system 120. The information about the
identified objects can be provided to the autonomous vehicle
control system 140. Method 500 can include, obtaining, at
block 510, by a computing device, a plurality of sensing data
frames of an environment around an AV. Each of the
plurality of sensing data frames can include a plurality of
points. A point corresponds to a reflection, from a surface of
an object of the environment, of a signal emitted by a
sensing system of the AV. Each point can include various
data, such as a timestamp of the sensing frame and coordi-
nates of the reflecting surfaces. The coordinates can include
a distance to the respective reflecting surface and angles
specifying directions to the reflecting surface (or any other
value than unambiguously identify the location of the
reflecting surface). At least some of the points can further
include a velocity data for the respective reflecting surface;
the velocity data can include the radial velocity of the
reflecting surface. Each point can further include intensity of
the reflected signal, polarization of the reflected signal, and
so on. The radial distance can be determined from the lidar
data whereas the angles can be independently known from
a synchronizer data, a clock data, e.g., based on the known
frequency of rotation of the sensing system’s transmitter
within the plane of rotation (e.g., horizontal plane). The
velocity data can be obtained by the sensing system, which
can include a coherent light detection and ranging device
(lidar) capable of detecting the radial velocity using, e.g.,
Doppler-assisted sensing. In some implementations, the
coherent lidar can be a frequency-modulated continuous-
wave (FMCW) lidar and the signals emitted by the sensor
can include phase-modulated or frequency-modulated elec-
tromagnetic waves. The sensing system can also be capable
of concurrently emitting various other signals, such as
pulsed signals, which can be used for ToF distance mea-
surements. In some embodiments, the sensor can include
separate ToF lidar and a coherent lidar, each emitting
separate signals that can be synchronized, mixed, and trans-
mitted along the same optical paths.

Various sensing frames can correspond to different cycles
(e.g., revolutions) of the transmitter(s) of the sensing system.
For example a first sensing frame can correspond to a first
cycle, a second sensing frame can correspond to a different
(e.g., earlier or later) cycle. The terms “first” and “second”
should be understood as identifiers only and should not
presuppose a specific order. In particular, there can be an
arbitrary number of intervening frames between the first
frame and the second frame.

In some implementations, the sensing system of the AV
can include multiple sensors. For example, the sensing
system can include a first sensor (e.g., sensor 406) capable
of sensing velocities of objects of the environment. As
measured by the first sensor, the velocity data for the
respective reflecting surface can include a first component of
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a velocity of the respective reflecting surface along a first
direction from the first sensor to the respective reflecting
surface. Furthermore, the sensing system can include a
second sensor (e.g., sensor 407) capable of sensing veloci-
ties of the objects of the environment. As measured by the
second sensor, the velocity data for the respective reflecting
surface can include a second component of the velocity of
the respective reflecting surface along a second direction
from the second sensor to the respective reflecting surface.

At block 520, method 500 can continue with a computing
device (e.g., a device executing software instructions issued
by PCM 133 as part of the perception system 132) evalu-
ating a hypothesis that a first set of points from a first sensing
data frame corresponds to a second set of points from a
second sensing data frame. In some implementations, the
first set of points and the second set of points can be selected
(e.g., by the perception system) based on the spatial prox-
imity of selected points in space, on the proximity of the
velocity values associated with the points, using various
segmentation algorithms, or by any other selecting proce-
dures. The first set of points and the second set of points can
be identified as part of a hypothesis that such points corre-
spond to a single object. In some implementations, evalu-
ating the hypothesis includes identifying the first set of
points as having the velocity data consistent with a rigid
body performing a combination of a translational motion
and a rotational motion.

As shown schematically by the blowout section of FIG. 5,
evaluating the hypothesis can include selecting, at block
522, a hypothesis that an object (corresponding to the first
set of points of the first frame) is moving in a certain way,
e.g., as can be specified by a set of fitting parameters. The
fitting parameters can include a degree of translation of a

rigid body (such as the object’s translational velocity V)
and/or a degree of rotation of the rigid body (such as the

object’s angular velocity ES, center of rotation, and so on).

At block 524, method 500 can continue with the comput-
ing device mapping, the first set of points to the second set
of points. For example, mapping the first set of points to the
second set of points can include using the iterative closest
point algorithm. In some implementations, mapping the first
set of points to the second set of points can include deter-
mining, based on the fitting parameters, locations of the first
set of points after a time increment corresponding to a time
difference between the first sensing data frame and the
second sensing data frame (forward-looking inference).
Similarly, in some implementations, mapping the first set of
points to the second set of points can include inferring, based
on the fitting parameters, locations of the second set of
points prior to a time decrement corresponding to the time
difference between the second sensing data frame and the
first sensing data frame (backward-looking inference). In
some implementations, mapping the first set of points to the
second set of points is performed in view of the velocity data
(e.g., radial velocity data) for at least some points of the first
set of points and/or the second set of points. In some
implementations, mapping the first set of points to the
second set of points includes determining, based on the
velocity data, a lateral velocity of a respective reflecting
surface. The lateral velocity can be determined using veloc-
ity data obtained by the first sensor and the second sensor,
e.g., as described in relation to FIGS. 4A and 4B.

At block 526, the computing device can determine, based
on performed mapping, an evaluation measure for the
hypothesis. The evaluation measure can be a value (or a
plurality of values) that characterizes how closely the pre-
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dicted (e.g., using the velocity value(s) associated with the
points of the first and/or second sets) motion of the hypoth-
esized object matches (aligns) with the first set of points and
the second set of points. For example, evaluation measure
can depend on a mismatch between the inferred future
locations of the first set of points and actual locations of the
second set of points (forward-looking measure) and/or a
mismatch between the inferred past locations of the second
set of points and actual locations of the first set of points
(backward-looking measure). In some implementations, the
evaluation measure can be determined in accordance with
method 600 described below. In those implementations,
where evaluation of the hypothesis includes matching the
velocity data to a motion of a rigid body, the evaluation
measure can be based, at least in part, on differences
between the velocity data of the first set of points and a
distribution of velocities of the rigid body. For example, the
evaluation measure can be a weighted sum of the squared
differences between the velocities of the rigid body and the
actual velocities measured by the sensor(s), e.g., the first
sensor and, optionally, the second sensor. As another
example, the evaluation measure can describe a mismatch
(e.g., a sum of weighted squared errors) between the coor-
dinates and/or velocities of the first set of points and the
coordinates and/or velocities of the second set of points.

Evaluation of the hypothesis, at block 520, can include
determining, in view of the evaluation measure, the values
of the fitting parameters. In some implementations, the
fitting parameters are determined in view of the velocity
data. The velocity data can include radial velocities for at
least some of the first set of points, or the second set of
points, or both. In some implementations, the velocity data
can include radial velocities as detected by multiple sensors,
e.g., at least two sensors located differently from each other.

At block 530, the computing device can identify, e.g.,
based on the evaluation measure meeting a predetermined
criterion, that the hypothesized object matches the first set of
points (at the time of the first frame) and the second set of
points (at the second frame) and that the motion of the
hypothesized object is consistent with the velocity data
associated with the corresponding points (of the first set or
the second set or both). The predetermined criterion can be
that the evaluation measure has specific relation (e.g., is
above, at, or below) to a threshold value (e.g., a maximum
acceptable weighted squared error).

Optionally, the computing device can further identify,
based on the evaluated hypothesis, the object of the envi-
ronment that corresponds to the first set of points and the
second set of points as a particular type of object (a car, a
truck, a bus, a motorcycle, a pedestrian, etc.).

At block 540, method 500 can continue with the comput-
ing device causing a driving path of the AV to be determined
in view of the evaluation measure. More specifically, having
used the evaluation measure to confirm the hypothesis, the
computing device can generate a representation of the
identified object. The representation can be a set of geomet-
ric descriptors of the identified object, such as a set of
coordinates for the object’s bounding box or a set of
parameters identifying relative orientation of various ele-
ments of the object (e.g., ribs and faces) and another set of
parameters identifying location and orientation of the object
in space (e.g., relative to ground, other objects, or map
layout). A person of ordinary skill in the art should recognize
that there is an unlimited number of possible representation
of various objects. The computing device can provide, to the
control system of the AV (e.g., AVCS 140), the representa-
tion of the identified object. The control system can subse-
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quently, based on the provided representation, determine the
driving path of the AV. Based on the location and motion
(translational and rotational) of the identified object, the
control system can determine if the AV is to accelerate,
brake, turn, change lanes, stop, back up, and like (or perform
any combination of such actions). The control system can
subsequently output corresponding instructions to pow-
ertrain and steering 150, vehicle electronics 160, signaling
170, etc., to ensure that the AV follows the determined
driving path.

FIG. 6 depicts a flow diagram of an example method 600
of evaluating a hypothesis that a set of point of the first
sensing frame corresponds to a set of points of the second
sensing frame, in accordance with some implementations of
the present disclosure. Method 600 can be performed in
conjunction with block 520 of method 500 of using Doppler-
assisted object identification and point cloud tracking for
autonomous driving vehicle applications. At block 610, a
computing device performing method 600 (e.g., a device
executing software instructions issued by PCM 133 as part
of the perception system 132), can select a hypothesis that
a first set of points from a first sensing data frame corre-
sponds to a second set of points from a second sensing data
frame. At block 620, the method can continue with the
computing device obtaining an estimate for the one or more
components of a translational velocity or the one or more
components of a rotational (angular) velocity of an object
hypothesized to be associated with the first set of points. For
example, the component(s) of the translational velocity
and/or the components) of the rotational velocity can be
determined by fitting the velocity data of the first frame (and,
optionally, of the second frame) using the rigid body equa-
tion.

At block 630, method 600 can continue with the comput-
ing device predicting, based on the estimate for the one or
more components of the translational velocity or the one or
more components the rotational velocity of the hypothesized
object, a position of the hypothesized object after a time
increment corresponding to a time difference between the
first sensing data frame and the second sensing data frame.
At block 640, the computing device can compare the pre-
dicted position with the coordinates of the second set of
points and determine the evaluation measure, e.g., a
weighted squared errors in the locations of the points of the
second set and the respective locations predicted based on
the estimated component(s) of the translational velocity
and/or rotational velocity.

FIG. 7 depicts a block diagram of an example computer
device capable of enabling Doppler-assisted object identi-
fication and tracking for autonomous driving vehicle appli-
cation, in accordance with some implementations of the
present disclosure. Example computer device 700 can be
connected to other computer devices in a LAN, an intranet,
an extranet, and/or the Internet. Computer device 700 can
operate in the capacity of a server in a client-server network
environment. Computer device 700 can be a personal com-
puter (PC), a set-top box (STB), a server, a network router,
switch or bridge, or any device capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that device. Further, while only a single example
computer device is illustrated, the term “computer” shall
also be taken to include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
discussed herein.

Example computer device 700 can include a processing
device 702 (also referred to as a processor or CPU), a main
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memory 704 (e.g., read-only memory (ROM), flash
memory, dynamic random access memory (DRAM) such as
synchronous DRAM (SDRAM), etc.), a static memory 706
(e.g., flash memory, static random access memory (SRAM),
etc.), and a secondary memory (e.g., a data storage device
718), which can communicate with each other via a bus 730.

Processing device 702 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, process-
ing device 702 can be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of instruc-
tion sets. Processing device 702 can also be one or more
special-purpose processing devices such as an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a digital signal processor (DSP), network
processor, or the like. In accordance with one or more
aspects of the present disclosure, processing device 702 can
be configured to execute instructions performing method
500 of using Doppler-assisted object identification and point
cloud tracking and method 600 of evaluating a hypothesis
that a set of point of the first sensing frame corresponds to
a set of points of the second sensing frame.

Example computer device 700 can further comprise a
network interface device 708, which can be communica-
tively coupled to a network 720. Example computer device
700 can further comprise a video display 710 (e.g., a liquid
crystal display (LCD), a touch screen, or a cathode ray tube
(CRT)), an alphanumeric input device 712 (e.g., a key-
board), a cursor control device 714 (e.g., a mouse), and an
acoustic signal generation device 716 (e.g., a speaker).

Data storage device 718 can include a computer-readable
storage medium (or, more specifically, a non-transitory
computer-readable storage medium) 728 on which is stored
one or more sets of executable instructions 722. In accor-
dance with one or more aspects of the present disclosure,
executable instructions 722 can comprise executable
instructions performing method 500 of using Doppler-as-
sisted object identification and point cloud tracking and
method 600 of evaluating a hypothesis that a set of point of
the first sensing frame corresponds to a set of points of the
second sensing frame.

Executable instructions 722 can also reside, completely or
at least partially, within main memory 704 and/or within
processing device 702 during execution thereof by example
computer device 700, main memory 704 and processing
device 702 also constituting computer-readable storage
media. Executable instructions 722 can further be transmit-
ted or received over a network via network interface device
708.

While the computer-readable storage medium 728 is
shown in FIG. 7 as a single medium, the term “computer-
readable storage medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of VM operating instructions.
The term “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing or
encoding a set of instructions for execution by the machine
that cause the machine to perform any one or more of the
methods described herein. The term “computer-readable
storage medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and
magnetic media.
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Some portions of the detailed descriptions above are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “identifying,” “determining,” “storing,” “adjusting,”
“causing,” “returning,” “comparing,” “creating,” “‘stop-
ping,” “loading,” “copying,” “throwing,” “replacing,” “per-
forming,” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

Examples of the present disclosure also relate to an
apparatus for performing the methods described herein. This
apparatus can be specially constructed for the required
purposes, or it can be a general purpose computer system
selectively programmed by a computer program stored in
the computer system. Such a computer program can be
stored in a computer readable storage medium, such as, but
not limited to, any type of disk including optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,
EEPROMSs, magnetic disk storage media, optical storage
media, flash memory devices, other type of machine-acces-
sible storage media, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The methods and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems can be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear as set forth in the
description below. In addition, the scope of the present
disclosure is not limited to any particular programming
language. It will be appreciated that a variety of program-
ming languages can be used to implement the teachings of
the present disclosure.

It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
implementation examples will be apparent to those of skill
in the art upon reading and understanding the above descrip-
tion. Although the present disclosure describes specific
examples, it will be recognized that the systems and methods
of the present disclosure are not limited to the examples

2 < 2 < 2 <
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described herein, but can be practiced with modifications
within the scope of the appended claims. Accordingly, the
specification and drawings are to be regarded in an illustra-
tive sense rather than a restrictive sense. The scope of the
present disclosure should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

What is claimed is:

1. A method comprising:

obtaining, by a computing device, a plurality of points

imaging an environment around an autonomous vehicle

(AV), wherein each of the plurality of points:

corresponds to a reflection, from a surface of an object
of the environment, of a signal emitted by a sensing
system of the AV, and

comprises a location data for a respective reflecting
surface, and

a velocity data for the respective reflecting surface;

generating a plurality of hypotheses, each of the plurality

of hypotheses mapping a first set of points of the
plurality of points associated with a first time to a
second set of points of the plurality of points associated
with a second time;

for each of the plurality of hypotheses:

predicting, by the computing device and using the
location data and the velocity data, a motion of the
first set of points between the first time and the
second time;

obtaining an evaluation measure for the hypothesis
using the second set of points and the predicted
motion of the first set of points; and

causing a driving path of the AV to be determined in view

of evaluation measures obtained for the plurality of
hypotheses.

2. The method of claim 1, wherein causing the driving
path of the AV to be determined comprises:

identifying, based on the evaluation measures obtained

for the plurality of hypotheses, the object of the envi-
ronment that corresponds to the first set of points and
the second set of points; and

providing, to a control system of the AV, a representation

of the identified object to determine the driving path of
the AV.

3. The method of claim 1, wherein the sensing system of
the AV comprises a coherent light detection and ranging
device (lidar) and wherein the signal emitted by the sensing
system is a phase-modulated or a frequency-modulated
electromagnetic wave.

4. The method of claim 3, wherein the coherent lidar is a
frequency-modulated continuous-wave lidar.

5. The method of claim 1, wherein the sensing system of
the AV comprises a first sensor, and wherein the velocity
data for the respective reflecting surface comprises a first
component of a velocity of the respective reflecting surface
along a first direction from the first sensor to the respective
reflecting surface.

6. The method of claim 5, wherein the sensing system of
the AV comprises a second sensor located differently from
the first sensor, and wherein the velocity data for the
respective reflecting surface comprises a second component
of the velocity of the respective reflecting surface along a
second direction from the second sensor to the respective
reflecting surface.

7. The method of claim 6, wherein mapping the first set
of points to the second set of points comprises determining,
based on the velocity data, a lateral velocity of the respective
reflecting surface.

10

15

20

25

30

35

40

45

50

55

60

65

28

8. The method of claim 1, wherein the motion of the first
set of points is subject to a constraint of a rigid body
performing a combination of a translational motion and a
rotational motion.

9. The method of claim 8, wherein the evaluation measure
is based, at least in part, on at least one of:

a first measure representative of differences between one
or more locations associated with the motion of the first
set of points and one or more locations associated with
the second set of points, or

a second measure representative of a difference between
one or more velocities associated with the motion of the
first set of points and one or more velocities associated
with the second set of points.

10. The method of claim 1, wherein mapping the first set
of points to the second set of points comprises using an
iterative closest point algorithm.

11. The method of claim 1, wherein mapping the first set
of points to the second set of points comprises:

associating, with the first set of points, a plurality of fitting
parameters, wherein the plurality of fitting parameters
characterizes a motion of a rigid body; and

wherein predicting the motion of the first set of points
comprises:

inferring, based on the plurality of fitting parameters, a
change in locations of the first set of points associated
with a time difference between the first time and the
second time.

12. The method of claim 11, further comprising:

determining values of the plurality of fitting parameters
based at least in part on minimizing a mismatch
between the predicted motion of the first set of points
and locations of the second set of points.

13. The method of claim 12, wherein at least some of the
plurality of fitting parameters are determined in view of the
velocity data, wherein the velocity data comprises radial
velocities for at least some of the first set of points or the
second set of points.

14. The method of claim 11, wherein the second time is
earlier than the first time, and wherein the motion of the first
set of points is a time-reversed motion.

15. The method of claim 11, wherein the plurality of
fitting parameters comprises at least one of a degree of
rotation of the rigid body or a degree of translation of the
rigid body between the first time and the second time.

16. A system comprising:

a memory that stores instructions; and

a computing device to execute the instructions from the
memory to:
obtain a plurality of points imaging an environment

around an autonomous vehicle (AV), wherein each
of the plurality of points:
corresponds to a reflection, from a surface of an
object of the environment, of a signal emitted by
a sensing system of the AV, and
comprises a location data for a respective reflecting
surface, and
a velocity data for the respective reflecting surface;
generate a plurality of hypotheses, each of the plurality
of hypotheses mapping a first set of points of the
plurality of points associated with a first time to a
second set of points of the plurality of points asso-
ciated with a second time;
for each of the plurality of hypotheses:
predict, by the computing device and using the location
data and the velocity data, a motion of the first set of
points between the first time and the second time;
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obtain an evaluation measure for the hypothesis using
the second set of points and the predicted motion of
the first set of points; and

cause a driving path of the AV to be determined in view
of the evaluation measures obtained for the plurality
of hypotheses.

17. The system of claim 16, wherein the sensing system
of the AV comprises a coherent light detection and ranging
device (lidar) and wherein the signal emitted by the sensing
system is a phase-modulated or a frequency-modulated
electromagnetic wave.

18. The system of claim 16, wherein the sensing system
of the AV comprises a first sensor, and wherein the velocity
data for the respective reflecting surface comprises a first
component of a velocity of the respective reflecting surface
along a first direction from the first sensor to the respective
reflecting surface.

19. The system of claim 18, wherein the sensing system
of the AV comprises a second sensor, the second sensor
located differently from the first sensor, and wherein the
velocity data for the respective reflecting surface comprises
a second component of the velocity of the respective reflect-
ing surface along a second direction from the second sensor
to the respective reflecting surface.

20. A non-transitory computer-readable medium having
instructions stored thereon that, when executed by a com-
puting device, cause the computing device to:

obtain a plurality of points imaging an environment

around an autonomous vehicle (AV), wherein each of

the plurality of points:

corresponds to a reflection, from a surface of an object
of the environment, of a signal emitted by a sensing
system of the AV, and

comprises a location data for a respective reflecting
surface, and
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a velocity data for the respective reflecting surface;

generate a plurality of hypotheses, each of the plurality of

hypotheses mapping a first set of points of the plurality
of points associated with a first time to a second set of
points of the plurality of points associated with a
second time;

for each of the plurality of hypotheses:

predict, using the location data and the velocity data, a
motion of the first set of points between the first time
and the second time;

obtain an evaluation measure for the hypothesis using
the second set of points and the predicted motion of
the first set of points; and

cause a driving path of the AV to be determined in view
of the evaluation measures obtained for the plurality
of hypotheses.

21. The computer-readable medium of claim 20, wherein
the sensing system of the AV comprises a coherent light
detection and ranging device (lidar) and wherein the signal
emitted by the sensing system is a phase-modulated or a
frequency-modulated electromagnetic wave.

22. The computer-readable medium of claim 20, wherein
the sensing system of the AV comprises a first sensor, and
wherein the velocity data for the respective reflecting sur-
face comprises a first component of a velocity of the
respective reflecting surface along a first direction from the
first sensor to the respective reflecting surface.

23. The computer-readable medium of claim 22, wherein
the sensing system of the AV comprises a second sensor, the
second sensor located differently from the first sensor, and
wherein the velocity data for the respective reflecting sur-
face comprises a second component of the velocity of the
respective reflecting surface along a second direction from
the second sensor to the respective reflecting surface.
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