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advertisements . In one example , generating , by a software 
defined networking ( SDN ) controller that manages a plural 
ity of compute nodes , based on a unique identifier of a 
virtual network , a route target value for the virtual network , 
wherein the virtual network comprises virtual network end 
points executing on the compute nodes ; and outputting , by 
the SDN controller and to a routing protocol peer device , a 
virtual private network ( VPN ) route that includes the route 
target value for the virtual network and a virtual network 
prefix associated with the virtual network , the VPN route for 
routing to the plurality of compute nodes executing the 
virtual network endpoints of the virtual network . 
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GENERATING ROUTE TARGET VALUES 
FOR VIRTUAL PRIVATE NETWORK 

ROUTES 

TECHNICAL FIELD 

[ 0001 ] The disclosure relates to computer networks and , 
more particularly , to controlling packet forwarding within 
virtual networks . 

a 

BACKGROUND 

[ 0002 ] In a typical cloud data center environment , there is 
a large collection of interconnected servers that provide 
computing functionality ( e.g. , compute nodes ) and / or stor 
age capacity ( e.g. , storage nodes ) to run various applica 
tions . For example , a data center comprises a facility that 
hosts applications and services for customers of the data 
center . The data center for example , hosts all the infrastruc 
ture equipment , such as networking and storage systems , 
redundant power supplies , and environmental controls . In a 
typical data center , clusters of servers are interconnected via 
a high - speed switch fabric provided by one or more tiers of 
physical network switches and routers . More sophisticated 
data centers provide infrastructure spread throughout the 
world with subscriber support equipment located in various 
physical hosting facilities . 
[ 0003 ] Software Defined Networking ( SDN ) platforms 
may be used in data centers and , in some cases , may use a 
logically centralized and physically distributed SDN con 
troller and a distributed forwarding plane in virtual routers 
that extend the network from physical routers and switches 
in the data center into a virtual overlay network hosted in 
virtualized servers ( referred to as compute nodes ) . The SDN 
controller provides management , control , and analytics 
functions of a virtualized network and orchestrates the 
virtual routers by communicating with the virtual routers . 

a 

[ 0006 ] The disclosure describes techniques for generating 
and encoding route targets for virtual private network ( VPN ) 
routes using unique identifiers of virtual networks . For 
example , a control node of a Software Defined Networking 
( SDN ) controller generates a route target that is based on a 
unique identifier assigned to a virtual network upon creation 
of the virtual network . The unique identifier may be a 
universally unique identifier ( UUID ) generated by an 
orchestration system for a virtualization infrastructure . The 
virtual network includes virtual network endpoints execut 
ing on compute nodes managed by the SDN controller . The 
techniques of this disclosure may improve forwarding of 
traffic flows within SDN platforms . For example , the tech 
niques enable an SDN controller to advertise routes in a 
manner that avoids a receiving device from unintentionally 
receiving duplicate routes that can cause routing problems in 
a distributed SDN platform . 
[ 0007 ] The techniques of this disclosure may provide one 
or more technical advantages . For example , generating the 
route targets based on the unique identifier of a virtual 
network may prevent SDN controllers for different SDN 
clusters from inadvertently generating and using the same 
route target value for different virtual networks . Where such 
SDN controllers / clusters are operated in a federated manner 
and therefore advertise VPN routes using IBGP in the same 
autonomous system , this route target collision may other 
wise cause unintentional route leaking and therefore unin 
tentional forwarding of traffic between the different virtual 
networks . Generating and using route target values that are 
unique not only within each SDN cluster , but also among the 
multiple SDN clusters , may allow the SDN controllers to 
avoid this scenario . In addition , the techniques described 
herein for generating route target values may provide 
improved security , because route target values according to 
the techniques may be much less likely to be guessed by a 
third party that could otherwise compromise network secu 
rity by injecting traffic into the networks . 
[ 0008 ] In one example , a method includes generating , by 
a software - defined networking ( SDN ) controller that man 
ages a plurality of compute nodes , based on a unique 
identifier of a virtual network , a route target value for the 
virtual network , wherein the virtual network comprises 
virtual network endpoints executing on the compute nodes ; 
and outputting , by the SDN controller and to a routing 
protocol peer device , a virtual private network ( VPN ) route 
that includes the route target value for the virtual network 
and a virtual network prefix associated with the virtual 
network , the VPN route for routing to the plurality of 
compute nodes executing the virtual network endpoints of 
the virtual network . 

[ 0009 ] In another example aspect , an SDN controller 
includes processing circuitry in communication with a 
memory , the processing circuitry being configured to : gen 
erate , based on a unique identifier of a virtual network , a 
route target value for the virtual network , wherein the virtual 
network comprises virtual network endpoints executing on 
one or more of a plurality of compute nodes managed by the 
SDN controller ; and output , to a routing protocol peer 
device , a VPN route that includes the route target value for 
the virtual network and a virtual network prefix associated 
with the virtual network , the VPN route for routing to the 
plurality of compute nodes executing the virtual network 
endpoints of the virtual network . 

SUMMARY 

[ 0004 ] In general , this disclosure describes techniques for 
improving route advertisements , such as in software defined 
networking systems . Compute nodes may execute virtual 
routers to implement a forwarding plane for one or more 
virtual networks having virtual network destinations hosted 
by the compute nodes . In some examples , the virtual net 
work destinations are virtual workloads . The control nodes 
of SDN controllers and the virtual routers of the compute 
nodes communicate to share information to control forward 
ing of tenant traffic within the virtual networks to reach these 
virtual network destinations . Compute nodes and control 
nodes associated with different SDN controllers may be 
arranged in SDN system clusters . 
[ 0005 ] SDN controllers and the virtual routers use virtual 
routing and forwarding instances ( VRFs ) to isolate and 
manage routing information for different virtual networks . 
The control nodes of an SDN controller use route targets to 
control the import and export of advertised routes , which are 
referred to herein as virtual private network ( VPN ) routes to 
denote an association with particular virtual networks . For 
example , a control node will attach a route target extended 
community ( with a route target value ) to every VPN route 
advertised by the control node , and a receiving control node 
or virtual router will import the VPN route into a VRF if 
only if the route target value in the route advertisement 
matches the import route target of the VRF . 

a 

a 
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[ 0010 ] In a further example aspect , a computer - readable 
storage medium includes instructions that , when executed , 
cause one or more processors of an SDN controller to : 
generate , based on a unique identifier of a virtual network , 
a route target value for the virtual network , wherein the 
virtual network comprises virtual network endpoints execut 
ing on one or more of a plurality of compute nodes managed 
by the SDN controller ; and output , to a routing protocol peer 
device , a VPN route that includes the route target value for 
the virtual network and a virtual network prefix associated 
with the virtual network , the VPN route for routing to the 
plurality of compute nodes executing the virtual network 
endpoints of the virtual network . 
[ 0011 ] The details of one or more examples are set forth in 
the accompanying drawings and the description below . 
Other features , objects , and advantages will be apparent 
from the description and drawings , and from the claims . 

BRIEF DESCRIPTION OF DRAWINGS 
a 

a 

[ 0012 ] FIG . 1 is a block diagram illustrating an example 
network system having a data center in which examples of 
the techniques described herein may be implemented . 
[ 0013 ] FIG . 2 is a block diagram illustrating an example 
implementation of the data center of FIG . 1 in further detail , 
in accordance with the techniques of this disclosure . 
[ 0014 ] FIG . 3 is a block diagram illustrating an example of 
control nodes advertising VPN routes in the data center of 
FIG . 2 , in accordance with the techniques of this disclosure . 
[ 0015 ] FIG . 4 is a block diagram illustrating an example 
implementation of the data center of FIG . 2 in further detail . 
[ 0016 ] FIG . 5 is a block diagram illustrating an example of 
a control node of an SDN controller in further detail in 
accordance with the techniques of this disclosure . 
[ 0017 ] FIGS . 6A - 6B are block diagrams illustrating 
examples of a compute node in further detail , in accordance 
with the techniques of this disclosure . 
[ 0018 ] FIG . 7 is a block diagram illustrating an example 
route advertisement for a virtual private network address 
that includes , in accordance with techniques described 
herein , a route target generated based on a unique identifier 
of a virtual network . 
[ 0019 ] FIG . 8 is a flowchart illustrating example operation 
of an SDN controller in accordance with the techniques of 
this disclosure . 
[ 0020 ] Like reference characters denote like elements 
throughout the figures and text . 

structure equipment , such as networking and storage sys 
tems , redundant power supplies , and environmental con 
trols . Service provider network 6 may be coupled to one or 
more networks administered by other providers , and may 
thus form part of a large - scale public network infrastructure , 
e.g. , the Internet . 
[ 0023 ] In some examples , data center 10 may represent 
one of many geographically distributed network data cen 
ters . As illustrated in the example of FIG . 1 , data center 10 
is a facility that provides network services for customers 4 . 
Customers 4 may be collective entities such as enterprises 
and governments or individuals . For example , a network 
data center may host web services for several enterprises and 
end users . Other example services may include data storage , 
virtual private networks , traffic engineering , file service , 
data mining , scientific- or super - computing , and so on . In 
some examples , data center 10 is an individual network 
server , a network peer , or otherwise . 
[ 0024 ] In this example , data center 10 includes a set of 
storage systems and application servers interconnected via 
an IP fabric 20 provided by one or more tiers of physical 
network switches and routers . Compute nodes 26 are servers 
that function as compute nodes of the data center . In some 
examples , the terms " compute nodes ” and “ servers ” are used 
interchangeably herein to refer to compute nodes 26. For 
example , each of compute nodes 26 may provide an oper 
ating environment for execution of one or more customer 
specific virtual machines ( “ VMs ” in FIG . 1 ) . IP fabric 20 is 
provided by a set of interconnected leaf switches 24A - 24N 
( collectively , “ leaf switches 24 " ) coupled to a distribution 
layer of spine switches 22A - 22M ( collectively , “ spine 
switches 22 ' ' ) . Leaf switches 24 may also be referred to as 
top - of - rack ( TOR ) switches . Spine switches 22 may also be 
referred to as spine switches . Although not shown , data 
center 10 may also include , for example , one or more 
non - edge switches , routers , hubs , gateways , security devices 
such as firewalls , intrusion detection , and / or intrusion pre 
vention devices , servers , computer terminals , laptops , print 
ers , databases , wireless mobile devices such as cellular 
phones or personal digital assistants , wireless access points , 
bridges , cable modems , application accelerators , or other 
network devices . 
[ 0025 ] In this example , leaf switches 24 and spine 
switches 22 provide compute nodes 26 with redundant 
( multi - homed ) connectivity to IP fabric 20. Spine switches 
22 aggregate traffic flows and provides high - speed connec 
tivity between leaf switches 24. Leaf switches 24 are net 
work devices that provide layer two ( e.g. , MAC ) and / or 
layer 3 ( e.g. , IP ) routing and / or switching functionality . Leaf 
switches 24 and spine switches 22 each include one or more 
processors and a memory , and that are capable of executing 
one or more software processes . SDN gateways 8 , also 
referred to as gateway routers , are routing devices that 
perform layer 3 routing to route network traffic between data 
center 10 and customers 4 by service provider network 6 . 
SDN gateways 8 provide redundant gateways to forward and 
receive packets between IP fabric 20 and service provider 
network 6 . 
[ 0026 ] SDN controller 32A provides a logically , and in 
some cases physically , centralized controller for facilitating 
operation of one or more virtual networks within data center 
10 in accordance with one or more examples of this disclo 
sure . The terms SDN controller and Virtual Network Con 
troller ( “ VNC ” ) may be used interchangeably throughout 

a 

DETAILED DESCRIPTION 

a [ 0021 ] FIG . 1 is a block diagram illustrating an example 
network system 5 having a data center 10 in which examples 
of the techniques described herein may be implemented . In 
network system 5 , SDN controllers 32A - 32B ( “ SDN con 
trollers 32 " ) , compute nodes 26A - 26X ( “ compute nodes 
26 ” ) , SDN gateways 8A - 8B ( “ SDN gateways 8 ) , and nodes 
of Internet Protocol ( IP ) fabric 20 operate in accordance 
with the techniques described herein to ensure customer 
traffic flow and customer applications executing within the 
cloud data center continue without interruption . 
[ 0022 ] In general , data center 10 provides an operating 
environment for applications and services for customers 4 
coupled to the data center 10 by service provider network 6 . 
Customers 4 are coupled to service provider network 6 by 
provider edge ( PE ) device 12. Data center 10 hosts infra 



US 2022/0321382 A1 Oct. 6. 2022 
3 

a 

a 

a 

this disclosure . In some examples , SDN controller 32A 
operates in response to configuration input received from 
orchestration engine 30 via northbound Application Pro 
gramming Interface ( API ) 31 , which in turn operates in 
response to configuration input received from administrator 
28. Additional information regarding SDN controller 32A 
operating in conjunction with other devices of data center 10 
or other software - defined network is found in International 
Application Number PCT / US2013 / 044378 , filed Jun . 5 , 
2013 , and entitled PHYSICAL PATH DETERMINATION 
FOR VIRTUAL NETWORK PACKET FLOWS , which is 
incorporated by reference as if fully set forth herein . 
[ 0027 ] In some examples , orchestration engine 30 man 
ages functions of data center 10 such as compute , storage , 
networking , and application resources . For example , orches 
tration engine 30 may create a virtual network for a tenant 
within data center 10 or across data centers . Orchestration 
engine 30 may attach virtual machines ( VMs ) to a tenant's 
virtual network . Orchestration engine 30 may connect a 
tenant’s virtual network to some external network , e.g. , the 
Internet or a VPN . Orchestration engine 30 may implement 
a security policy across a group of VMs or to the boundary 
of a tenant's network . Orchestration engine 30 may deploy 
a network service ( e.g. , a load balancer ) in a tenant's virtual 
network . 
[ 0028 ] In some examples , SDN controller 32A manages 
the network and networking services such load balancing , 
security , and allocating resources from compute nodes 26 to 
various applications via southbound API 33. That is , south 
bound API 33 represents a set of communication protocols 
utilized by SDN controller 32A to make the actual state of 
the network equal to the desired state as specified by 
orchestration engine 30. One such communication protocol 
may include a messaging protocol such as Extensible Mes 
saging and Presence Protocol ( XMPP ) , for example . For 
example , SDN controller 32A implements high - level 
requests from orchestration engine 30 by configuring physi 
cal switches , e.g. , leaf switches 24 , spine switches 22 ; 
physical routers ; physical service nodes such as firewalls 
and load balancers ; and virtual services such as virtual 
firewalls in a VM . SDN controller 32A maintains routing , 
networking , and configuration information within a state 
database . SDN controller 32A communicates a suitable 
subset of the routing information and configuration infor 
mation from the state database to virtual router ( VR ) agents 
36A - 36X ( “ VA ” in FIG . 1 ) on each of compute nodes 
26A - 26X . 
[ 0029 ] Compute nodes and control nodes associated with 
different SDN controllers may be arranged in SDN clusters . 
A cluster is a group of real and / or virtual servers that form 
an SDN controller , including control nodes , and compute 
nodes managed by the SDN controller . For example , as 
shown in FIG . 1 , a system may include two independent 
SDN controllers 32A and 32B , which may each be associ 
ated with a different cluster of servers . In some examples , 
SDN controller 32B manages a second set of compute nodes 
( not shown ) . In other examples , SDN controller 32B man 
ages a subset of compute nodes 26 , while SDN controller 
SDN 32A manages a different , non - overlapping subset of 
compute nodes 26 . 
[ 0030 ] Typically , the traffic between any two network 
devices , such as between network devices within IP fabric 
20 or between compute nodes 26 and customers 4 or 
between compute nodes 26 , for example , can traverse the 

physical network using many different paths . For example , 
there may be several different paths of equal cost between 
two network devices . In some cases , packets belonging to 
network traffic from one network device to the other may be 
distributed among the various possible paths using a routing 
strategy called multi - path routing at each network switch 
node . For example , the Internet Engineering Task Force 
( IETF ) RFC 2992 , “ Analysis of an Equal - Cost Multi - Path 
Algorithm , ” describes a routing technique for routing pack 
ets along multiple paths of equal cost . The techniques of 
RFC 2992 analyze one particular multipath routing strategy 
involving the assignment of flows to bins by hashing packet 
header fields that sends all packets from a particular network 
flow over a single deterministic path . 
[ 0031 ] For example , a “ flow ” can be defined by the five 
values used in a header of a packet , or “ five - tuple , ” i.e. , the 
protocol , Source IP address , Destination IP address , Source 
port , and Destination port that are used to route packets 
through the physical network . For example , the protocol 
specifies the communications protocol , such as TCP or UDP , 
and Source port and Destination port refer to source and 
destination ports of the connection . A set of one or more 
packet data units ( PDUs ) that match a particular flow entry 
represent a flow . Flows may be broadly classified using any 
parameter of a PDU , such as source and destination data link 
( e.g. , MAC ) and network ( e.g. , IP ) addresses , a Virtual Local 
Area Network ( VLAN ) tag , transport layer information , a 
Multiprotocol Label Switching ( MPLS ) or Generalized 
MPLS ( GMPLS ) label , and an ingress port of a network 
device receiving the flow . For example , a flow may be all 
PDUs transmitted in a Transmission Control Protocol ( TCP ) 
connection , all PDUs sourced by a particular MAC address 
or IP address , all PDUs having the same VLAN tag , or all 
PDUs received at the same switch port . 
[ 0032 ] As described herein , each of compute nodes 26 
include a respective virtual router ( “ VR ” in FIG . 1 ) that 
executes multiple routing instances for corresponding vir 
tual networks within data center 10 and routes the packets to 
appropriate virtual network endpoints ( e.g. , virtual 
machines ) executing within the operating environment pro 
vided by the servers . Packets received by the virtual router 
of compute node 26A , for instance , from the underlying 
physical network fabric may include an outer header to 
allow the physical network fabric to tunnel the payload or 
" inner packet ” to a physical network address for a network 
interface of compute node 26 that executes the virtual router . 
The outer header may include not only the physical network 
address of the network interface of the server but also a 
virtual network identifier such as a Virtual Extensible LAN 
( VXLAN ) tag or Multiprotocol Label Switching ( MPLS ) 
label that identifies one of the virtual networks as well as the 
corresponding routing instance executed by the virtual 
router or an interface . That is , the MPLS label can map either 
to a routing instance or to an interface . An inner packet 
includes an inner header having a destination network 
address that conforms to the virtual network addressing 
space for the virtual network identified by the virtual net 
work identifier . In some aspects , the virtual router buffers 
and aggregates multiple tunneled packets received from the 
underlying physical network fabric prior to delivery to the 
appropriate routing instance for the packets . As used herein , 
a virtual network identifier is distinct from a unique identi 
fier for a virtual network . While the virtual network identi 
fier is a tag or label used to segment traffic , the unique 

a 
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identifier for a virtual network may be a bitstring that 
uniquely identifies a virtual network within an orchestration 
domain . For example , the unique identifier for a virtual 
network may be a UUID assigned by an orchestrator such as 
orchestration engine 30 . 
[ 0033 ] Virtual networks are the fundamental building 
blocks of a given Software - Defined Networking ( SDN ) 
Enterprise Multi - cloud system . Access - control , services and 
connectivity between virtual networks are defined via high 
level policies . The SDN Enterprise Multi - cloud system 
contains some conceptual similarities to standard MPLS L3 
VPNs ( for Layer 3 overlays ) and MPLS EVPNs ( for L2 
overlays ) . 
[ 0034 ] In the example of FIG . 1 , SDN controller 32A 
learns and distributes routing and other information ( such as 
configuration information ) to all compute nodes in the data 
center 10. The VR agent 36 running inside the compute 
node , upon receiving the routing information from SDN 
controller 32A , typically programs the data forwarding 
element ( virtual router ) with the forwarding information . 
SDN controller 32A sends routing and configuration infor 
mation to the VR agent 36 using a messaging protocol such 
as XMPP protocol . In XMPP , SDN controllers 32 and agents 
communicate routes and configuration over the same chan 
nel . SDN controller 32A acts as a messaging protocol client 
when receiving overlay network routes ( virtual routes ) from 
a VR agent 36 , and the VR agent 36 acts as a messaging 
protocol server in that case . Conversely , SDN controller 32A 
acts as a messaging protocol server to the VR agent 36 as the 
messaging protocol client when the SDN controller sends 
routes to the VR agent 36 , including overlay network routes 
learned from SDN gateways or other compute nodes . 
[ 0035 ] In accordance with the techniques of this disclo 
sure , control nodes of SDN controller 32A generate and 
encode route targets for virtual networks using a unique 
identifier of the virtual network ( e.g. , a UUID ) that is already 
stored by the SDN controller . For example , in response to 
receiving a messaging protocol message from a compute 
node 26 specifying a VPN route , a control node of SDN 
controller 32A sends , to one or more routing protocol peers 
in the SDN system , a VPN route to a virtual network 
destination . The routing protocol peers may include , for 
example , an SDN gateway 8 or a control node of a different 
SDN cluster that is an iBGP - federated with the SDN cluster 
to which the SDN controller 32A belongs . Among other 
fields , the VPN route includes a route target field having the 
route target value generated by the control node . The VPN 
route also includes a route distinguisher field having a route 
distinguisher value generated by the control node . Virtual 
network destinations may be virtual network endpoints that 
are compute node workloads and may represent virtual 
machines and / or containers , for instance . 
[ 0036 ] A route target is a type of BGP extended commu 
nity . The control node of SDN controller 32A attaches a 
route target to every VPN route advertised , and the adver 
tised VPN routes carrying those route targets are imported 
into the VRF table only if the advertised route target matches 
the import route target of a VRF instance . 
[ 0037 ] In a typical SDN system , every virtual network 
created is automatically assigned a system - generated route 
target . The system - generated route targets start from 
8000000 and are used for various SDN system features ( like 

network policy , service chaining etc. ) that involves import 
ing / exporting routes in between VRF instances within the 
SDN system Domain . 
[ 0038 ] A route distinguisher is an identifier attached to a 
route , enabling a router to distinguish to which VPN or 
virtual private LAN service ( VPLS ) the route belongs . Each 
routing instance may have one or more unique route distin 
guishers associated with it . The route distinguishers used to 
place bounds around a VPN so that the same IP address 
prefixes can be used in different VPNs without having them 
overlap . If the instance type is VRF , the route distinguisher 
statement is required . 
[ 0039 ] In some implementations , the system - generated 
route targets are guaranteed to be unique only within an 
SDN system cluster ( also referred to as an “ SDN cluster " ) . 
This poses a limitation when customers use internal BGP 
( iBGP ) federated SDN system Clusters . In iBGP federated 
SDN system Clusters , because Autonomous System Num 
bers remain the same , virtual networks created on each 
cluster may end up having the same system - generated route 
target , which will result in unintended route leaking across 
the cluster . 
[ 0040 ] As described herein , SDN controller 32A that 
manages a cluster of compute nodes generates a route target 
value based on a unique identifier of a virtual network , rather 
than using a system - generated route target value based on an 
incremented base value . SDN controller 32A may obtain the 
unique identifier of the virtual network from a configuration 
node of the SDN controller 32A , which listens for configu 
ration updates including new virtual network objects created 
by the orchestration engine 30 as a new virtual network is 
created . SDN controller 32A attaches the route target to a 
VPN route when outputting an iBGP message to an iBGP 
session peer . 
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[ 0041 ] In one example , SDN controller 32A generates the 
value field according to a different approach depending on a 
route target type for the VPN route . According to one 
approach , SDN controller 32A computes the value field for 
route a target type based on the Virtual Network's 128 - bit 
UUID , as described in further detail below , for type 0 and 
type 1 routes . According to another approach , a new route 
target type is introduced , called Type 7 , which comprises of 
a 2 - Bytes Type field and 6 - Bytes Value Field . In this manner , 
the issue with unintended route leaking between SDN clus 
ters is addressed due to the very low likelihood of collisions 
on the system - generated route targets . The newly proposed 
approach for type 7 routes also helps in increasing the route 
target range manifold . 
( 0042 ] By generating the route target based on the UUID 
of the virtual network , the peer recipients of the virtual route 
can uniquely identify the route in more situations . In con 
trast , when SDN controller 32 generates a route target for a 
route advertised by the compute node 26 based on system 
generated value , which may not be globally unique across 
different SDN clusters , the routing protocol peer receiving 
the virtual route from SND controller 32 may result in 
unintended route leaking across the SDN clusters . 
( 0043 ] The techniques of this disclosure may provide one 
or more technical advantages . For example , the receiving 
routing peer , such as an iBGP peer control node of an SDN 
controller , can properly distinguish between virtual routes 
( VPN routes ) associated with different virtual networks in 
different SDN clusters that have the same autonomous 
system numbers . This results in the SDN gateway router 8 
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properly storing the routes as distinct virtual routes , rather 
than storing routes incorrectly based on unintended identical 
route target values . 
[ 0044 ] In addition , the control node leverages the UUID 
value that is already being generated for a virtual network by 
orchestration engine 30 upon creating a new virtual network 
object . There is already a significant amount of randomness 
in the UUID generation . Therefore , it may be more efficient 
and easier to implement if SDN controller 32A uses the 
UUID for generating the route target value , as opposed to 
using an additional , separately generated random number 
other than the UUID as the basis for generating the route 
target value . Using a separately generated random number 
rather than the UUID would require additional configura 
tion , as well as additional steps by SDN controller 32A . 
Thus , the techniques of this disclosure may reduce process 
ing power and conserve computing resources of SDN con 
troller 32A by eliminating unnecessary computational steps , 
and may reduce an amount of time needed to generate the 
route target . 
[ 0045 ] In addition , if the receiving routing peer is also 
configured such that it is aware of the new route target type , 
the receiving routing peer could also learn the UUID of the 
virtual network that is implicitly contained in the received 
route . For example , a peer SDN controller could learn and 
store the unique identifier of a virtual network based on the 
route target of the received route , and peer SDN controller 
can in turn advertise the unique identifier of a virtual 
network . 
[ 0046 ] FIG . 2 is a block diagram illustrating an example 
implementation of data center 10 of FIG . 1 in further detail , 
in accordance with the techniques of this disclosure . In the 
example of FIG . 2 , data center 10 includes compute nodes 
26A - 26X that include virtual routers 42A - 42X ( collectively , 
“ virtual routers 42 , " sometimes referred to as “ vrouter ” ) . 
Responsive to instructions received from SDN controller 
32A , virtual routers 42 dynamically create and manage one 
or more virtual networks ( “ VN1 , VNO ” ) 46 usable for 
communication between application instances . 
[ 0047 ] In one example , virtual routers 42 execute the 
virtual network as an overlay network , which provides the 
capability to decouple an application's virtual address from 
a physical address ( e.g. , IP address ) of the one of compute 
nodes 26A - 26X ( " compute nodes 26 ” ) on which the appli 
cation is executing . Each virtual network may use its own 
addressing and security scheme and may be viewed as 
orthogonal from the physical network and its addressing 
scheme . Various techniques may be used to transport packets 
within and across virtual networks 46 over the physical 
network . 
[ 0048 ] Each of virtual routers 42 executes within a hyper 
visor , a host operating system , or other component of each 
of compute nodes 26. Each of compute nodes 26 represents 
an x86 or other general - purpose or special - purpose server 
capable of executing virtual machines 48. In the example of 
FIG . 2 , virtual router 42A executes within hypervisor 40 , 
also often referred to as a virtual machine manager ( VMM ) , 
which provides a virtualization platform that allows multiple 
operating systems to concurrently run on one of compute 
nodes 26. In the example of FIG . 2 , virtual router 42A 
manages virtual networks 46 , each of which provides a 
network environment for execution of one or more virtual 
machines ( VMs ) 48 on top of the virtualization platform 
provided by hypervisor 40. Each VM 48 is associated with 

one of the virtual networks VNO - VN1 and represents tenant 
VMs running customer applications such as Web servers , 
database servers , enterprise applications , or hosting virtual 
ized services used to create service chains . In some cases , 
any one or more of compute nodes 26 or another computing 
device hosts customer applications directly , i.e. , not as 
virtual machines . Virtual machines as referenced herein , 
e.g. , VMs 48 , compute nodes 26 , or a separate computing 
device that hosts a customer application may be referred to 
alternatively as “ hosts . ” 
[ 0049 ] Each interface of VMs 48 running on the host is 
connected to a VRF that contains the forwarding tables for 
the corresponding network that contains the IP address of 
that interface . A vRouter only has VRFs for networks that 
have interfaces in them on that host , including the Fabric 
VRF that connects to the physical interface of the host . 
Virtual networking uses encapsulation tunneling to transport 
packets between VMs 48 on different hosts , and the encap 
sulation and decapsulation happens between the Fabric VRF 
and the VM VRFs . 
[ 0050 ] In general , each of VMs 48 may be any type of 
software application and is assigned a virtual address for use 
within a corresponding virtual network 46 , where each of the 
virtual networks may be a different virtual subnet provided 
by virtual router 42A . A VM 48 may be assigned its own 
virtual layer three ( L3 ) IP address , for example , for sending 
and receiving communications , but is unaware of an IP 
address of the physical compute node 26A on which the 
virtual machine is executing . In this way , a “ virtual address ” 
is an address for an application that differs from the logical 
address for the underlying , physical computer system , e.g. , 
compute node 26A in the example of FIG . 2. The virtual 
addresses may also be referred to herein as “ virtual inter 
faces . " 
[ 0051 ] In one implementation , each of compute nodes 26 
includes a corresponding one of VR agents 36A - 36X that 
communicates with SDN controller 32A and , responsive 
thereto , directs virtual router 42 so as to control the overlay 
of virtual networks 46 and coordinate the routing of data 
packets within compute node 26. In general , each VR agent 
36 communicates with SDN controller 32A , which gener 
ates commands to control routing of packets through data 
center 10 . 
[ 0052 ] VR agents 36 execute in user space and operate as 
a proxy for control plane messages between VMs 48 and 
SDN controller 32A . For example , a VM 48 may request to 
send a message using its virtual address via the VR agent 
36A , and VR agent 36A may in turn send the message and 
request that a response to the message be received for the 
virtual address of the VM 48 that originated the first mes 
sage . In some cases , a VM 48 invokes a procedure or 
function call presented by an application programming 
interface of VR agent 36A , and the VR agent 36A handles 
encapsulation of the message as well , including addressing . 
[ 0053 ] In some example implementations , each compute 
node 26A further includes an orchestration agent ( not shown 
in FIG . 2 ) that communicates directly with orchestration 
engine 30. For example , responsive to instructions from 
orchestration engine 30 , the orchestration agent communi 
cates attributes of the particular VMs 48 executing on the 
respective compute node 26 , and may create or terminate 
individual VMs . 
[ 0054 ] In one example , network packets , e.g. , layer three 
( L3 ) IP packets or layer two ( L2 ) Ethernet packets generated 
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or consumed by the instances of applications executed by 
virtual machines 48 within the virtual network domain may 
be encapsulated in another packet ( e.g. , another IP or Eth 
ernet packet ) that is transported by the physical network . 
The packet transported in a virtual network may be referred 
to herein as an “ inner packet ” while the physical network 
packet may be referred to herein as an “ outer packet ” or a 
" tunnel packet . ” Encapsulation and / or de - capsulation of 
virtual network packets within physical network packets 
may be performed within virtual routers 42 , e.g. , within the 
hypervisor or the host operating system running on each of 
compute nodes 26. As another example , encapsulation and 
decapsulation functions are performed at the edge of IP 
fabric 20 at a first - hop top - of - rack ( TOR ) switch 24 that is 
one hop removed from the application instance that origi 
nated the packet . This functionality is referred to herein as 
tunneling and may be used within data center 10 to create 
one or more overlay networks . Besides IP - in - IP , other 
example tunneling protocols that may be used include IP 
over GRE , VXLAN , MPLS over GRE , MPLS over UDP , etc. 
[ 0055 ] As noted above , SDN controller 32A provides a 
logically centralized controller for facilitating operation of 
one or more virtual networks within data center 10. For 
example , SDN controller 32A maintains a routing informa 
tion base , e.g. , one or more routing tables that store routing 
information for the physical network as well as one or more 
overlay networks of data center 10. Similarly , virtual routers 
42 maintain routing information , such as one or more 
routing and / or forwarding tables . In one example implemen 
tation , virtual router 42A of hypervisor 40 implements a 
network forwarding table ( NFT ) 44 for each virtual network 
46. In general , each NFT 44 stores forwarding information 
for the corresponding virtual network 46 and identifies 
where data packets are to be forwarded and whether the 
packets are to be encapsulated in a tunneling protocol , such 
as with a tunnel header that may include one or more headers 
for different layers of the virtual network protocol stack . 
[ 0056 ] For example , virtual machine VM1-48 may send 
an “ inner packet , ” to virtual router 42A by an internal link . 
Virtual router 42 uses NFT1 to look up a virtual network 
destination network address for the packet . NFT1 specifies 
an outbound interface for virtual router 42A and encapsu 
lation for the packet . Virtual router 30A applies the encap 
sulation to add a tunnel header to generate an outer packet 
and outputs the outer packet on the outbound interface , in 
this case toward leaf switch 24A . 
[ 0057 ] The routing information , for example , maps packet 
key information ( e.g. , destination IP information and other 
select information from packet headers ) to one or more 
specific next hops within the networks provided by virtual 
routers 42 and IP fabric 20. In some cases , the next hops are 
chained next hops that specify a set of operations to be 
performed on each packet when forwarding the packet , such 
as may be used for flooding next hops and multicast repli 
cation . As shown in FIG . 2 , each virtual network 46 provides 
a communication framework for encapsulated packet com 
munications for the overlay network established through IP 
fabric 20. In this way , network packets associated with any 
of virtual machines 48 may be transported as encapsulated 
packet communications via the overlay network . 
[ 0058 ] Each of VR agents 36 may send messages to SDN 
controller 32A over XMPP sessions , the messages convey 
ing virtual routes to the virtual interfaces ( virtual addresses ) 
of the VMs of compute nodes 26. The virtual routes may 

also be referred to herein as overlay network routes . For 
example , VR agent 36A sends an XMPP message 37A 
containing virtual route ( s ) for compute node 26A . SDN 
controller 32A receives the messages and stores the virtual 
routes to overlay routing information , and may in turn 
advertise one or more of the overlay routes received from a 
first VR agent 36 to SDN gateways 8 ( e.g. , via Multi 
Protocol extensions for BGP ( MP - BGP ) ) . MP - BGP is an 
extension to BGP that allows different address families to be 
distributed . SDN controller 32A may also advertise the 
overlay routes ( VPN routes ) to other control nodes 54 , such 
as to a control node of SDN 32B , if there is a gateway router 
between the two clusters , and / or to another SDN controller 
( not shown ) in an iBGP - federated SDN cluster . Interior BGP 
( iBGP ) is an interior routing protocol for routing commu 
nications within a single autonomous system . IBGP - feder 
ated SDN clusters are different SDN clusters having a same 
autonomous system number . 
[ 0059 ] In some examples , any of the virtual routes may 
include a prefix , a next hop address associated with a server 
of compute nodes 26 , and a label or other data to identify a 
virtual routing and forwarding instance configured at the 
next hop server . A virtual route may also include a route 
distinguisher ( RD ) and a route target . 
[ 0060 ] One example of an IP - based VPN is described 
more fully in Rosen et al . , “ BGP / MPLS IP Virtual Private 
Networks ( VPNs ) ” , Request for Comments 4364 , Network 
Working Group , February 2006 , the entire contents of which 
are incorporated by reference herein . Further details of 
BGP - signaled IP / VPNs are described in S. Mackie et al . , 
“ BGP - Signaled End - System IP / VPNs , ” Network Working 
Group Internet - Draft , Dec. 15 , 2016 , the entire contents of 
which are incorporated by reference herein . Multiprotocol 
extensions for BGP are described in T. Bates et al . , " Mul 
tiprotocol Extensions for BGP - 4 , ” Request for Comments 
4760 , Network Working Group , January 2007 , the entire 
contents of which are incorporated by reference herein . 
[ 0061 ] The route distinguisher is an address qualifier used 
in the context of BGP - MPLS VPNs . The route distinguisher 
is used to distinguish between VPNv4 ( alternatively , “ VPN 
IPv4 ” ) routes sent by different MP - BGP peers . 
[ 0062 ] The route target is a 6 - byte field . The route target 
is an 8 - octet value consisting of two major fields , the Type 
Field ( 2 octets ) and Value Field ( 6 octets ) . The type field 
determines how the value field should be interpreted . The 
following existing Types are defined as shown in Table 1 : 

> 

TABLE 1 

Type number Value 

Type o 
Type 1 
Type 2 

2 - byte ASN + 4 - byte value subfield 
4 - byte IP 2 - byte value subfield 
4 - byte ASN + 2 - byte value subfield 

[ 0063 ] With a type - 2 VPN route , at a control node of the 
SDN controller , the / 32 IP address of a VM launched inside 
a virtual node is added onto the VRF corresponding to the 
virtual node ( VN ) . The VRF will have the usual attributes 
like the Route - Target ( RT ) and Route Distinguisher ( RD ) . 
[ 0064 ] Every control node of the SDN controller adver 
tises the XMPP routes received from the compute nodes 
towards other BGP speakers as VPNv4 routes , e.g. , route 
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advertisement 38A . The BGP speakers can include other 
control nodes 54 as well as external BGP speakers such as 
SDN gateway routers 8 . 
[ 0065 ] The SDN architecture described herein supports 
separation of control - data and management interfaces . It is 
assumed that the management interfaces are assigned an IP 
address which is reachable from the outside world and needs 
to be unique . However , the control - data network is taken 
from the private addressing space and is local to the cluster . 
This can be reused across multiple independent clusters . 
[ 0066 ] The architecture of data center 10 illustrated in 
FIG . 2 is shown for purposes of example only . The tech 
niques as set forth in this disclosure may be implemented in 
the example data center 10 of FIG . 2 , as well as other types 
of data centers not described specifically herein . Nothing in 
this disclosure should be construed to limit the techniques of 
this disclosure to the example architecture illustrated by 
FIG . 2 . 
[ 0067 ] FIG . 3 is a block diagram illustrating an example of 
control nodes advertising VPN routes in the data center of 
FIG . 2 , in accordance with the techniques of this disclosure . 
FIG . 3 illustrates control nodes 54A , 54N , that exchange an 
iBGP message 38A that includes a route target generated in 
accordance with the techniques of this disclosure . The 
example system of FIG . 3 illustrates two SDN system 
Clusters : 
[ 0068 ] 1. SDN system Cluster 60A made up of : 

[ 0069 ] a . Control Node 541—10.219.50.223 
[ 0070 ] b . Compute Node 26A — 10.219.50.224 

[ 0071 ] 2. SDN system Cluster 60B made up of : 
[ 0072 ] a . Control Node 541—10.219.50.225 
[ 0073 ] b . Compute Node 26X — 10.219.50.226 

[ 0074 ] In the absence of the techniques of this disclosure , 
the system - generated route target for ibgpl - network belong 
ing to SDN system Cluster 60A is target : 64512 : 8000002 , 
and the system - generated route target for ibgp2 - network 
belonging to SDN system Cluster 60B is also target : 64512 : 
8000002 . 
[ 0075 ] In case of an iBGP federated cluster in which SDN 
system clusters 60A and 60B are part of a single autonomous 
system , the customer would be adding each control node to 
the federated SDN system cluster as an “ External Control 
Node . ” As soon as that is done , the iBGP neighborship 
between control node 60A and control node 60B will be in 
ESTABLISHED state . Since system generated route target 
across the iBGP federated cluster are the same , routes in the 
corresponding VRFs are leaked between these two clusters 
and data path is stitched . The data communication between 
workloads on the federated clusters will work if there is 
L2 / L3 reachability between the compute nodes hosting the 
respective workloads . 
[ 0076 ] Due to this , the data path is stitched and the 
workloads belonging to two different virtual networks across 
different SDN system clusters can communicate with each 
other if there is L2 / L3 reachability between the compute 
nodes hosting the respective workloads . 
[ 0077 ] This disclosure proposes the following approaches 
to address this problem . In each approach , the route target 
value is generated based at least in part on using a checksum 
value of the unique identifier of the virtual network . 
[ 0078 ] Approach 1 : Compute the value field for route 
target type based on the Virtual Network's 128 - bit UUID . 
For Type 0 : The value field is of length 32 bits ( 4 Bytes ) . 
Here is what can be done to generate a route target for this 

case : obtain a cyclic redundancy check ( CRC ) checksum 
value of the unique identifier of the virtual network ; truncate 
the CRC checksum value to a size determined by a route 
target type for the virtual provide network route ; determine 
an integer value of the truncated CRC checksum value ; and 
assign the route target value based on the integer value . 
[ 0079 ] For example : 

[ 0080 ] a . With value field holding 32 bits , the range of 
the value field can be from 1-4,294,967,295 

[ 0081 ] b . Retrieve the Virtual Network's UUID for a 
Virtual Network on which Type O route - target should 
be computed . The UUID generated is 128 - bits in 
length . 

[ 0082 ] C. Obtain CRC64 of 128 - bit UUID using the 
ECMA polynomial . 

[ 0083 ] d . The CRC64 checksum obtained from Step b ) 
is 64 - bits ( 8 Bytes ) . 

[ 0084 ] e . Truncate the CRC check value to four bytes of 
the CRC check value ( e.g. , take the first 32 - bits ( 4 
Bytes ) ) and take base 16 integer through int ( string , 16 ) 

[ 0085 ] f . Use the outcome of Step e ) as the route target 
for the virtual network . 

[ 0086 ] For Type 2 : The value field is of length 16 bits ( 2 
Bytes ) . Here is what can be done to obtain a route target for 
this case : 

[ 0087 ] a . With value field holding 16 bits , the range of 
the value field can be from 1-65535 

[ 0088 ] b . Retrieve the Virtual Network's UUID for a 
Virtual Network on which Type 2 route - target should 
be computed . The UUID generated is 128 - bits in 
length . 

[ 0089 ] c . Get CRC64 of 128 - bit UUID using the ECMA 
polynomial . 

[ 0090 ] d . The CRC64 checksum obtained from Step b ) 
is 64 - bits ( 8 Bytes ) . 

[ 0091 ] e . truncate the CRC check value to two bytes of 
the CRC check value ( Take the first 16 - bits ( 2 Bytes ) ) 
and take base 16 integer through int ( string , 16 ) 

[ 0092 ] f . Use the outcome of Step e ) as the route target 
for the virtual network . 

[ 0093 ] Approach 2 : Introduce a new route - target type 
say Type 7 , which comprises of a 2 - Bytes Type field and 
6 - Bytes Value Field . The value field is of length 48 bits ( 6 
Bytes ) . Here is what can be done to obtain a route target for 
this case : 

[ 0094 ] a . With value field holding 48 bits , the range of 
the value field can be from 1-2,81,474,976,710,656 

[ 0095 ] b . Retrieve the Virtual Network's UUID for a 
Virtual Network on which Type O route - target should 0 
be computed . The UUID generated is 128 - bits in 
length . 

[ 0096 ] c . Obtain CRC64 of 128 - bit UUID using the 
ECMA polynomial . 

[ 0097 ] d . The CRC64 checksum obtained from Step b ) 
is 64 - bits ( 8 Bytes ) . 

[ 0098 ] e . Truncate the CRC check value to six bytes of 
the CRC check value ( Take the first 48 - bits ( 6 Bytes ) ) 
and take base 16 integer through int ( string , 16 ) 

[ 0099 ] f . Use the outcome of Step e ) as the route target 
for the virtual network . 

[ 0100 ] Currently , the SDN Enterprise Multicloud system 
supports the above 64 - bit route - target types . Type O is the 
default route target type in SDN system . Regardless of the 
choice , the computed route target is unique and chances of 
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collisions are very rare within and outside the cluster . By 
computing unique route targets within the autonomous sys 
tem of SDN system clusters 60A and 60B , this solution will 
prevent unintended route leaking across the federated clus 
ters . 
[ 0101 ] The techniques described herein address both the 
2 - byte and the 4 - byte autonomous system solutions . 
[ 0102 ] The techniques described herein may also be more 
secure as compared to some implementations , since the 
route target values generated as described herein are not 
predictable . With a different implementation in some SDN 
systems , the route - target value starts from 8000000 and is 
sequential in nature ( increments by one for every virtual 
network created ) . A third party can potentially predict the 
route target and can configure the predicted value for its own 
VRF's import route target . 
[ 0103 ] An alternative option is to use a random number 
generated by a random number generator as a basis for the 
route target , instead of using the UUID . Though this may 
address the problem , it is not as efficient as leveraging the 
UUID value that is a unique value already obtained by the 
SDN controller in response to detecting a new virtual 
network object created by the orchestration engine . The 
UUID is already generated by the orchestration engine , and 
available to the SDN controller . 
[ 0104 ] To overcome the route target collision issue com 
pletely , this disclosure proposes changing the generation of 
the route target value by control nodes 54. Rather than using 
the system - generated route target value , the techniques 
described herein use a UUID of the virtual network . For 
some examples , the control node 54 may advertise the route 
target using both the administrator field and the sub - admin 
istrator field for a 6 - byte route target value generated based 
on the UUID . This will be advertised as a new type - 7 RD 
route , as shown in Table 2. In this manner , a Type value of 
the Type field can indicate that the Value field is generated 
based on the unique identifier of the virtual network . A 
receiving device uses this information to interpret the 
received message . While the new route target type is 
described with respect to type value 7 , another value may be 
used . Values for route target route types are assigned by the 
Internet Assigned Numbers Authority ( IANA ) . 

of the nodes 50 , 52 , and 52 may be implemented as a 
separate software process , and the nodes may be distributed 
across multiple hardware computing platforms that provide 
an environment for execution of the software . Moreover , 
each of the nodes maintains state database 56 , which may be 
stored within a centralized or distributed database . In some 
examples , state database 56 is a NoSQL database . In some 
examples , state database 56 is a database cluster . 
[ 0107 ] In general , analytic nodes 50 are tasked with col 
lecting , storing , correlating , and analyzing information from 
virtual and physical network elements within data center 10 . 
This information may include statistics , logs , events , and 
errors for use in managing the routing and network configu 
ration of data center 10. Analytic nodes 50 store this 
information in state database 56 . 
[ 0108 ] Configuration nodes 52 translate the high - level 
data model of orchestration engine 30 into lower - level 
models suitable for interacting with network elements , such 
as physical switches 22 , 24 and VR agents 36. Configuration 
nodes 52 keep a persistent copy of the configuration state of 
SDN controller 32A within state database 56 ( “ STATE 
DATA 56 ” ) . 
[ 0109 ] Control nodes 54 implement a logically centralized 
control plane responsible for maintaining ephemeral net 
work state . Control nodes 54 interact with each other and 
with network elements , such as VR agents 36 and virtual 
routers 42 of compute nodes 26 , to ensure that the network 
state is eventually consistent with desired state as specified 
by orchestration engine 30. In general , control nodes 54 
receive configuration state information of SDN controller 
32A from configuration nodes 52 , and exchange routes with 
each other via iBGP to ensure that all control nodes 54 have 
the same network state . In a network architecture in which 
multiple SDN clusters are federated over iBGP , control 
nodes 54 exchange VPN routes via iBGP sessions with one 
or more control nodes of other BGP clusters . Further , control 
nodes 54 exchange routes with VR agents 36 on compute 
nodes 26 via XMPP . 
[ 0110 ) Control nodes 54 also communicate the configu 
ration state information , such as routing instances and for 
warding policy , to VR agents 36 , e.g. , via XMPP , for 
installation within respective virtual routers 42. In some 
examples , control nodes 54 may proxy traffic on behalf of 
compute nodes 26. These proxy requests may be received 
over XMPP . Further , control nodes 54 exchange routes with 
SDN gateway 8A via BGP , and exchanges the configuration 
state of SDN controller 32A with service nodes 21 via 
Netconf . 
[ 0111 ] Configuration nodes 52 provide a discovery service 
that customers 4 may use to locate various services available 
within the network . For example , if VR agent 36A attempts 
a connection with control node 54A , it uses a discovery 
service provided by configuration nodes 52 to discover the 
IP address of control node 54A . Clients executing on VMs 
48 may use local configuration , DHCP or DNS to locate the 
service discovery server within configuration nodes 52 . 
( 0112 ] In some examples , configuration nodes 52 present 
a northbound API that interfaces with orchestration engine 
30. Orchestration engine 30 uses this interface to install 
configuration state using the high - level data model . Con 
figuration nodes 52 further include a message bus to facili 
tate communications amongst internal components . Con 
figuration nodes 52 further include a transformer that 
discovers changes in the high - level model of orchestration 
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TABLE 2 

Type ( 2 - bytes ) Value ( 6 - bytes ) 
New value - 7 Value generated based on UUID 

a a 

[ 0105 ] Although described for purposes of example in 
terms of SDN clusters ( a collection of control node server ( s ) 
and compute node server ( s ) ) , in some examples , the tech 
niques of this disclosure can be applied in systems that do 
not necessarily involve multiple SDN clusters . For example , 
one VM in a cluster may need to communicate with a bare 
metal server ( BMS ) that is managed by some routing device . 
In this case , the techniques of this disclosure can apply to 
VM - to - BMS communications . 
[ 0106 ] FIG . 4 is a block diagram illustrating an example 
implementation of the data center of FIG . 2 in further detail . 
In the example of FIG . 4 , SDN controller 32A includes one 
or more analytic nodes 50A - 50X ( collectively , “ analytic 
nodes 50 ” ) , one or more configuration nodes 52A - 52X 
( collectively , " configuration nodes 52 ” ) and control nodes 
54A - 54X ( collectively , “ control nodes 54 ” ) . In general , each 

a 
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engine 30 and transforms these changes into corresponding 
changes in the low - level data model managed by SDN 
controller 32A . Configuration nodes 52 further include an 
IF - MAP server that provides a southbound API to push 
computed low - level configuration down to control nodes 54 . 
[ 0113 ] Furthermore , configuration nodes 52 include a dis 
tributed applications manager used to allocate unique object 
identifiers , and to implement transactions across data center 
10. For example , upon creation of a new virtual network , 
orchestration engine 30 creates a virtual network object and 
UUID , and one or more of configuration nodes 52 detects 
the new virtual network object and assign a VN - ID to the 
new virtual network . VN - ID is a 2 - byte ID generated by the 
config node and sent to the control node . This is different 
from the UUID generated by the orchestration engine 30 . 
For example , in the case of orchestration engine 30 being an 
OpenStack orchestrator , the transformer “ listens ” for new 
OpenStack objects created by the OpenStack orchestrator . 
When a person creates a virtual network object in Open 
Stack , OpenStack generates the UUID for the virtual net 
work object . Configuration nodes 52 learns the UUID of a 
virtual network object in this manner , and saves the UUID 
to state data 56. Each OpenStack object has a corresponding 
universally unique identifier , which may be stored in state 
data 56 . 
[ 0114 ] As described herein , each of control nodes 54 is 
configured to generate , based on a unique identifier ( e.g. , the 
UUID ) of a virtual network , a route target value for the 
virtual network , and output a VPN route that includes the 
route target value and a network address associated with a 
compute node . The control node outputs the VPN route to 
one or more BGP sessions , including an iBGP session to an 
iBGP - federated peer such as a control node in a different 
SDN cluster . 
[ 0115 ] The architecture of data center 10 illustrated in 
FIG . 4 is shown for purposes of example only . The tech 
niques as set forth in this disclosure may be implemented in 
the example data center 10 of FIG . 4 , as well as other types 
of data centers not described specifically herein . Nothing in 
this disclosure should be construed to limit the techniques of 
this disclosure to the example architecture illustrated by 
FIG . 4 . 
[ 0116 ] FIG . 5 is a block diagram illustrating an example of 
a control node of an SDN controller in further detail in 
accordance with the techniques of this disclosure . Control 
node 54 is configured to communicate with multiple other 
types of nodes , including configuration nodes 52A - 52X 
( “ config . nodes 52 ' ) , other control nodes 54B - 54X , compute 
nodes 62A - 62X ( " compute nodes 62 ” ) , and gateway nodes 
72A - 72N ( " gateway nodes ” ) . Control node 54 also commu 
nicates with IP fabric 20 , which , as described herein , may be 
made up of devices including spine switches and leaf 
switches , for example . Control node 54 A provides an oper 
ating environment for protocols 70 to execute . Protocols 70 
may include , for example , an XMPP process 70A , a NET 
CONF process 70B , a BGP process 70C , and an IF - MAP 

use XMPP to send configuration state such as routing 
instances and forwarding policy . The control nodes proxy 
certain kinds of traffic on behalf of compute nodes . These 
proxy requests are also received over XMPP . The control 
nodes exchange overlay network routes with the gateway 
nodes ( routers and switches ) using BGP . The control nodes 
also send configuration state using NETCONF . 
[ 0118 ] Control node 54 A receives configuration informa 
tion from one or more of config . nodes 52 using Interface to 
Metadata Access Points ( IF - MAP ) process 70D . IF - MAP 
process 70D may include circuitry for executing software 
instructions for sending and receiving communications from 
config nodes 52 in accordance with the IF - MAP protocol . 
IF - MAP process 70D stores the configuration information 
received from configuration nodes 52 to configuration state 
66 ( “ CONFIG . STATE 66 ” ) . 
[ 0119 ] Control node 54A exchanges BGP messages with 
BGP peers , including control nodes 54B - 54X and gateway 
nodes 72 using BGP process 70C . Gateway nodes 72 may 
include one or more SDN routers such as SDN gateways 8 . 
BGP process 70C may implement multi - protocol BGP ( MP 
BGP ) , for example . BGP process 70C may include circuitry 
for executing software instructions for sending and receiving 
BGP messages with control nodes 54B - 54X in accordance 
with the BGP protocol , including MP - BGP update mes 
sages . BGP process 70C stores overlay network routes 
received from BGP route advertisements from gateway 
nodes 72 and control nodes 54B - 54X to overlay routing 
information 65 . 
[ 0120 ] Control node 54A exchanges messages with com 
pute nodes using XMPP process 70A in accordance with 
XMPP . Control node 54A exchanges the messages via 
XMPP sessions . Compute nodes 62 may correspond to 
compute nodes 26 of FIGS . 1-3 . XMPP process 70A may 
include circuitry for executing software instructions for 
exchanging XMPP messages with compute nodes 62 in 
accordance with the XMPP protocol . XMPP is described in 
further detail in P. Saint - Andre , Extensible Messaging and 
Presence Protocol ( XMPP ) : Core , IETF RFC 6120 , March 
2011 , the entire contents of which is incorporated by refer 
ence herein . Control node 54A ( and more specifically , 
XMPP process 70A of control node 54A ) may serve as an 
XMPP client or an XMPP server relative to one of compute 
nodes 62 , depending on the context . For example , control 
node 54 A may act as an XMPP server , and compute nodes 
62 may be XMPP clients that subscribe to information 
published by control node 54A , such as configuration infor 
mation from configuration state 66 for individual compute 
nodes 62 and routing information from overlay routing 
information 65 that pertains to individual compute nodes 62 . 
[ 0121 ] As another example , control node 54 A may act as 
an XMPP client to one or more of compute nodes 62 as 
XMPP servers , in which control node 54A subscribes to 
information published by compute nodes 62 , such as routing 
information learned by compute nodes 62 from other 
sources . XMPP process 70A receives overlay network routes 
from compute nodes 62A via an XMPP session and stores 
the overlay network routes to overlay routing information 
65. Overlay network routes learned by XMPP process 70A 
may be leaked to BGP process 70C , and BGP process 70C 
in turn may send to its BGP peers ( e.g. , other control nodes 
or SDN gateways ) BGP route advertisements that advertise 
the overlay network routes ( VPN routes ) in overlay routing 
information 65 learned from compute nodes 62 via XMPP . 

a 

process 70D . 
[ 0117 ] The control nodes receive configuration state from 
the configuration nodes using IF - MAP . The control nodes 
exchange overlay network routes with other control nodes 
using IBGP to ensure that all control nodes have the same 
overlay network state . The control nodes exchange overlay 
network routes ( e.g. , VPN routes ) with the vRouter agents 
on the compute nodes using XMPP . The control nodes also 
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In some examples , NETCONF process 70B of control node 
54A enables control node 54 A to communicate with gateway 
nodes 72 via the NetConf protocol . 
[ 0122 ] In response to XMPP process 70A receiving an 
XMPP message from one of compute nodes 62 advertising 
a VPN route associated with a new virtual network endpoint 
on the one of compute nodes 62 , BGP process 70C generates 
a route advertisement based on the XMPP message that 
includes a VPN route for the new virtual network endpoint . 
A virtual network endpoint may be , for example , a virtual 
machine or a container . For example , this handoff may occur 
due to the leaking of overlay network routes learned by 
XMPP process 70A as described above . Control node 54A 
generates a route target value in accordance with the tech 
niques described herein , based on the unique identifier of a 
virtual network that includes the new virtual network end 
point . BGP process 70C saves the route target value to 
overlay routing information 65 and includes the generated 
route target value for the virtual network in the route 
advertisement . Control node 54A outputs the route adver 
tisement to one or more of control nodes 54B - 54X and / or to 
other control nodes not shown , such as via iBGP sessions . In 
some examples , control node 54A can generate and output 
a route advertisement having a route target generated as 
described herein , independent of receiving an XMPP mes 
sage from a control node . 
[ 0123 ] In some examples , IF - MAP messages received by 
control node 54 A from configuration nodes 52 may specify 
a unique identifier ( e.g. , a UUID ) of a virtual network , upon 
configuration node 52 detecting creation of a new virtual 
network object . Control node 54A may store the UUIDs 
specified in the XMPP messages , such as to config state 66 . 
Similarly , if the virtual network is subsequently deleted , 
control node 54A may receive an IF - MAP message from 
configuration node 52A indicating the virtual network object 
has been deleted . Virtual network endpoints that were part of 
the deleted virtual network will also be deleted . Control 
node 54A updates config . state 66 to reflect the detected 
configuration changes , and may output a new iBGP route 
advertisement to BGP peers indicating that the VPN route to 
the virtual network endpoint has been withdrawn . The VPN 
route will similarly include the route target value generated 
as described herein , based on the UUID of the virtual 
network that is deleted . 
[ 0124 ] As one example , for Type O route target values , 
BGP process 70C may generate the route target values 
according to the following steps , with example values . 
[ 0125 ] Type0 — Value is of length 32 bits ( Range is 1-4 , 
294,967,295 ) 

[ 0126 ] a . Assume the UUID of a virtual network during 
generation is 5f3c3397-706f - 47e6 - a40b 
01a48ef7632c . 

[ 0127 ] b . Take cyclic redundancy check ( CRC ) 64 
checksum of the 128 bits UUID 5f3c3397-706f - 47e6 
a40b - 01a48ef7632c using the ECMA Polynomial ( Eu 
ropean Computer Manufacturers Association ) . The 
CRC64 checksum of the UUID in Step a ) would be 
e6420603c8cae941 ( For example , https://crc64.online 
could be used for this conversion ) . 

[ 0128 ] c . Truncate the CRC checksum value to a size 
determined by a route target type for the virtual provide 
network route . For example , the first 4 bytes from the 
CRC64 checksum will be e6420603 . 

[ 0129 ] d . Compute the base 16 integer of the hexadeci 
mal value in Step c ) : 
[ 0130 ] >>> int ( " e6420603 ” , 16 ) 
[ 0131 ] 3,863,086,595 

[ 0132 ] e . Assign target : 64512 : 3863086595 as the route 
target for the virtual network in question . 

[ 0133 ] As another example , for Type 2 route target values , 
BGP process 70C may generate the route target values 
according to the following steps , with example values . 
[ 0134 ] Type2 — Value is of length 16 bits ( Range is 
1-65535 ) 

[ 0135 ] a . Assume the UUID of a virtual network during 
generation is 14185dd7-9b01-4cf7-94fa 
1dcb1201bbac . 

[ 0136 ] b . Get cyclic redundancy check ( CRC ) CRC64 
checksum of the 128 bits UUID 14185dd7-9b01-4cf7 
94fa - 1dcb1201bbac using the ECMA Polynomial . The 
CRC - 64 algorithm converts a variable - length string 
into a 16 - character string . The CRC64 checksum of the 
UUID in Step a ) would be d0c44c8f58db4a09 . 

[ 0137 ] c . Truncate the CRC checksum value to a size 
determined by a route target type for the virtual provide 
network route . For example , for the Type2 route target , 
the first 2 bytes from the CRC64 checksum will be 
d0c4 . 

[ 0138 ] d . Compute the base 16 integer of the value in 
Step c ) : 
[ 0139 ] >>> int ( " d0c4 " , 16 ) 
[ 0140 ] 53444 

[ ( 0141 ] e . Assign target : 64512 : 53444 as route - target for 
the virtual network in question . 

[ 0142 ] As a further example , for Type 7 route target 
values , BGP process 70C may generate the route target 
values according to the following steps , with example val 
ues . 

a 

[ 0143 ] Type 7 — Value field is reserved to be of length 48 
bits in this newly introduced type ( Range is 1—2,81,474 , 
976,710,656 ) . 

[ 0144 ] a . Assume the UUID of a virtual network during 
generation is 7e03def7 - dfea - 4850 - beb9 
b57e6d4e4060 . 

[ 0145 ] b . Obtain a CRC64 checksum of the 128 bits 
UUID 7e03def7 - dfea - 4850 - beb9 - b57e6d4e4060 using 
the ECMA Polynomial . The CRC64 checksum of the 
UUID in Step a ) would be 13ee423a4bc7e821 . 

[ 0146 ] c . Truncate the CRC checksum value to a size 
determined by a route target type for the virtual provide 
network route . For example , the first 6 bytes from the 
CRC64 checksum will be 13ee423a4bc7 . 

[ 0147 ] d . Compute the base 16 integer of this value in 
Step c ) : 
[ 0148 ] >>> int ( " 13ee423a4bc7 " , 16 ) 
[ 0149 ] 21914034260935 

[ 0150 ] e . Assign target : 64512 : 21914034260935 as 
route - target for the virtual network in question . 

[ 0151 ] In this manner , the control node leverages the 
UUID value that is already being generated for a virtual 
network by the configuration nodes of the SDN controller 
upon detecting the new virtual network object . There is 
already a significant amount of randomness in the UUID 
generation . Therefore , it may be more efficient and easier to 
implement if the control node uses the UUID for generating 
the route target value , as opposed to using an additional , 
separately generated random number other than the UUID as 

2 
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the basis for generating the route target value . Using a 
separately generated random number rather than the UUID 
would require additional configuration and code changes , as 
well as additional steps on the control nodes . Thus , the 
techniques of this disclosure may reduce processing power 
and conserve computing resources of the control nodes of 
the SDN controller by eliminating unnecessary computa 
tional steps , and may reduce an amount of time needed to 
generate the route target . 
[ 0152 ] In some examples , control node 54A may also 
generate a route distinguisher value for the VPN route based 
on a physical hardware address of a compute node , as 
described in U.S. application Ser . No. 16 / 933,684 , filed Jul . 
20 , 2020 , entitled GENERATING ROUTE DISTINGUISH 
ERS FOR VIRTUAL PRIVATE NETWORK ADDRESSES 
BASED ON PHYSICAL HARDWARE ADDRESSES , the 
entire contents of which are incorporated by reference 
herein . 

[ 0153 ] FIGS . 6A - 6B are block diagrams illustrating 
examples of a compute node in further detail , in accordance 
with the techniques of this disclosure . In the example of 
FIGS . 6A - 6B , the compute node is compute node 62A of 
FIG . 5. Compute node 62A may be one of compute nodes 26 
of FIGS . 1-4 . Compute node 62A hosts VMs 82A - 82N 
( “ VMs 82 ” ) , and may be , for example , a general - purpose 
x86 server . VMs 82 are tenant VMs running customer 
applications such as Web servers , database servers , enter 
prise applications or hosting virtualized services used to 
create service chains , for example . In one example configu 
ration , Linux is the host operating system ( OS ) . 
[ 0154 ] Two components in a compute node implement a 
virtual router ; namely , the vRouter agent 84 and the vRouter 
forwarding plane 90. The vRouter forwarding plane 90 is 
located in the kernel ( e.g. , Linux ) , and the vRouter agent 84 
is the local control plane . 
[ 0155 ] The vRouter agent 84 is a user space process 
running inside the kernel . The vRouter agent 84 acts as the 
local , lightweight control plane and is responsible for the 
following functions . The vRouter agent 84 exchanges con 
trol state such as routes with the control nodes 54 using 
XMPP sessions . The vRouter agent 84 receives low - level 
configuration state such as routing instances and forwarding 
policy from the control nodes 54 using XMPP . The vRouter 
agent 84 reports analytics state such as logs , statistics , and 
events to the analytics nodes 50 ( FIG . 3 ) . The vRouter agent 
84 installs forwarding state into the vRouter forwarding 
plane 90. The vRouter agent 84 may discover the existence 
and attributes of VMs in cooperation with a Nova agent of 
compute node 62A ( not shown ) . The vRouter agent 84 
applies forwarding policy for the first packet of each new 
flow and installs a flow entry for the flow in the flow table 
of the forwarding plane . The vRouter agent 84 may proxy 
one or more of DHCP , ARP , DNS , and MDNS , for example . 
Additional proxies may be included in some implementa 
tions . Each vRouter agent 84 is connected to at least two 
control nodes 54 for redundancy in an active - active redun 
dancy model . 
[ 0156 ] FIG . 6B illustrates the virtual router ( “ vRouter ” ) 
forwarding plane 90 of compute node 62A in further detail . 
The vRouter forwarding plane 90 runs as a loadable kernel 
process ( e.g. , in Linux ) . The vRouter forwarding plane 90 is 
responsible for the following functions : vRouter forwarding 

plane 90 enables encapsulating packets to be sent to the 
overlay network and decapsulating packets to be received 
from the overlay network . 
[ 0157 ] Routing instances 92A - 92C , for respective tenants 
A , B , and C , represent virtual routing and forwarding 
instances ( “ VRFs ” ) . Routing instances 92A - 92C ( “ routing 
instances 92 ” ) include corresponding FIBs 94A - 94C ( “ FIBs 
94 ” ) and flow tables 96A - 96C ( “ flow tables 96 % ) . VRouter 
forwarding plane 90 may include an additional VRF called 
a “ fabric VRF ” ( not shown ) . The vRouter forwarding plane 
90 assigns packets to a routing instance 94. Packets received 
from the overlay network are assigned to a routing instance 
based on the MPLS label or Virtual Network Identifier 
( VNI ) . Virtual interfaces to local virtual machines are bound 
to routing instances 92. The vRouter forwarding plane 90 
does a lookup of the destination address in the forwarding 
information base ( FIB ) 94 , also known as a forwarding 
table , and forwards the packet to the correct destination . The 
routes may be Layer 3 IP prefixes or Layer 2 MAC 
addresses , for example . A MAC address for a control - data 
interface of compute node 62A may be stored in one or more 
of the routing instances 92 . 
[ 0158 ] A forwarding policy can be applied using a flow 
table 96 : The vRouter forwarding plane 90 matches packets 
against the flow table and applies the flow actions . The 
vRouter forwarding plane 90 sends the packets for which no 
flow rule is found ( that is , the first packet of every flow ) to 
the vRouter agent 84 , which then installs a rule in the flow 
table 96. The vRouter forwarding plane 90 sends certain 
packets such as DHCP , ARP , MDNS to the vRouter agent for 
proxying . 
[ 0159 ] Each interface of VMs 82 running on the host is 
connected to a VRF ( routing instance 92 ) that contains the 
forwarding tables for the corresponding network that con 
tains the IP address of that interface . A vRouter only has 
VRFs for networks that have interfaces in them on that host , 
including the Fabric VRF that connects to the physical 
interface of the host . Virtual networking uses encapsulation 
tunneling to transport packets between VMs 82 on different 
hosts , and the encapsulation and decapsulation happens 
between the Fabric VRF and the VM VRFs ( routing 
instances 92 ) . 
[ 0160 ] When a new virtual workload is created , an event 
is seen in the orchestration engine 30 and sent into SDN 
controller 32A , which then sends requests to the vRouter 
agent 84 for routes to be installed in the VRFs for virtual 
networks , and the vRouter agent 84 then configures them in 
the forwarder . 
[ 0161 ] The logical flow for configuring networking on a 
new VM with a single interface is as follows : Networks and 
network policies are defined in either the orchestrator / 
orchestration engine or Networking using user interface , 
command line interface , or REST application programming 
interface ( API ) . A network is primarily defined as a pool of 
IP addresses which will be allocated to interfaces when VMs 
are created . 
[ 0162 ] A VM is requested to be launched by a user of the 
orchestrator , including which network its interface is in . The 
orchestrator selects a host for the new VM to run on , and 
instructs the vRouter agent 84 on that host to fetch its image 
and start the VM . Events or API calls are received from the 
networking service of the orchestrator instructing to set up 
the networking for the interface of the new VM that will be 
started . These instructions are converted into REST calls and 
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sent to the SDN controller 32. The SDN controller 32 sends 
a request to the vRouter agent 84 for the new VM virtual 
interface to be connected to the specified virtual network . 
The vRouter agent 84 instructs the vRouter forwarding plane 
90 to connect the VM interface to the routing instance 92 for 
the virtual network . The routing instance 92 ( VRF ) is 
created , if not present , and the interface is connected to it . 
[ 0163 ] The vRouter agent 84 starts the VM which will 
usually be configured to request IP addresses for each of its 
interfaces using DHCP . The vRouter agent 84 proxies the 
DHCP requests and responds with the interface IP , default 
gateway , and DNS server addresses . Once the interface is 
active and has an IP address from DHCP , the vRouter agent 
84 will install routes to the VM's IP address and MAC 
address with a next hop of the VM virtual interface . The 
VRouter agent 84 assigns a label for the interface and installs 
a label route in the MPLS table ( e.g. , FIB 94 ) . 
[ 0164 ] VRouter agent 84 uses XMPP process 98 to estab 
lish an XMPP session with a control node of the SDN 
controller . XMPP process 98 of vRouter agent 84 learns 
overlay network routes to virtual interfaces ( virtual 
addresses ) from VMs 82 , and stores these as virtual routes 
for the virtual interfaces to FIBs 94. XMPP process 98 sends 
XMPP messages via the XMPP session to control nodes 54 
to advertise the overlay network routes ( VPN routes ) . For 
example , the vRouter agent 84 sends an XMPP message 
37A to the SDN controller 32 containing a VPN route to the 
new VM . The route has a next hop of a network address of 
the server that the vRouter is running on ( e.g. , an IP address 
including IPv4 or IPv6 ) , and specifies an encapsulation 
protocol using the label that was just allocated . 
[ 0165 ] The control node of the SDN controller 32 distrib 
utes the VPN route to the new VM to the other vRouters with 
VMs in the same network and in other networks , as allowed 
by network policy . The SDN controller sends routes for the 
other VMs , as allowed by policy , to the vRouter of the new 
VM . For example , the vRouter agent 84 XMPP process 98 
receives virtual routes advertised by SDN controller's con 
trol node 54A , and stores the overlay network routes to 
overlay routing information 104 and one or more of FIBs 94 . 
At the end of this procedure , the routes in the VRFs of all the 
vRouters in the data center have been updated to implement 
the configured network policies , taking account of the new 
VM . 
[ 0166 ] FIG . 7 is a block diagram illustrating an example 
route advertisement for a virtual private network address 
that includes , in accordance with techniques described 
herein , a route target generated based on a unique identifier 
associated with a virtual network . BGP UPDATE message 
600 is a route advertisement that conforms to MP - BGP and 
includes MP - REACH - NLRI field 602 advertising a host 
route for a virtual machine in a compute node of a distrib 
uted SDN system . Extended BGP UPDATE message 600 
may represent an example instance of route advertisement 
38A illustrated in FIG . 2. For purposes of illustration , 
extended BGP UPDATE message 600 is illustrated using 
glyphs , rather than with packet fields . 
[ 0167 ] MP - REACH - NLRI field 602 of extended BGP 
UPDATE message 600 specifies an Address Family Identi 
fier ( AFI ) field 604 having a value of 1 in this example to 
indicate IPv4 network addresses , along with a value for the 
Subsequent AFI ( SAFI ) field 606 having a value of 128 to 
identify the virtual route as a L3 VPN route . AFI field 604 
and SAFI field 606 may in some instances have different 

values , as assigned by a private party or by the Internet 
Assigned Numbers Authority ( IANA ) . In some examples , an 
IPv6 prefix may be used instead of an IPv4 prefix . 
[ 0168 ] Network Layer Reachability Information ( NLRI ) 
field 608 specifies a host route for the compute node virtual 
machine having IP address 10.10.10.10 , identified in prefix 
field 612. Length field 610A specifies a length of the prefix 
value in prefix field 612. Label field 610B specifies an 
MPLS label . Prefix field 612 includes a route distinguisher 
field 614A that specifies a route distinguisher value gener 
ated by the control node originating BGP UPDATE message 
600. The route distinguisher field 614A may also specify a 
Type field and a Value field of the route distinguisher field 
614A . The IPv4 prefix field 614B specifies a value of the 
IPv4 prefix 
[ 0169 ] In the example of FIG . 7 , extended communities 
field 616 includes a Type field 618A that specifies a Route 
Target Type . A route target is a particular type of extended 
community . An Administrative field 618B specifies an 
autonomous system number , e.g. , 200 in the example of FIG . 
7. An Assigned Number ( “ ASSIGNED NO . " ) FIELD 618C 
includes a route target value generated by the control node 
originating BGP UPDATE message 600 , in accordance with 
the techniques of this disclosure . A process by which which 
a BGP process generates the route target value may vary 
depending on the route target type , as described in various 
examples herein . In some examples , the route target type 
will have a value ( e.g. , 7 ) to specify that the route carries a 
route target generated based on a unique identifier of the 
network address , as described herein . 
[ 0170 ] FIG . 8 is a flowchart illustrating example operation 
of an SDN controller in accordance with the techniques of 
this disclosure . FIG . 8 may illustrate example operation of 
an SDN controller such as SDN controller 32A or 32B of 
FIG . 1-2 or 4 , for example . FIG . 8 may illustrate example 
operation of a control node 54A - 54N of FIGS . 3-5 , for 
example . An SDN controller that manages a cluster of 
compute nodes generates , based on a unique identifier of a 
virtual network , a route target value for the virtual network , 
wherein the virtual network comprises virtual network end 
points executing on the compute nodes ( 800 ) . 
[ 0171 ] The control node of the SDN controller outputs to 
a routing protocol peer device a virtual private network 
( VPN ) route that includes the route target value for the 
virtual network and a virtual network prefix associated with 
the virtual network , the VPN route for routing to the 
compute nodes executing the virtual network endpoints of 
the virtual network ( 802 ) . For example , the VPN route may 
be a route advertisement in accordance with a routing 
protocol , such as BGP UPDATE message 600 of FIG . 7. The 
VPN route may be a VPNv4 route . 
[ 0172 ] The SDN controller may output the VPN route to 
a second SDN controller via an interior border gateway 
protocol , wherein the second SDN controller manages a 
second plurality of compute nodes , the second plurality of 
compute nodes and the second SDN controller together 
forming a second SDN system cluster . The second SDN 
system cluster and the first SDN system cluster may be part 
of a single autonomous system . The unique identifier of the 
virtual network is unique within the single autonomous 
system . 
[ 0173 ] In some examples , the unique identifier of the 
virtual network is a 128 - bit UUID value generated by a 
network orchestrator for a new virtual network object asso 
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ciated with the virtual network upon creation of the virtual 
network . A configuration node of the SDN controller can 
detect existence of the new virtual network object and obtain 
the unique identifier for the virtual network from the net 
work orchestrator . 

a 

[ 0174 ] Although described for purposes of example in 
terms of an SDN controller , in some examples the tech 
niques of FIG . 8 may be implemented by a network device 
other than an SDN controller . While the techniques are 
described primarily with respect to advertising virtual net 
work addresses for virtual machines executing on compute 
nodes , the techniques are similarly applicable to other types 
of workloads , such as containers . For instance , a container 
may execute as part of a pod workload on a compute node , 
the pod being assigned a virtual network address by the SDN 
platform and operating as a virtual network destination . 
[ 0175 ] The techniques described in this disclosure may be 
implemented , at least in part , in hardware , software , firm 
ware or any combination thereof . For example , various 
aspects of the described techniques may be implemented 
within one or more processors , including one or more 
microprocessors , digital signal processors ( DSPs ) , applica 
tion specific integrated circuits ( ASICs ) , field programmable 
gate arrays ( FPGAs ) , or any other equivalent integrated or 
discrete logic circuitry , as well as any combinations of such 
components . The term “ processor ” or “ processing circuitry ” 
may generally refer to any of the foregoing logic circuitry , 
alone or in combination with other logic circuitry , or any 
other equivalent circuitry . A control unit comprising hard 
ware may also perform one or more of the techniques of this 
disclosure . 

[ 0176 ] Such hardware , software , and firmware may be 
implemented within the same device or within separate 
devices to support the various operations and functions 
described in this disclosure . In addition , any of the described 
units , process or components may be implemented together 
or separately as discrete but interoperable logic devices . 
Depiction of different features as process or units is intended 
to highlight different functional aspects and does not nec 
essarily imply that such process or units must be realized by 
separate hardware or software components . Rather , func 
tionality associated with one or more process or units may 
be performed by separate hardware or software components , 
or integrated within common or separate hardware or soft 
ware components . 
[ 0177 ] The techniques described in this disclosure may 
also be embodied or encoded in a computer - readable 
medium , such as a computer - readable storage medium , 
containing instructions . Instructions embedded or encoded 
in a computer - readable medium may cause a programmable 
processor , or other processor , to perform the method , e.g. , 
when the instructions are executed . Computer - readable 
media may include non - transitory computer - readable stor 
age media and transient communication media . Computer 
readable storage media , which is tangible and non - transitory , 
may include random access memory ( RAM ) , read only 
memory ( ROM ) , programmable read only memory 
( PROM ) , erasable programmable read only memory 
( EPROM ) , electronically erasable programmable read only 
memory ( EEPROM ) , flash memory , a hard disk , a CD 
ROM , a floppy disk , a cassette , magnetic media , optical 
media , or other computer - readable storage media . The term 

" computer - readable storage media ” refers to physical stor 
age media , and not signals , carrier waves , or other transient 
media . 

1. A method comprising : 
generating , by a software - defined networking ( SDN ) con 

troller that manages a plurality of compute nodes , 
based on a unique identifier of a virtual network , a route 
target value for the virtual network , wherein the virtual 
network comprises virtual network endpoints executing 
on the compute nodes ; and 

outputting , by the SDN controller and to a routing pro 
tocol peer device , a virtual private network ( VPN ) route 
that includes the route target value for the virtual 
network and a virtual network prefix associated with 
the virtual network , the VPN route for routing to the 
plurality of compute nodes executing the virtual net 
work endpoints of the virtual network . 

2. The method of claim 1 , wherein the SDN controller 
comprises a first SDN controller , wherein the plurality of 
compute nodes comprises a first plurality of compute nodes , 
wherein the first plurality of compute nodes and the first 
SDN controller together comprises a first SDN system 
cluster , 

wherein outputting the VPN route comprises outputting 
the VPN route to a second SDN controller via an 
interior border gateway protocol , wherein the second 
SDN controller manages a second plurality of compute 
nodes , wherein the second plurality of compute nodes 
and the second SDN controller together comprise a 
second SDN system cluster , the second SDN system 
cluster and the first SDN system cluster being part of a 
single autonomous system , wherein the unique identi 
fier of the virtual network is unique within the single 
autonomous system . 

3. The method of claim 1 , wherein the unique identifier of 
the virtual network comprises a 128 - bit value generated by 
a network orchestrator for a new virtual network object 
associated with the virtual network upon creation of the 
virtual network , the method further comprising detecting , by 
the SDN controller , existence of the new virtual network 
object and obtaining the unique identifier for the virtual 
network from the network orchestrator . 

4. The method of claim 1 , wherein generating the route 
target value comprises generating the route target value 
based at least in part on using a checksum value of the 
unique identifier of the virtual network . 

5. The method of claim 1 , wherein generating the route 
target value comprises : 

obtaining a cyclic redundancy check ( CRC ) checksum 
value of the unique identifier of the virtual network ; 

truncating the CRC checksum value to a size determined 
by a route target type for the virtual provide network 
route ; 

determining an integer value of the truncated CRC check 
sum value ; and 

assigning the route target value based on the integer value . 
6. The method of claim 5 , further comprising : 
wherein when the route target type for the virtual provide 

network route is Type 0 , truncating comprises truncat 
ing the CRC check value to four bytes of the CRC 
check value , and wherein the route target value com 
prises the four bytes . 
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7. The method of claim 5 , further comprising : 
wherein when the route target type for the virtual provide 

network route is Type 2 , truncating comprises truncat 
ing the CRC check value to two bytes of the CRC check 
value , and wherein the route target value comprises the 
two bytes . 

8. The method of claim 5 , further comprising : 
wherein when the route target type for the virtual provide 

network route is Type 7 , truncating comprises truncat 
ing the CRC check value to six bytes of the CRC check 
value , and wherein the route target value comprises the 
six bytes . 

9. The method of claim 1 , wherein the route includes a 
route target field that specifies a Type field and a Value field , 
wherein a Type value of the Type field indicates that the 
Value field is generated based on the unique identifier of the 
virtual network . 

10. The method of claim 1 , further comprising : 
wherein generating the route target value comprises gen 

erating the route target value in response to receiving , 
from a compute node managed by the SDN controller 
and via a messaging protocol , a messaging protocol 
message that specifies the VPN route . 

11. The method of claim 10 , wherein the messaging 
protocol comprises Extensible Messaging and Presence Pro 
tocol ( XMPP ) , and wherein the messaging protocol message 
is received via an XMPP session between the control node 
and a virtual router agent of the compute node , and wherein 
outputting the route comprises outputting the route via an 
Interior Border Gateway Protocol ( IBGP ) session between 
the control node and a routing protocol peer device . 

12. A software - defined networking ( SDN ) controller com prising processing circuitry in communication with a 
memory , the processing circuitry being configured to : 

generate , based on a unique identifier of a virtual network , 
a route target value for the virtual network , wherein the 
virtual network comprises virtual network endpoints 
executing on one or more of a plurality of compute 
nodes managed by the SDN controller ; and 

output , to a routing protocol peer device , a virtual private 
network ( VPN ) route that includes the route target 
value for the virtual network and a virtual network 
prefix associated with the virtual network , the VPN 
route for routing to the plurality of compute nodes 
executing the virtual network endpoints of the virtual 
network . 

13. The SDN controller of claim 12 , wherein the SDN 
controller comprises a first SDN controller , wherein the 
plurality of compute nodes comprises a first plurality of 
compute nodes , wherein the first plurality of compute nodes 
and the first SDN controller together comprises a first SDN 
system cluster , 

wherein to output the VPN route comprises outputting the 
VPN route to a second SDN controller via an interior 
border gateway protocol , wherein the second SDN 
controller manages a second plurality of compute 
nodes , wherein the second plurality of compute nodes 
and the second SDN controller together comprise a 

second SDN system cluster , the second SDN system 
cluster and the first SDN system cluster being part of a 
single autonomous system , 

wherein the unique identifier of the virtual network is 
unique within the single autonomous system . 

14. The SDN controller of claim 12 , wherein the unique 
identifier of the virtual network comprises a universally 
unique identifier generated by a network orchestrator for a 
new virtual network object associated with the virtual net 
work upon creation of the virtual network , 

wherein the processing circuitry is further configured to : 
detect existence of the new virtual network object ; and 
obtain the unique identifier for the virtual network from 

the network orchestrator . 
15. The SDN controller of claim 12 , wherein to generate 

the route target value comprises generating the route target 
value based at least in part on using a checksum value of the 
unique identifier of the virtual network . 

16. The SDN controller of claim 12 , wherein the process 
ing circuitry being configured to generate the route target 
value comprises the processing circuitry being configured 
to : 

obtain a cyclic redundancy check ( CRC ) checksum value 
of the unique identifier of the virtual network ; 

truncate the CRC checksum value to a size determined by 
a route target type for the virtual provide network route ; 

determine an integer value of the truncated CRC check 
sum value ; and 

assign the route target value based on the integer value . 
17. The SDN controller of claim 12 , wherein the process 

ing circuitry being configured to generate the route target 
value comprises the processing circuitry being configured 
to : 

generate the route target value in response to receiving , 
from a compute node managed by the SDN controller 
and via a messaging protocol , a messaging protocol 
message that specifies the VPN route . 

18. The SDN controller of claim 12 , wherein the VPN 
route includes a route target field that specifies a Type field 
and a Value field , wherein a Type value of the Type field 
indicates that the Value field is generated based on the 
unique identifier of the virtual network . 

19. A computer - readable storage medium comprising hav 
ing stored thereon instructions that , when executed , cause 
one or more processors of a software - defined networking 
( SDN ) controller to : 

generate , based on a unique identifier of a virtual network , 
a route target value for the virtual network , wherein the 
virtual network comprises virtual network endpoints 
executing on one or more of a plurality of compute 
nodes managed by the SDN controller ; and 

output , to a routing protocol peer device , a virtual private 
network ( VPN ) route that includes the route target 
value for the virtual network and a virtual network 
prefix associated with the virtual network , the VPN 
route for routing to the plurality of compute nodes 
executing the virtual network endpoints of the virtual 
network . 


