
US 20220321382A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0321382 A1

Sridhar et al . (43) Pub . Date : Oct. 6 , 2022

(54) GENERATING ROUTE TARGET VALUES
FOR VIRTUAL PRIVATE NETWORK
ROUTES

(52) U.S. CI .
CPC H04L 12/4683 (2013.01) ; H04L 69/324

(2013.01) ; H04L 49/25 (2013.01)
(71) Applicant : Juniper Networks , Inc. , Sunnyvale ,

CA (US) (57) ABSTRACT

(72) Inventors : Sandeep Sridhar , Bangalore (IN) ;
Ganesha Hebbale Venkatasubbaiah ,
Bangalore (IN)

(21) Appl . No .: 17 / 301,276
(22) Filed : Mar. 30 , 2021

This disclosure describes techniques for improving route
advertisements . In one example , generating , by a software
defined networking (SDN) controller that manages a plural
ity of compute nodes , based on a unique identifier of a
virtual network , a route target value for the virtual network ,
wherein the virtual network comprises virtual network end
points executing on the compute nodes ; and outputting , by
the SDN controller and to a routing protocol peer device , a
virtual private network (VPN) route that includes the route
target value for the virtual network and a virtual network
prefix associated with the virtual network , the VPN route for
routing to the plurality of compute nodes executing the
virtual network endpoints of the virtual network .

Publication Classification
(51) Int . Ci .

H04L 12/46
H04L 29/08
H04L 12/947

(2006.01)
(2006.01)
(2006.01)

CUSTOMERS $

PE DEVICE

SERVICE PROVIDER NETWORK
6

GATEWAY
DATA CENTER SON

20
SPINE
SWITCH ADMNISTRATOR SWITCH
hal

ORCHESTRATION ENGINE

SWITCH SWITCH

31

SON
CONTROLLER SUBNET 33

32B
VA
36A

VA
36X

COMPUTE
NODE 26X ...

26A
VR VR

VM VM VM VM

Patent Application Publication Oct. 6 , 2022 Sheet 1 of 9 US 2022/0321382 A1

CUSTOMERS 5

SERVICE PROVIDER NETWORK

SDN

DATA CENTER

GATEWAY

IP FABRIC
20

ADMINISTRATOR
28

SPINE
SWITCH
22A

SPINE
SWITCH
22M

ORCHESTRATION ENGINE
30

SWITCH SWITCH
24N

31

33 SUBNET SUBNET

32B
VA
36A

COMPUTE
NODE

VA
36X

COMPUTE
NODE 26X

VR VR

VM VM VM VM FIG . 1

Patent Application Publication Oct. 6 , 2022 Sheet 2 of 9 US 2022/0321382 A1

ORCHESTRATION 30
SDN ENGINE

-31 32A
SDN

GATEWAY
38A SDN

CONTROLLER

CONTROL
NODE
54A

........

SPINE SWITCH SPINE SWITCH

CONTROL

32B
LEAF SWITCH LEAF SWITCH LEAF SWITCH

24A
A37A

33 SUBNET1 SUBNET2 SUBNET3

COMPUTE NODE
VR AGENT

36A
COMPUTE
NODE NODE

HYPERVISOR
42A

VIRTUAL
ROUTER

VR AGENT
36B

VR AGENT
36X

NFT .
44

NFT1
44 VIRTUAL

ROUTER
42B

VIRTUAL
ROUTER

42X
46

VNO VN1
VM
48

VM
48

VM2
48

FIG . 2

wwwwwwww

wwwwwwww
nowned

1

wwwwww
wwwwwww
wwwwww
wwwwww

SDN SYSTEM CLUSTER

LEAKED AS ROUTE TARGETS ARE THE SAME

SDN SYSTEM CLUSTER 60B

CONTROL NODE

CONTROL NODE

Patent Application Publication

NETWORK

NETWORK

NETWORK

NETWORK 628 192.168.20.0124 64512 : 8000002

192.168.10.0/24 64512 : 8000002

192.168.10.0124 64512 : 8000004

38A

192.168.60.0/24 64512 : 8000006

10.219.50.223

10.219.50.225

37A

XMPP

ROUTES WILL NOT GET LEAKED AS ROUTE - TARGETS

XMPP

Oct. 6 , 2022 Sheet 3 of 9

COMPUTE NODE 26A

COMPUTE NODE 26X

1 1 1

VM1 192.168.10.3

VM1 192.168.20.3

VHOSTO : 10.219.50.224

VHOSTO : 10.219.50.226

US 2022/0321382 A1

FIG . 3

Patent Application Publication Oct. 6 , 2022 Sheet 4 of 9 US 2022/0321382 A1

ORCHESTRATION
ENGINE

30

ANALYTIC NODE ANALYTIC NODE CONTROLLER

CONFIG . NODE 524 CONFIG , NODE 52X DATA

CONTROL NODE IBGP CONTROL NODE

BGP ,
Netconf

COMPUTE

VR AGENT
36A

VR AGENT
36X

SON
GATEWAY

SERVICE
NODE (S)

21

VIRTUAL
ROUTER
42A

VIRTUAL
ROUTER
42X

VM
48

VM
48

26A 26X

FIG . 4

Patent Application Publication Oct. 6 , 2022 Sheet 5 of 9 US 2022/0321382 A1

CONFIG , NODE
52A

CONFIG . NODE
52X

CONTROL NODE

66

PROTOCOLS

CONTROL ELECT NETCONF
OVERLAY

ROUTING INFO .
CONTROL

XMPP NETCONF , BGA

COMPUTE GATEWAY GATEWAY
NODE

62X 72A

Patent Application Publication Oct. 6 , 2022 Sheet 6 of 9 US 2022/0321382 A1

d CONTROL NODE CONTROL NODE

XMPP 64A

COMPUTE

62A

82A 82B 82N VROUTER
AGENT

(USER
SPACE)

HYPERVISOR
40

KERNEL

VROUTER FORWARDING PLANE (KERNEL MODULE)

FIG . 6A

Patent Application Publication Oct. 6 , 2022 Sheet 7 of 9 US 2022/0321382 A1

NODE
62A

AGENT

82A
(TENANT A)

VIRTUAL
MACHINE

82B
(TENANT B)

MACHINE
82C

(TENANT C)

MACHINE
82D

(TENANT C)
98

*

FORWARDING PLANE

ROUTING INSTANCE
(TENANT A)

ROUTING INSTANCE
(TENANT B)

92B

ROUTING INSTANCE
(TENANT C)

FIB

FLOW TABLE FLOW TABLE FLOW TABLE
96C

OVERLAY TUNNELS

FIG . 6B

Patent Application Publication Oct. 6 , 2022 Sheet 8 of 9 US 2022/0321382 A1

UPDATE MESSAGE

WITHDRAWN ROUTES
(EMPTY

ORIGIN

NEXT - HOP 172.1.1.1

MP - REACH - NLRI

SAFI

N - H LENGTH

NEXT - HOP

LENGTH (1 OCTET)
(3 OCTETS)

614A

[TYPE] (VAL)
IPv4 PREFIX 10.10.10.10/96

MP - UNREACH - NLRI
(EMPTY

616
EXTENDED COMMUNITIES

ALLOCATION
ROUTE TARGET

200

ASSIGNED NO , 1001

(EMPTY
FIG . 7

Patent Application Publication Oct. 6 , 2022 Sheet 9 of 9 US 2022/0321382 A1

GENERATE À ROUTE TARGET VALUE BASED ON
A UNIQUE IDENTIFIER OF A VIRTUAL NETWORK

OUTPUT A ROUTE THAT INCLUDES THE ROUTE
TARGET VALUE AND A NETWORK ADDRESS

ASSOCIATED WITH THE
VRTUAL NETWORK

FIG , 8

US 2022/0321382 A1 Oct. 6. 2022
1

GENERATING ROUTE TARGET VALUES
FOR VIRTUAL PRIVATE NETWORK

ROUTES

TECHNICAL FIELD

[0001] The disclosure relates to computer networks and ,
more particularly , to controlling packet forwarding within
virtual networks .

a

BACKGROUND

[0002] In a typical cloud data center environment , there is
a large collection of interconnected servers that provide
computing functionality (e.g. , compute nodes) and / or stor
age capacity (e.g. , storage nodes) to run various applica
tions . For example , a data center comprises a facility that
hosts applications and services for customers of the data
center . The data center for example , hosts all the infrastruc
ture equipment , such as networking and storage systems ,
redundant power supplies , and environmental controls . In a
typical data center , clusters of servers are interconnected via
a high - speed switch fabric provided by one or more tiers of
physical network switches and routers . More sophisticated
data centers provide infrastructure spread throughout the
world with subscriber support equipment located in various
physical hosting facilities .
[0003] Software Defined Networking (SDN) platforms
may be used in data centers and , in some cases , may use a
logically centralized and physically distributed SDN con
troller and a distributed forwarding plane in virtual routers
that extend the network from physical routers and switches
in the data center into a virtual overlay network hosted in
virtualized servers (referred to as compute nodes) . The SDN
controller provides management , control , and analytics
functions of a virtualized network and orchestrates the
virtual routers by communicating with the virtual routers .

a

[0006] The disclosure describes techniques for generating
and encoding route targets for virtual private network (VPN)
routes using unique identifiers of virtual networks . For
example , a control node of a Software Defined Networking
(SDN) controller generates a route target that is based on a
unique identifier assigned to a virtual network upon creation
of the virtual network . The unique identifier may be a
universally unique identifier (UUID) generated by an
orchestration system for a virtualization infrastructure . The
virtual network includes virtual network endpoints execut
ing on compute nodes managed by the SDN controller . The
techniques of this disclosure may improve forwarding of
traffic flows within SDN platforms . For example , the tech
niques enable an SDN controller to advertise routes in a
manner that avoids a receiving device from unintentionally
receiving duplicate routes that can cause routing problems in
a distributed SDN platform .
[0007] The techniques of this disclosure may provide one
or more technical advantages . For example , generating the
route targets based on the unique identifier of a virtual
network may prevent SDN controllers for different SDN
clusters from inadvertently generating and using the same
route target value for different virtual networks . Where such
SDN controllers / clusters are operated in a federated manner
and therefore advertise VPN routes using IBGP in the same
autonomous system , this route target collision may other
wise cause unintentional route leaking and therefore unin
tentional forwarding of traffic between the different virtual
networks . Generating and using route target values that are
unique not only within each SDN cluster , but also among the
multiple SDN clusters , may allow the SDN controllers to
avoid this scenario . In addition , the techniques described
herein for generating route target values may provide
improved security , because route target values according to
the techniques may be much less likely to be guessed by a
third party that could otherwise compromise network secu
rity by injecting traffic into the networks .
[0008] In one example , a method includes generating , by
a software - defined networking (SDN) controller that man
ages a plurality of compute nodes , based on a unique
identifier of a virtual network , a route target value for the
virtual network , wherein the virtual network comprises
virtual network endpoints executing on the compute nodes ;
and outputting , by the SDN controller and to a routing
protocol peer device , a virtual private network (VPN) route
that includes the route target value for the virtual network
and a virtual network prefix associated with the virtual
network , the VPN route for routing to the plurality of
compute nodes executing the virtual network endpoints of
the virtual network .

[0009] In another example aspect , an SDN controller
includes processing circuitry in communication with a
memory , the processing circuitry being configured to : gen
erate , based on a unique identifier of a virtual network , a
route target value for the virtual network , wherein the virtual
network comprises virtual network endpoints executing on
one or more of a plurality of compute nodes managed by the
SDN controller ; and output , to a routing protocol peer
device , a VPN route that includes the route target value for
the virtual network and a virtual network prefix associated
with the virtual network , the VPN route for routing to the
plurality of compute nodes executing the virtual network
endpoints of the virtual network .

SUMMARY

[0004] In general , this disclosure describes techniques for
improving route advertisements , such as in software defined
networking systems . Compute nodes may execute virtual
routers to implement a forwarding plane for one or more
virtual networks having virtual network destinations hosted
by the compute nodes . In some examples , the virtual net
work destinations are virtual workloads . The control nodes
of SDN controllers and the virtual routers of the compute
nodes communicate to share information to control forward
ing of tenant traffic within the virtual networks to reach these
virtual network destinations . Compute nodes and control
nodes associated with different SDN controllers may be
arranged in SDN system clusters .
[0005] SDN controllers and the virtual routers use virtual
routing and forwarding instances (VRFs) to isolate and
manage routing information for different virtual networks .
The control nodes of an SDN controller use route targets to
control the import and export of advertised routes , which are
referred to herein as virtual private network (VPN) routes to
denote an association with particular virtual networks . For
example , a control node will attach a route target extended
community (with a route target value) to every VPN route
advertised by the control node , and a receiving control node
or virtual router will import the VPN route into a VRF if
only if the route target value in the route advertisement
matches the import route target of the VRF .

a

a

US 2022/0321382 A1 Oct. 6. 2022
2

a

[0010] In a further example aspect , a computer - readable
storage medium includes instructions that , when executed ,
cause one or more processors of an SDN controller to :
generate , based on a unique identifier of a virtual network ,
a route target value for the virtual network , wherein the
virtual network comprises virtual network endpoints execut
ing on one or more of a plurality of compute nodes managed
by the SDN controller ; and output , to a routing protocol peer
device , a VPN route that includes the route target value for
the virtual network and a virtual network prefix associated
with the virtual network , the VPN route for routing to the
plurality of compute nodes executing the virtual network
endpoints of the virtual network .
[0011] The details of one or more examples are set forth in
the accompanying drawings and the description below .
Other features , objects , and advantages will be apparent
from the description and drawings , and from the claims .

BRIEF DESCRIPTION OF DRAWINGS
a

a

[0012] FIG . 1 is a block diagram illustrating an example
network system having a data center in which examples of
the techniques described herein may be implemented .
[0013] FIG . 2 is a block diagram illustrating an example
implementation of the data center of FIG . 1 in further detail ,
in accordance with the techniques of this disclosure .
[0014] FIG . 3 is a block diagram illustrating an example of
control nodes advertising VPN routes in the data center of
FIG . 2 , in accordance with the techniques of this disclosure .
[0015] FIG . 4 is a block diagram illustrating an example
implementation of the data center of FIG . 2 in further detail .
[0016] FIG . 5 is a block diagram illustrating an example of
a control node of an SDN controller in further detail in
accordance with the techniques of this disclosure .
[0017] FIGS . 6A - 6B are block diagrams illustrating
examples of a compute node in further detail , in accordance
with the techniques of this disclosure .
[0018] FIG . 7 is a block diagram illustrating an example
route advertisement for a virtual private network address
that includes , in accordance with techniques described
herein , a route target generated based on a unique identifier
of a virtual network .
[0019] FIG . 8 is a flowchart illustrating example operation
of an SDN controller in accordance with the techniques of
this disclosure .
[0020] Like reference characters denote like elements
throughout the figures and text .

structure equipment , such as networking and storage sys
tems , redundant power supplies , and environmental con
trols . Service provider network 6 may be coupled to one or
more networks administered by other providers , and may
thus form part of a large - scale public network infrastructure ,
e.g. , the Internet .
[0023] In some examples , data center 10 may represent
one of many geographically distributed network data cen
ters . As illustrated in the example of FIG . 1 , data center 10
is a facility that provides network services for customers 4 .
Customers 4 may be collective entities such as enterprises
and governments or individuals . For example , a network
data center may host web services for several enterprises and
end users . Other example services may include data storage ,
virtual private networks , traffic engineering , file service ,
data mining , scientific- or super - computing , and so on . In
some examples , data center 10 is an individual network
server , a network peer , or otherwise .
[0024] In this example , data center 10 includes a set of
storage systems and application servers interconnected via
an IP fabric 20 provided by one or more tiers of physical
network switches and routers . Compute nodes 26 are servers
that function as compute nodes of the data center . In some
examples , the terms " compute nodes ” and “ servers ” are used
interchangeably herein to refer to compute nodes 26. For
example , each of compute nodes 26 may provide an oper
ating environment for execution of one or more customer
specific virtual machines (“ VMs ” in FIG . 1) . IP fabric 20 is
provided by a set of interconnected leaf switches 24A - 24N
(collectively , “ leaf switches 24 ") coupled to a distribution
layer of spine switches 22A - 22M (collectively , “ spine
switches 22 ' ') . Leaf switches 24 may also be referred to as
top - of - rack (TOR) switches . Spine switches 22 may also be
referred to as spine switches . Although not shown , data
center 10 may also include , for example , one or more
non - edge switches , routers , hubs , gateways , security devices
such as firewalls , intrusion detection , and / or intrusion pre
vention devices , servers , computer terminals , laptops , print
ers , databases , wireless mobile devices such as cellular
phones or personal digital assistants , wireless access points ,
bridges , cable modems , application accelerators , or other
network devices .
[0025] In this example , leaf switches 24 and spine
switches 22 provide compute nodes 26 with redundant
(multi - homed) connectivity to IP fabric 20. Spine switches
22 aggregate traffic flows and provides high - speed connec
tivity between leaf switches 24. Leaf switches 24 are net
work devices that provide layer two (e.g. , MAC) and / or
layer 3 (e.g. , IP) routing and / or switching functionality . Leaf
switches 24 and spine switches 22 each include one or more
processors and a memory , and that are capable of executing
one or more software processes . SDN gateways 8 , also
referred to as gateway routers , are routing devices that
perform layer 3 routing to route network traffic between data
center 10 and customers 4 by service provider network 6 .
SDN gateways 8 provide redundant gateways to forward and
receive packets between IP fabric 20 and service provider
network 6 .
[0026] SDN controller 32A provides a logically , and in
some cases physically , centralized controller for facilitating
operation of one or more virtual networks within data center
10 in accordance with one or more examples of this disclo
sure . The terms SDN controller and Virtual Network Con
troller (“ VNC ”) may be used interchangeably throughout

a

DETAILED DESCRIPTION

a [0021] FIG . 1 is a block diagram illustrating an example
network system 5 having a data center 10 in which examples
of the techniques described herein may be implemented . In
network system 5 , SDN controllers 32A - 32B (“ SDN con
trollers 32 ") , compute nodes 26A - 26X (“ compute nodes
26 ”) , SDN gateways 8A - 8B (“ SDN gateways 8) , and nodes
of Internet Protocol (IP) fabric 20 operate in accordance
with the techniques described herein to ensure customer
traffic flow and customer applications executing within the
cloud data center continue without interruption .
[0022] In general , data center 10 provides an operating
environment for applications and services for customers 4
coupled to the data center 10 by service provider network 6 .
Customers 4 are coupled to service provider network 6 by
provider edge (PE) device 12. Data center 10 hosts infra

US 2022/0321382 A1 Oct. 6. 2022
3

a

a

a

this disclosure . In some examples , SDN controller 32A
operates in response to configuration input received from
orchestration engine 30 via northbound Application Pro
gramming Interface (API) 31 , which in turn operates in
response to configuration input received from administrator
28. Additional information regarding SDN controller 32A
operating in conjunction with other devices of data center 10
or other software - defined network is found in International
Application Number PCT / US2013 / 044378 , filed Jun . 5 ,
2013 , and entitled PHYSICAL PATH DETERMINATION
FOR VIRTUAL NETWORK PACKET FLOWS , which is
incorporated by reference as if fully set forth herein .
[0027] In some examples , orchestration engine 30 man
ages functions of data center 10 such as compute , storage ,
networking , and application resources . For example , orches
tration engine 30 may create a virtual network for a tenant
within data center 10 or across data centers . Orchestration
engine 30 may attach virtual machines (VMs) to a tenant's
virtual network . Orchestration engine 30 may connect a
tenant’s virtual network to some external network , e.g. , the
Internet or a VPN . Orchestration engine 30 may implement
a security policy across a group of VMs or to the boundary
of a tenant's network . Orchestration engine 30 may deploy
a network service (e.g. , a load balancer) in a tenant's virtual
network .
[0028] In some examples , SDN controller 32A manages
the network and networking services such load balancing ,
security , and allocating resources from compute nodes 26 to
various applications via southbound API 33. That is , south
bound API 33 represents a set of communication protocols
utilized by SDN controller 32A to make the actual state of
the network equal to the desired state as specified by
orchestration engine 30. One such communication protocol
may include a messaging protocol such as Extensible Mes
saging and Presence Protocol (XMPP) , for example . For
example , SDN controller 32A implements high - level
requests from orchestration engine 30 by configuring physi
cal switches , e.g. , leaf switches 24 , spine switches 22 ;
physical routers ; physical service nodes such as firewalls
and load balancers ; and virtual services such as virtual
firewalls in a VM . SDN controller 32A maintains routing ,
networking , and configuration information within a state
database . SDN controller 32A communicates a suitable
subset of the routing information and configuration infor
mation from the state database to virtual router (VR) agents
36A - 36X (“ VA ” in FIG . 1) on each of compute nodes
26A - 26X .
[0029] Compute nodes and control nodes associated with
different SDN controllers may be arranged in SDN clusters .
A cluster is a group of real and / or virtual servers that form
an SDN controller , including control nodes , and compute
nodes managed by the SDN controller . For example , as
shown in FIG . 1 , a system may include two independent
SDN controllers 32A and 32B , which may each be associ
ated with a different cluster of servers . In some examples ,
SDN controller 32B manages a second set of compute nodes
(not shown) . In other examples , SDN controller 32B man
ages a subset of compute nodes 26 , while SDN controller
SDN 32A manages a different , non - overlapping subset of
compute nodes 26 .
[0030] Typically , the traffic between any two network
devices , such as between network devices within IP fabric
20 or between compute nodes 26 and customers 4 or
between compute nodes 26 , for example , can traverse the

physical network using many different paths . For example ,
there may be several different paths of equal cost between
two network devices . In some cases , packets belonging to
network traffic from one network device to the other may be
distributed among the various possible paths using a routing
strategy called multi - path routing at each network switch
node . For example , the Internet Engineering Task Force
(IETF) RFC 2992 , “ Analysis of an Equal - Cost Multi - Path
Algorithm , ” describes a routing technique for routing pack
ets along multiple paths of equal cost . The techniques of
RFC 2992 analyze one particular multipath routing strategy
involving the assignment of flows to bins by hashing packet
header fields that sends all packets from a particular network
flow over a single deterministic path .
[0031] For example , a “ flow ” can be defined by the five
values used in a header of a packet , or “ five - tuple , ” i.e. , the
protocol , Source IP address , Destination IP address , Source
port , and Destination port that are used to route packets
through the physical network . For example , the protocol
specifies the communications protocol , such as TCP or UDP ,
and Source port and Destination port refer to source and
destination ports of the connection . A set of one or more
packet data units (PDUs) that match a particular flow entry
represent a flow . Flows may be broadly classified using any
parameter of a PDU , such as source and destination data link
(e.g. , MAC) and network (e.g. , IP) addresses , a Virtual Local
Area Network (VLAN) tag , transport layer information , a
Multiprotocol Label Switching (MPLS) or Generalized
MPLS (GMPLS) label , and an ingress port of a network
device receiving the flow . For example , a flow may be all
PDUs transmitted in a Transmission Control Protocol (TCP)
connection , all PDUs sourced by a particular MAC address
or IP address , all PDUs having the same VLAN tag , or all
PDUs received at the same switch port .
[0032] As described herein , each of compute nodes 26
include a respective virtual router (“ VR ” in FIG . 1) that
executes multiple routing instances for corresponding vir
tual networks within data center 10 and routes the packets to
appropriate virtual network endpoints (e.g. , virtual
machines) executing within the operating environment pro
vided by the servers . Packets received by the virtual router
of compute node 26A , for instance , from the underlying
physical network fabric may include an outer header to
allow the physical network fabric to tunnel the payload or
" inner packet ” to a physical network address for a network
interface of compute node 26 that executes the virtual router .
The outer header may include not only the physical network
address of the network interface of the server but also a
virtual network identifier such as a Virtual Extensible LAN
(VXLAN) tag or Multiprotocol Label Switching (MPLS)
label that identifies one of the virtual networks as well as the
corresponding routing instance executed by the virtual
router or an interface . That is , the MPLS label can map either
to a routing instance or to an interface . An inner packet
includes an inner header having a destination network
address that conforms to the virtual network addressing
space for the virtual network identified by the virtual net
work identifier . In some aspects , the virtual router buffers
and aggregates multiple tunneled packets received from the
underlying physical network fabric prior to delivery to the
appropriate routing instance for the packets . As used herein ,
a virtual network identifier is distinct from a unique identi
fier for a virtual network . While the virtual network identi
fier is a tag or label used to segment traffic , the unique

a

US 2022/0321382 A1 Oct. 6. 2022
4

identifier for a virtual network may be a bitstring that
uniquely identifies a virtual network within an orchestration
domain . For example , the unique identifier for a virtual
network may be a UUID assigned by an orchestrator such as
orchestration engine 30 .
[0033] Virtual networks are the fundamental building
blocks of a given Software - Defined Networking (SDN)
Enterprise Multi - cloud system . Access - control , services and
connectivity between virtual networks are defined via high
level policies . The SDN Enterprise Multi - cloud system
contains some conceptual similarities to standard MPLS L3
VPNs (for Layer 3 overlays) and MPLS EVPNs (for L2
overlays) .
[0034] In the example of FIG . 1 , SDN controller 32A
learns and distributes routing and other information (such as
configuration information) to all compute nodes in the data
center 10. The VR agent 36 running inside the compute
node , upon receiving the routing information from SDN
controller 32A , typically programs the data forwarding
element (virtual router) with the forwarding information .
SDN controller 32A sends routing and configuration infor
mation to the VR agent 36 using a messaging protocol such
as XMPP protocol . In XMPP , SDN controllers 32 and agents
communicate routes and configuration over the same chan
nel . SDN controller 32A acts as a messaging protocol client
when receiving overlay network routes (virtual routes) from
a VR agent 36 , and the VR agent 36 acts as a messaging
protocol server in that case . Conversely , SDN controller 32A
acts as a messaging protocol server to the VR agent 36 as the
messaging protocol client when the SDN controller sends
routes to the VR agent 36 , including overlay network routes
learned from SDN gateways or other compute nodes .
[0035] In accordance with the techniques of this disclo
sure , control nodes of SDN controller 32A generate and
encode route targets for virtual networks using a unique
identifier of the virtual network (e.g. , a UUID) that is already
stored by the SDN controller . For example , in response to
receiving a messaging protocol message from a compute
node 26 specifying a VPN route , a control node of SDN
controller 32A sends , to one or more routing protocol peers
in the SDN system , a VPN route to a virtual network
destination . The routing protocol peers may include , for
example , an SDN gateway 8 or a control node of a different
SDN cluster that is an iBGP - federated with the SDN cluster
to which the SDN controller 32A belongs . Among other
fields , the VPN route includes a route target field having the
route target value generated by the control node . The VPN
route also includes a route distinguisher field having a route
distinguisher value generated by the control node . Virtual
network destinations may be virtual network endpoints that
are compute node workloads and may represent virtual
machines and / or containers , for instance .
[0036] A route target is a type of BGP extended commu
nity . The control node of SDN controller 32A attaches a
route target to every VPN route advertised , and the adver
tised VPN routes carrying those route targets are imported
into the VRF table only if the advertised route target matches
the import route target of a VRF instance .
[0037] In a typical SDN system , every virtual network
created is automatically assigned a system - generated route
target . The system - generated route targets start from
8000000 and are used for various SDN system features (like

network policy , service chaining etc.) that involves import
ing / exporting routes in between VRF instances within the
SDN system Domain .
[0038] A route distinguisher is an identifier attached to a
route , enabling a router to distinguish to which VPN or
virtual private LAN service (VPLS) the route belongs . Each
routing instance may have one or more unique route distin
guishers associated with it . The route distinguishers used to
place bounds around a VPN so that the same IP address
prefixes can be used in different VPNs without having them
overlap . If the instance type is VRF , the route distinguisher
statement is required .
[0039] In some implementations , the system - generated
route targets are guaranteed to be unique only within an
SDN system cluster (also referred to as an “ SDN cluster ") .
This poses a limitation when customers use internal BGP
(iBGP) federated SDN system Clusters . In iBGP federated
SDN system Clusters , because Autonomous System Num
bers remain the same , virtual networks created on each
cluster may end up having the same system - generated route
target , which will result in unintended route leaking across
the cluster .
[0040] As described herein , SDN controller 32A that
manages a cluster of compute nodes generates a route target
value based on a unique identifier of a virtual network , rather
than using a system - generated route target value based on an
incremented base value . SDN controller 32A may obtain the
unique identifier of the virtual network from a configuration
node of the SDN controller 32A , which listens for configu
ration updates including new virtual network objects created
by the orchestration engine 30 as a new virtual network is
created . SDN controller 32A attaches the route target to a
VPN route when outputting an iBGP message to an iBGP
session peer .

a

[0041] In one example , SDN controller 32A generates the
value field according to a different approach depending on a
route target type for the VPN route . According to one
approach , SDN controller 32A computes the value field for
route a target type based on the Virtual Network's 128 - bit
UUID , as described in further detail below , for type 0 and
type 1 routes . According to another approach , a new route
target type is introduced , called Type 7 , which comprises of
a 2 - Bytes Type field and 6 - Bytes Value Field . In this manner ,
the issue with unintended route leaking between SDN clus
ters is addressed due to the very low likelihood of collisions
on the system - generated route targets . The newly proposed
approach for type 7 routes also helps in increasing the route
target range manifold .
(0042] By generating the route target based on the UUID
of the virtual network , the peer recipients of the virtual route
can uniquely identify the route in more situations . In con
trast , when SDN controller 32 generates a route target for a
route advertised by the compute node 26 based on system
generated value , which may not be globally unique across
different SDN clusters , the routing protocol peer receiving
the virtual route from SND controller 32 may result in
unintended route leaking across the SDN clusters .
(0043] The techniques of this disclosure may provide one
or more technical advantages . For example , the receiving
routing peer , such as an iBGP peer control node of an SDN
controller , can properly distinguish between virtual routes
(VPN routes) associated with different virtual networks in
different SDN clusters that have the same autonomous
system numbers . This results in the SDN gateway router 8

US 2022/0321382 A1 Oct. 6. 2022
5

a

properly storing the routes as distinct virtual routes , rather
than storing routes incorrectly based on unintended identical
route target values .
[0044] In addition , the control node leverages the UUID
value that is already being generated for a virtual network by
orchestration engine 30 upon creating a new virtual network
object . There is already a significant amount of randomness
in the UUID generation . Therefore , it may be more efficient
and easier to implement if SDN controller 32A uses the
UUID for generating the route target value , as opposed to
using an additional , separately generated random number
other than the UUID as the basis for generating the route
target value . Using a separately generated random number
rather than the UUID would require additional configura
tion , as well as additional steps by SDN controller 32A .
Thus , the techniques of this disclosure may reduce process
ing power and conserve computing resources of SDN con
troller 32A by eliminating unnecessary computational steps ,
and may reduce an amount of time needed to generate the
route target .
[0045] In addition , if the receiving routing peer is also
configured such that it is aware of the new route target type ,
the receiving routing peer could also learn the UUID of the
virtual network that is implicitly contained in the received
route . For example , a peer SDN controller could learn and
store the unique identifier of a virtual network based on the
route target of the received route , and peer SDN controller
can in turn advertise the unique identifier of a virtual
network .
[0046] FIG . 2 is a block diagram illustrating an example
implementation of data center 10 of FIG . 1 in further detail ,
in accordance with the techniques of this disclosure . In the
example of FIG . 2 , data center 10 includes compute nodes
26A - 26X that include virtual routers 42A - 42X (collectively ,
“ virtual routers 42 , " sometimes referred to as “ vrouter ”) .
Responsive to instructions received from SDN controller
32A , virtual routers 42 dynamically create and manage one
or more virtual networks (“ VN1 , VNO ”) 46 usable for
communication between application instances .
[0047] In one example , virtual routers 42 execute the
virtual network as an overlay network , which provides the
capability to decouple an application's virtual address from
a physical address (e.g. , IP address) of the one of compute
nodes 26A - 26X (" compute nodes 26 ”) on which the appli
cation is executing . Each virtual network may use its own
addressing and security scheme and may be viewed as
orthogonal from the physical network and its addressing
scheme . Various techniques may be used to transport packets
within and across virtual networks 46 over the physical
network .
[0048] Each of virtual routers 42 executes within a hyper
visor , a host operating system , or other component of each
of compute nodes 26. Each of compute nodes 26 represents
an x86 or other general - purpose or special - purpose server
capable of executing virtual machines 48. In the example of
FIG . 2 , virtual router 42A executes within hypervisor 40 ,
also often referred to as a virtual machine manager (VMM) ,
which provides a virtualization platform that allows multiple
operating systems to concurrently run on one of compute
nodes 26. In the example of FIG . 2 , virtual router 42A
manages virtual networks 46 , each of which provides a
network environment for execution of one or more virtual
machines (VMs) 48 on top of the virtualization platform
provided by hypervisor 40. Each VM 48 is associated with

one of the virtual networks VNO - VN1 and represents tenant
VMs running customer applications such as Web servers ,
database servers , enterprise applications , or hosting virtual
ized services used to create service chains . In some cases ,
any one or more of compute nodes 26 or another computing
device hosts customer applications directly , i.e. , not as
virtual machines . Virtual machines as referenced herein ,
e.g. , VMs 48 , compute nodes 26 , or a separate computing
device that hosts a customer application may be referred to
alternatively as “ hosts . ”
[0049] Each interface of VMs 48 running on the host is
connected to a VRF that contains the forwarding tables for
the corresponding network that contains the IP address of
that interface . A vRouter only has VRFs for networks that
have interfaces in them on that host , including the Fabric
VRF that connects to the physical interface of the host .
Virtual networking uses encapsulation tunneling to transport
packets between VMs 48 on different hosts , and the encap
sulation and decapsulation happens between the Fabric VRF
and the VM VRFs .
[0050] In general , each of VMs 48 may be any type of
software application and is assigned a virtual address for use
within a corresponding virtual network 46 , where each of the
virtual networks may be a different virtual subnet provided
by virtual router 42A . A VM 48 may be assigned its own
virtual layer three (L3) IP address , for example , for sending
and receiving communications , but is unaware of an IP
address of the physical compute node 26A on which the
virtual machine is executing . In this way , a “ virtual address ”
is an address for an application that differs from the logical
address for the underlying , physical computer system , e.g. ,
compute node 26A in the example of FIG . 2. The virtual
addresses may also be referred to herein as “ virtual inter
faces . "
[0051] In one implementation , each of compute nodes 26
includes a corresponding one of VR agents 36A - 36X that
communicates with SDN controller 32A and , responsive
thereto , directs virtual router 42 so as to control the overlay
of virtual networks 46 and coordinate the routing of data
packets within compute node 26. In general , each VR agent
36 communicates with SDN controller 32A , which gener
ates commands to control routing of packets through data
center 10 .
[0052] VR agents 36 execute in user space and operate as
a proxy for control plane messages between VMs 48 and
SDN controller 32A . For example , a VM 48 may request to
send a message using its virtual address via the VR agent
36A , and VR agent 36A may in turn send the message and
request that a response to the message be received for the
virtual address of the VM 48 that originated the first mes
sage . In some cases , a VM 48 invokes a procedure or
function call presented by an application programming
interface of VR agent 36A , and the VR agent 36A handles
encapsulation of the message as well , including addressing .
[0053] In some example implementations , each compute
node 26A further includes an orchestration agent (not shown
in FIG . 2) that communicates directly with orchestration
engine 30. For example , responsive to instructions from
orchestration engine 30 , the orchestration agent communi
cates attributes of the particular VMs 48 executing on the
respective compute node 26 , and may create or terminate
individual VMs .
[0054] In one example , network packets , e.g. , layer three
(L3) IP packets or layer two (L2) Ethernet packets generated

2

US 2022/0321382 A1 Oct. 6. 2022
6

a

or consumed by the instances of applications executed by
virtual machines 48 within the virtual network domain may
be encapsulated in another packet (e.g. , another IP or Eth
ernet packet) that is transported by the physical network .
The packet transported in a virtual network may be referred
to herein as an “ inner packet ” while the physical network
packet may be referred to herein as an “ outer packet ” or a
" tunnel packet . ” Encapsulation and / or de - capsulation of
virtual network packets within physical network packets
may be performed within virtual routers 42 , e.g. , within the
hypervisor or the host operating system running on each of
compute nodes 26. As another example , encapsulation and
decapsulation functions are performed at the edge of IP
fabric 20 at a first - hop top - of - rack (TOR) switch 24 that is
one hop removed from the application instance that origi
nated the packet . This functionality is referred to herein as
tunneling and may be used within data center 10 to create
one or more overlay networks . Besides IP - in - IP , other
example tunneling protocols that may be used include IP
over GRE , VXLAN , MPLS over GRE , MPLS over UDP , etc.
[0055] As noted above , SDN controller 32A provides a
logically centralized controller for facilitating operation of
one or more virtual networks within data center 10. For
example , SDN controller 32A maintains a routing informa
tion base , e.g. , one or more routing tables that store routing
information for the physical network as well as one or more
overlay networks of data center 10. Similarly , virtual routers
42 maintain routing information , such as one or more
routing and / or forwarding tables . In one example implemen
tation , virtual router 42A of hypervisor 40 implements a
network forwarding table (NFT) 44 for each virtual network
46. In general , each NFT 44 stores forwarding information
for the corresponding virtual network 46 and identifies
where data packets are to be forwarded and whether the
packets are to be encapsulated in a tunneling protocol , such
as with a tunnel header that may include one or more headers
for different layers of the virtual network protocol stack .
[0056] For example , virtual machine VM1-48 may send
an “ inner packet , ” to virtual router 42A by an internal link .
Virtual router 42 uses NFT1 to look up a virtual network
destination network address for the packet . NFT1 specifies
an outbound interface for virtual router 42A and encapsu
lation for the packet . Virtual router 30A applies the encap
sulation to add a tunnel header to generate an outer packet
and outputs the outer packet on the outbound interface , in
this case toward leaf switch 24A .
[0057] The routing information , for example , maps packet
key information (e.g. , destination IP information and other
select information from packet headers) to one or more
specific next hops within the networks provided by virtual
routers 42 and IP fabric 20. In some cases , the next hops are
chained next hops that specify a set of operations to be
performed on each packet when forwarding the packet , such
as may be used for flooding next hops and multicast repli
cation . As shown in FIG . 2 , each virtual network 46 provides
a communication framework for encapsulated packet com
munications for the overlay network established through IP
fabric 20. In this way , network packets associated with any
of virtual machines 48 may be transported as encapsulated
packet communications via the overlay network .
[0058] Each of VR agents 36 may send messages to SDN
controller 32A over XMPP sessions , the messages convey
ing virtual routes to the virtual interfaces (virtual addresses)
of the VMs of compute nodes 26. The virtual routes may

also be referred to herein as overlay network routes . For
example , VR agent 36A sends an XMPP message 37A
containing virtual route (s) for compute node 26A . SDN
controller 32A receives the messages and stores the virtual
routes to overlay routing information , and may in turn
advertise one or more of the overlay routes received from a
first VR agent 36 to SDN gateways 8 (e.g. , via Multi
Protocol extensions for BGP (MP - BGP)) . MP - BGP is an
extension to BGP that allows different address families to be
distributed . SDN controller 32A may also advertise the
overlay routes (VPN routes) to other control nodes 54 , such
as to a control node of SDN 32B , if there is a gateway router
between the two clusters , and / or to another SDN controller
(not shown) in an iBGP - federated SDN cluster . Interior BGP
(iBGP) is an interior routing protocol for routing commu
nications within a single autonomous system . IBGP - feder
ated SDN clusters are different SDN clusters having a same
autonomous system number .
[0059] In some examples , any of the virtual routes may
include a prefix , a next hop address associated with a server
of compute nodes 26 , and a label or other data to identify a
virtual routing and forwarding instance configured at the
next hop server . A virtual route may also include a route
distinguisher (RD) and a route target .
[0060] One example of an IP - based VPN is described
more fully in Rosen et al . , “ BGP / MPLS IP Virtual Private
Networks (VPNs) ” , Request for Comments 4364 , Network
Working Group , February 2006 , the entire contents of which
are incorporated by reference herein . Further details of
BGP - signaled IP / VPNs are described in S. Mackie et al . ,
“ BGP - Signaled End - System IP / VPNs , ” Network Working
Group Internet - Draft , Dec. 15 , 2016 , the entire contents of
which are incorporated by reference herein . Multiprotocol
extensions for BGP are described in T. Bates et al . , " Mul
tiprotocol Extensions for BGP - 4 , ” Request for Comments
4760 , Network Working Group , January 2007 , the entire
contents of which are incorporated by reference herein .
[0061] The route distinguisher is an address qualifier used
in the context of BGP - MPLS VPNs . The route distinguisher
is used to distinguish between VPNv4 (alternatively , “ VPN
IPv4 ”) routes sent by different MP - BGP peers .
[0062] The route target is a 6 - byte field . The route target
is an 8 - octet value consisting of two major fields , the Type
Field (2 octets) and Value Field (6 octets) . The type field
determines how the value field should be interpreted . The
following existing Types are defined as shown in Table 1 :

>

TABLE 1

Type number Value

Type o
Type 1
Type 2

2 - byte ASN + 4 - byte value subfield
4 - byte IP 2 - byte value subfield
4 - byte ASN + 2 - byte value subfield

[0063] With a type - 2 VPN route , at a control node of the
SDN controller , the / 32 IP address of a VM launched inside
a virtual node is added onto the VRF corresponding to the
virtual node (VN) . The VRF will have the usual attributes
like the Route - Target (RT) and Route Distinguisher (RD) .
[0064] Every control node of the SDN controller adver
tises the XMPP routes received from the compute nodes
towards other BGP speakers as VPNv4 routes , e.g. , route

US 2022/0321382 A1 Oct. 6. 2022
7

advertisement 38A . The BGP speakers can include other
control nodes 54 as well as external BGP speakers such as
SDN gateway routers 8 .
[0065] The SDN architecture described herein supports
separation of control - data and management interfaces . It is
assumed that the management interfaces are assigned an IP
address which is reachable from the outside world and needs
to be unique . However , the control - data network is taken
from the private addressing space and is local to the cluster .
This can be reused across multiple independent clusters .
[0066] The architecture of data center 10 illustrated in
FIG . 2 is shown for purposes of example only . The tech
niques as set forth in this disclosure may be implemented in
the example data center 10 of FIG . 2 , as well as other types
of data centers not described specifically herein . Nothing in
this disclosure should be construed to limit the techniques of
this disclosure to the example architecture illustrated by
FIG . 2 .
[0067] FIG . 3 is a block diagram illustrating an example of
control nodes advertising VPN routes in the data center of
FIG . 2 , in accordance with the techniques of this disclosure .
FIG . 3 illustrates control nodes 54A , 54N , that exchange an
iBGP message 38A that includes a route target generated in
accordance with the techniques of this disclosure . The
example system of FIG . 3 illustrates two SDN system
Clusters :
[0068] 1. SDN system Cluster 60A made up of :

[0069] a . Control Node 541—10.219.50.223
[0070] b . Compute Node 26A — 10.219.50.224

[0071] 2. SDN system Cluster 60B made up of :
[0072] a . Control Node 541—10.219.50.225
[0073] b . Compute Node 26X — 10.219.50.226

[0074] In the absence of the techniques of this disclosure ,
the system - generated route target for ibgpl - network belong
ing to SDN system Cluster 60A is target : 64512 : 8000002 ,
and the system - generated route target for ibgp2 - network
belonging to SDN system Cluster 60B is also target : 64512 :
8000002 .
[0075] In case of an iBGP federated cluster in which SDN
system clusters 60A and 60B are part of a single autonomous
system , the customer would be adding each control node to
the federated SDN system cluster as an “ External Control
Node . ” As soon as that is done , the iBGP neighborship
between control node 60A and control node 60B will be in
ESTABLISHED state . Since system generated route target
across the iBGP federated cluster are the same , routes in the
corresponding VRFs are leaked between these two clusters
and data path is stitched . The data communication between
workloads on the federated clusters will work if there is
L2 / L3 reachability between the compute nodes hosting the
respective workloads .
[0076] Due to this , the data path is stitched and the
workloads belonging to two different virtual networks across
different SDN system clusters can communicate with each
other if there is L2 / L3 reachability between the compute
nodes hosting the respective workloads .
[0077] This disclosure proposes the following approaches
to address this problem . In each approach , the route target
value is generated based at least in part on using a checksum
value of the unique identifier of the virtual network .
[0078] Approach 1 : Compute the value field for route
target type based on the Virtual Network's 128 - bit UUID .
For Type 0 : The value field is of length 32 bits (4 Bytes) .
Here is what can be done to generate a route target for this

case : obtain a cyclic redundancy check (CRC) checksum
value of the unique identifier of the virtual network ; truncate
the CRC checksum value to a size determined by a route
target type for the virtual provide network route ; determine
an integer value of the truncated CRC checksum value ; and
assign the route target value based on the integer value .
[0079] For example :

[0080] a . With value field holding 32 bits , the range of
the value field can be from 1-4,294,967,295

[0081] b . Retrieve the Virtual Network's UUID for a
Virtual Network on which Type O route - target should
be computed . The UUID generated is 128 - bits in
length .

[0082] C. Obtain CRC64 of 128 - bit UUID using the
ECMA polynomial .

[0083] d . The CRC64 checksum obtained from Step b)
is 64 - bits (8 Bytes) .

[0084] e . Truncate the CRC check value to four bytes of
the CRC check value (e.g. , take the first 32 - bits (4
Bytes)) and take base 16 integer through int (string , 16)

[0085] f . Use the outcome of Step e) as the route target
for the virtual network .

[0086] For Type 2 : The value field is of length 16 bits (2
Bytes) . Here is what can be done to obtain a route target for
this case :

[0087] a . With value field holding 16 bits , the range of
the value field can be from 1-65535

[0088] b . Retrieve the Virtual Network's UUID for a
Virtual Network on which Type 2 route - target should
be computed . The UUID generated is 128 - bits in
length .

[0089] c . Get CRC64 of 128 - bit UUID using the ECMA
polynomial .

[0090] d . The CRC64 checksum obtained from Step b)
is 64 - bits (8 Bytes) .

[0091] e . truncate the CRC check value to two bytes of
the CRC check value (Take the first 16 - bits (2 Bytes))
and take base 16 integer through int (string , 16)

[0092] f . Use the outcome of Step e) as the route target
for the virtual network .

[0093] Approach 2 : Introduce a new route - target type
say Type 7 , which comprises of a 2 - Bytes Type field and
6 - Bytes Value Field . The value field is of length 48 bits (6
Bytes) . Here is what can be done to obtain a route target for
this case :

[0094] a . With value field holding 48 bits , the range of
the value field can be from 1-2,81,474,976,710,656

[0095] b . Retrieve the Virtual Network's UUID for a
Virtual Network on which Type O route - target should 0
be computed . The UUID generated is 128 - bits in
length .

[0096] c . Obtain CRC64 of 128 - bit UUID using the
ECMA polynomial .

[0097] d . The CRC64 checksum obtained from Step b)
is 64 - bits (8 Bytes) .

[0098] e . Truncate the CRC check value to six bytes of
the CRC check value (Take the first 48 - bits (6 Bytes))
and take base 16 integer through int (string , 16)

[0099] f . Use the outcome of Step e) as the route target
for the virtual network .

[0100] Currently , the SDN Enterprise Multicloud system
supports the above 64 - bit route - target types . Type O is the
default route target type in SDN system . Regardless of the
choice , the computed route target is unique and chances of

a

US 2022/0321382 A1 Oct. 6. 2022
8

collisions are very rare within and outside the cluster . By
computing unique route targets within the autonomous sys
tem of SDN system clusters 60A and 60B , this solution will
prevent unintended route leaking across the federated clus
ters .
[0101] The techniques described herein address both the
2 - byte and the 4 - byte autonomous system solutions .
[0102] The techniques described herein may also be more
secure as compared to some implementations , since the
route target values generated as described herein are not
predictable . With a different implementation in some SDN
systems , the route - target value starts from 8000000 and is
sequential in nature (increments by one for every virtual
network created) . A third party can potentially predict the
route target and can configure the predicted value for its own
VRF's import route target .
[0103] An alternative option is to use a random number
generated by a random number generator as a basis for the
route target , instead of using the UUID . Though this may
address the problem , it is not as efficient as leveraging the
UUID value that is a unique value already obtained by the
SDN controller in response to detecting a new virtual
network object created by the orchestration engine . The
UUID is already generated by the orchestration engine , and
available to the SDN controller .
[0104] To overcome the route target collision issue com
pletely , this disclosure proposes changing the generation of
the route target value by control nodes 54. Rather than using
the system - generated route target value , the techniques
described herein use a UUID of the virtual network . For
some examples , the control node 54 may advertise the route
target using both the administrator field and the sub - admin
istrator field for a 6 - byte route target value generated based
on the UUID . This will be advertised as a new type - 7 RD
route , as shown in Table 2. In this manner , a Type value of
the Type field can indicate that the Value field is generated
based on the unique identifier of the virtual network . A
receiving device uses this information to interpret the
received message . While the new route target type is
described with respect to type value 7 , another value may be
used . Values for route target route types are assigned by the
Internet Assigned Numbers Authority (IANA) .

of the nodes 50 , 52 , and 52 may be implemented as a
separate software process , and the nodes may be distributed
across multiple hardware computing platforms that provide
an environment for execution of the software . Moreover ,
each of the nodes maintains state database 56 , which may be
stored within a centralized or distributed database . In some
examples , state database 56 is a NoSQL database . In some
examples , state database 56 is a database cluster .
[0107] In general , analytic nodes 50 are tasked with col
lecting , storing , correlating , and analyzing information from
virtual and physical network elements within data center 10 .
This information may include statistics , logs , events , and
errors for use in managing the routing and network configu
ration of data center 10. Analytic nodes 50 store this
information in state database 56 .
[0108] Configuration nodes 52 translate the high - level
data model of orchestration engine 30 into lower - level
models suitable for interacting with network elements , such
as physical switches 22 , 24 and VR agents 36. Configuration
nodes 52 keep a persistent copy of the configuration state of
SDN controller 32A within state database 56 (“ STATE
DATA 56 ”) .
[0109] Control nodes 54 implement a logically centralized
control plane responsible for maintaining ephemeral net
work state . Control nodes 54 interact with each other and
with network elements , such as VR agents 36 and virtual
routers 42 of compute nodes 26 , to ensure that the network
state is eventually consistent with desired state as specified
by orchestration engine 30. In general , control nodes 54
receive configuration state information of SDN controller
32A from configuration nodes 52 , and exchange routes with
each other via iBGP to ensure that all control nodes 54 have
the same network state . In a network architecture in which
multiple SDN clusters are federated over iBGP , control
nodes 54 exchange VPN routes via iBGP sessions with one
or more control nodes of other BGP clusters . Further , control
nodes 54 exchange routes with VR agents 36 on compute
nodes 26 via XMPP .
[0110) Control nodes 54 also communicate the configu
ration state information , such as routing instances and for
warding policy , to VR agents 36 , e.g. , via XMPP , for
installation within respective virtual routers 42. In some
examples , control nodes 54 may proxy traffic on behalf of
compute nodes 26. These proxy requests may be received
over XMPP . Further , control nodes 54 exchange routes with
SDN gateway 8A via BGP , and exchanges the configuration
state of SDN controller 32A with service nodes 21 via
Netconf .
[0111] Configuration nodes 52 provide a discovery service
that customers 4 may use to locate various services available
within the network . For example , if VR agent 36A attempts
a connection with control node 54A , it uses a discovery
service provided by configuration nodes 52 to discover the
IP address of control node 54A . Clients executing on VMs
48 may use local configuration , DHCP or DNS to locate the
service discovery server within configuration nodes 52 .
(0112] In some examples , configuration nodes 52 present
a northbound API that interfaces with orchestration engine
30. Orchestration engine 30 uses this interface to install
configuration state using the high - level data model . Con
figuration nodes 52 further include a message bus to facili
tate communications amongst internal components . Con
figuration nodes 52 further include a transformer that
discovers changes in the high - level model of orchestration

a

TABLE 2

Type (2 - bytes) Value (6 - bytes)
New value - 7 Value generated based on UUID

a a

[0105] Although described for purposes of example in
terms of SDN clusters (a collection of control node server (s)
and compute node server (s)) , in some examples , the tech
niques of this disclosure can be applied in systems that do
not necessarily involve multiple SDN clusters . For example ,
one VM in a cluster may need to communicate with a bare
metal server (BMS) that is managed by some routing device .
In this case , the techniques of this disclosure can apply to
VM - to - BMS communications .
[0106] FIG . 4 is a block diagram illustrating an example
implementation of the data center of FIG . 2 in further detail .
In the example of FIG . 4 , SDN controller 32A includes one
or more analytic nodes 50A - 50X (collectively , “ analytic
nodes 50 ”) , one or more configuration nodes 52A - 52X
(collectively , " configuration nodes 52 ”) and control nodes
54A - 54X (collectively , “ control nodes 54 ”) . In general , each

a

US 2022/0321382 A1 Oct. 6. 2022
9

a

engine 30 and transforms these changes into corresponding
changes in the low - level data model managed by SDN
controller 32A . Configuration nodes 52 further include an
IF - MAP server that provides a southbound API to push
computed low - level configuration down to control nodes 54 .
[0113] Furthermore , configuration nodes 52 include a dis
tributed applications manager used to allocate unique object
identifiers , and to implement transactions across data center
10. For example , upon creation of a new virtual network ,
orchestration engine 30 creates a virtual network object and
UUID , and one or more of configuration nodes 52 detects
the new virtual network object and assign a VN - ID to the
new virtual network . VN - ID is a 2 - byte ID generated by the
config node and sent to the control node . This is different
from the UUID generated by the orchestration engine 30 .
For example , in the case of orchestration engine 30 being an
OpenStack orchestrator , the transformer “ listens ” for new
OpenStack objects created by the OpenStack orchestrator .
When a person creates a virtual network object in Open
Stack , OpenStack generates the UUID for the virtual net
work object . Configuration nodes 52 learns the UUID of a
virtual network object in this manner , and saves the UUID
to state data 56. Each OpenStack object has a corresponding
universally unique identifier , which may be stored in state
data 56 .
[0114] As described herein , each of control nodes 54 is
configured to generate , based on a unique identifier (e.g. , the
UUID) of a virtual network , a route target value for the
virtual network , and output a VPN route that includes the
route target value and a network address associated with a
compute node . The control node outputs the VPN route to
one or more BGP sessions , including an iBGP session to an
iBGP - federated peer such as a control node in a different
SDN cluster .
[0115] The architecture of data center 10 illustrated in
FIG . 4 is shown for purposes of example only . The tech
niques as set forth in this disclosure may be implemented in
the example data center 10 of FIG . 4 , as well as other types
of data centers not described specifically herein . Nothing in
this disclosure should be construed to limit the techniques of
this disclosure to the example architecture illustrated by
FIG . 4 .
[0116] FIG . 5 is a block diagram illustrating an example of
a control node of an SDN controller in further detail in
accordance with the techniques of this disclosure . Control
node 54 is configured to communicate with multiple other
types of nodes , including configuration nodes 52A - 52X
(“ config . nodes 52 ') , other control nodes 54B - 54X , compute
nodes 62A - 62X (" compute nodes 62 ”) , and gateway nodes
72A - 72N (" gateway nodes ”) . Control node 54 also commu
nicates with IP fabric 20 , which , as described herein , may be
made up of devices including spine switches and leaf
switches , for example . Control node 54 A provides an oper
ating environment for protocols 70 to execute . Protocols 70
may include , for example , an XMPP process 70A , a NET
CONF process 70B , a BGP process 70C , and an IF - MAP

use XMPP to send configuration state such as routing
instances and forwarding policy . The control nodes proxy
certain kinds of traffic on behalf of compute nodes . These
proxy requests are also received over XMPP . The control
nodes exchange overlay network routes with the gateway
nodes (routers and switches) using BGP . The control nodes
also send configuration state using NETCONF .
[0118] Control node 54 A receives configuration informa
tion from one or more of config . nodes 52 using Interface to
Metadata Access Points (IF - MAP) process 70D . IF - MAP
process 70D may include circuitry for executing software
instructions for sending and receiving communications from
config nodes 52 in accordance with the IF - MAP protocol .
IF - MAP process 70D stores the configuration information
received from configuration nodes 52 to configuration state
66 (“ CONFIG . STATE 66 ”) .
[0119] Control node 54A exchanges BGP messages with
BGP peers , including control nodes 54B - 54X and gateway
nodes 72 using BGP process 70C . Gateway nodes 72 may
include one or more SDN routers such as SDN gateways 8 .
BGP process 70C may implement multi - protocol BGP (MP
BGP) , for example . BGP process 70C may include circuitry
for executing software instructions for sending and receiving
BGP messages with control nodes 54B - 54X in accordance
with the BGP protocol , including MP - BGP update mes
sages . BGP process 70C stores overlay network routes
received from BGP route advertisements from gateway
nodes 72 and control nodes 54B - 54X to overlay routing
information 65 .
[0120] Control node 54A exchanges messages with com
pute nodes using XMPP process 70A in accordance with
XMPP . Control node 54A exchanges the messages via
XMPP sessions . Compute nodes 62 may correspond to
compute nodes 26 of FIGS . 1-3 . XMPP process 70A may
include circuitry for executing software instructions for
exchanging XMPP messages with compute nodes 62 in
accordance with the XMPP protocol . XMPP is described in
further detail in P. Saint - Andre , Extensible Messaging and
Presence Protocol (XMPP) : Core , IETF RFC 6120 , March
2011 , the entire contents of which is incorporated by refer
ence herein . Control node 54A (and more specifically ,
XMPP process 70A of control node 54A) may serve as an
XMPP client or an XMPP server relative to one of compute
nodes 62 , depending on the context . For example , control
node 54 A may act as an XMPP server , and compute nodes
62 may be XMPP clients that subscribe to information
published by control node 54A , such as configuration infor
mation from configuration state 66 for individual compute
nodes 62 and routing information from overlay routing
information 65 that pertains to individual compute nodes 62 .
[0121] As another example , control node 54 A may act as
an XMPP client to one or more of compute nodes 62 as
XMPP servers , in which control node 54A subscribes to
information published by compute nodes 62 , such as routing
information learned by compute nodes 62 from other
sources . XMPP process 70A receives overlay network routes
from compute nodes 62A via an XMPP session and stores
the overlay network routes to overlay routing information
65. Overlay network routes learned by XMPP process 70A
may be leaked to BGP process 70C , and BGP process 70C
in turn may send to its BGP peers (e.g. , other control nodes
or SDN gateways) BGP route advertisements that advertise
the overlay network routes (VPN routes) in overlay routing
information 65 learned from compute nodes 62 via XMPP .

a

process 70D .
[0117] The control nodes receive configuration state from
the configuration nodes using IF - MAP . The control nodes
exchange overlay network routes with other control nodes
using IBGP to ensure that all control nodes have the same
overlay network state . The control nodes exchange overlay
network routes (e.g. , VPN routes) with the vRouter agents
on the compute nodes using XMPP . The control nodes also

US 2022/0321382 A1 Oct. 6. 2022
10

a

a

In some examples , NETCONF process 70B of control node
54A enables control node 54 A to communicate with gateway
nodes 72 via the NetConf protocol .
[0122] In response to XMPP process 70A receiving an
XMPP message from one of compute nodes 62 advertising
a VPN route associated with a new virtual network endpoint
on the one of compute nodes 62 , BGP process 70C generates
a route advertisement based on the XMPP message that
includes a VPN route for the new virtual network endpoint .
A virtual network endpoint may be , for example , a virtual
machine or a container . For example , this handoff may occur
due to the leaking of overlay network routes learned by
XMPP process 70A as described above . Control node 54A
generates a route target value in accordance with the tech
niques described herein , based on the unique identifier of a
virtual network that includes the new virtual network end
point . BGP process 70C saves the route target value to
overlay routing information 65 and includes the generated
route target value for the virtual network in the route
advertisement . Control node 54A outputs the route adver
tisement to one or more of control nodes 54B - 54X and / or to
other control nodes not shown , such as via iBGP sessions . In
some examples , control node 54A can generate and output
a route advertisement having a route target generated as
described herein , independent of receiving an XMPP mes
sage from a control node .
[0123] In some examples , IF - MAP messages received by
control node 54 A from configuration nodes 52 may specify
a unique identifier (e.g. , a UUID) of a virtual network , upon
configuration node 52 detecting creation of a new virtual
network object . Control node 54A may store the UUIDs
specified in the XMPP messages , such as to config state 66 .
Similarly , if the virtual network is subsequently deleted ,
control node 54A may receive an IF - MAP message from
configuration node 52A indicating the virtual network object
has been deleted . Virtual network endpoints that were part of
the deleted virtual network will also be deleted . Control
node 54A updates config . state 66 to reflect the detected
configuration changes , and may output a new iBGP route
advertisement to BGP peers indicating that the VPN route to
the virtual network endpoint has been withdrawn . The VPN
route will similarly include the route target value generated
as described herein , based on the UUID of the virtual
network that is deleted .
[0124] As one example , for Type O route target values ,
BGP process 70C may generate the route target values
according to the following steps , with example values .
[0125] Type0 — Value is of length 32 bits (Range is 1-4 ,
294,967,295)

[0126] a . Assume the UUID of a virtual network during
generation is 5f3c3397-706f - 47e6 - a40b
01a48ef7632c .

[0127] b . Take cyclic redundancy check (CRC) 64
checksum of the 128 bits UUID 5f3c3397-706f - 47e6
a40b - 01a48ef7632c using the ECMA Polynomial (Eu
ropean Computer Manufacturers Association) . The
CRC64 checksum of the UUID in Step a) would be
e6420603c8cae941 (For example , https://crc64.online
could be used for this conversion) .

[0128] c . Truncate the CRC checksum value to a size
determined by a route target type for the virtual provide
network route . For example , the first 4 bytes from the
CRC64 checksum will be e6420603 .

[0129] d . Compute the base 16 integer of the hexadeci
mal value in Step c) :
[0130] >>> int (" e6420603 ” , 16)
[0131] 3,863,086,595

[0132] e . Assign target : 64512 : 3863086595 as the route
target for the virtual network in question .

[0133] As another example , for Type 2 route target values ,
BGP process 70C may generate the route target values
according to the following steps , with example values .
[0134] Type2 — Value is of length 16 bits (Range is
1-65535)

[0135] a . Assume the UUID of a virtual network during
generation is 14185dd7-9b01-4cf7-94fa
1dcb1201bbac .

[0136] b . Get cyclic redundancy check (CRC) CRC64
checksum of the 128 bits UUID 14185dd7-9b01-4cf7
94fa - 1dcb1201bbac using the ECMA Polynomial . The
CRC - 64 algorithm converts a variable - length string
into a 16 - character string . The CRC64 checksum of the
UUID in Step a) would be d0c44c8f58db4a09 .

[0137] c . Truncate the CRC checksum value to a size
determined by a route target type for the virtual provide
network route . For example , for the Type2 route target ,
the first 2 bytes from the CRC64 checksum will be
d0c4 .

[0138] d . Compute the base 16 integer of the value in
Step c) :
[0139] >>> int (" d0c4 " , 16)
[0140] 53444

[(0141] e . Assign target : 64512 : 53444 as route - target for
the virtual network in question .

[0142] As a further example , for Type 7 route target
values , BGP process 70C may generate the route target
values according to the following steps , with example val
ues .

a

[0143] Type 7 — Value field is reserved to be of length 48
bits in this newly introduced type (Range is 1—2,81,474 ,
976,710,656) .

[0144] a . Assume the UUID of a virtual network during
generation is 7e03def7 - dfea - 4850 - beb9
b57e6d4e4060 .

[0145] b . Obtain a CRC64 checksum of the 128 bits
UUID 7e03def7 - dfea - 4850 - beb9 - b57e6d4e4060 using
the ECMA Polynomial . The CRC64 checksum of the
UUID in Step a) would be 13ee423a4bc7e821 .

[0146] c . Truncate the CRC checksum value to a size
determined by a route target type for the virtual provide
network route . For example , the first 6 bytes from the
CRC64 checksum will be 13ee423a4bc7 .

[0147] d . Compute the base 16 integer of this value in
Step c) :
[0148] >>> int (" 13ee423a4bc7 " , 16)
[0149] 21914034260935

[0150] e . Assign target : 64512 : 21914034260935 as
route - target for the virtual network in question .

[0151] In this manner , the control node leverages the
UUID value that is already being generated for a virtual
network by the configuration nodes of the SDN controller
upon detecting the new virtual network object . There is
already a significant amount of randomness in the UUID
generation . Therefore , it may be more efficient and easier to
implement if the control node uses the UUID for generating
the route target value , as opposed to using an additional ,
separately generated random number other than the UUID as

2

US 2022/0321382 A1 Oct. 6. 2022
11

the basis for generating the route target value . Using a
separately generated random number rather than the UUID
would require additional configuration and code changes , as
well as additional steps on the control nodes . Thus , the
techniques of this disclosure may reduce processing power
and conserve computing resources of the control nodes of
the SDN controller by eliminating unnecessary computa
tional steps , and may reduce an amount of time needed to
generate the route target .
[0152] In some examples , control node 54A may also
generate a route distinguisher value for the VPN route based
on a physical hardware address of a compute node , as
described in U.S. application Ser . No. 16 / 933,684 , filed Jul .
20 , 2020 , entitled GENERATING ROUTE DISTINGUISH
ERS FOR VIRTUAL PRIVATE NETWORK ADDRESSES
BASED ON PHYSICAL HARDWARE ADDRESSES , the
entire contents of which are incorporated by reference
herein .

[0153] FIGS . 6A - 6B are block diagrams illustrating
examples of a compute node in further detail , in accordance
with the techniques of this disclosure . In the example of
FIGS . 6A - 6B , the compute node is compute node 62A of
FIG . 5. Compute node 62A may be one of compute nodes 26
of FIGS . 1-4 . Compute node 62A hosts VMs 82A - 82N
(“ VMs 82 ”) , and may be , for example , a general - purpose
x86 server . VMs 82 are tenant VMs running customer
applications such as Web servers , database servers , enter
prise applications or hosting virtualized services used to
create service chains , for example . In one example configu
ration , Linux is the host operating system (OS) .
[0154] Two components in a compute node implement a
virtual router ; namely , the vRouter agent 84 and the vRouter
forwarding plane 90. The vRouter forwarding plane 90 is
located in the kernel (e.g. , Linux) , and the vRouter agent 84
is the local control plane .
[0155] The vRouter agent 84 is a user space process
running inside the kernel . The vRouter agent 84 acts as the
local , lightweight control plane and is responsible for the
following functions . The vRouter agent 84 exchanges con
trol state such as routes with the control nodes 54 using
XMPP sessions . The vRouter agent 84 receives low - level
configuration state such as routing instances and forwarding
policy from the control nodes 54 using XMPP . The vRouter
agent 84 reports analytics state such as logs , statistics , and
events to the analytics nodes 50 (FIG . 3) . The vRouter agent
84 installs forwarding state into the vRouter forwarding
plane 90. The vRouter agent 84 may discover the existence
and attributes of VMs in cooperation with a Nova agent of
compute node 62A (not shown) . The vRouter agent 84
applies forwarding policy for the first packet of each new
flow and installs a flow entry for the flow in the flow table
of the forwarding plane . The vRouter agent 84 may proxy
one or more of DHCP , ARP , DNS , and MDNS , for example .
Additional proxies may be included in some implementa
tions . Each vRouter agent 84 is connected to at least two
control nodes 54 for redundancy in an active - active redun
dancy model .
[0156] FIG . 6B illustrates the virtual router (“ vRouter ”)
forwarding plane 90 of compute node 62A in further detail .
The vRouter forwarding plane 90 runs as a loadable kernel
process (e.g. , in Linux) . The vRouter forwarding plane 90 is
responsible for the following functions : vRouter forwarding

plane 90 enables encapsulating packets to be sent to the
overlay network and decapsulating packets to be received
from the overlay network .
[0157] Routing instances 92A - 92C , for respective tenants
A , B , and C , represent virtual routing and forwarding
instances (“ VRFs ”) . Routing instances 92A - 92C (“ routing
instances 92 ”) include corresponding FIBs 94A - 94C (“ FIBs
94 ”) and flow tables 96A - 96C (“ flow tables 96 %) . VRouter
forwarding plane 90 may include an additional VRF called
a “ fabric VRF ” (not shown) . The vRouter forwarding plane
90 assigns packets to a routing instance 94. Packets received
from the overlay network are assigned to a routing instance
based on the MPLS label or Virtual Network Identifier
(VNI) . Virtual interfaces to local virtual machines are bound
to routing instances 92. The vRouter forwarding plane 90
does a lookup of the destination address in the forwarding
information base (FIB) 94 , also known as a forwarding
table , and forwards the packet to the correct destination . The
routes may be Layer 3 IP prefixes or Layer 2 MAC
addresses , for example . A MAC address for a control - data
interface of compute node 62A may be stored in one or more
of the routing instances 92 .
[0158] A forwarding policy can be applied using a flow
table 96 : The vRouter forwarding plane 90 matches packets
against the flow table and applies the flow actions . The
vRouter forwarding plane 90 sends the packets for which no
flow rule is found (that is , the first packet of every flow) to
the vRouter agent 84 , which then installs a rule in the flow
table 96. The vRouter forwarding plane 90 sends certain
packets such as DHCP , ARP , MDNS to the vRouter agent for
proxying .
[0159] Each interface of VMs 82 running on the host is
connected to a VRF (routing instance 92) that contains the
forwarding tables for the corresponding network that con
tains the IP address of that interface . A vRouter only has
VRFs for networks that have interfaces in them on that host ,
including the Fabric VRF that connects to the physical
interface of the host . Virtual networking uses encapsulation
tunneling to transport packets between VMs 82 on different
hosts , and the encapsulation and decapsulation happens
between the Fabric VRF and the VM VRFs (routing
instances 92) .
[0160] When a new virtual workload is created , an event
is seen in the orchestration engine 30 and sent into SDN
controller 32A , which then sends requests to the vRouter
agent 84 for routes to be installed in the VRFs for virtual
networks , and the vRouter agent 84 then configures them in
the forwarder .
[0161] The logical flow for configuring networking on a
new VM with a single interface is as follows : Networks and
network policies are defined in either the orchestrator /
orchestration engine or Networking using user interface ,
command line interface , or REST application programming
interface (API) . A network is primarily defined as a pool of
IP addresses which will be allocated to interfaces when VMs
are created .
[0162] A VM is requested to be launched by a user of the
orchestrator , including which network its interface is in . The
orchestrator selects a host for the new VM to run on , and
instructs the vRouter agent 84 on that host to fetch its image
and start the VM . Events or API calls are received from the
networking service of the orchestrator instructing to set up
the networking for the interface of the new VM that will be
started . These instructions are converted into REST calls and

a

US 2022/0321382 A1 Oct. 6. 2022
12

a

a

sent to the SDN controller 32. The SDN controller 32 sends
a request to the vRouter agent 84 for the new VM virtual
interface to be connected to the specified virtual network .
The vRouter agent 84 instructs the vRouter forwarding plane
90 to connect the VM interface to the routing instance 92 for
the virtual network . The routing instance 92 (VRF) is
created , if not present , and the interface is connected to it .
[0163] The vRouter agent 84 starts the VM which will
usually be configured to request IP addresses for each of its
interfaces using DHCP . The vRouter agent 84 proxies the
DHCP requests and responds with the interface IP , default
gateway , and DNS server addresses . Once the interface is
active and has an IP address from DHCP , the vRouter agent
84 will install routes to the VM's IP address and MAC
address with a next hop of the VM virtual interface . The
VRouter agent 84 assigns a label for the interface and installs
a label route in the MPLS table (e.g. , FIB 94) .
[0164] VRouter agent 84 uses XMPP process 98 to estab
lish an XMPP session with a control node of the SDN
controller . XMPP process 98 of vRouter agent 84 learns
overlay network routes to virtual interfaces (virtual
addresses) from VMs 82 , and stores these as virtual routes
for the virtual interfaces to FIBs 94. XMPP process 98 sends
XMPP messages via the XMPP session to control nodes 54
to advertise the overlay network routes (VPN routes) . For
example , the vRouter agent 84 sends an XMPP message
37A to the SDN controller 32 containing a VPN route to the
new VM . The route has a next hop of a network address of
the server that the vRouter is running on (e.g. , an IP address
including IPv4 or IPv6) , and specifies an encapsulation
protocol using the label that was just allocated .
[0165] The control node of the SDN controller 32 distrib
utes the VPN route to the new VM to the other vRouters with
VMs in the same network and in other networks , as allowed
by network policy . The SDN controller sends routes for the
other VMs , as allowed by policy , to the vRouter of the new
VM . For example , the vRouter agent 84 XMPP process 98
receives virtual routes advertised by SDN controller's con
trol node 54A , and stores the overlay network routes to
overlay routing information 104 and one or more of FIBs 94 .
At the end of this procedure , the routes in the VRFs of all the
vRouters in the data center have been updated to implement
the configured network policies , taking account of the new
VM .
[0166] FIG . 7 is a block diagram illustrating an example
route advertisement for a virtual private network address
that includes , in accordance with techniques described
herein , a route target generated based on a unique identifier
associated with a virtual network . BGP UPDATE message
600 is a route advertisement that conforms to MP - BGP and
includes MP - REACH - NLRI field 602 advertising a host
route for a virtual machine in a compute node of a distrib
uted SDN system . Extended BGP UPDATE message 600
may represent an example instance of route advertisement
38A illustrated in FIG . 2. For purposes of illustration ,
extended BGP UPDATE message 600 is illustrated using
glyphs , rather than with packet fields .
[0167] MP - REACH - NLRI field 602 of extended BGP
UPDATE message 600 specifies an Address Family Identi
fier (AFI) field 604 having a value of 1 in this example to
indicate IPv4 network addresses , along with a value for the
Subsequent AFI (SAFI) field 606 having a value of 128 to
identify the virtual route as a L3 VPN route . AFI field 604
and SAFI field 606 may in some instances have different

values , as assigned by a private party or by the Internet
Assigned Numbers Authority (IANA) . In some examples , an
IPv6 prefix may be used instead of an IPv4 prefix .
[0168] Network Layer Reachability Information (NLRI)
field 608 specifies a host route for the compute node virtual
machine having IP address 10.10.10.10 , identified in prefix
field 612. Length field 610A specifies a length of the prefix
value in prefix field 612. Label field 610B specifies an
MPLS label . Prefix field 612 includes a route distinguisher
field 614A that specifies a route distinguisher value gener
ated by the control node originating BGP UPDATE message
600. The route distinguisher field 614A may also specify a
Type field and a Value field of the route distinguisher field
614A . The IPv4 prefix field 614B specifies a value of the
IPv4 prefix
[0169] In the example of FIG . 7 , extended communities
field 616 includes a Type field 618A that specifies a Route
Target Type . A route target is a particular type of extended
community . An Administrative field 618B specifies an
autonomous system number , e.g. , 200 in the example of FIG .
7. An Assigned Number (“ ASSIGNED NO . ") FIELD 618C
includes a route target value generated by the control node
originating BGP UPDATE message 600 , in accordance with
the techniques of this disclosure . A process by which which
a BGP process generates the route target value may vary
depending on the route target type , as described in various
examples herein . In some examples , the route target type
will have a value (e.g. , 7) to specify that the route carries a
route target generated based on a unique identifier of the
network address , as described herein .
[0170] FIG . 8 is a flowchart illustrating example operation
of an SDN controller in accordance with the techniques of
this disclosure . FIG . 8 may illustrate example operation of
an SDN controller such as SDN controller 32A or 32B of
FIG . 1-2 or 4 , for example . FIG . 8 may illustrate example
operation of a control node 54A - 54N of FIGS . 3-5 , for
example . An SDN controller that manages a cluster of
compute nodes generates , based on a unique identifier of a
virtual network , a route target value for the virtual network ,
wherein the virtual network comprises virtual network end
points executing on the compute nodes (800) .
[0171] The control node of the SDN controller outputs to
a routing protocol peer device a virtual private network
(VPN) route that includes the route target value for the
virtual network and a virtual network prefix associated with
the virtual network , the VPN route for routing to the
compute nodes executing the virtual network endpoints of
the virtual network (802) . For example , the VPN route may
be a route advertisement in accordance with a routing
protocol , such as BGP UPDATE message 600 of FIG . 7. The
VPN route may be a VPNv4 route .
[0172] The SDN controller may output the VPN route to
a second SDN controller via an interior border gateway
protocol , wherein the second SDN controller manages a
second plurality of compute nodes , the second plurality of
compute nodes and the second SDN controller together
forming a second SDN system cluster . The second SDN
system cluster and the first SDN system cluster may be part
of a single autonomous system . The unique identifier of the
virtual network is unique within the single autonomous
system .
[0173] In some examples , the unique identifier of the
virtual network is a 128 - bit UUID value generated by a
network orchestrator for a new virtual network object asso

a

a

US 2022/0321382 A1 Oct. 6. 2022
13

ciated with the virtual network upon creation of the virtual
network . A configuration node of the SDN controller can
detect existence of the new virtual network object and obtain
the unique identifier for the virtual network from the net
work orchestrator .

a

[0174] Although described for purposes of example in
terms of an SDN controller , in some examples the tech
niques of FIG . 8 may be implemented by a network device
other than an SDN controller . While the techniques are
described primarily with respect to advertising virtual net
work addresses for virtual machines executing on compute
nodes , the techniques are similarly applicable to other types
of workloads , such as containers . For instance , a container
may execute as part of a pod workload on a compute node ,
the pod being assigned a virtual network address by the SDN
platform and operating as a virtual network destination .
[0175] The techniques described in this disclosure may be
implemented , at least in part , in hardware , software , firm
ware or any combination thereof . For example , various
aspects of the described techniques may be implemented
within one or more processors , including one or more
microprocessors , digital signal processors (DSPs) , applica
tion specific integrated circuits (ASICs) , field programmable
gate arrays (FPGAs) , or any other equivalent integrated or
discrete logic circuitry , as well as any combinations of such
components . The term “ processor ” or “ processing circuitry ”
may generally refer to any of the foregoing logic circuitry ,
alone or in combination with other logic circuitry , or any
other equivalent circuitry . A control unit comprising hard
ware may also perform one or more of the techniques of this
disclosure .

[0176] Such hardware , software , and firmware may be
implemented within the same device or within separate
devices to support the various operations and functions
described in this disclosure . In addition , any of the described
units , process or components may be implemented together
or separately as discrete but interoperable logic devices .
Depiction of different features as process or units is intended
to highlight different functional aspects and does not nec
essarily imply that such process or units must be realized by
separate hardware or software components . Rather , func
tionality associated with one or more process or units may
be performed by separate hardware or software components ,
or integrated within common or separate hardware or soft
ware components .
[0177] The techniques described in this disclosure may
also be embodied or encoded in a computer - readable
medium , such as a computer - readable storage medium ,
containing instructions . Instructions embedded or encoded
in a computer - readable medium may cause a programmable
processor , or other processor , to perform the method , e.g. ,
when the instructions are executed . Computer - readable
media may include non - transitory computer - readable stor
age media and transient communication media . Computer
readable storage media , which is tangible and non - transitory ,
may include random access memory (RAM) , read only
memory (ROM) , programmable read only memory
(PROM) , erasable programmable read only memory
(EPROM) , electronically erasable programmable read only
memory (EEPROM) , flash memory , a hard disk , a CD
ROM , a floppy disk , a cassette , magnetic media , optical
media , or other computer - readable storage media . The term

" computer - readable storage media ” refers to physical stor
age media , and not signals , carrier waves , or other transient
media .

1. A method comprising :
generating , by a software - defined networking (SDN) con

troller that manages a plurality of compute nodes ,
based on a unique identifier of a virtual network , a route
target value for the virtual network , wherein the virtual
network comprises virtual network endpoints executing
on the compute nodes ; and

outputting , by the SDN controller and to a routing pro
tocol peer device , a virtual private network (VPN) route
that includes the route target value for the virtual
network and a virtual network prefix associated with
the virtual network , the VPN route for routing to the
plurality of compute nodes executing the virtual net
work endpoints of the virtual network .

2. The method of claim 1 , wherein the SDN controller
comprises a first SDN controller , wherein the plurality of
compute nodes comprises a first plurality of compute nodes ,
wherein the first plurality of compute nodes and the first
SDN controller together comprises a first SDN system
cluster ,

wherein outputting the VPN route comprises outputting
the VPN route to a second SDN controller via an
interior border gateway protocol , wherein the second
SDN controller manages a second plurality of compute
nodes , wherein the second plurality of compute nodes
and the second SDN controller together comprise a
second SDN system cluster , the second SDN system
cluster and the first SDN system cluster being part of a
single autonomous system , wherein the unique identi
fier of the virtual network is unique within the single
autonomous system .

3. The method of claim 1 , wherein the unique identifier of
the virtual network comprises a 128 - bit value generated by
a network orchestrator for a new virtual network object
associated with the virtual network upon creation of the
virtual network , the method further comprising detecting , by
the SDN controller , existence of the new virtual network
object and obtaining the unique identifier for the virtual
network from the network orchestrator .

4. The method of claim 1 , wherein generating the route
target value comprises generating the route target value
based at least in part on using a checksum value of the
unique identifier of the virtual network .

5. The method of claim 1 , wherein generating the route
target value comprises :

obtaining a cyclic redundancy check (CRC) checksum
value of the unique identifier of the virtual network ;

truncating the CRC checksum value to a size determined
by a route target type for the virtual provide network
route ;

determining an integer value of the truncated CRC check
sum value ; and

assigning the route target value based on the integer value .
6. The method of claim 5 , further comprising :
wherein when the route target type for the virtual provide

network route is Type 0 , truncating comprises truncat
ing the CRC check value to four bytes of the CRC
check value , and wherein the route target value com
prises the four bytes .

a a

US 2022/0321382 A1 Oct. 6. 2022
14

7. The method of claim 5 , further comprising :
wherein when the route target type for the virtual provide

network route is Type 2 , truncating comprises truncat
ing the CRC check value to two bytes of the CRC check
value , and wherein the route target value comprises the
two bytes .

8. The method of claim 5 , further comprising :
wherein when the route target type for the virtual provide

network route is Type 7 , truncating comprises truncat
ing the CRC check value to six bytes of the CRC check
value , and wherein the route target value comprises the
six bytes .

9. The method of claim 1 , wherein the route includes a
route target field that specifies a Type field and a Value field ,
wherein a Type value of the Type field indicates that the
Value field is generated based on the unique identifier of the
virtual network .

10. The method of claim 1 , further comprising :
wherein generating the route target value comprises gen

erating the route target value in response to receiving ,
from a compute node managed by the SDN controller
and via a messaging protocol , a messaging protocol
message that specifies the VPN route .

11. The method of claim 10 , wherein the messaging
protocol comprises Extensible Messaging and Presence Pro
tocol (XMPP) , and wherein the messaging protocol message
is received via an XMPP session between the control node
and a virtual router agent of the compute node , and wherein
outputting the route comprises outputting the route via an
Interior Border Gateway Protocol (IBGP) session between
the control node and a routing protocol peer device .

12. A software - defined networking (SDN) controller com prising processing circuitry in communication with a
memory , the processing circuitry being configured to :

generate , based on a unique identifier of a virtual network ,
a route target value for the virtual network , wherein the
virtual network comprises virtual network endpoints
executing on one or more of a plurality of compute
nodes managed by the SDN controller ; and

output , to a routing protocol peer device , a virtual private
network (VPN) route that includes the route target
value for the virtual network and a virtual network
prefix associated with the virtual network , the VPN
route for routing to the plurality of compute nodes
executing the virtual network endpoints of the virtual
network .

13. The SDN controller of claim 12 , wherein the SDN
controller comprises a first SDN controller , wherein the
plurality of compute nodes comprises a first plurality of
compute nodes , wherein the first plurality of compute nodes
and the first SDN controller together comprises a first SDN
system cluster ,

wherein to output the VPN route comprises outputting the
VPN route to a second SDN controller via an interior
border gateway protocol , wherein the second SDN
controller manages a second plurality of compute
nodes , wherein the second plurality of compute nodes
and the second SDN controller together comprise a

second SDN system cluster , the second SDN system
cluster and the first SDN system cluster being part of a
single autonomous system ,

wherein the unique identifier of the virtual network is
unique within the single autonomous system .

14. The SDN controller of claim 12 , wherein the unique
identifier of the virtual network comprises a universally
unique identifier generated by a network orchestrator for a
new virtual network object associated with the virtual net
work upon creation of the virtual network ,

wherein the processing circuitry is further configured to :
detect existence of the new virtual network object ; and
obtain the unique identifier for the virtual network from

the network orchestrator .
15. The SDN controller of claim 12 , wherein to generate

the route target value comprises generating the route target
value based at least in part on using a checksum value of the
unique identifier of the virtual network .

16. The SDN controller of claim 12 , wherein the process
ing circuitry being configured to generate the route target
value comprises the processing circuitry being configured
to :

obtain a cyclic redundancy check (CRC) checksum value
of the unique identifier of the virtual network ;

truncate the CRC checksum value to a size determined by
a route target type for the virtual provide network route ;

determine an integer value of the truncated CRC check
sum value ; and

assign the route target value based on the integer value .
17. The SDN controller of claim 12 , wherein the process

ing circuitry being configured to generate the route target
value comprises the processing circuitry being configured
to :

generate the route target value in response to receiving ,
from a compute node managed by the SDN controller
and via a messaging protocol , a messaging protocol
message that specifies the VPN route .

18. The SDN controller of claim 12 , wherein the VPN
route includes a route target field that specifies a Type field
and a Value field , wherein a Type value of the Type field
indicates that the Value field is generated based on the
unique identifier of the virtual network .

19. A computer - readable storage medium comprising hav
ing stored thereon instructions that , when executed , cause
one or more processors of a software - defined networking
(SDN) controller to :

generate , based on a unique identifier of a virtual network ,
a route target value for the virtual network , wherein the
virtual network comprises virtual network endpoints
executing on one or more of a plurality of compute
nodes managed by the SDN controller ; and

output , to a routing protocol peer device , a virtual private
network (VPN) route that includes the route target
value for the virtual network and a virtual network
prefix associated with the virtual network , the VPN
route for routing to the plurality of compute nodes
executing the virtual network endpoints of the virtual
network .

