US011743236B2

a2 United States Patent (10) Patent No.: US 11,743,236 B2
Chaubey et al. 45) Date of Patent: Aug. 29, 2023
(54) GENERATING AN APPLICATION-BASED HO04L 63/0236; HO4L 63/0245; HO4L
PROXY AUTO CONFIGURATION 63/10; GOGF 21/44; GO6F 21/50; GOGF
21/52; GO6F 21/54; GOGF 21/62

(71) Applicant: Juniper Networks, Inc., Sunnyvale, See application file for complete search history.

CA (US)
(56) References Cited

(72) Inventors: Rajeev Chaubey, Bangalore (IN);

Ashok Kumar, Bangalore (IN) U.S. PATENT DOCUMENTS

7,953,895 Bl 5/2011 Narayanaswamy et al.

(73) Assignee: Juniper Networks, Inc., Sunnyvale, 9,049,128 Bl 6/2015 Narayanaswamy et al.
CA (US) 9,077,688 B2 7/2015 Amit et al.
10,432,581 B2 10/2019 Field
(*) Notice: Subject to any disclaimer, the term of this 10,924,458 B2~ 2/2021 Chaubey et al.
patent is extended or adjusted under 35 (Continued)

U.S.C. 154(b) by 280 days.
FOREIGN PATENT DOCUMENTS

(21) Appl. No.: 17/248,565
CN 107251528 A 10/2017

(22) Filed: Jan. 29, 2021
OTHER PUBLICATIONS

(65) Prior Publication Data
Extended European Search Report for Application No. EP19180769.
US 2021/0152525 Al May 20, 2021 2, dated Nov. 26, 2019, 9 pages.
Related U.S. Application Data Primary Examiner — Malcolm Cribbs

(63) Continuation of application No. 16/202,513, filed on (74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

Nov. 28, 2018, now Pat. No. 10,924,458.

57 ABSTRACT
(51) Imt.ClL A network device may identify an application signature
HO4L 29/06 (2006.01) associated with a web application, and may determine, based
HO4L 9/40 (2022.01) on an application-based policy associated with the web
HO4L 67/02 (2022.01) application, an access method to be used to transmit traffic
HO4L 67/01 (2022.01) associated with the web application. The network device
HO4L 67/56 (2022:01) may generate a proxy auto configuration (PAC) file using the

application signature associated with the web application,

and the access method to be used to transmit the traffic
CPC HO4L 63/0281 (2013.01); HO4L 63/20 associated with the web application. The network device

(2013.01); HO4L 67/01 (2022.05); HO4L 67/02 may provide the PAC file to a client device to permit the
(2013.01); HO4L 67/56 (2022.05) client device to transmit the traffic associated with the web

(52) US.CL

(58) Field of Classification Search application based on the PAC file.
CPC ... HO4L 63/0281; HO4L 67/01; HO4L 67/56;
HO4L 63/20, HO4L 67/02; HO4L 63/0227, 20 Claims, 15 Drawing Sheets
100 s 100 ——a

Security Palicy
Store

Application
Cache

Security Policy
Store

Application
Cache

Client
Device

Proxy I—_

Proxy
Network Server Network

N . Server
Device . Device .
Device Device
102

Application Application
Signature Store Signature Store
Identify an

appfication
signature
associated with a
web application

Client
Device

I

Appfication
Platform

Application
Platform

US 11,743,236 B2
Page 2

(56)

2004/0006615
2005/0138604
2007/0242619

2008/0109871
2011/0107391

2011/0231479
2013/0005296
2013/0031595
2013/0340031

2014/0137184
2017/0126534
2018/0025180

References Cited

U.S. PATENT DOCUMENTS

Al 1/2004 Jackson et al.

Al 6/2005 Harrison et al.
Al* 10/2007 Murakami
Al 5/2008 Jacobs

Al* 52011 Brown
Al 9/2011 Boydstun et al.
Al 1/2013 Papakostas et al.
Al 1/2013 Nevstruev et al.
Al* 12/2013 Amit

Al 5/2014 Russello et al.
Al 5/2017 Cimino et al.
Al* 1/2018 Wangc.......

* cited by examiner

HO4L 12/5692

370/252

HO4L 47/20

726/1

HO4W 12/37

726/1

GO6F 21/6281

726/1

US 11,743,236 B2

Sheet 1 of 15

Aug. 29, 2023

U.S. Patent

ao1ne(
JanIes
Axoud

Vi

wJiose|d
uoneolddy

Old

8101g aineubis
uoneolddy

821A8Q

SJOMISN

ayoe)
uoneolddy

al01g
Aoijod Ajunossg

201A8 (]
JIVEElIe)

US 11,743,236 B2

Sheet 2 of 15

Aug. 29, 2023

U.S. Patent

8o1ne(
JanIeg
Axoud

ail

wJioheld
uoneolddy

‘Old

uonesiidde gam
B UM pajelioosse

ainjeubis

uoneoldde

ue Ajjusp|
201

2l0)g aineubis
uoneosljddy

821neQg

sJoMmieN

ayoe?n
uoneolddy

@o1A8(g
usIio

21018
Aolj0d Ajinoeg

US 11,743,236 B2

Sheet 3 of 15

Aug. 29, 2023

U.S. Patent

wJioheld
uoneolddy

Ol

9|l DV d E 8jessusg

ao1neQg
JoAIeS
Axolid

901

C

Old

210)g aineubis
uoneolddy

821ne(]
sJoMmieN

ayoe?n
uoneolddy

21018
Aolj0d Ajinoeg

9o1A8(]
usiO

uoneoldde gem sy} Joy

poYlaW $$8008 Uk auiwlela(

vol

¥— 001

US 11,743,236 B2

Sheet 4 of 15

Aug. 29, 2023

U.S. Patent

ai oid

wliose|d
uoneolddy

ao1neQ
BEVVETS
Axold

8101g aineubis
uoneolddy

821A8Q
SJOMISN

ayoe)
uoneolddy

al01g
Aoijod Ajunossg

4

@01A8(g
JIVElTe)

92IASP JUBI[O 8Y} O}
8} DV d 84} epiroid
801

US 11,743,236 B2

Sheet 5 of 15

Aug. 29, 2023

U.S. Patent

31 "Old

wliose|d
uoneolddy

ao1neQ
BEVVETS
Axold

8101g aineubis
uoneolddy

821A8Q
SJOMISN

A

ayoe)
uoneolddy

al01g
Aoijod Ajunossg

801A8(g
ueio

9|4 Jvd @yj uo
paseq oljeJ; Jwsuel |

ol

US 11,743,236 B2

Sheet 6 of 15

Aug. 29, 2023

U.S. Patent

¢ Old

LJusbe-awos, Jusbe-iasn-jusl|o
d.lLH :|[020304d

}eoni

{
W09 ZAX 81n28s ", :8]e01J11J82-Ul-8 WRU-I18AISS-S]0
S11/1SS :|odojoud

}Zz9nl

{
W09 ZAX', :2WeU-}SOY-JaAlas-S)}o
d.lLH :|[020304d

} 1 9nl

} | uoneolddy

US 11,743,236 B2

Sheet 7 of 15

Aug. 29, 2023

U.S. Patent

€ Old

0808:Wwoo ajdwexa zAxold AXO¥d
S82IAIBS UOI}98)0.1d uoisnuu| Buipinold Axoid-Sd| "@sed yneseq // }
as|e

0006:woo ajdwexa’ | Axold AXO¥d uinjal
Axoud ybnouyy ¢z uoneoiddy /7 }
((,woooge-ainoss’,) | (LWwoo0ge,,) 1soy)yoieNdx3ys) il esje
{
10341g uwnjal
ONAS (0SV) ayoe uoneoljddy | uonedl|ddy/ }
(620261 == (}soy)anjosaysup }l 8s|o
{
10341g uwnjal
Joaulq | uoneolddy j/ }
((,woozAxainoss,) | (,woozAX) ‘1soy)yoieNdx3us) 4
1 (1soy ‘Pn) 19 NIo4Ax0ldpul4 uolouny

US 11,743,236 B2

Sheet 8 of 15

Aug. 29, 2023

U.S. Patent

¥ "Old

23IN0SDY 20JN0sSaY

Bunndwo? Bunndwo)

444 (444
90JN0saY 90Inosay

Bunndwo) Bunndwo)

0S¥
SJomieN

'

€-0cv
ayoe)
uoneslddy

L-0cv
21018
alnjeubig

uoneolddy

ocy
80IAe (g
YIOM}BN

P wiojield uoneolddy

ZP¥ wawuoliAug Bunndwo) pnoj)

09¥%
aoIna(
Axoid

(0]%7%
221A8(]

usId

Y— oop

US 11,743,236 B2

Sheet 9 of 15

Aug. 29, 2023

U.S. Patent

Geq

aoepBIU|
UolBoIuNWWOoY

VS 'Old

0€S

usuodwo)
IndinQ

GZs

ysuodwo)
induj

05

usuodwo)
abelioig

Alows

Ol

JO8S800.U]

K&w

sng

US 11,743,236 B2

Sheet 10 of 15

Aug. 29, 2023

U.S. Patent

a9 "Old

0-G99
Jusuodwo)
N Indino
A
[eoisAyd °
°
®
1-G9G
Jusuodwo)
N indino
A
[edisAyd

g-999
Jusuodwo)
indu m
—— (U
094 ° |eaisAyd
usuodwo) °
Buiyoyms °
1-G99
usuodwo)
1nduy w
3
[esisAyd
0/S
19]]043U0D)

¥— 055

US 11,743,236 B2

Sheet 11 of 15

Aug. 29, 2023

U.S. Patent

9 "Old

9|} Jvd sy uo
paseq uoneoldde gem sy} YIMm pajeioosse i) sy} JIWsuel) o}
9OIASP JUBIID BU) Jwiad 0} 921ASP JUSIIO B 0) 31} DV d 8U) Spircld |

1

uoneoldde gem sy
UJIM pajeloosse 1.} 8y} JWSsUuel) 0} pasn aq 0} poylaw ssadoe
8y} pue ‘uonesldde gem ay) Yim pajeroosse ainjeubis uoneoldde
ay) Buisn a1} (DVd) uonieinbljuod oine Axoud e sjelsuss)

{

uoneoldde gam ay} Ylim paleldoosse dlel)
Juwsuel) 0} pash ag 0} poyjewl ssaooe ue ‘uoneoldde gem sy
| yum pejeloosse Aoljod peseg-uoljedljdde ue uo peseq ‘suiwieieq |

1

{)

\.

uoneoldde gem e yIm pajeidosse alnjeubis uoljedldde ue Ajuspi

~ 0¥9

~~ 0€9

~ 0¢9

~ 019

US 11,743,236 B2

Sheet 12 of 15

Aug. 29, 2023

U.S. Patent

L "Old

TN 8y) saioads Jey) ‘@dIAsp JUsI[D 8y} wolj ‘1senbal
e BuIAleoal UO paseq 8d1ASp JUsld B 01 8|1} DV d Ul 8pircid

1

TdN B UM 9ll} DV d Y} Sjeloossy

%

uoneoiidde gam sy} yiim pajeloosse olyel) ayl
Jwsuel} 0} pash aq 0} Poyjall ssadde au) pue ‘uonesljdde gem
3y} UIm pajeioosse alnjeuBis uoneoljdde ay) usamiaq uoljeioosse
ue Buisn a4 (Dvd) uoneinbijuod oine Axoud e sjelsuss)

{

uoneol|dde gam syl Ylim paleldosse diyel)
Juwisuel} 0} pash aq 0} poylow ssaooe ue ‘uonjesldde gam ay}
| Yim pajeroosse Aoljod peseg-uoljeoljdde ue uo pseseq ‘suiwisie(|

%

uoneoldde gem e Yym pajeloosse alnjeubis uoneoldde ue Ajjusp|

~ 09/

~ Ov.

~ 0€.

~— 0/

~ 0L.

US 11,743,236 B2

Sheet 13 of 15

Aug. 29, 2023

U.S. Patent

8 'Old

92IASP JUSIIO B 0} 8]l DV 8U) 8pIAoId

1

uoneoldde gam aanoadseal ay) YIm pajeioosse
Jlyes} Hsuel) 0} pash aq O} poyjew $sao0e aAljoadsal ay)
pue ‘sainjeubis uoneoidde jo Ayjelnid sy} Jo ainjeubis uoneoldde
yoes Buisn a1} (Dyd) uoneinbijuos oyne Axoud e ajeleusn)

[

uoneoldde
gam aAIj0adsal 8y} YIM pajeIdosse dlijel) Jisued) 0} pash aq 0)
s ‘spoylew ssao0e Jo Aljeinid ay) Jo ‘poylall ssa00e aAloadsal
B uisJeym ‘suoleolidde gem jo Ajjeanid sy} Yim pajeioosse olyel)
Jwisuel) 0} pesh ag 0} spoyiell ssaooe Jo Ajljeinid e suluwsiaq

\. J

1

suoljeol|dde)
gem Jo AJelnid e jo uoneolidde gam aAlpadsal B YlIM paieloosse
sl ‘sainjeubis uoneoiidde Jo Ayjelnid syj jo ‘einjeubls uonesidde
| anijoadsal e uisisym ‘seinjeubls uoleolidde Jo Ayjein|d e Ajuep) |

~ 078

~— 0¢8

~ 0¢8

~ 0|8

US 11,743,236 B2

Sheet 14 of 15

Aug. 29, 2023

U.S. Patent

6 'Old

SaA ZoullieWla
sainjeubls uoneoydde 916
Auy
ON
saA ZBuiuews

sa|nJ aunjeudis uoneoldde
Auy

1435

»|

Aajjod poyiaw
$$800E pue ajhi papeixe [~ CIB
10} 8p02 1dLIOSBARP B)RIaUlD)

1

Aoljod poulsl $59208 10RIXT o 016

1

[aunjeubis uonesijdde wo.y ajnl
aineubis uoneoydde penxy [808

\ J

\ y

4N J9AJ8S JO BWBUISOY B 906

aioub) - oN

a|ni

Y

ainieuBis uofeoldde xau 199 v06

1

ainjeubis uoneoydde xau 199 Z06

Y

A

1els

¥ (008

US 11,743,236 B2

Sheet 15 of 15

Aug. 29, 2023

U.S. Patent

0L 'Old

Aoijod poylaw
$$a208 pue ajni Lod pue d| 9001
10) 3p09 1duogeARE BlRIBUSS) ON

Zuopesuab
8l DV d oness Buunp
paJjoub) sny) pue wisned YN 1aA1as 10 wised
UIBLISOY JOAIS 9ARY 10U S90P a4oro uonesljdde o) Aug
Buippe a|ni pue s} Ovd Ul painbyuo
oneoydde gapn

h yod pue 4] Buiyosieu Joy 9y
IV Wol apoo JdUOSRARL SAOWSY viol

SOA

Zuoneiauab
all} Dvd Ul pasn Anus Ziol
ayoeD
uoneojdde
giol

gem o} Ajua syoes e19jeq

7 padidxe |eAIe)Ul B
ON

oM MaN

=-y001

A 4

<

vels

¥ 0001

US 11,743,236 B2

1
GENERATING AN APPLICATION-BASED
PROXY AUTO CONFIGURATION

RELATED APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 16/202,513, filed Nov. 28, 2018 (now U.S. Pat.
No. 10,924,458), which is incorporated herein by reference.

BACKGROUND

A proxy auto configuration (PAC) file may configure a
client device to use a particular access method to transmit
traffic to, and/or receive traffic from, a server device.
Examples of access methods include transmitting and/or
receiving traffic via a proxy server device, transmitting
and/or receiving traffic without using a proxy server device
(e.g., by communicating directly with the server device),
and/or the like.

SUMMARY

According to some implementations, a network device
may include one or more memories, and one or more
processors communicatively coupled to the one or more
memories, to identify an application signature associated
with a web application, and to determine, based on an
application-based policy associated with the web applica-
tion, an access method to be used to transmit traffic associ-
ated with the web application. The one or more processors
may generate a proxy auto configuration (PAC) file using the
application signature associated with the web application,
and the access method to be used to transmit the traffic
associated with the web application. The one or more
processors may provide the PAC file to a client device in
order to permit the client device to transmit the traffic
associated with the web application based on the PAC file.

According to some implementations, a non-transitory
computer-readable medium may store one or more instruc-
tions that, when executed by one or more processors of a
network device, cause the one or more processors to identify
an application signature associated with a web application,
and to determine, based on an application-based policy
associated with the web application, an access method to be
used to transmit traffic associated with the web application.
The one or more instructions may cause the one or more
processors to generate a proxy auto configuration (PAC) file
using the application signature associated with the web
application, and the access method to be used to transmit the
traffic associated with the web application. The one or more
instructions may cause the one or more processors to asso-
ciate the PAC file with a uniform resource locator (URL),
and to provide the PAC file to a client device based on
receiving a request, from the client device, that specifies the
URL.

According to some implementations, a method may
include identifying a plurality of application signatures,
wherein a respective application signature, of the plurality of
application signatures, is associated with a respective web
application of a plurality of web applications, and determin-
ing a plurality of access methods to be used to transmit
traffic associated with the plurality of web applications,
wherein a respective access method, of the plurality of
access methods, is to be used to transmit traffic associated
with the respective web application. The method may
include generating a proxy auto configuration (PAC) file
using each application signature of the plurality of applica-

10

20

25

40

45

50

55

2

tion signatures, and the respective access method to be used
to transmit traffic associated with the respective web appli-
cation. The method may include providing the PAC file to a
client device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1E are diagrams of an example implementation
described herein.

FIG. 2 is a diagram of an example application signature.

FIG. 3 is a diagram of an example PAC file.

FIG. 4 is a diagram of an example environment in which
systems and/or methods described herein may be imple-
mented.

FIGS. 5A and 5B are diagrams of example components of
one or more devices of FIG. 2.

FIGS. 6-10 are flow charts of example processes for
generating an application-based proxy auto configuration.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same
reference numbers in different drawings may identify the
same or similar elements.

In some cases, an entity (e.g., an organization) may
manually generate a PAC file that is to be used to configure
one or more client devices that communicatively connect to
a network associated with the entity. For example, a network
administrator, information technology (IT) personnel, and/
or the like, associated with the entity, may select one or more
access methods that are to be used to transmit and/or receive
traffic associated with one or more server devices, may
incorporate the one or more access methods into a PAC file,
and may provide the PAC file to the one or more client
devices. However, generating PAC files is a cumbersome
process that is prone to error (e.g., a PAC file may be
generated with an incorrect proxy server address, a PAC file
may be generated such that particular types of traffic are
associated with an incorrect access method, and/or the like).
Moreover, some PAC files may be generated with inflexible
rules that cause all or a majority of traffic, that is transmitted
and/or received by a client device, to be transmitted and/or
received via a proxy server device. As the quantity of client
devices connected to the entity’s network increases, the
proxy server device may become a bottleneck for some web
application traffic (e.g., such as traffic associated with a web
application that requires low latency and/or high band-
width), which may cause an increase in latency between the
client device and an application platform associated with the
web application, which in turn may result in a degraded user
experience of the web application, degraded quality of
service of the web application, periodic disconnects between
the client device and the application platform, increased
traffic processing times at the proxy server device, dropped
packets at the proxy server device, and/or the like.

Some implementations described herein provide a net-
work device that is capable of automatically generating
application-based PAC files. In some implementations, the
network device may identify an application signature asso-
ciated with a web application, and may determine, based on
an application-based policy associated with the web appli-
cation, an access method to be used to transmit traffic
associated with the web application. The network device
may generate a PAC file that includes information specifying
an association between the application signature associated
with the web application and the access method to be used

US 11,743,236 B2

3

to transmit the traffic associated with the web application.
The network device may provide the PAC file to a client
device to permit the client device to transmit the traffic
associated with the web application based on the PAC file.

In this way, the network device may generate a PAC file
that configures a client device to use various access methods
for transmitting traffic associated with a plurality of different
web applications. In this way, the PAC file may configure the
client device to transmit traffic associated with a particular
web application such that the traffic is transmitted using a
proxy server device, and may configure the client device to
transmit traffic associated with another web application such
that the traffic associated with the other application is
transmitted without using a proxy server device or using a
different proxy server device, which enables application-
specific traffic handling. Moreover, for traffic that is to be
transmitted to an application platform without using a proxy
server device, this decreases latency between a client device
that is to transmit the traffic and the destination, which in
turn improves user experience associated with the client
device and the web application associated with the traffic.
Moreover, permitting traffic associated with some web
applications to be transmitted without using a proxy server
device decreases the quantity of packets that is to be
processed by the proxy server device, which decreases
processing, memory, and networking resource usage of the
proxy server device, reduces the time it takes to process
traffic at the proxy server device (e.g., because the process-
ing queue at the proxy server device is reduced), and allows
the proxy server device to use the processing and/or memory
resources of the proxy server device, that would have
otherwise been used to process the traffic, for other purposes.
In addition, the PAC file may be configured such that traffic
associated with a particular web application may be trans-
mitted to different proxy server devices, which may provide
different types of value-added services related to logging,
forensic auditing, and/or the like, which enables web appli-
cations requiring detailed logging to be routed to a particular
proxy server. Further, the PAC file may be configured such
that cost savings are realized due lowering the traffic on
expensive leased lines/MPLS links that may be in use
between the proxy server device and client devices.

FIGS. 1A-1E are diagrams of an example implementation
100 described herein. As shown in FIG. 1A, implementation
100 may include various devices, such as one or more client
devices, a network device, one or more data stores (e.g., an
application signature store, a security policy store, an appli-
cation cache, and/or the like), a proxy server device, an
application platform, and/or the like. The quantity and
configuration of devices illustrated in implementation 100 is
an example, and greater, fewer, and/or different configura-
tions of devices may be included in implementation 100.

In some implementations, one or more components illus-
trated in implementation 100 may be included in one or
more local networks. For example, the client device, net-
work device, and data stores may be included in a first local
network; the proxy server device, may be included in the
first local network or a second local network, and/or the like.
The one or more local networks may include various types
of wired and/or wireless local area networks (LANs), such
as a wired LAN, a wireless LAN (WLAN), a home network,
an office network, a campus network, and/or the like. In
some implementations, the one or more local networks may
be associated with the same entity, such as an enterprise,
corporation, government agency, educational institution,
and/or the like. In some implementations, the one or more

10

15

20

25

30

35

40

45

55

60

65

4

local networks may be associated with different offices,
different locations, different networks, and/or the like, of the
entity.

The network device may include various types of network
devices that are capable of transmitting traffic to the appli-
cation platform, capable of receiving traffic from the appli-
cation platform, and/or the like. For example, the network
device may receive traffic from the client device and may
transmit the traffic to the application platform. As another
example, the network device may receive traffic from the
client device and may transmit the traffic to the application
platform via the proxy server device.

The proxy server device may include various types of
devices that are capable of functioning as an intermediary
between the client device and the application platform. For
example, the proxy server device may transmit, for the client
device, traffic to the application platform, may transmit, for
the application platform, traffic to the client device, and/or
the like. In some implementations, the traffic may include
web pages, electronic files, and/or any other type of elec-
tronic content. In some implementations, the traffic may
include requests for electronic content, such as a hypertext
transfer protocol (HTTP) request, a file transfer protocol
(FTP) request, and/or the like, which may be further encap-
sulated using secure sockets layer (SSL) protocol, transport
layer security (TLS) protocol, and/or the like, to provide
secure transmission of the traffic.

In some implementations, the proxy server device may
perform various security functions for traffic transmitted by,
and traffic that is to be received by, the client device. For
example, the proxy server device may include a threat
detection and/or an intrusion detection proxy server device
that analyzes traffic that is transmitted by the client device,
and/or analyzes traffic that is to be received by the client
device, to determine whether the client device exhibits
malicious behavior, to determine whether another device to
which the client device is communicating exhibits malicious
behavior, and/or the like. As another example, the proxy
server device may include a deep packet inspection proxy
server device that performs deep packet inspection on traffic
that is transmitted by the client device and/or traffic that is
to be received by the client device. In this way, the proxy
server device may apply and/or enforce network, data,
and/or computer security policies on traffic that is transmit-
ted by the client device and/or traffic that is to be received
by the client device.

The data stores may store information associated with
various web applications, such as a web-based productivity
application (e.g., a word processing application, a spread-
sheet application, an email application, etc.), a web-based
client management application, a computer-aided design
application, and/or the like. A web application may include
a client-server application that exchanges data using web
protocols such as HTTP/HTTP secure (HTTPS). The appli-
cation platform may reside over the Internet/cloud and the
client device may include a web browser or custom software
that communicates with the application platform.

In some implementations, the application signature store
may include information identifying an application signa-
ture associated with a web application (e.g., information that
may be used by a network device to identify traffic that is
associated with the web application). The application sig-
nature of a web application may include information iden-
tifying one or more host domains associated with the web
application, one or more addresses associated with the web
application (e.g., a source address associated with a device
that originates traffic associated with the application, a

US 11,743,236 B2

5

destination address associated with a device that is the
destination of the traffic associated with the application, a
port identifier associated with the source and/or destination
of the packets associated with the application, etc.), infor-
mation identifying one or more communications protocols
associated with the application (e.g., a communications
protocol that the client device and/or the application plat-
form may use to transmit and/or receive packets associated
with the application), and/or the like. The application sig-
nature store may store an application signature, associated
with a particular web application, in an electronic file (e.g.,
an extensible markup language (XML) file, a JavaScript
Object Notation (JSON) file, etc.), in a database, and/or the
like.

An example of an application signature is illustrated in
FIG. 2, where the application signature for Application 1
includes information identifying three rules by which traffic
associated with Application 1 may be identified. According
to rule 1, traffic associated with Application 1 may be
identified based on the traffic using HTTP and being des-
tined for an application platform associated with the host
domain xyz.com. According to rule 2, traffic associated with
Application 1 may be identified based on the traffic using a
secure sockets layer (SSL) protocol and/or a transport layer
security (TLS) protocol, and being destined for an applica-
tion platform associated with the host domain secure.
xyz.com. According to rule 3, traffic associated with Appli-
cation 1 may be identified based on the traffic using HTTP
and being associated with a user agent sent by a client device
identified in a HTTP header request.

Returning to FIG. 1A, in some implementations, the
security policy store may store information identifying one
or more application-based policies associated with a web
application. For example, the one or more application-based
policies may include a policy specifying an access method
for traffic associated with the web application, a policy for
quality of service (QoS) treatment of the traffic associated
with the web application, a policy for inspection of the traffic
associated with the application, a policy rule that specifies
that the traffic associated with the application is to be rate
limited, a policy rule that specifies that the traffic associated
with the application is to be dropped, and/or the like.

In some implementations, once traffic has been identified
as belonging to a particular web application based on a
corresponding web application signature, the application
cache may store network endpoint information, associated
with the web application, so that signature rule matching for
the traffic destined for the network endpoint may be avoided.
In this way, since application signature matching may be a
memory and/or processor intensive task, memory and/or
processor resources of the network device may be conserved
by reducing the amount of repetitive signature evaluation for
traffic to same network endpoint.

In some implementations, the network endpoint informa-
tion may include a destination Internet protocol (IP) address,
a port name/number/identifier, a protocol used by the net-
work endpoint, a virtual router identifier associated with the
network endpoint, and/or a rule from the application signa-
ture store that identified web applications. In some imple-
mentations, the application cache may have hundreds or
thousands of entries for a particular web application. Each
entry may have different destination IP address, port iden-
tifier, and/or the like, whereas the application signature store
may include a single entry for the web application that
associates the web application with rules to identify the web
application.

10

15

20

25

30

40

45

50

55

60

65

6

Turning to FIG. 1B, the network device may use the
information stored in the application signature store, the
information stored in the security policy store, and/or the
information stored in the application cache to automatically
generate and update PAC files. For example, the network
device may automatically generate a PAC file based on
determining that information associated with a web appli-
cation has been added to the application signature store, the
security policy store, and/or the application cache, based on
determining that information associated with a web appli-
cation has been updated in the application signature store,
the security policy store, and/or the application cache, and/or
the like. In some implementations, the network device may
generate and update PAC files based on receiving an instruc-
tion (e.g., via input from a user, from another network
device, and/or the like) to generate a PAC file, based on
receiving an instruction to update a PAC file, and/or the like.

As shown in FIG. 1B, and by reference number 102, the
network device may identify, based on the information
stored in the application signature store, an application
signature associated with a web application. For example,
the network device may identify a database, an electronic
file, and/or the like, stored in the application signature store,
that includes the application signature associated with the
web application. As explained above, the application signa-
ture, associated with the web application, may include
information identifying a host domain associated with the
web application, a protocol associated with the web appli-
cation, a user agent associated with the web application, an
address associated with the web application, and/or the like.

Turning to FIG. 1C, and as shown by reference number
104, the network device may identify an access method for
the web application. For example, the network device may
identify the access method based on the information, asso-
ciated with the web application, stored in the security policy
store. The information associated with the web application
and stored in the security policy store may include an
application-based policy that specifies an access method that
is to be used to transmit and/or receive traffic associated with
the web application. For example, the access method for the
web application may specify that traffic associated with the
web application is to be transmitted to the application
platform via the proxy server device, may specify that traffic
associated with the web application is to be transmitted to
the application platform via another proxy server device,
may specify that traffic associated with the web application
is to be transmitted directly to the application platform (e.g.,
without transmitting the traffic to a proxy server device),
and/or the like.

In some implementations, the access method that is to be
used for traffic associated with the web application may be
automatically selected (e.g., by another network device, by
the proxy server device, and/or the like) based on various
factors. For example, another device may automatically
select the access method based on the web application being
a particular type of web application (e.g., a productivity web
application, a social media web application, and/or the like),
based on usage information associated with the web appli-
cation (e.g., a quantity of users associated with the entity that
use the application, traffic volume of the web application in
the entity, peak session and usage times associated with the
application in the entity, and/or the like), based on latency
requirements for the web application, and/or the like. For
example, another device may determine that the web appli-
cation is a video conferencing application that requires low
latency, and therefore may select an access method for the
web application that specifies traffic associated with the

US 11,743,236 B2

7

application is to be transmitted directly to the application
platform (e.g., without transmitting the traffic via the proxy
server device) in order to decrease the latency associated
with the web application. As another example, another
device may determine that the web application has a par-
ticular peak usage time, and may select an access method for
the web application that specifies that traffic associated with
the web application is to be transmitted to the application
platform via the proxy server device except during the peak
usage time, where the traffic may be transmitted to the
application platform without using the proxy server device.

As further shown in FIG. 1C, and by reference number
106, the network device may generate the PAC file. In some
implementations, the PAC file may include information
specifying an association between the application signature
of the web application and the access method that is to be
used for traffic associated with the web application, infor-
mation specifying an association between the network end-
point information associated with the application in the
application cache and the access method that is to be used
for the traffic associated with the web application, and/or the
like. In this way, the client device, when configured by the
PAC file, may identify, based on the application signature
included in the PAC file, traffic associated with the web
application, and may identify the access method that is to be
used for traffic associated with the web application.

In some implementations, the PAC file may include
information associated with a plurality of web applications.
For example, the PAC file may include information speci-
fying an association between an application signature of a
first web application and an access method for the first web
application, may include information specifying an associa-
tion between an application signature of a second web
application and an access method for the second web
application, and/or the like. In some implementations, the
access methods for different web applications may be the
same access method, may be different access methods,
and/or the like. In some implementations, the PAC file may
further include a default access method that is to be used for
traffic that is not associated with any web application that is
identified in the PAC file.

An example of a PAC file is illustrated in FIG. 3. As
shown in FIG. 3, the example PAC file includes information
specifying an association between an application signature
of a first web application (e.g., Application 1) and an access
method for the first web application (e.g., an association that
specifies that traffic associated with the host domains xyz-
.com and secure.Xyz.com is to be transmitted directly to the
application platform associated with Application 1). More-
over, the example PAC file includes information specifying
an association between an IP/pattern-based rule identified
for the first web application in the application signature
store, a network endpoint associated with the IP/pattern-
based rule identified for the first web application that is
identified in the application cache, and the access method for
the first web application), which may by dynamically gen-
erated as patterns for the network endpoint are identified.
Moreover, the example PAC file includes information speci-
fying an association between an application signature
(which may be structured similarly to the application sig-
nature illustrated in FIG. 2) of a second web application
(e.g., Application 2) and an access method for the second
web application (e.g., an association that specifies that traffic
associated with the host domains abc.com and secure.
abc.com is to be transmitted to the application platform
associated with Application 2 via a proxy server device), and
includes information specifying a default access method

10

15

20

25

30

35

40

45

50

55

60

65

8

(e.g., transmitting traffic that is not associated with Appli-
cation 1 or Application 2 via another proxy server device).

Turning to FIG. 1D, and as shown by reference number
108, the network device may provide the PAC file to the
client device. In some implementations, the network device
may automatically provide the PAC file to the client device
based on generating the PAC file, based on updating the PAC
file, and/or the like. In this way, the client device automati-
cally receives the most up-to-date PAC files when new
and/or updated PAC files become available. In some imple-
mentations, the network device may provide the PAC file to
the client device based on receiving, from the client device,
a request for the PAC file. For example, the network device
may function as a PAC file server, and accordingly may
associate the PAC file with an address (e.g., a uniform
resource identifier (URI), a uniform resource locator (URL),
and/or the like) and host the PAC file at the address. In this
way, the client device may provide the request in the form
of an HTTP request that identifies the address, an FTP
request that identifies the address, and/or the like, and the
network device may provide the PAC file to the client device
based on receiving the request. In some implementations,
the network device may provide the PAC file to another
device that functions as a PAC file server, and the client
device may request the PAC file from the other PAC file
server.

Turning to FIG. 1E, and as shown by reference number
110, the client device may receive the PAC file and may
configure, based on the PAC file, the client device to
transmit traffic to the application platform. For example, the
client device may receive an instruction (e.g., via a web
browser application on the client device) to transmit a
request for a web page, a file, and/or the like, to the
application platform, and the client device may determine,
based on the information included in the PAC file, whether
to transmit the request to the application platform via the
proxy server device or to transmit the request directly to the
application platform (e.g., without transmitting the request
via the proxy server device). In this way, the client device
may analyze the request to determine a host domain asso-
ciated with the request, may determine an access method
associated with the request based on an association of the
host domain and the access method specified in the PAC file,
and may transmit the request based on the access method.

In this way, the network device may generate and/or
update a PAC file that configures the client device to use
various access methods for transmitting traffic associated
with a plurality of different web applications. In this way, the
PAC file may configure the client device to transmit traffic
associated with a particular web application such that the
traffic is transmitted using a proxy server device, and may
configure the client device to transmit traffic associated with
another web application such that the traffic associated with
the other application is transmitted without using a proxy
server device, which increases the flexibility of generating
PAC files. Moreover, for traffic that is to be transmitted to an
application platform without using a proxy server device,
this decreases latency between a client device that is to
transmit the traffic and the destination, which in turn
improves a user experience associated with the client device
and the web application associated with the traffic. More-
over, permitting traffic associated with some web applica-
tions to be transmitted without using a proxy server device
decreases the quantity of packets that is to be processed by
the proxy server device, which decreases processing,
memory, and networking resource usage of the proxy server
device, reduces the time it takes to process traffic at the

US 11,743,236 B2

9

proxy server device (e.g., because the processing queue at
the proxy server device is reduced), and allows the proxy
server device to use the processing and/or memory resources
of the proxy server device, that would have otherwise been
used to process the traffic, for other purposes.

As indicated above, FIGS. 1A-1E are provided merely as
an example. Other examples may differ from what is
described with regard to FIGS. 1A-1E.

FIG. 4 is a diagram of an example environment 400 in
which systems and/or methods described herein may be
implemented. As shown in FIG. 4, environment 400 may
include a client device 410, a plurality of data store devices
420 (e.g., an application signature store 420-1, a security
policy store 420-2, an application cache 430-3 and/or the
like, collectively referred to as “data store devices 420” and
individually as “data store device 420), a network device
430, an application platform 440 in a cloud computing
environment 442 that includes a set of computing resources
444, a network 450, a proxy server device 460, and/or the
like. Devices of environment 400 may interconnect via
wired connections, wireless connections, or a combination
of wired and wireless connections.

Client device 410 includes one or more devices capable of
receiving, generating, storing, processing, and/or providing
data associated with generating an application-based proxy
auto configuration. For example, client device 410 may
include a mobile phone (e.g., a smart phone, a radiotele-
phone, etc.), a laptop computer, a tablet computer, a hand-
held computer, a gaming device, a wearable communication
device (e.g., a smart wristwatch, a pair of smart eyeglasses,
etc.), a desktop computer, and/or a similar type of device.
Client device 410 may receive a PAC file from network
device 430, may transmit traffic based on the PAC file to
network device 430, and/or the like.

Data store device 420 includes one or more devices, such
as storage device, a memory device, and/or the like, capable
of receiving, generating, storing, processing, and/or provid-
ing data associated with generating an application-based
proxy auto configuration. For example, application signature
store 420-1 may include a storage device, a memory device,
and/or the like that stores information associated with one or
more applications, such as information associated with
various web applications (e.g., a web-based productivity
application or client management application, a computer-
aided design application, and/or the like). For example,
signature store 420-1 may store information identifying the
web application, information identifying an application sig-
nature associated with the web application (e.g., information
identifying one or more host domains, addresses, and/or
communications protocols associated with the application).
Security policy store 420-2 may include a storage device, a
memory device, and/or the like that stores information
identifying one or more application-based policies associ-
ated with the web application.

In some implementations, data store devices 420 may be
standalone devices, may be included in a network device
(e.g., network device 430) or another device, and/or the like.

Network device 430 includes one or more devices capable
of receiving, generating, storing, processing, and/or provid-
ing data associated with generating an application-based
proxy auto configuration. In some implementations, network
device 430 may include a firewall, a router, a gateway, a
switch, a bridge, a wireless access point, a base station (e.g.,
eNodeB, NodeB, gNodeB, and/or the like), and/or the like.
In some implementations, network device 430 may be
implemented as a physical device implemented within a
housing, such as a chassis. In some implementations, net-

20

25

40

45

10

work device 430 may be implemented as a virtual device
implemented by one or more computer devices of a cloud
computing environment or a data center.

In some implementations, network device 430 may iden-
tify an application signature associated with a web applica-
tion (e.g., based on information stored in data store devices
420), may generate a PAC file, may provide the PAC file to
client device 410, may receive traffic from client device 410
based on the PAC file, and/or may update the PAC file.

Application platform 440 includes one or more devices
capable of receiving, generating, storing, processing, and/or
providing data associated with generating an application-
based proxy auto configuration. For example, application
platform 440 may include a server device (e.g., a host server,
a web server, an application server, etc.), a data center
device, and/or a similar device. Application platform 440
may receive a packet from network device 430, may store
the packet, may transmit the packet to another location, may
modify the packet, may transmit one or more packets to the
client device, may analyze the packet, and/or the like. In
some implementations, application platform 440 may be
associated with an application, and may receive the appli-
cation, traffic associated with the application, a packet
associated with the application, and/or the like.

In some implementations, as shown, application platform
440 may be hosted in cloud computing environment 442.
Notably, while implementations described herein describe
application platform 440 as being hosted in cloud computing
environment 442, in some implementations, application
platform 440 may not be cloud-based (i.e., may be imple-
mented outside of a cloud computing environment) or may
be partially cloud-based.

Cloud computing environment 442 includes an environ-
ment that hosts application platform 440. Cloud computing
environment 442 may provide computation, software, data
access, storage, and/or other services. As shown, cloud
computing environment 442 may include a group of com-
puting resources 444 (referred to collectively as “computing
resources 444” and individually as “computing resource
4447).

Computing resource 444 includes one or more personal
computers, workstation computers, server devices, or
another type of computation and/or communication device.
In some implementations, computing resource 444 may host
application platform 440. The cloud resources may include
compute instances executing in computing resource 444,
storage devices provided in computing resource 444, data
transfer devices provided by computing resource 444, etc. In
some implementations, computing resource 444 may com-
municate with other computing resources 444 via wired
connections, wireless connections, or a combination of
wired and wireless connections.

As further shown in FIG. 4, computing resource 444 may
include a group of cloud resources, such as one or more
applications (“APPs”) 444-1, one or more virtual machines
(“VMs”) 444-2, one or more virtualized storages (“VSs”)
444-3, and/or one or more hypervisors (“HYPs”) 444-4.

Application 444-1 includes one or more software appli-
cations that may be provided to or accessed by one or more
devices of environment 400. Application 444-1 may elimi-
nate a need to install and execute the software applications
on devices of environment 400. For example, application
444-1 may include software associated with application
platform 440 and/or any other software capable of being
provided via cloud computing environment 442. In some
implementations, one application 444-1 may send/receive
information to/from one or more other applications 444-1,

US 11,743,236 B2

11

via virtual machine 444-2. In some implementations, appli-
cation 444-1 may include a software application associated
with one or more databases and/or operating systems. For
example, application 444-1 may include an enterprise appli-
cation, a functional application, an analytics application,
and/or the like.

Virtual machine 444-2 includes a software implementa-
tion of a machine (e.g., a computer) that executes programs
like a physical machine. Virtual machine 444-2 may be
either a system virtual machine or a process virtual machine,
depending upon use and degree of correspondence to any
real machine by virtual machine 444-2. A system virtual
machine may provide a complete system platform that
supports execution of a complete operating system (“OS”).
A process virtual machine may execute a single program,
and may support a single process. In some implementations,
virtual machine 444-2 may execute on behalf of a user (e.g.,
a user of client device 410 and/or an operator of application
platform 440), and may manage infrastructure of cloud
computing environment 442, such as data management,
synchronization, or long-duration data transfers.

Virtualized storage 444-3 includes one or more storage
systems and/or one or more devices that use virtualization
techniques within the storage systems or devices of com-
puting resource 444. In some implementations, within the
context of a storage system, types of virtualizations may
include block virtualization and file virtualization. Block
virtualization may refer to abstraction (or separation) of
logical storage from physical storage so that the storage
system may be accessed without regard to physical storage
or heterogeneous structure. The separation may permit
administrators of the storage system flexibility in how the
administrators manage storage for end users. File virtual-
ization may eliminate dependencies between data accessed
at a file level and a location where files are physically stored.
This may enable optimization of storage use, server con-
solidation, and/or performance of non-disruptive file migra-
tions.

Hypervisor 444-4 provides hardware virtualization tech-
niques that allow multiple operating systems (e.g., “guest
operating systems”) to execute concurrently on a host com-
puter, such as computing resource 444. Hypervisor 444-4
may present a virtual operating platform to the guest oper-
ating systems, and may manage the execution of the guest
operating systems. Multiple instances of a variety of oper-
ating systems may share virtualized hardware resources.

Network 450 includes one or more wired and/or wireless
networks. For example, network 450 may include a mobile
network (e.g., a long-term evolution (LTE) network, a code
division multiple access (CDMA) network, a 3G network, a
4G network, a 5G network, another type of next generation
network, etc.), a public land mobile network (PLMN), a
local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), a telephone network
(e.g., the Public Switched Telephone Network (PSTN)), a
private network, an ad hoc network, an intranet, the Internet,
a fiber optic-based network, a cloud computing network, or
the like, and/or a combination of these or other types of
networks.

Proxy server device 460 includes one or more physical
and/or virtual devices capable of receiving, generating,
storing, processing, and/or providing data associated with
generating an application-based proxy auto configuration. In
some implementations, proxy server device 460 may include
a network device, a server device, a client device, and/or the
like. In some implementations, proxy server device 460 may
include various types of devices capable of functioning as an

20

25

40

45

12

intermediary between client device 410 and application
platform 440. For example, proxy server device 460 may
transmit, for client device 410, traffic to application platform
440, may transmit, for application platform 440, traffic to
client device 410, and/or the like. In some implementations,
proxy server device 460 may perform various security
functions for traffic transmitted by, and traffic that is to be
received by, client device 410, such as threat detection
and/or intrusion detection, deep packet inspection, and/or
the like.

The number and arrangement of devices and networks
shown in FIG. 4 are provided as an example. In practice,
there may be additional devices and/or networks, fewer
devices and/or networks, different devices and/or networks,
or differently arranged devices and/or networks than those
shown in FIG. 4. Furthermore, two or more devices shown
in FIG. 4 may be implemented within a single device, or a
single device shown in FIG. 4 may be implemented as
multiple, distributed devices. Additionally, or alternatively, a
set of devices (e.g., one or more devices) of environment
400 may perform one or more functions described as being
performed by another set of devices of environment 400.

FIGS. 5A and 5B are diagrams of example components of
one or more devices of FIG. 4. FIG. 5A is a diagram of
example components of a device 500. Device 500 may
correspond to client device 410, data store device 420,
network device 430, application platform 440, proxy server
device 460, and/or the like. In some implementations, client
device 410, data store 420, network device 430, application
platform 440, proxy server device 460, and/or the like, may
include one or more devices 500 and/or one or more
components of device 500. As shown in FIG. 5A, device 500
may include a bus 505, a processor 510, a memory 515, a
storage component 520, an input component 525, an output
component 530, and/or a communication interface 535.

Bus 505 includes a component that permits communica-
tion among multiple components of device 500. Processor
510 is implemented in hardware, firmware, and/or a com-
bination of hardware and software. Processor 510 takes the
form of a central processing unit (CPU), a graphics process-
ing unit (GPU), an accelerated processing unit (APU), a
microprocessor, a microcontroller, a digital signal processor
(DSP), a field-programmable gate array (FPGA), an appli-
cation-specific integrated circuit (ASIC), and/or another
type of processing component. In some implementations,
processor 510 includes one or more processors capable of
being programmed to perform a function. Memory 515
includes a random access memory (RAM), a read only
memory (ROM), and/or another type of dynamic or static
storage device (e.g., a flash memory, a magnetic memory,
and/or an optical memory) that stores information and/or
instructions for use by processor 510.

Storage component 520 stores information and/or soft-
ware related to the operation and use of device 500. For
example, storage component 520 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
and/or a solid state disk), a compact disc (CD), a digital
versatile disc (DVD), a floppy disk, a cartridge, a magnetic
tape, and/or another type of non-transitory computer-read-
able medium, along with a corresponding drive.

Input component 525 includes a component that permits
device 500 to receive information, such as via user input
(e.g., a touch screen display, a keyboard, a keypad, a mouse,
a button, a switch, and/or a microphone). Additionally, or
alternatively, input component 525 may include a sensor for
sensing information (e.g., a global positioning system (GPS)
component, an accelerometer, a gyroscope, and/or an actua-

US 11,743,236 B2

13

tor). Output component 530 includes a component that
provides output information from device 500 (e.g., a display,
a speaker, and/or one or more light-emitting diodes (LEDs)).

Communication interface 535 includes a transceiver-like
component (e.g., a transceiver and/or a separate receiver and
transmitter) that enables device 500 to communicate with
other devices, such as via a wired connection, a wireless
connection, or a combination of wired and wireless connec-
tions. Communication interface 535 may permit device 500
to receive information from another device and/or provide
information to another device. For example, communication
interface 535 may include an Ethernet interface, an optical
interface, a coaxial interface, an infrared interface, a radio
frequency (RF) interface, a universal serial bus (USB)
interface, a Wi-Fi interface, a cellular network interface, or
the like.

Device 500 may perform one or more processes described
herein. Device 500 may perform these processes based on
processor 510 executing software instructions stored by a
non-transitory computer-readable medium, such as memory
515 and/or storage component 520. A computer-readable
medium is defined herein as a non-transitory memory
device. A memory device includes memory space within a
single physical storage device or memory space spread
across multiple physical storage devices.

Software instructions may be read into memory 515
and/or storage component 520 from another computer-
readable medium or from another device via communication
interface 535. When executed, software instructions stored
in memory 515 and/or storage component 520 may cause
processor 510 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

The number and arrangement of components shown in
FIG. 5A are provided as an example. In practice, device 500
may include additional components, fewer components,
different components, or differently arranged components
than those shown in FIG. 5A. Additionally, or alternatively,
a set of components (e.g., one or more components) of
device 500 may perform one or more functions described as
being performed by another set of components of device
500.

FIG. 5B is a diagram of example components of a device
550. Device 550 may correspond to network device 430. In
some implementations, network device 430 may include one
or more devices 550 and/or one or more components of
device 550. As shown in FIG. 5B, device 550 may include
one or more input components 555-1 through 555-B (B =1)
(hereinafter referred to collectively as input components
555, and individually as input component 555), a switching
component 560, one or more output components 565-1
through 565-C (C =1) (hereinafter referred to collectively as
output components 565, and individually as output compo-
nent 565), and a controller 570.

Input component 555 may be points of attachment for
physical links and may be points of entry for incoming
traffic, such as packets. Input component 555 may process
incoming traffic, such as by performing data link layer
encapsulation or decapsulation. In some implementations,
input component 555 may send and/or receive packets. In
some implementations, input component 555 may include
an input line card that includes one or more packet process-
ing components (e.g., in the form of integrated circuits),

20

25

30

35

40

45

55

14

such as one or more interface cards (IFCs), packet forward-
ing components, line card controller components, input
ports, processors, memories, and/or input queues. In some
implementations, device 550 may include one or more input
components 555.

Switching component 560 may interconnect input com-
ponents 555 with output components 565. In some imple-
mentations, switching component 560 may be implemented
via one or more crossbars, via busses, and/or with shared
memories. The shared memories may act as temporary
buffers to store packets from input components 555 before
the packets are eventually scheduled for delivery to output
components 565. In some implementations, switching com-
ponent 560 may enable input components 555, output com-
ponents 565, and/or controller 570 to communicate.

Output component 565 may store packets and may sched-
ule packets for transmission on output physical links. Output
component 565 may support data link layer encapsulation or
decapsulation, and/or a variety of higher-level protocols. In
some implementations, output component 565 may send
packets and/or receive packets. In some implementations,
output component 565 may include an output line card that
includes one or more packet processing components (e.g., in
the form of integrated circuits), such as one or more IFCs,
packet forwarding components, line card controller compo-
nents, output ports, processors, memories, and/or output
queues. In some implementations, device 550 may include
one or more output components 565. In some implementa-
tions, input component 555 and output component 565 may
be implemented by the same set of components (e.g., an
input/output component may be a combination of input
component 555 and output component 565).

Controller 570 includes a processor in the form of, for
example, a CPU, a GPU, an APU, a microprocessor, a
microcontroller, a DSP, an FPGA, an ASIC, and/or another
type of processor. The processor is implemented in hard-
ware, firmware, and/or a combination of hardware and
software. In some implementations, controller 570 may
include one or more processors that can be programmed to
perform a function.

In some implementations, controller 570 may include a
RAM, a ROM, and/or another type of dynamic or static
storage device (e.g., a flash memory, a magnetic memory, an
optical memory, etc.) that stores information and/or instruc-
tions for use by controller 570.

In some implementations, controller 570 may communi-
cate with other devices, networks, and/or systems connected
to device 500 in order to exchange information regarding
network topology. Controller 570 may create routing tables
based on the network topology information, create forward-
ing tables based on the routing tables, and forward the
forwarding tables to input components 555 and/or output
components 565. Input components 555 and/or output com-
ponents 565 may use the forwarding tables to perform route
lookups for incoming and/or outgoing packets.

Controller 570 may perform one or more processes
described herein. Controller 570 may perform these pro-
cesses in response to executing software instructions stored
by a non-transitory computer-readable medium.

Software instructions may be read into a memory and/or
storage component associated with controller 570 from
another computer-readable medium or from another device
via a communication interface. When executed, software
instructions stored in a memory and/or storage component
associated with controller 570 may cause controller 570 to
perform one or more processes described herein. Addition-
ally, or alternatively, hardwired circuitry may be used in

US 11,743,236 B2

15

place of or in combination with software instructions to
perform one or more processes described herein. Thus,
implementations described herein are not limited to any
specific combination of hardware circuitry and software.

The number and arrangement of components shown in
FIG. 5B are provided as an example. In practice, device 550
may include additional components, fewer components,
different components, or differently arranged components
than those shown in FIG. 5B. Additionally, or alternatively,
a set of components (e.g., one or more components) of
device 550 may perform one or more functions described as
being performed by another set of components of device
550.

FIG. 6 is a flow chart of an example process 600 for
generating an application-based proxy auto configuration. In
some implementations, one or more process blocks of FIG.
6 may be performed by a network device (e.g., network
device 430). In some implementations, one or more process
blocks of FIG. 6 may be performed by another device or a
group of devices separate from or including the network
device, such as a client device (e.g., client device 410), a
data store device (e.g., data store device 420), an application
platform (e.g., application platform 440), a proxy server
device (e.g., proxy server device 460), and/or the like.

As shown in FIG. 6, process 600 may include identifying
an application signature associated with a web application
(block 610). For example, the network device (e.g., using
computing resource 444, processor 510, memory 515, stor-
age component 520, communication interface 535, input
component 555, switching component 560, output compo-
nent 565, controller 570, and/or the like) may identify an
application signature associated with a web application, as
described above.

As further shown in FIG. 6, process 600 may include
determining, based on an application-based policy associ-
ated with the web application, an access method to be used
to transmit traffic associated with the web application (block
620). For example, the network device (e.g., using comput-
ing resource 444, processor 510, memory 515, storage
component 520, communication interface 535, input com-
ponent 555, switching component 560, output component
565, controller 570, and/or the like) may determine, based
on an application-based policy associated with the web
application, an access method to be used to transmit traffic
associated with the web application, as described above.

As further shown in FIG. 6, process 600 may include
generating a proxy auto configuration (PAC) file using the
application signature associated with the web application,
and the access method to be used to transmit the traffic
associated with the web application (block 630). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
controller 570, and/or the like) may generate a PAC file
using the application signature associated with the web
application, and the access method to be used to transmit the
traffic associated with the web application, as described
above.

As further shown in FIG. 6, process 600 may include
providing the PAC file to a client device to permit the client
device to transmit the traffic associated with the web appli-
cation based on the PAC file (block 640). For example, the
network device (e.g., using computing resource 444, pro-
cessor 510, memory 515, storage component 520, commu-
nication interface 535, switching component 560, output
component 565, controller 570, and/or the like) may provide
the PAC file to a client device to permit the client device to

20

25

40

45

55

16
transmit the traffic associated with the web application based
on the PAC file, as described above.

Process 600 may include additional implementations,
such as any single implementation or any combination of
implementations described below and/or in connection with
one or more other processes described elsewhere herein.

In some implementations, when identifying the applica-
tion signature associated with the web application, the
network device may identify the application signature based
on information, associated with the web application, stored
in an application signature store. In some implementations,
when generating the PAC file, the network device may
dynamically generate the PAC file based on an Internet
protocol (IP) address and a port identifier, associated with
the web application, identified in an application cache. In
some implementations, the application-based policy, asso-
ciated with the web application, may specify the access
method to be used to transmit the traffic associated with the
web application.

In some implementations, the traffic associated with the
web application may be transmitted to an application server
associated with the web application, via a deep packet
inspection proxy server; the traffic associated with the web
application may be transmitted to the application server
associated with the web application, via an intrusion pre-
vention system proxy server; or the traffic associated with
the web application may be transmitted to the application
server associated with the web application without using a
Proxy server.

In some implementations, when providing the PAC file to
the client device, the network device may receive, from the
client device, a request for the PAC file, and may provide,
based on receiving the request, the PAC file to the client
device. In some implementations, the network device may
host the PAC file at a uniform resource identifier (URI)
associated with the PAC file.

Although FIG. 6 shows example blocks of process 600, in
some implementations, process 600 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 6. Additionally,
or alternatively, two or more of the blocks of process 600
may be performed in parallel.

FIG. 7 is a flow chart of an example process 700 for
generating an application-based proxy auto configuration. In
some implementations, one or more process blocks of FIG.
7 may be performed by a network device (e.g., network
device 430). In some implementations, one or more process
blocks of FIG. 7 may be performed by another device or a
group of devices separate from or including the network
device, such as a client device (e.g., client device 410), a
data store device (e.g., data store device 420), an application
platform (e.g., application platform 440), a proxy server
device (e.g., proxy server device 460), and/or the like.

As shown in FIG. 7, process 700 may include identifying
an application signature associated with a web application
(block 710). For example, the network device (e.g., using
computing resource 444, processor 510, memory 515, stor-
age component 520, communication interface 535, input
component 555, switching component 560, output compo-
nent 565, controller 570, and/or the like) may identify an
application signature associated with a web application, as
described above.

As further shown in FIG. 7, process 700 may include
determining, based on an application-based policy associ-
ated with the web application, an access method to be used
to transmit traffic associated with the web application (block
720). For example, the network device (e.g., using comput-

US 11,743,236 B2

17

ing resource 444, processor 510, memory 515, storage
component 520, communication interface 535, input com-
ponent 555, switching component 560, output component
565, controller 570, and/or the like) may determine, based
on an application-based policy associated with the web
application, an access method to be used to transmit traffic
associated with the web application, as described above.

As further shown in FIG. 7, process 700 may include
generating a proxy auto configuration (PAC) file using the
application signature associated with the web application,
and the access method to be used to transmit the traffic
associated with the web application (block 730). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
controller 570, and/or the like) may generate a PAC file
using the application signature associated with the web
application, and the access method to be used to transmit the
traffic associated with the web application, as described
above.

As further shown in FIG. 7, process 700 may include
associating the PAC file with a URL (block 740). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may associate the PAC file with a URL, as
described above.

As further shown in FIG. 7, process 700 may include
providing the PAC file to a client device based on receiving
a request, from the client device, that specifies the network
address (block 750). For example, the network device (e.g.,
using computing resource 444, processor 510, memory 515,
storage component 520, communication interface 535,
switching component 560, output component 565, controller
570, and/or the like) may provide the PAC file to a client
device based on receiving a request, from the client device,
that specifies the network address, as described above.

Process 700 may include additional implementations,
including any single implementation or any combination of
implementations described below and/or in connection with
one or more other processes described elsewhere herein.

In some implementations, when generating the PAC file,
the network device may dynamically generate the PAC file
based on an Internet protocol (IP) address and a port
identifier, associated with the web application, identified in
an application cache. In some implementations, when
dynamically generating the PAC file based on the IP address
and the port identifier, associated with the web application,
identified in the application cache, the network device may
dynamically generate the PAC file based on determining that
information identifying the IP address and a port identifier,
associated with the web application, have been added to the
application cache. In some implementations, when dynami-
cally generating the PAC file, the network device may
generate JavaScript code corresponding to an association
between the IP address and the port identifier associated with
the web application and the access method to be used to
transmit the traffic associated with the web application.

In some implementations, when dynamically generating
the PAC file based on the IP address and the port identifier,
associated with the web application, identified in the appli-
cation cache, the network device may determine whether a
time interval, associated with the IP address and the port
identifier identified in the application cache, has expired and
may remove the [P address and the port identifier identified
from the application cache based on determining that the
time interval has expired.

30

40

45

18

In some implementations, the application signature com-
prises information identifying a user agent associated with
the web application. In some implementations, information
identifying the application signature associated with the web
application may be stored in an application cache associated
with the network device, and the application signature may
include information identifying a host domain associated
with the web application and information identifying an
application protocol associated with the web application.

Although FIG. 7 shows example blocks of process 700, in
some implementations, process 700 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 7. Additionally,
or alternatively, two or more of the blocks of process 700
may be performed in parallel.

FIG. 8 is a flow chart of an example process 800 for
generating an application-based proxy auto configuration. In
some implementations, one or more process blocks of FIG.
8 may be performed by a network device (e.g., network
device 430). In some implementations, one or more process
blocks of FIG. 8 may be performed by another device or a
group of devices separate from or including the network
device, such as a client device (e.g., client device 410), a
data store device (e.g., data store device 420), an application
platform (e.g., application platform 440), a proxy server
device (e.g., proxy server device 460), and/or the like.

As shown in FIG. 8, process 800 may include identifying
a plurality of application signatures, wherein a respective
application signature, of the plurality of application signa-
tures, is associated with a respective web application of a
plurality of web applications (block 810). For example, the
network device (e.g., using computing resource 444, pro-
cessor 510, memory 515, storage component 520, commu-
nication interface 535, input component 555, switching
component 560, output component 565, controller 570,
and/or the like) may identify a plurality of application
signatures, as described above. In some implementations, a
respective application signature, of the plurality of applica-
tion signatures, may be associated with a respective web
application of a plurality of web applications.

As further shown in FIG. 8, process 800 may include
determining a plurality of access methods to be used to
transmit traffic associated with the plurality of web appli-
cations, wherein a respective access method, of the plurality
of access methods, is to be used to transmit traffic associated
with the respective web application (block 820). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may determine a plurality of access methods
to be used to transmit traffic associated with the plurality of
web applications, as described above. In some implemen-
tations, a respective access method, of the plurality of access
methods, may be used to transmit traffic associated with the
respective web application.

As further shown in FIG. 8, process 800 may include
generating a proxy auto configuration (PAC) file using each
application signature of the plurality of application signa-
tures, and the respective access method to be used to
transmit traffic associated with the respective web applica-
tion (block 830). For example, the network device (e.g.,
using computing resource 444, processor 510, memory 515,
storage component 520, controller 570, and/or the like) may
generate a PAC file using each application signature of the
plurality of application signatures, and the respective access

US 11,743,236 B2

19

method to be used to transmit traffic associated with the
respective web application, as described above.

As further shown in FIG. 8, process 800 may include
providing the PAC file to a client device (block 840). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, switching component 560,
output component 565, controller 570, and/or the like) may
provide the PAC file to a client device, as described above.

Process 800 may include additional implementations,
including any single implementation or any combination of
implementations described below and/or in connection with
one or more other processes described elsewhere herein.

In some implementations, a first web application, of the
plurality of web applications, may be associated with a first
web application type, a second web application, of the
plurality of web applications, may be associated with a
second web application type, and the first web application
type and the second web application type may be different
web application types.

In some implementations, each web application, of the
plurality of web applications, may be associated with a
different web application group type. In some implementa-
tions, when generating the PAC file, the network device may
dynamically generate the PAC file based on an Internet
protocol (IP) address and a port identifier, associated with
the web application, identified in an application cache. In
some implementations, when dynamically generating the
PAC file, the network device may dynamically generate the
PAC file based on determining that information identifying
the IP address and a port identifier, associated with the web
application, have been added to the application cache. In
some implementations, when dynamically generating the
PAC file, the network device may generate a JavaScript code
corresponding to an association between the IP address and
the port identifier associated with the web application and
the access method to be used to transmit the traffic associ-
ated with the web application.

Although FIG. 8 shows example blocks of process 800, in
some implementations, process 800 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 8. Additionally,
or alternatively, two or more of the blocks of process 800
may be performed in parallel.

FIG. 9 is a flow chart of an example process 900 for
statically generating an application-based proxy auto con-
figuration. In some implementations, one or more process
blocks of FIG. 9 may be performed by a network device
(e.g., network device 430). In some implementations, one or
more process blocks of FIG. 9 may be performed by another
device or a group of devices separate from or including the
network device, such as a client device (e.g., client device
410), a data store device (e.g., data store device 420), an
application platform (e.g., application platform 440), a
proxy server device (e.g., proxy server device 460), and/or
the like.

As shown in FIG. 9, process 900 may include getting the
next application signature, associated with a web applica-
tion, from an application signature store (block 902). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may get the next application signature,
associated with a web application, from an application
signature store.

40

45

50

20

As further shown in FIG. 9, process 900 may include
getting the next application signature rule from the applica-
tion signature (block 904). For example, the network device
(e.g., using computing resource 444, processor 510, memory
515, storage component 520, communication interface 535,
input component 555, switching component 560, output
component 565, controller 570, and/or the like) may get the
next application signature rule from the application signa-
ture.

As further shown in FIG. 9, process 900 may include
determining whether the application signature rule is a
host-based pattern rule (block 906). For example, the net-
work device (e.g., using computing resource 444, processor
510, memory 515, storage component 520, communication
interface 535, switching component 560, output component
565, controller 570, and/or the like) may determine whether
the application signature rule is a host-based pattern rule. If
the application signature rule is not a host-based pattern rule
(e.g., the application signature rule includes rules other than
server hostname or server URL rules) (block 906-No), the
network device may ignore the application signature rule
and may return to block 904 to get next application signature
rule from the application signature.

As further shown in FIG. 9, if the application signature
rule has a pattern for server hostname or server URL (block
906—Yes), process 900 may include extracting the appli-
cation signature rule from application signature (block 908).
For example, the network device (e.g., using computing
resource 444, processor 510, memory 515, storage compo-
nent 520, communication interface 535, switching compo-
nent 560, output component 565, controller 570, and/or the
like) may extract the application signature rule from appli-
cation signature.

As further shown in FIG. 9, process 900 may include
extracting an access method policy, associated with the web
application, from a security policy store (block 910). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may extract an access method policy,
associated with the web application, from a security policy
store.

As further shown in FIG. 9, process 900 may include
generating JavaScript code for the extracted application
signature rule and access method policy (block 912). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may generate JavaScript code for the
extracted application signature rule and access method
policy. In some implementations, the extract application
signature rule may include a pattern for a server hostname
(or server URL), and the generated JavaScript code may
include a pattern similar to that illustrated in FIG. 3.

As further shown in FIG. 9, process 900 may include
determining whether there are any remaining application
signature rules in the application signature (block 914). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may determine whether there are any
remaining application signature rules in the application
signature. If the network device determines that there are
remaining application signature rules in the application

US 11,743,236 B2

21

signature (block 914—Yes), process 900 may return to block
904 so that the next application signature rule may be
extracted.

As further shown in FIG. 9, if the network device deter-
mines that there are no remaining application signature rules
in the application signature (block 914-No), process 900
may include determining whether there are any remaining
application signatures, included in the application signature
store, to be processed (block 916). For example, the network
device (e.g., using computing resource 444, processor 510,
memory 515, storage component 520, communication inter-
face 535, switching component 560, output component 565,
controller 570, and/or the like) may determine whether there
are any remaining application signatures, included in the
application signature store, to be processed. If the network
device determines that there are any remaining application
signatures, included in the application signature store, to be
processed (block 916—Yes), process 900 may return to
block 902 so that the next application signature may be
processed. If the network device determines that there are no
remaining application signatures, included in the application
signature store, to be processed (block 916—No), process
900 may end.

Process 900 may include additional implementations,
such as any single implementation or any combination of
implementations described below and/or in connection with
one or more other processes described elsewhere herein.
Although FIG. 9 shows example blocks of process 900, in
some implementations, process 900 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 9. Additionally,
or alternatively, two or more of the blocks of process 900
may be performed in parallel.

FIG. 10 is a flow chart of an example process 1000 for
dynamically generating an application-based proxy auto
configuration. In some implementations, one or more pro-
cess blocks of FIG. 10 may be performed by a network
device (e.g., network device 430). In some implementations,
one or more process blocks of FIG. 10 may be performed by
another device or a group of devices separate from or
including the network device, such as a client device (e.g.,
client device 410), a data store device (e.g., data store device
420), an application platform (e.g., application platform
440), a proxy server device (e.g., proxy server device 460),
and/or the like.

As shown in FIG. 10, process 1000 may include deter-
mining whether a web application is a new web application
added to an application cache (block 1002). For example,
the network device (e.g., using computing resource 444,
processor 510, memory 515, storage component 520, com-
munication interface 535, input component 555, switching
component 560, output component 565, controller 570,
and/or the like) may determine whether a web application is
a new web application added to an application cache.

As further shown in FIG. 10, if the web application is a
new web application added to the application cache (block
1002—Yes), process 1000 may include determining whether
the web application configured in PAC file has a correspond-
ing rule adding the entry to application cache does not have
server hostname pattern or server URL pattern and was thus
ignored during static PAC file generation (block 1004). For
example, the network device (e.g., using computing resource
444, processor 510, memory 515, storage component 520,
communication interface 535, input component 555, switch-
ing component 560, output component 565, controller 570,
and/or the like) may determine whether the web application
configured in PAC file has a corresponding rule adding the

10

15

20

25

30

35

40

45

50

55

60

65

22

entry to application cache does not have server hostname
pattern or server URL pattern and was thus ignored during
static PAC file generation.

As further shown in FIG. 10, if the rule adding this entry
in application cache does not correspond to one having
server hostname or URL and was ignored during static PAC
file generation (block 1004—Yes), process 1000 may
include generating a JavaScript code for the IP address and
port identifier rule associated with the web application, and
an access method policy associated with the web application
(block 1006). For example, the network device (e.g., using
computing resource 444, processor 510, memory 515, stor-
age component 520, controller 570, and/or the like) may
generate a JavaScript code for the IP address and port
identifier rule associated with the web application, and an
access method policy associated with the web application.

As further shown in FIG. 10, if the web application is not
a new web application added to the application cache (block
1002—No), process 1000 may include determining whether
a time interval, associated with a cache entry of the web
application in the application cache, has expired (block
1008). For example, the network device (e.g., using com-
puting resource 444, processor 510, memory 515, storage
component 520, communication interface 535, switching
component 560, output component 565, controller 570,
and/or the like) may determine whether a time interval,
associated with a cache entry of the web application in the
application cache, has expired.

As further shown in FIG. 10, if the time interval has
expired, process 1000 may include deleting the cache entry,
for the web application, from the application cache (block
1010). For example, the network device (e.g., using com-
puting resource 444, processor 510, memory 515, storage
component 520, communication interface 535, input com-
ponent 555, switching component 560, output component
565, controller 570, and/or the like) may delete the cache
entry, for the web application, from the application cache.

As further shown in FIG. 10, process 1000 may include
determining whether the cache entry, for the web applica-
tion, in the application cache was used to generate the PAC
file (block 1012). For example, the network device (e.g.,
using computing resource 444, processor 510, memory 515,
storage component 520, communication interface 535, input
component 555, switching component 560, output compo-
nent 565, controller 570, and/or the like) may determine
whether the cache entry, for the web application, in the
application cache was used to generate the PAC file.

As further shown in FIG. 10, if the cache entry, for the
web application, in the application cache was used to
generate the PAC file, process 1000 may include removing
the JavaScript code, from PAC file, for the matching IP
address and port identifier application signature rule (block
1014). For example, the network device (e.g., using com-
puting resource 444, processor 510, memory 515, storage
component 520, communication interface 535, input com-
ponent 555, switching component 560, output component
565, controller 570, and/or the like) may remove the
JavaScript code, from PAC file, for the matching IP address
and port identifier application signature rule.

Process 1000 may include additional implementations,
such as any single implementation or any combination of
implementations described below and/or in connection with
one or more other processes described elsewhere herein.
Although FIG. 10 shows example blocks of process 1000, in
some implementations, process 1000 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 10. Additionally,

US 11,743,236 B2

23

or alternatively, two or more of the blocks of process 1000
may be performed in parallel.

As used herein, “traffic” or “content” may include a set of
packets. A packet may refer to a communication structure for
communicating information, such as a protocol data unit
(PDU), a network packet, a datagram, a segment, a message,
a block, a cell, a frame, a subframe, a slot, a symbol, a
portion of any of the above, and/or another type of formatted
or unformatted unit of data capable of being transmitted via
a network.

The foregoing disclosure provides illustration and
description, but is not intended to be exhaustive or to limit
the implementations to the precise form disclosed. Modifi-
cations and variations may be made in light of the above
disclosure or may be acquired from practice of the imple-
mentations.

As used herein, the term “component” is intended to be
broadly construed as hardware, firmware, and/or a combi-
nation of hardware and software.

It will be apparent that systems and/or methods, described
herein, may be implemented in different forms of hardware,
firmware, and/or a combination of hardware and software.
The actual specialized control hardware or software code
used to implement these systems and/or methods does not
limit the implementations. Thus, the operation and behavior
of the systems and/or methods are described herein without
reference to specific software code—it being understood that
software and hardware can be designed to implement the
systems and/or methods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
various implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of various implementations
includes each dependent claim in combination with every
other claim in the claim set.

No element, act, or instruction used herein should be
construed as critical or essential unless explicitly described
as such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Furthermore, as used
herein, the term “set” is intended to include one or more
items (e.g., related items, unrelated items, a combination of
related and unrelated items, etc.), and may be used inter-
changeably with “one or more.” Where only one item is
intended, the term “only one” or similar language is used.
Also, as used herein, the terms “has,” “have,” “having,” or
the like are intended to be open-ended terms. Further, the
phrase “based on” is intended to mean “based, at least in
part, on” unless explicitly stated otherwise.

What is claimed is:
1. A method, comprising:
identifying, by a network device, an application signature
rule from an application signature associated with a
web application;
when determining, by the network device and when the
application signature rule is not a server hostname rule
and is not server uniform resource locator (URL) rule,
that the application signature rule is not a host-based
pattern rule:
ignoring the application signature rule when the appli-
cation signature rule is not a host-based pattern rule;
and

10

20

30

40

45

50

55

24

determining whether there are other application signa-
ture rules remaining; and

when determining, by the network device and when the

application signature rule is a server hostname rule or

server uniform resource locator (URL) rule, that the

application signature rule is a host-based pattern rule;

extracting, by the network device, the application sig-
nature rule from the application signature;

extracting, by the network device and from a security
policy store, an access method policy associated with
the web application; and

generating, by the network device, JavaScript code for
the extracted application signature rule and the
extracted access method policy.

2. The method of claim 1, comprising:

obtaining the application signature, associated with the

web application, from an application signature store.

3. The method of claim 1, wherein the application signa-
ture rule comprises a first application signature rule; and

the method further comprises:

obtaining a second application signature rule from the
application signature;

determining that the second application signature rule
is not the host-based pattern rule; and

obtaining a third application signature rule from the
application signature.

4. The method of claim 1, wherein the extracted applica-
tion signature rule includes a pattern for a server hostname.

5. The method of claim 1, wherein the extracted applica-
tion signature rule includes a pattern for a server URL.

6. The method of claim 1, further comprising:

determining that no application signature rules remain in

the application signature;

determining that another application signature is associ-

ated with the web application; and

processing the other application signature by identifying

another application signature rule from the other appli-
cation signature.

7. The method of claim 1, wherein the generated
JavaScript code includes information specifying an associa-
tion between a pattern-based rule identified for the web
application, a network endpoint associated with the pattern-
based rule that is identified in an application cache, and the
access method policy for the web application.

8. A device, comprising:

one or more memories; and

one or more processors, communicatively coupled to the

one or more memories, configured to:

identify an application signature rule, from application
signature rules, from an application signature asso-
ciated with a web application;

determine that the application signature rule is a host-
based pattern rule;

extract the application signature rule from the applica-
tion signature;

extract an access method policy associated with the
web application;

generate JavaScript code for the extracted application
signature rule and the extracted access method
policy;

determine that none of the application signature rules
remain in the application signature; and

process another application signature associated with
the web application by identifying another applica-
tion signature rule from the other application signa-
ture.

US 11,743,236 B2

25

9. The device of claim 8, wherein the one or more
processors are further configured to:

obtain the application signature, associated with the web

application, from an application signature store.

10. The device of claim 8, wherein the application sig-
nature rule comprises a first application signature rule; and

wherein the one or more processors are further configured

to:

obtain a second application signature rule from the
application signature;

determine that the second application signature rule is
not the host-based pattern rule; and

obtain a third application signature rule from the appli-
cation signature.

11. The device of claim 8, wherein the extracted appli-
cation signature rule includes a pattern for a server hostname
or a pattern for a server uniform resource locator (URL).

12. The device of claim 8, wherein the access method
policy being used to transmit traffic associated with the web
application.

13. The device of claim 8, wherein the generated
JavaScript code further includes information specifying a
network endpoint associated with the host-based pattern rule
that is identified in an application cache.

14. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by one or

more processors, cause the one or more processors to:
identify an application signature rule from an applica-
tion signature associated with a web application;
determine that the application signature rule is a server
hostname rule or server uniform resource locator
(URL) rule;
extract the application signature rule from the applica-
tion signature;
extract an access method policy associated with the
web application; and
generate code for the extracted application signature
rule and the extracted access method policy,
wherein the generated code includes information
specifying an association between a pattern-based
rule identified for the web application and the
access method policy for the web application.

15. The non-transitory computer-readable medium of
claim 14, wherein the one or more instructions, when
executed by the one or more processors, further cause the
one or more processors to:

5

25

30

40

45

26

obtain the application signature, associated with the web

application, from an application signature store.

16. The non-transitory computer-readable medium of
claim 14, wherein the application signature rule comprises a
first application signature rule; and

wherein the one or more instructions, when executed by

the one or more processors, further cause the one or

more processors to:

obtain a second application signature rule from the
application signature;

determine that the second application signature rule is
not the server hostname rule nor the server URL rule;
and

obtain a third application signature rule from the appli-
cation signature.

17. The non-transitory computer-readable medium of
claim 14, wherein the extracted application signature rule
includes a host-based pattern rule for a server hostname or
a server URL.

18. The non-transitory computer-readable medium of
claim 14, wherein the one or more instructions, when
executed by the one or more processors, further cause the
one or more processors to:

determine that no application signature rules remain in the

application signature;

determine that another application signature is associated

with the web application; and

process the other application signature by identifying

another application signature rule from the other appli-
cation signature.
19. The non-transitory computer-readable medium of
claim 14, wherein the generated code further includes the
information specifying a network endpoint associated with
the pattern-based rule that is identified in an application
cache.
20. The device of claim 8, wherein the access method
policy specifies one of:
traffic associated with the web application is to be trans-
mitted to an application server associated with the web
application via a deep packet inspection proxy server,

traffic associated with the web application is to be trans-
mitted to the application server associated with the web
application via another proxy server, or

traffic associated with the web application is to be trans-

mitted to the application server associated with the web
application without using a proxy server.

#* #* #* #* #*

