wo 2022/025770 A2 |0 0000 KO0 0 0000 O R0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert N
o amisaton " > OO O
International Bureau = (10) International Publication Number
(43) International Publication Date ——’/ WO 2022/025770 A2

03 February 2022 (03.02.2022) WIPO | PCT

(51) International Patent Classification: (74) Agent: AJ PARK, Level 22, Aon Centre, 1 Willis Street,
GO6T 9/00 (2006.01) HO04N 19/597 (2014.01) Wellington, 6011 (NZ).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/NZ2021/050009 kind of national protection available). AE, AG, AL, AM,

AO. AT, AU, AZ. BA, BB, BG, BIL, BN, BR, BW, BY, BZ.
CA. CH. CL. CN. CO, CR, CU, CZ. DE, DJ, DK, DM, DO,

28 January 2021(28.01.2021) DZ. EC, EE. EG. ES, FI, GB, GD, GE, GH. GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL. IN, IR, IS, IT, JO, JP, KE, KG, KI, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,

(22) International Filing Date:

(26) Publication Language: English ME, MG, MK, MN, MW, MX, MY. MZ. NA, NG, NI NO,
(30) Priority Data: NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
63/057,239 27 July 2020 (27.07.2020) Us SA, SC. SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
17/140,846 04 January 2021 (04.01.2021) UsS TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(71) Applicant: WETA DIGITAL LIMITED [NZ/NZ]; 9 (84) Designated States (unless otherwise indicated, for every
Manuka Street, Miramar, Wellington, 6022 (NZ). kind of regional protection available). ARIPO (BW, GH,

, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(72) Inveptor: HILLMAN, Peter; 9 Manuka Street, Miramar, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG. KZ, RU. TJ.
Wellington, 6022 (NZ). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: METHOD FOR COMPRESSING IMAGE DATA HAVING DEPTH INFORMATION

800
-

801
-

Obtain Image Dataset of Pixel image Value
Arrays, Each Comprising Pixel Bamples

Determine Combining Criteria for Combimiig Samples of the Fixel image Valug
Array (€.g., Wh ach Sample of the Uncompressed Array 1o be 802
Represanted by a Comprassad Sample Has a Depth Vaius Within a Predefinedr
Limited Depth Range Threshold, Whather Adiacent Samples are from the Same
Object, Etc)
¥

Detarmine Whether Each Object Reprasented by Samples within the 803
Predefined Limited Depth Range Threshoid All Share an Object Identifier |
in Comman
¥
Disteriming Whether an Error Threshold Would Be Exceeded by & 304
Replacement of Uncompressed Samples by a Compressed Sample
+
805
Add an Additional Sample, if Needed, to Reduce a ,‘30"
Compressicn Error to Balow the Error Threshoid
¥
8085

Madify a Depin Range of a Compressed Sampie, if Needed, to |.»
Reduce the Compression Error to Beiow the Error Threshold

¥

Compute Compressed Samples for a Compressad Pixel Image Value | 8
Array from the Uncomprassed Pixel Image Valus Aray Based on Depth ¢~
Values Associated with the Pixel Image Valus Array Samples
Compute & Compressed Image Datasel Comprising Compressed Pixel
Image Value Arrays and the Combining Criteria

End FiG. 8

(57) Abstract: An image dataset is compressed by combining depth values from pixel depth arrays, wherein combining critetia are
based on object data and/or depth variations of depth values in the first pixel image value array and generating a modified image dataset
wherein a first pixel image value array represented in a received image dataset by the first number of image value array samples is in
turn represented in the modified image dataset by a second number of compressed image value array samples with the second number
being less than or equal to the first number.

[Continued on next page]

WO 2022/025770 A2 | [IN 1]} 00 0000 OO 0O O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

— in black and white; the international application as filed
contained color or greyscale and is available for download
Jrom PATENTSCOPE

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

Method for Compressing Image Data Having Depth Information

CROSS-REFERENCES TO PRIORITY AND RELATED APPLICATIONS

[0001] This application claims the benefit of, and priority from, U.S. Provisional Patent
Application No. 63/057,239 filed July 27, 2020, entitled “Method for Compressing Image
Data Having Depth Information”, and from U.S. Patent Application No. 17/140,846 filed
January 4, 2021, entitled “Method for Compressing Image Data Having Depth Information”.
[0002] The entire disclosure of the applications recited above are hereby incorporated by

reference, as if set forth in full in this document, for all purposes.

FIELD
[0003] The present disclosure generally relates to methods and apparatus for efficiently
storing image data and more particularly to compressing image data that contains depth

information.

BACKGROUND

[0004] For computer-generated imagery or computer-enhanced imagery, whether individual
images or video sequences of images sometimes referred to as frames, might be stored in
computer memory such that computer systems, such as animation creation systems,
renderers, projectors, etc. can access that imagery and operate on it or present it. In a basic
representation, an image is stored in a form of a two-dimensional (2D) pixel array where each
element or sample of the pixel array corresponds to a position on the image and has a pixel
value. The value is intended to capture a quantity of interest at such a location, for example,
a color or other pixel component value.

[0005] An image management system, as might be part of an animation creation system,
might generate a pixel array with more information per pixel than just an ultimate pixel color
value that might be displayed for a given pixel, or a pixel array might even omit color values
and store other values on a per pixel basis. A “deep image” might refer to a stored
representation of an image that includes pixel values for different depths of a pixel. With
such a deep image representation, instead of just a pixel value for a pixel area of the camera
viewing frame, the deep image representation might include a plurality of pixel values, with
different ones of the plurality representing pixel values at different depths.

[0006] An image might be computer-generated from a scene description that describes virtual

objects, lighting, effects, a camera position, a camera orientation, a camera viewing frame,

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

etc. in a three-dimensional (3D) virtual space. An image generator, such as a renderer, might
compute pixel color values based on which objects are intersected by rays from the camera
position through pixel areas of the camera viewing frame. In an example, a scene description
might specify the positions, shapes, texture, and colors of various objects and a renderer
could generate an image of what the scene would look like from a specified camera position
through a specified camera viewing frame. Such a generated image might not show a far
object if that far object is further from the camera position than a near object and both the far
object and the near object are intersected by a viewing ray from the camera position through a
pixel or pixels of the viewing frame.

[0007] A deep image representing a scene might occupy a large amount of computer memory
if there are a large number of pixels, a large number of possible pixel values, and a large
number of objects present in a scene description for which the deep image is generated. This
can be addressed by flattening the deep image to preserve only a resulting pixel value from
contributions of objects at different depths along each pixel ray. However, once flattened, the
image might not contain sufficient information to allow for editing the image to remove or
add objects without introducing undesirable artifacts.

[0008] A method and apparatus for compressing a deep image while retaining structure that
allows for easy editing of the deep image is desirable. It is an object of at least preferred
embodiments to address at least some of the aforementioned disadvantages. An additional or

alternative object is to at least provide the public with a useful choice.

SUMMARY
[0009] A computer-implemented method might be provided for compressing image data that
includes depth information, the method comprising under the control of one or more
computer systems configured with executable instructions, obtaining an image dataset in
computer-readable form, wherein image data in the image dataset comprises a plurality of
pixel image value arrays, wherein a first pixel image value array having a first number of
image value array samples each having an image value, a depth value, and an association
with an associated pixel position, determining, for the first number of image value array
samples, a compressed image, determine, for the first number of image value array samples, a
compressed image value array comprising a second number of compressed image value array
samples, wherein the second number is less than or equal to the first number and wherein
compressed image value array samples are computed from the first number of image value

array samples and combining criteria, wherein the combining criteria are based on object data

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

and/or depth variations of depth values in the first pixel image value array, and generating a
modified image dataset wherein the first pixel image value array represented in the image
dataset by the first number of image value array samples is represented in the modified image
dataset by the second number of compressed image value array samples.

[0010] The term ‘comprising’ as used in this specification means ‘consisting at least in part
of’. When interpreting each statement in this specification that includes the term
‘comprising’, features other than that or those prefaced by the term may also be present.
Related terms such as ‘comprise’ and ‘comprises’ are to be interpreted in the same manner.
[0011] An image value array sample might include an object identifier, wherein an object
identifier is an indication of an object that is associated with the pixel image value array
sample and that provides the image value and depth value for the image value array sample.
Having object identifiers can allow for a compressor or a decompressor to process data based
on object identifiers, such as combining samples during compression when their object
identifiers indicate that all of the samples are from one object. For example, the combining
criteria for combining a first plurality of uncompressed samples of the first pixel image value
array by a compressed sample in the compressed image value array might include whether
each of the first plurality of uncompressed samples share an object identifier in common.
[0012] Where object identifiers are present, the combining criteria may be configured to
combine adjacent samples if they have the same object identifier. However, in some cases,
that might over-compress an image. If object identifiers are present, and required, the criteria
might be to combine adjacent samples that are within an error threshold and share a common
object identifier.

[0013] Image values of samples of the first number of image value array samples might
comprise pixel values, wherein the compressed image value array samples comprise pixel
values, and wherein the image dataset and the modified image dataset comprise pixel values
for pixels over an image. A pixel value might comprise one or more pixel color value.

[0014] The compressed image value array might be computed from the first number of image
value array samples based on depth values associated with the pixel image value array
samples, and wherein the combining criteria for combining a first plurality of uncompressed
samples of the first pixel image value array by a compressed sample in the compressed image
value array includes whether each of the first plurality of uncompressed samples have a depth

value within a predefined limited depth range threshold.

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

[0015] The combining criteria might further comprise determining that each object
represented by samples within the predefined limited depth range threshold all share the
object identifier in common.

[0016] The image dataset might comprise data for a two-dimensional pixel array of R rows
and C columns, R and C being positive integers, wherein the image data comprises R times C
pixel image value arrays, one per pixel, wherein a number of image value array samples in
image value arrays may vary, wherein each image value array sample comprises a pixel
component value, an alpha value, a depth value or depth range, and each image value array
sample is associated with one of the R times C pixels of the image data, and wherein the
modified image dataset comprises R times C (or more or fewer compressed image value
arrays), wherein at least some of the pixel image value arrays are stored in a compressed
version with fewer image value array samples relative to an uncompressed version.

[0017] The method might further comprise omitting at least one compressed image value
array corresponding to a pixel not intersected by any objects.

[0018] The first pixel image value array might comprise array samples each having depth
information that indicates, for its associated pixel, one or more contributing object that
contribute to a color value of the associated pixel, wherein the contributing object is
represented by a depth or a depth range.

[0019] The contributing object might be contributing to the first pixel color when a position
of the contributing object intersects or is within a ray or volume defined by bounds rays from
a camera position through a corresponding pixel.

[0020] The method might further comprise determining an error threshold between a second
pixel value function derived from the compressed image value array and the first pixel image
value array, adding an additional sample to the compressed image value array to reduce an
error below the error threshold, determining whether modifying a depth range of an object in
the first pixel image value array would reduce an error between a second pixel value function
derived from the compressed image value array and the first pixel image value array,
determining whether the error exceeds an error threshold, modifying the depth range to
extend a boundary of adjacent objects to reduce a gap between the adjacent objects that when
combined separately from the gap would reduce the error, and/or truncating the compressed
image value array at a truncation sample representing an object that fully occludes farther

objects at a pixel location of the compressed image value array.

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

[0021] A computer system comprising one or more processors and a storage medium storing
instructions, which when executed by the at least one processor, might cause the system to
implement methods described herein.

[0022] A non-transitory computer-readable storage medium storing instructions, which when
executed by at least one processor of a computer system, might cause the computer system to
carry out methods described herein.

[0023] A computer-readable medium carrying instructions, which when executed by at least
one processor of a computer system, might cause the computer system to carry out methods
described herein.

[0024] A carrier medium might carry image data that includes depth information compressed
according to methods described herein.

[0025] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to
limit the scope of the claimed subject matter. A more extensive presentation of features,
details, utilities, and advantages of the surface computation method, as defined in the claims,
is provided in the following written description of various embodiments of the disclosure and

illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Various embodiments in accordance with the present disclosure will be described
with reference to the drawings, in which:

[0027] FIG. 1 illustrates a process used to compute deep image data as might represent a
virtual scene, in an embodiment.

[0028] FIG. 2 illustrates a data structure that might be used to store a deep image dataset
representing a deep image of a virtual scene, in an embodiment.

[0029] FIG. 3 illustrates a system for compressing an image dataset of a deep image to form
a compressed image dataset of the deep image, in an embodiment.

[0030] FIG. 4 illustrates an example of compression of a deep image pixel image value array,
in an embodiment.

[0031] FIG. 5 illustrates a representation of pixel values as a function of depth for an

example pixel, in an embodiment.

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

[0032] FIG. 6 illustrates a representation of pixel values as a function of depth for an
example pixel and differences between compressed values and uncompressed values, in an
embodiment.

[0033] FIG. 7 illustrates an example of smoothing done to a representation of pixel values as
a function of depth for an example pixel, in an embodiment.

[0034] FIG. 8 is a flowchart of an exemplary method as might be performed by an image
processor to modify an image dataset of a deep image to form a compressed image dataset of
the deep image, in an embodiment.

[0035] FIG. 9 illustrates an example visual content generation system as might be used to
generate imagery in the form of still images and/or video sequences of images, according to
various embodiments.

[0036] FIG. 10 is a block diagram illustrating an example computer system upon which

computer systems of the system illustrated in FIG. 3 and 9 may be implemented.

DETAILED DESCRIPTION

[0037] In the following description, various embodiments will be described. For purposes of
explanation, specific configurations and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be apparent to one skilled in the art
that the embodiments may be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to obscure the embodiment being
described.

[0038] In a basic representation, an image is stored in a form of a two-dimensional (2D) pixel
array where each element or sample of the pixel array corresponds to a position on the image
and has a pixel value. The value is intended to capture a quantity of interest at such a
location, this is sometimes a color, although it could also be its geometric position relative to
a known coordinate system, or potentially the orientation of a normal or tangent at such a
location. Other values can be used such as object identifiers, temperature, altitude, mass
density, velocity of travel at the time the picture was taken and so on. Further, multiple color
or other values can be stored for each sample, beyond just the orthogonal set of attributes.
The pixel value might have a single component value or might have a plurality of component
values, and might more generally be referred to as an image value. The image can be
displayed by coloring pixels of a display according to each pixel’s image value that

correspond to positions of the display.

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

[0039] But one specific example is a stored representation of an image that is a rectangular
image of R rows by C columns wherein the stored representation includes R x C pixel color
values, each of which might comprise three or more component color values. When R and/or
C are large, the resulting data structure or file containing the stored representation can be
large, and require considerable computer memory to manage, bandwidth to transmit, and
computing resources to process. Where compression is feasible, the stored representation
might be a compressed form of the pixel component values of the pixel array. A pixel value
might comprise more than just pixel color values, and in some embodiments, the pixel value
might be a scalar or vector value that does not include color values. More generally, what is
being compressed are pixel values of the pixel array where pixel values of a given pixel
comprise one or more component values related to values applicable to that given pixel.
[0040] As discussed above, an image generator, such as a renderer, might compute pixel
component values based on which objects are intersected by rays from the camera position
through pixel areas of the camera viewing frame. In an example, a scene description might
specify the positions, shapes, texture, colors, etc. of various objects and a renderer could
generate an image of what the scene would look like from a specified camera position
through a specified camera viewing frame. Such a generated image might not show a far
object if that far object is further from the camera position than a near object and both the far
object and the near object are intersected by a viewing ray from the camera position through a
pixel or pixels of the viewing frame. In some cases, such as where the near object is partially
translucent or only covers a portion of a given pixel’s area in the generated image, the
resulting pixel color value for that given pixel might be a combination of color from the near
object and color from the far object that can be partially seen at that given pixel. In alogical
representation of an image, a pixel might have a nonzero area and a pixel cone or pyramid
might be considered instead of a ray. In the general case, the camera position might be a
point located in the 3D virtual scene space, a pixel is an area that is a portion of the camera
viewing frame (which would represented as part of the resulting image representing a view
from the camera position through the camera viewing frame), and a pixel color value
represents color from objects that are within a volume swept out by rays that pass from the
camera position through points within the pixel area. Thus, a pixel color value might be
determined by sampling several rays through the pixel area, or determining what virtual
objects are present, or partly present, within the swept-out volume.

[0041] In one interpretation, a stored pixel value, P, for a depth, D, for a pixel at image

location (X, Y) might represent a pixel color that would be seen at pixel location (X, Y) in the

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

image but for objects that are intersected by a ray from the camera position through pixel
location (X, Y) when those objects are at a depth of less than D. With a stored representation
of pixel component values at multiple depths, it might then be a simple matter to appear to
“remove” objects from an image.

[0042] In an example, consider a scene description where a ray from the camera position
through a pixel, P1, or the area thereof, passes through a first opaque object, O1, at a depth
D1 and passes through a second opaque object, O2, at a depth D2, where D1 <D2. A simple
image would show a pixel of object O1 at pixel P1. A deep image might store color values
for both objects and their corresponding depths. From such a deep image, an operator of an
image processing system or other user could specify that objects at depths of D3 or less
where D1 < D3 should be removed. An image generation system has enough information to
“remove” object O1, which can appear to be done in the image by using the stored pixel
component value for (P1, D2) instead of the stored pixel component value for (P1, D1). Asa
result, a deep image can be useful when working with images generated from 3D scene
descriptions or other 3D representations where changes are desired after the image is
generated.

[0043] A deep image might be represented by data corresponding to pixels in image space.
The deep image might be generated from virtual objects described in a scene space and then
by rendering, or otherwise, is represented in an image dataset that might specify, for example,
for each pixel in a pixel array, a pixel image value array. Each entry in the pixel image value
array might comprise a pixel sample representing a pixel component value, an optional alpha
value, a depth value or a depth range, and an object identifier identifying which object
contributes that component/alpha at the specified depth. The pixel image value array might
be associated with a particular pixel by an explicit reference to an associated pixel position or
the particular pixel might be determinable by a position of the pixel image value array within
the image dataset. In other variations, object identifiers are not used.

[0044] Some object identifiers in samples might indicate a combination of details, such as a
model (e.g., a datum that conveys “This sample is contributed by pencil #45 in this scene.”)
and a material (e.g., the datum more specifically conveys that the sample is of the lead, wood,
or painted surface of pencil #45). Object details of a sample might convey multiple object
identifiers, such as one for the instance, one for the model, and one for the material, or the
object identifier might be a single datum that encodes for all of these, as in a code number
that conveys “this sample is of the paint on a blunt pencil and it is pencil #23 in this scene.”

Where a sample’s object identifiers comprises multiple object identifiers, the criteria for

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

compression might specify that all of the identifiers of two samples must match if those two
samples are to be combined in compression.

[0045] Object identifiers might be assigned programmatically and/or manually. For example,
an artist might specify that a main character is given an object identifier of “ID-1", any other
character is given an object identifier of “ID-2" and everything else is given an object
identifier of “ID-3.” In some cases, a user might manually generate identifiers specifically
for compression. Giving objects the same identifier might cause a compression process to
combine them together, and where that is desirable, a user might give them the same object
identifier, even if they are considered distinct objects in other contexts. This might allow for
improved compression where distinctions between certain objects is less important than
greater compression performance. These assignments can be done after or before a render
step, before a compression step.

[0046] In a specific example, a scene description might describe tree objects in a forest of
trees. An image dataset might be provided to a user that is a deep image rendered from the
scene. The user might specify which trees are to be removed from the scene as a running
character is added into the scene. With each object’s contribution to a pixel component value
provided by the deep image dataset, removing some trees can be done by searching the image
dataset for pixel image value array samples, over all the pixel image value arrays, that have
object identifiers equal to the object identifiers of the trees to be removed. Samples can be
added of the character to the pixel image value arrays of pixels intersected by the character at
the depth of the character in the scene. As each pixel image value array might be an
arbitrarily long list of data, compression can be useful to make handling of large image
datasets easier. For example, within in an image there might be thousands of array samples
for a given pixel (or there could be as low as zero samples for some pixels).

[0047] FIG. 1 illustrates a process used to compute deep image data as might represent a
virtual scene, in an embodiment. As illustrated, capturing 100 of data related to a virtual
scene can involve virtual objects 102 placed in a scene space, such as a tree 104, a tree 106, a
person 108, a rock 110, and a brick wall 114. To generate an image of the virtual scene, an
image-generating computer would compute which virtual objects 102 are visible from a
camera 120 at a camera position through pixels of a view frame 122 by computing which
objects intersect a ray 124 running between the camera position and a z-depth point toward
the back of the image through a given pixel. For a deep image, rather than just storing a
single color value (or color vector in a color space) or some non-color value, the deep image

might include pixel values for objects at different depths along ray 124. In this example,

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

where brick wall 114 covers the entire pixel, any objects that are further from the camera than
brick wall 114 can be ignored. Alternatively, they might be included in the depth image to
provide for the case where brick wall 114 might be moved in editing. In some embodiments,
more than one ray is used per pixel and a combination method is used to derive the data for
the deep image. In some embodiments, a deep pixel data structure represents accumulating
color effects from a camera position to a z-depth point on a ray from the camera position
(which can be cut off once the ray intersects a totally opaque object that encompasses all of
the pixel), while in other embodiments, a deep pixel data structure represents accumulating
color effects from the z-depth point to the camera position.

[0048] FIG. 2 illustrates a data structure that might be used to store a deep image dataset 200
representing a deep image of a virtual scene, in an embodiment. Deep image dataset 200
might include one row per pixel of a deep image, possibly omitting unused pixels. As
illustrated, each pixel might be represented by one or more pixel samples, indicated as Si, S,
in FIG. 2. In that example, the pixel at location (1, 1) in the image has an array comprising
two pixel samples, the pixel at location (1, 2) in the image has an array comprising three pixel
samples, and the pixel at location (1, 3) in the image has an array comprising seven pixel
samples. Each pixel sample might contain data indicating a pixel color (which could be a
single value, three values, or some other representation of a pixel component value), a pixel
alpha (which might range from 0.0 to 1.0 to indicate a degree of transparency), a depth
representing a distance from a camera position to an object that is contributing color to that
pixel, and an object identifier identifying that object. While the contributions of objects in
these examples are pixel colors, it may be that other attributes of objects may be used instead
of, or in addition to, color. The length of a pixel image value array might be one or more
image value array samples, each having an image value, a depth value, and an association
with an associated pixel position. The pixel position might be explicit, as illustrated in the
data structure of FIG. 2, or might be implied by the data structure used to store the pixel
image value arrays. As the number of samples in a pixel image value array might be large for
a deep image of a large number of objects and/or complex objects, the deep image dataset
might be large and require a large amount of memory to store, bandwidth to transfer, and
computational resources to process.

[0049] A pixel value array might store pixel samples in the form of an ordered list of sample
data elements where each sample specifies a color and a transparency, which can combine
together over the list from front-to-back, without necessarily assigning a depth value to each

sample. In an embodiment, a “depth-less” array might have samples stored with color,

10

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

transparency (e.g., an alpha value), and an object identifier. In that embodiment, if every
object is given a unique identifier, then an object can be easily removed from an image
dataset by searching the image dataset for samples that have their object identifier equal to
that of the object to be removed and removing those samples them from the image dataset.
This can be effective even in the case of a transparent object. If that is the only edit that will
take place, there might be no need to store depth values. Alternatively, the depth for samples
could be stored as depth values in a sample data element, but it can be a distance value or
some other metric, even a cardinal metric. For example, an image dataset that corresponds to
an electronic version of cel animation might store a layer number for each sample, where the
largest layer number corresponds to the bottommost layer and the smallest the top. Each
sample data element of a deep pixel would then contain a list of layers that are not blank at
that pixel’s location.

[0050] A pixel value array might store pixel samples in the form of a list of sample data
elements where some sample data elements contain the same depth value, corresponding to
multiple samples that are at the same depth. One use for this might be for scenes where
objects are reflected in a mirror. They might all appear at the same depth (that of the mirror)
while being encoded separately. This makes sense when extra information is stored, and that
information is different for each reflected object. For example, a secondary depth channel
might be stored to indicate a distance that an object is from the mirror, or separate IDs for
each object. A compression process might consider an additional constraint to prevent
combining those objects if that was desirable (e.g., avoiding combinations of samples from
different objects, or using the secondary depth channel to combine objects) but at some step
in the procedure, it may be desirable to collapse all those samples together into one.

[0051] A pixel value array might store pixel samples related to hidden objects. A hidden
object can be stored in a deep image dataset, perhaps by allowing for objects to be stored
behind totally opaque objects that totally obscure the hidden object. In such cases, deep
pixels might not be automatically truncated at solid objects. This can be used in the case
where there is an expectation that close objects will be removed. This can be helpful in cases
where it is difficult to do this in a renderer or when multiple renders are being combined into
one render, by retaining samples that end up behind solid objects from the other render.
[0052] Merging two images is a common application for deep images and the methods and
apparatus described herein might find utility in such cases. For example, suppose there is a

render of trees and a render of an animal in the forest. Merging the images might take into

11

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

account that the animal should occlude trees that are behind it and should be occluded by
trees in front of it.

[0053] In a general case, compression might attempt to anticipate what edits might be made
to an image and produce the small set of samples that would produce an acceptably similar
result when comparing edits using the compressed image to edits using the original.
Compression might result in a much smaller file. But if the compression takes into account
what edits might be made, and an ultimate flat image that results from editing the compressed
file post-compression results in the same results as editing the uncompressed file and
flattening it, the compression might be considered lossless. In one example, a compression
process might be designed with the assumption that the only edits that will take place are
inserting new objects into a scene at some unknown depth or editing the color of an
individual object. In that case, samples with different object IDs are not combined, but close
together samples are, because it can be assumed that objects will not be inserted between two
very close objects.

[0054] As explained above, what might be lossy compression might end up being lossless or
nearly lossless. In addition to such compression, completely lossless compression might also
be included, which would be lossless regardless of the editing done. Such a lossless
compression might include representing the same information using fewer bytes on disk or in
a file or data structure. An example might be the use of a lossless Lempel-Ziv—Welch
(LZW) compression process on rows of pixel arrays. While no compression process can
losslessly output a smaller output for every input bitstream, image datasets nearly always
have some structure that permits lossless compression in most cases. For example, in an
image it is often the case that the color for a pixel is the same as, or close to, the color of an
adjacent pixel. Minor adjustments to depth, color, transparency, etc. of multiple pixels might
lead to better compression performance, and so smaller storage requirements. For example,
multiple pixels might represent the samples using the same set of depths and tweaking the
values might ensure the correct end result. A lossless compression process might take into
account a repeated pattern of depth values and so assign a short bit pattern to represent that
data.

[0055] Some compression processes might consider tradeoffs of constant bit-rate versus
constant quality. A compression constraint might favor one over the other, e.g., “use as many
samples as required to reduce errors to below a predetermined threshold”, or “limit each pixel
array to ten samples” or “limit the arrays in a row of pixels to no more than 10,000 samples”

as alternative or additional constraints. This might lead to quite bad errors in some places,

12

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

but it could force a limit on the file size and processing time for an image. A per-row limit
might require processing multiple pixels in one operation, starting with one sample for each
pixel, scanning which pixel has the biggest error, then adding an extra sample to that pixel,
and repeating the procedure until the sample limit is reached, stopping early if a minimum
error is achieved and carrying on above the limit of samples if there is a maximum error set.
[0056] The latter might be used when combining two heavy volume renders. In a worst case,
the combined image is the combined size of the input images, but there could be a mode for
compressing the merged output so the merged image only has as many samples as the larger
of the two inputs. Other variations should be apparent upon reading this disclosure.

[0057] FIG. 3 illustrates a system 300 for compressing an image dataset of a deep image to
form a compressed image dataset of the deep image, in an embodiment. System 300 is
shown including a deep image dataset store 302 for storing a deep image dataset, a pixel
processing unit 306 for processing a deep image dataset, an artist/user Ul 332, and a rule set
store 336.

[0058] A user 334 may interact with UI 332 to define a set of rules indicating how an image
dataset should be compressed. The rules may indicate, for example, criteria for combining
samples in a pixel image value array, a depth range threshold under which samples should be
combined, whether object samples should be combined, and/or an error threshold (e.g., an
error threshold between pixel component value functions) under which the results of the
compression operation should remain. The rules may be stored in rule set store 336 for
current pixel processing. The rules might apply to one pixel or multiple pixels and rule set
store 336 can be accessed by pixel processing unit 306 as needed.

[0059] Deep image dataset store 302 can store image data as a plurality of pixel image value
arrays, as illustrated in FIG. 4. Deep image dataset store 302 might be loaded with data from
a source of a deep pixel image data (e.g., a file, a stream, etc.). As shown, deep image dataset
store 302 may include an uncompressed pixel image value array corresponding to a deep
pixel 304. Pixel processing unit 306 may compress the uncompressed pixel image value
array and replace an uncompressed pixel image value array corresponding to deep pixel 304
with a compressed pixel image value array. Pixel processing unit 306 may compress a
portion of, or all of the pixels in a deep image dataset in the same fashion, and make the
pixels (e.g., the entire deep image dataset) available to consumers of the deep pixels.

[0060] Pixel processing unit 306 is shown including a processor 320 that executes program
code 322 to compress deep pixels from an input deep image dataset. Pixel processing unit

306 may use a cursor to iterate through deep pixels in the deep image dataset and compress a

13

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

current pixel image value array corresponding to a current deep pixel (e.g., by combining
samples in the pixel image value array), then process other deep pixels. A currently-selected
deep pixel is represented by pixel 308 in FIG. 3. For example, pixel processing unit 306 may
initiate a compression process (such as that described in detail with respect to FIG. 8) by
setting the cursor to point to the first pixel in the deep image dataset. The first pixel may be
deep pixel 304 shown. Based on rules defined in the rule set in rule set store 336 for current
pixel processing, pixel processing unit 306 may compress the pixel image value array
corresponding to pixel 308. While processing (e.g., compressing) pixel 308, pixel processing
unit 306 may store the cursor pointing to pixel 308 in a cursor store 324, and pixel 308 (e.g.,
a pixel image value array corresponding to the current pixel) might be stored in an internal
deep pixel storage 326. Once pixel processing unit 306 has finished compressing pixel 308,
it may store a resulting compressed pixel 310 in deep image dataset store 302. For example,
a compressed pixel image value array corresponding to deep pixel 304 may be used to
overwrite the uncompressed pixel image value array, or alternately, the compressed pixel
image value array may be stored in a new deep image dataset.

[0061] Pixel processing unit 306 may then move the cursor to the next pixel in the deep
image data set and compress it, repeating the process until at least a portion of the pixels in
the deep image dataset has been compressed, or until some other termination criteria is met.
The resulting compressed image might be generated by an image generator 330 and sent to a
display of artist/user UI 332 to allow user 334 to inspect the results.

[0062] FIG. 4 illustrates an example 400 of compression of a deep image pixel image value
array, in an embodiment. In the example shown there of one pixel image value array, the
uncompressed version of the pixel image value array might comprise four pixel samples, Si,
Sz, S3, and S4. If these four pixel samples can be represented well enough by two pixel
samples, S1" and S»', less memory would be required to store the pixel image value array. As
a specific example, if Si, S, and Ss are pixel samples referring to an object, such as tree 104
(see FIG. 1) and S; is a pixel sample referring to another object, such as person 108 (see FIG.
1), then S»' can be set equal to S4 and S1' can be computed by a merger of the three pixel
color contributions of tree 104. If an editor wishes to edit a deep image by removing tree
104, using the uncompressed version of the pixel image value array, the editor could delete
S1, S, and Ss and if the editor wishes to edit the deep image by removing person 108, the
editor could delete S4 from the uncompressed version of the pixel image value array. The
same edits could be done just as easily with the compressed version of the pixel image value

array, but with less memory requirements.

14

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

[0063] FIG. 5 illustrates a representation 500 of pixel values as a function of depth for an
example pixel, in an embodiment. For illustration purposes, only one dimension for pixel
values is shown. It should be understood that for a given pixel, there might be multiple such
representations, such as one per color dimension and one for transparency. In a specific
example, pixel colors might have three dimensions, such as for (RGB color encoding), four
dimensions, such as (RGBa — three colors and a transparency value), or fewer or more
dimensions. Thus, the vertical axis in the illustrations might correspond to color intensity,
alpha value, or some other value for a deep pixel that varies with depth. In some
embodiments, a type of compression might vary based on a type of data being compressed,
such as one type of compression for color values, another type for velocity values, yet
another type for normals, etc.

[0064] An image processing computer might process a pixel image value array as a
representation of what is plotted in FIG. 5. In that example, there are three pixel samples in
the pixel image value array, Si, Sz, and S3. In one instance of determining, for example, a
color of a pixel at varying distances from a camera point, and accumulation curve 502
represents color intensity or some other pixel component value for a deep pixel that can vary
with depth accumulated over various samples. As illustrated, in the distance from the camera
to the sample for a first object encountered in a pixel, there is no color contribution, and at a
depth of the first object (corresponding to pixel sample S1), there is some color contribution.
[0065] In representation 506, S1, S, and Ss are instead represented by Si’ and S3’. The pixel
component values can be set such that an accumulation curve 508 is similar to accumulation
curve 502 at the beginning and ending depths, or some other values. While in some
examples, the samples and their heights represent a pixel color at various depths, the samples
and accumulation curves could represent some pixel component other than color.

[0066] In the examples depicted in the figures, a summation of samples over depth might be
represented as an accumulation curve that is a piecewise linear curve stored in memory as an
ordered series of vertices and thus an accumulation curve might be displayed as a plot of a
change in image data versus depth. In other cases, the accumulation from the front of a
sample to the back of a sample (or from the back to front in the case where accumulation is
done from most distant to least distant). A contribution of a sample within the sample as a
function of depth might be linear as depicted in the figures, with a slope that corresponds to
the height of the sample, but could also be, in places, a nonlinear curve based on the samples
of the input pixel. For example, the Y-axis scales could be logarithmic. The increase in the

accumulation curve over the thickness of a sample might be an exponential curve, such as

15

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

one where it rises exponentially according to the Beer-Lambert law, in which case
exponential rises might be depicted as linear slopes. Other schemes might be used and might
depend on the type of volumetric object being depicted (e.g., fog, smoke, water). In some
instances where a sample is approximating motion-blurred objects moving towards a camera,
the linear slope might be more accurate. A data structure storing a deep pixel might include a
field to indicate, perhaps on a per-sample basis, which kind of process to use and a field to
indicate how to treat the changing accumulation value across the depth thickness of the
sample. Thus, the accumulation curves may be shown drawn as linear slopes in the figures,
indicating that the values increase linearly throughout each sample, but other functions are
possible and might be depicted differently. Individual samples could be tagged to indicate
their preferred function, or an entire deep pixel or image might be tagged to indicate the
function to use for all of that deep pixel or image. Some functions might employ additional
per-sample values to shape the accumulation curve accordingly.

[0067] FIG. 6 illustrates a representation 600 of pixel component values as a function of
depth for an example pixel and differences between compressed values and uncompressed
values, in an embodiment. A similar approach can be used for pixel component values other
than color. A first accumulation curve 602 represents a pixel component value as a function
of depth when using the compressed values and a second accumulation curve 604 represents
a pixel component value as a function of depth when using the uncompressed values. In this
example, the uncompressed version has four samples and the compressed version has two
samples. Dashed line 606 indicates a difference between the two. Where a compressed deep
image dataset is being created, a compression module, such as pixel processing unit 306
implemented in software or hardware, may consider the error values of the differences. In
cases where the error value exceeds an error threshold, an additional pixel sample can be
added (or one from the uncompressed version left in). That way, using the compressed deep
image dataset, the differences in pixel values would be less than the error threshold.

[0068] In some embodiments, depth ranges associated with the samples might be modified to
reduce an error between the two pixel component value functions, of the compressed image
value array and uncompressed image value array, such as when an error exceeds an error
threshold. Modification might be that the depth range is adjusted to extend a boundary of
adjacent objects to reduce a gap between the adjacent objects that when combined separately
from the gap would reduce the error.

[0069] In addition to easier handling of the data, rendering might be accelerated using a

compressed image dataset. However, it is desirable that the compression be done to remain

16

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

useful for downstream editors and to avoid unnecessary artifacts. Artifacts might occur
where compression of a pixel image value array would result in significant visual changes
relative to using an uncompressed pixel image value array and/or where compression would
introduce undesirable effects from a pixel to nearby pixels.

[0070] In some embodiments, transitions might be included by thickening the samples
corresponding to array samples when merging samples, to reduce the number and/or effects
of hard transitions among a group of objects that are close together in depth. An example is
illustrated in FIG. 7.

[0071] FIG. 7 illustrates an example of smoothing done to a representation of pixel
component values as a function of depth for an example pixel, in an embodiment. As
illustrated there, a pixel image value array 702 has a number of samples and the first three
samples (S1, Sz, S3) are portions of the same object. To save space, possibly reduce artifacts,
and for other reasons, those samples are replaced with a single sample, S1' to form a pixel
image value array 704. A plot 708 illustrates color samples as a function of depth for pixel
image value array 702 and a plot 710 illustrates color samples as a function of depth for pixel
image value array 704.

[0072] FIG. 8 is a flowchart of an exemplary method 800 as might be performed by an image
processor to modify an image dataset of a deep image to form a compressed image dataset of
the deep image. In step 801, the image processor might obtain an image dataset of pixel
image value arrays, each comprising pixel samples, that form an uncompressed image dataset
usable for a deep image. In step 802, the image processor might determine what combining
criteria for combining samples of the pixel image value array to use, such as whether each
uncompressed sample to be represented by a compressed sample has a depth value within a
predefined limited depth range threshold, whether adjacent samples are from the same object,
etc. as described elsewhere herein. In step 803, the image processor might determine whether
each object represented by samples within the predefined limited depth range threshold of a
deep pixel all share an object identifier in common and indicate that such samples might be
combined. In step 804, the image processor might determine whether an error threshold
would be exceeded upon a replacement of a plurality of uncompressed samples by a
compressed sample. In step 805, the image processor might add an additional sample, if
needed, to reduce a compression error to below the error threshold. In step 806, the image
processor might modify a depth range of a compressed sample, if needed, to reduce the
compression error to at or below the error threshold. In step 807, the image processor might

compute compressed samples for a compressed pixel image value array (a deep pixel) from

17

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

the uncompressed pixel image value array based on depth values associated with the pixel
image value array samples. In step 808, the image processor might compute a compressed
image dataset comprising compressed pixel image value arrays and the combining criteria.
[0073] In this manner, the image processor can obtain an image dataset in computer-readable
form, wherein image data in the image dataset comprises a plurality of pixel image value
arrays, wherein a first pixel image value array having a first number of image value array
samples each having an image value, a depth value, and an association with an associated
pixel position, determine, for the first number of image value array samples, a compressed
image value array comprising a second number of compressed image value array samples,
wherein the second number may be less than or equal to the first number and wherein
compressed image value array samples may be computed from the first number of image
value array samples and combining criteria, wherein the combining criteria may be based on
object data and/or depth variations of depth values in the first pixel image value array, and
generate a modified image dataset wherein the first pixel image value array represented in the
image dataset by the first number of image value array samples is represented in the modified
image dataset by the second number of compressed image value array samples.

[0074] The second number may be equal to the first number in cases where it is not possible
to reduce the number of samples while meeting the criteria.

[0075] In an embodiment, the image processor might process the first pixel image value array
by determining a second pixel image value array having a single sample that might represent
all of the samples in the first pixel image value array, then determine whether that single
sample is sufficient to represent the corresponding deep pixel and if not, add additional
samples to the second pixel image value array to reduce an error or potential error. Adding
an additional sample might comprise splitting a sample. Splitting a sample might comprise
determining whether splitting criteria are present. In a different variation, instead of
combining and splitting, samples from the first array are selectively combined to form
samples in the second array after checking that criteria are met.

[0076] An example of a splitting criterion is to split a sample when an error difference
between an accumulation curve of the first pixel image value array varies from an
accumulation curve of the second pixel image value array by more than a predetermined error
threshold. In one test, this might be that the accumulation curves do not differ by more than
the predetermined error threshold at any depth, which could preserve an ability for a user to
generate a flat image for any desired depth without excessive artefacts or reconstruct a pixel

value array for use in editing a deep image.

18

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

[0077] Another example of a splitting criterion is to split a sample if the sample in the second
pixel image value array represents multiple objects, in which case the sample might be split
into separate samples for distinct objects (but those samples might still represent multiple
samples from the first pixel image value array if they are all from the same object). Yet
another example of a splitting criterion is to split a sample if the sample in the second pixel
image value array represents samples from the first pixel image value array that differ in
depth by more than a predetermined depth threshold, in which case the sample might be split
into separate samples for smaller depth ranges per sample (but might still represent multiple
samples from the first pixel image value array if they are all within the depth threshold).
[0078] In a specific implementation, the image processor loops through the samples of the
first pixel image value array, checks that adjacent samples from different objects were not
combined and splits them if they were. For depth checking, the image processor might
generate a combined list of front depth and back depth of the samples of the first array (the
uncompressed array) and do the same for the second array (the to-be-compressed array). For
each depth in the first array, the image processor might find a closest depth in the second
array and find a largest such distance between samples. If that distance is above a
predetermined threshold, the image processor might split the samples of the second array at
that depth, insert a new sample with a new depth into the second array, and repeat.

[0079] In a specific implementation, the image processor performs a hybrid combination of
Ramen-Douglas-Peucker greedy processing and a salient points processing, but other
approaches might be done.

[0080] A sample might include a pixel image value that corresponds to an RGBA value for
the pixel. The image processor might compute a reconstruction function of a pixel that is an
RGBA value obtained by clipping the pixel at a given depth, z. This reconstruction function
might be obtained by compositing each sample closer than z together, using the “over”
operator in depth order, or other method. If the depth z is contained within a sample, the
image processor might split it into two samples at depth z, and composite only the front-most
segment of that sample. In an embodiment, pixel values comprise color values and color
values are combined using an “over” operation.

[0081] The image processor might implement a Douglas-Peucker-based or similar type
process and compute a difference between a reconstruction function of the first array and the
second array, and find a point where difference (perhaps defined as a total absolute difference
of all channels of interest) is at a maximum. If that maximum is above a threshold, the image

processor might find a sample from the first array that is closest to being in the middle of

19

10

15

20

25

30

35

40

WO 2022/025770 PCT/NZ2021/050009

difference, and divide at that depth. This need not be the depth at which the two functions
differ the most, which is likely to be very close to the front of the sample.

[0082] In one embodiment, the image processor might also implement a salient points
process in addition to, or instead of, other processes. In the salient points process, the image
processor might compute an optimal set of samples that produce a reconstruction function
that differs by less than a predetermined other threshold and work recursively. An example

process might operate according to the following pseudocode:

optimal compress (firstSample,lastSample) returns set of samples:
for nextSample in range (firstSample+l) to (lastSample-1):
compute combination of all samples between firstSample and
nextSample into one single sample
compute Reconstruction function between firstSample and
nextSample and find max error between original list and new
compressed single sample
if maximum reconstruction error below threshold:
call optimal compress(nextSample,lastSample) and store
{nextSample + set of samples} along with reconstruction
error
return whichever {nextSample + set of samples} has fewest samples. If
there's a tie, use the one with smallest reconstruction
error.

[0083] Using the above approach, the image processor might speed up a search process by
knowing maximum error. In a hybrid approach, a second, higher threshold is used, and the
image processor uses a Douglas-Peucker-based process to create a very compressed dataset
that 1s below that second threshold. Once that is achieved, the image processor can further
independently divide each compressed sample using the salient points process to get down
below a lower threshold. The result need not be optimal. In another approach, a depth-based
error metric 18 used instead of a difference of reconstruction function metric.

[0084] The visual content generation system 900 (see FIG. 9) is configured to generate and
process deep images, whether compressed or uncompressed and may be implemented by
software executing on one or more computer systems (e.g., each like a computer system 1000
illustrated in FIG. 10). One embodiment might involve a carrier medium carrying image data
that includes depth information that is compressed using methods described herein. The
carrier medium might comprise any medium suitable for carrying the compressed image data,
including a storage medium, e.g., a solid state memory, an optical disk or a magnetic disk, or
a transient medium, e.g., a signal carrying the compressed image data such as a signal
transmitted over a network, a digital signal, a radio frequency signal, an acoustic signal, an
optical signal or an electrical signal.

[0085] For example, FIG. 9 illustrates the example visual content generation system 900 as

might be used to generate imagery in the form of still images and/or video sequences of

20

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

images. Visual content generation system 900 might generate imagery of live action scenes,
computer generated scenes, or a combination thereof. In a practical system, users are
provided with tools that allow them to specify, at high levels and low levels where necessary,
what is to go into that imagery. For example, a user might be an animation artist and might
use visual content generation system 900 to capture interaction between two human actors
performing live on a sound stage and replace one of the human actors with a computer-
generated anthropomorphic non-human being that behaves in ways that mimic the replaced
human actor’s movements and mannerisms, and then add in a third computer-generated
character and background scene elements that are computer-generated, all in order to tell a
desired story or generate desired imagery.

[0086] Still images that are output by visual content generation system 900 might be
represented in computer memory as pixel arrays, such as a two-dimensional array of pixel
color values, each associated with a pixel having a position in a two-dimensional image array.
Pixel color values might be represented by three or more (or fewer) color values per pixel,
such as a red value, a green value, and a blue value (e.g., in RGB format). Dimensions of
such a two-dimensional array of pixel color values might correspond to a preferred and/or
standard display scheme, such as 1920-pixel columns by 1280-pixel rows or 4096-pixel
columns by 2160-pixel rows, or some other resolution. Images might or might not be stored
in a compressed format, but either way, a desired image may be represented as a two-
dimensional array of pixel color values. In another variation, images are represented by a
pair of stereo images for three-dimensional presentations and in other variations, an image
output, or a portion thereof, might represent three-dimensional imagery instead of just two-
dimensional views. In yet other embodiments, pixel values are data structures and a pixel
value can be associated with a pixel and can be a scalar value, a vector, or another data
structure associated with a corresponding pixel. That pixel value might include color values,
or not, and might include depth values, alpha values, weight values, object identifiers or other
pixel value components.

[0087] A stored video sequence might include a plurality of images such as the still images
described above, but where each image of the plurality of images has a place in a timing
sequence and the stored video sequence is arranged so that when each image is displayed in
order, at a time indicated by the timing sequence, the display presents what appears to be
moving and/or changing imagery. In one representation, each image of the plurality of
images is a video frame having a specified frame number that corresponds to an amount of

time that would elapse from when a video sequence begins playing until that specified frame

21

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

is displayed. A frame rate might be used to describe how many frames of the stored video
sequence are displayed per unit time. Example video sequences might include 24 frames per
second (24 FPS), 50 FPS, 140 FPS, or other frame rates. In some embodiments, frames are
interlaced or otherwise presented for display, but for clarity of description, in some examples,
it is assumed that a video frame has one specified display time, but other variations might be
contemplated.

[0088] One method of creating a video sequence is to simply use a video camera to record a
live action scene, i.e., events that physically occur and can be recorded by a video camera.
The events being recorded can be events to be interpreted as viewed (such as seeing two
human actors talk to each other) and/or can include events to be interpreted differently due to
clever camera operations (such as moving actors about a stage to make one appear larger than
the other despite the actors actually being of similar build, or using miniature objects with
other miniature objects so as to be interpreted as a scene containing life-sized objects).

[0089] Creating video sequences for story-telling or other purposes often calls for scenes that
cannot be created with live actors, such as a talking tree, an anthropomorphic object, space
battles, and the like. Such video sequences might be generated computationally rather than
capturing light from live scenes. In some instances, an entirety of a video sequence might be
generated computationally, as in the case of a computer-animated feature film. In some video
sequences, it is desirable to have some computer-generated imagery and some live action,
perhaps with some careful merging of the two.

[0090] While computer-generated imagery might be creatable by manually specifying each
color value for each pixel in each frame, this is likely too tedious to be practical. As a result,
a creator uses various tools to specify the imagery at a higher level. As an example, an artist
might specify the positions in a scene space, such as a three-dimensional coordinate system,
of objects and/or lighting, as well as a camera viewpoint, and a camera view plane. From
that, a rendering engine could take all of those as inputs, and compute each of the pixel color
values in each of the frames. In another example, an artist specifies position and movement
of an articulated object having some specified texture rather than specifying the color of each
pixel representing that articulated object in each frame.

[0091] In a specific example, a rendering engine performs ray tracing wherein a pixel color
value is determined by computing which objects lie along a ray traced in the scene space
from the camera viewpoint through a point or portion of the camera view plane that
corresponds to that pixel. For example, a camera view plane might be represented as a

rectangle having a position in the scene space that is divided into a grid corresponding to the

22

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

pixels of the ultimate image to be generated, and if a ray defined by the camera viewpoint in
the scene space and a given pixel in that grid first intersects a solid, opaque, blue object, that
given pixel is assigned the color blue. Of course, for modern computer-generated imagery,
determining pixel colors — and thereby generating imagery — can be more complicated, as
there are lighting issues, reflections, interpolations, and other considerations.

[0092] As illustrated in FIG. 9, a live action capture system 902 captures a live scene that
plays out on a stage 904. Live action capture system 902 is described herein in greater detail,
but might include computer processing capabilities, image processing capabilities, one or
more processors, program code storage for storing program instructions executable by the
one or more processors, as well as user input devices and user output devices, not all of
which are shown.

[0093] In a specific live action capture system, cameras 906(1) and 906(2) capture the scene,
while in some systems, there might be other sensor(s) 908 that capture information from the
live scene (e.g., infrared cameras, infrared sensors, motion capture (“mo-cap”) detectors,
etc.). On stage 904, there might be human actors, animal actors, inanimate objects,
background objects, and possibly an object such as a green screen 910 that is designed to be
captured in a live scene recording in such a way that it is easily overlaid with computer-
generated imagery. Stage 904 might also contain objects that serve as fiducials, such as
fiducials 912(1)-(3), that might be used post-capture to determine where an object was during
capture. A live action scene might be illuminated by one or more lights, such as an overhead
light 914.

[0094] During or following the capture of a live action scene, live action capture system 902
might output live action footage to a live action footage storage 920. A live action processing
system 922 might process live action footage to generate data about that live action footage
and store that data into a live action metadata storage 924. Live action processing system 922
might include computer processing capabilities, image processing capabilities, one or more
processors, program code storage for storing program instructions executable by the one or
more processors, as well as user input devices and user output devices, not all of which are
shown. Live action processing system 922 might process live action footage to determine
boundaries of objects in a frame or multiple frames, determine locations of objects in a live
action scene, where a camera was relative to some action, distances between moving objects
and fiducials, etc. Where elements have sensors attached to them or are detected, the
metadata might include location, color, and intensity of overhead light 914, as that might be

useful in post-processing to match computer-generated lighting on objects that are computer-

23

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

generated and overlaid on the live action footage. Live action processing system 922 might
operate autonomously, perhaps based on predetermined program instructions, to generate and
output the live action metadata upon receiving and inputting the live action footage. The live
action footage can be camera-captured data as well as data from other sensors.

[0095] An animation creation system 930 is another part of visual content generation system
900. Animation creation system 930 might include computer processing capabilities, image
processing capabilities, one or more processors, program code storage for storing program
instructions executable by the one or more processors, as well as user input devices and user
output devices, not all of which are shown. Animation creation system 930 might be used by
animation artists, managers, and others to specify details, perhaps programmatically and/or
interactively, of imagery to be generated. From user input and data from a database or other
data source, indicated as a data store 932, animation creation system 930 might generate and
output data representing objects (e.g., a horse, a human, a ball, a teapot, a cloud, a light
source, a texture, etc.) to an object storage 934, generate and output data representing a scene
into a scene description storage 936, and/or generate and output data representing animation
sequences to an animation sequence storage 938.

[0096] Scene data might indicate locations of objects and other visual elements, values of
their parameters, lighting, camera location, camera view plane, and other details that a
rendering engine 950 might use to render CGI imagery. For example, scene data might
include the locations of several articulated characters, background objects, lighting, etc.
specified in a two-dimensional space, three-dimensional space, or other dimensional space
(such as a 2.5-dimensional space, three-quarter dimensions, pseudo-3D spaces, etc.) along
with locations of a camera viewpoint and view place from which to render imagery. For
example, scene data might indicate that there is to be a red, fuzzy, talking dog in the right half
of a video and a stationary tree in the left half of the video, all illuminated by a bright point
light source that is above and behind the camera viewpoint. In some cases, the camera
viewpoint is not explicit, but can be determined from a viewing frustum. In the case of
imagery that is to be rendered to a rectangular view, the frustum would be a truncated
pyramid. Other shapes for a rendered view are possible and the camera view plane could be
different for different shapes.

[0097] Animation creation system 930 might be interactive, allowing a user to read in
animation sequences, scene descriptions, object details, etc. and edit those, possibly returning
them to storage to update or replace existing data. As an example, an operator might read in

objects from object storage into a baking processor 942 that would transform those objects

24

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

into simpler forms and return those to object storage 934 as new or different objects. For
example, an operator might read in an object that has dozens of specified parameters
(movable joints, color options, textures, etc.), select some values for those parameters and
then save a baked object that is a simplified object with now fixed values for those
parameters.

[0098] Rather than requiring user specification of each detail of a scene, data from data store
932 might be used to drive object presentation. For example, if an artist is creating an
animation of a spaceship passing over the surface of the Earth, instead of manually drawing
or specifying a coastline, the artist might specify that animation creation system 930 is to read
data from data store 932 in a file containing coordinates of Earth coastlines and generate
background elements of a scene using that coastline data.

[0099] Animation sequence data might be in the form of time series of data for control points
of an object that has attributes that are controllable. For example, an object might be a
humanoid character with limbs and joints that are movable in manners similar to typical
human movements. An artist can specify an animation sequence at a high level, such as “the
left hand moves from location (X1, Y1, Z1) to (X2, Y2, Z2) over time T1 to T2”, at a lower
level (e.g., “move the elbow joint 2.5 degrees per frame”) or even at a very high level (e.g.,
“character A should move, consistent with the laws of physics that are given for this scene,
from point P1 to point P2 along a specified path”).

[0100] Animation sequences in an animated scene might be specified by what happens in a
live action scene. An animation driver generator 944 might read in live action metadata, such
as data representing movements and positions of body parts of a live actor during a live
action scene. Animation driver generator 944 might generate corresponding animation
parameters to be stored in animation sequence storage 938 for use in animating a CGI object.
This can be useful where a live action scene of a human actor is captured while wearing mo-
cap fiducials (e.g., high-contrast markers outside actor clothing, high-visibility paint on actor
skin, face, etc.) and the movement of those fiducials is determined by live action processing
system 922. Animation driver generator 944 might convert that movement data into
specifications of how joints of an articulated CGI character are to move over time.

[0101] A rendering engine 950 can read in animation sequences, scene descriptions, and
object details, as well as rendering engine control inputs, such as a resolution selection and a
set of rendering parameters. Resolution selection might be useful for an operator to control a
trade-off between speed of rendering and clarity of detail, as speed might be more important

than clarity for a movie maker to test some interaction or direction, while clarity might be

25

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

more important than speed for a movie maker to generate data that will be used for final
prints of feature films to be distributed. Rendering engine 950 might include computer
processing capabilities, image processing capabilities, one or more processors, program code
storage for storing program instructions executable by the one or more processors, as well as
user input devices and user output devices, not all of which are shown.

[0102] Visual content generation system 900 can also include a merging system 960 that
merges live footage with animated content. The live footage might be obtained and input by
reading from live action footage storage 920 to obtain live action footage, by reading from
live action metadata storage 924 to obtain details such as presumed segmentation in captured
images segmenting objects in a live action scene from their background (perhaps aided by the
fact that green screen 910 was part of the live action scene), and by obtaining CGI imagery
from rendering engine 950.

[0103] A merging system 960 might also read data from rulesets for merging/combining
storage 962. A very simple example of a rule in a ruleset might be “obtain a full image
including a two-dimensional pixel array from live footage, obtain a full image including a
two-dimensional pixel array from rendering engine 950, and output an image where each
pixel is a corresponding pixel from rendering engine 950 when the corresponding pixel in the
live footage is a specific color of green, otherwise output a pixel value from the
corresponding pixel in the live footage.”

[0104] Merging system 960 might include computer processing capabilities, image
processing capabilities, one or more processors, program code storage for storing program
instructions executable by the one or more processors, as well as user input devices and user
output devices, not all of which are shown. Merging system 960 might operate
autonomously, following programming instructions, or might have a user interface or
programmatic interface over which an operator can control a merging process. In some
embodiments, an operator can specify parameter values to use in a merging process and/or
might specify specific tweaks to be made to an output of merging system 960, such as
modifying boundaries of segmented objects, inserting blurs to smooth out imperfections, or
adding other effects. Based on its inputs, merging system 960 can output an image to be
stored in a static image storage 970 and/or a sequence of images in the form of video to be
stored in an animated/combined video storage 972.

[0105] Thus, as described, visual content generation system 900 can be used to generate
video that combines live action with computer-generated animation using various

components and tools, some of which are described in more detail herein. While visual

26

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

content generation system 900 might be useful for such combinations, with suitable settings,
it can be used for outputting entirely live action footage or entirely CGI sequences. The code
may also be provided and/or carried by a transitory computer readable medium, e.g., a
transmission medium such as in the form of a signal transmitted over a network.

[0106] According to one embodiment, the techniques described herein are implemented by
one or more generalized computing systems programmed to perform the techniques pursuant
to program instructions in firmware, memory, other storage, or a combination. Special-
purpose computing devices may be used, such as desktop computer systems, portable
computer systems, handheld devices, networking devices or any other device that
incorporates hard-wired and/or program logic to implement the techniques.

[0107] For example, FIG. 10 is a block diagram that illustrates a computer system 1000 upon
which the computer systems of the systems described herein and/or visual content generation
system 900 (see FIG. 9) may be implemented. Computer system 1000 includes a bus 1002 or
other communication mechanism for communicating information, and a processor 1004
coupled with bus 1002 for processing information. Processor 1004 may be, for example, a
general-purpose microprocessor.

[0108] Computer system 1000 also includes a main memory 1006, such as a random-access
memory (RAM) or other dynamic storage device, coupled to bus 1002 for storing information
and instructions to be executed by processor 1004. Main memory 1006 may also be used for
storing temporary variables or other intermediate information during execution of instructions
to be executed by processor 1004. Such instructions, when stored in non-transitory storage
media accessible to processor 1004, render computer system 1000 into a special-purpose
machine that is customized to perform the operations specified in the instructions.

[0109] Computer system 1000 further includes a read only memory (ROM) 1008 or other
static storage device coupled to bus 1002 for storing static information and instructions for
processor 1004. A storage device 1010, such as a magnetic disk or optical disk, is provided
and coupled to bus 1002 for storing information and instructions.

[0110] Computer system 1000 may be coupled via bus 1002 to a display 1012, such as a
computer monitor, for displaying information to a computer user. An input device 1014,
including alphanumeric and other keys, is coupled to bus 1002 for communicating
information and command selections to processor 1004. Another type of user input device is
a cursor control 1016, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 1004 and for

controlling cursor movement on display 1012. This input device typically has two degrees of

27

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to
specify positions in a plane.

[0111] Computer system 1000 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 1000 to
be a special-purpose machine. According to one embodiment, the techniques herein are
performed by computer system 1000 in response to processor 1004 executing one or more
sequences of one or more instructions contained in main memory 1006. Such instructions
may be read into main memory 1006 from another storage medium, such as storage device
1010. Execution of the sequences of instructions contained in main memory 1006 causes
processor 1004 to perform the process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combination with software instructions.
[0112] The term “storage media” as used herein refers to any non-transitory media that store
data and/or instructions that cause a machine to operation in a specific fashion. Such storage
media may include non-volatile media and/or volatile media. Non-volatile media includes,
for example, optical or magnetic disks, such as storage device 1010. Volatile media includes
dynamic memory, such as main memory 1006. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any
other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any
physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

[0113] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media.
For example, transmission media includes coaxial cables, copper wire, and fiber optics,
including the wires that include bus 1002. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0114] Various forms of media may be involved in carrying one or more sequences of one or
more instructions to processor 1004 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
network connection. A modem or network interface local to computer system 1000 can
receive the data. Bus 1002 carries the data to main memory 1006, from which processor

1004 retrieves and executes the instructions. The instructions received by main memory

28

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

1006 may optionally be stored on storage device 1010 either before or after execution by
processor 1004.

[0115] Computer system 1000 also includes a communication interface 1018 coupled to bus
1002. Communication interface 1018 provides a two-way data communication coupling to a
network link 1020 that is connected to a local network 1022. For example, communication
interface 1018 may be a network card, a modem, a cable modem, or a satellite modem to
provide a data communication connection to a corresponding type of telephone line or
communications line. Wireless links may also be implemented. In any such implementation,
communication interface 1018 sends and receives electrical, electromagnetic, or optical
signals that carry digital data streams representing various types of information.

[0116] Network link 1020 typically provides data communication through one or more
networks to other data devices. For example, network link 1020 may provide a connection
through local network 1022 to a host computer 1024 or to data equipment operated by an
Internet Service Provider (ISP) 1026. ISP 1026 in turn provides data communication services
through the world-wide packet data communication network now commonly referred to as
the “Internet” 1028. Local network 1022 and Internet 1028 both use electrical,
electromagnetic, or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 1020 and through communication interface
1018, which carry the digital data to and from computer system 1000, are example forms of
transmission media.

[0117] Computer system 1000 can send messages and receive data, including program code,
through the network(s), network link 1020, and communication interface 1018. In the
Internet example, a server 1030 might transmit a requested code for an application program
through the Internet 1028, ISP 1026, local network 1022, and communication interface 1018.
The received code may be executed by processor 1004 as it is received, and/or stored in
storage device 1010, or other non-volatile storage for later execution.

[0118] Operations of processes described herein can be performed in any suitable order
unless otherwise indicated herein or otherwise clearly contradicted by context. Processes
described herein (or variations and/or combinations thereof) may be performed under the
control of one or more computer systems configured with executable instructions and may be
implemented as code (e.g., executable instructions, one or more computer programs or one or
more applications) executing collectively on one or more processors, by hardware or
combinations thereof. The code may be stored on a computer-readable storage medium, for

example, in the form of a computer program comprising a plurality of instructions executable

29

10

15

20

25

30

WO 2022/025770 PCT/NZ2021/050009

by one or more processors. The computer-readable storage medium may be non-transitory.
The code may also be provided carried by a transitory computer readable medium e.g., a
transmission medium such as in the form of a signal transmitted over a network.

[0119] Conjunctive language, such as phrases of the form “at least one of A, B, and C,” or
“at least one of A, B and C,” unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with the context as used in general to
present that an item, term, etc., may be either A or B or C, or any nonempty subset of the set
of A and B and C. For instance, in the illustrative example of a set having three members, the
conjunctive phrases “at least one of A, B, and C” and “at least one of A, B and C” refer to
any of the following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}. Thus, such
conjunctive language is not generally intended to imply that certain embodiments require at
least one of A, at least one of B and at least one of C each to be present.

[0120] The use of examples, or exemplary language (e.g., “such as”) provided herein, is
intended merely to better illuminate embodiments of the invention and does not pose a
limitation on the scope of the invention unless otherwise claimed. No language in the
specification should be construed as indicating any non-claimed element as essential to the
practice of the invention.

[0121] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the scope of the invention, is the literal
and equivalent scope of the set of claims that issue from this application, in the specific form
in which such claims issue, including any subsequent correction.

[0122] Further embodiments can be envisioned to one of ordinary skill in the art after reading
this disclosure. In other embodiments, combinations or sub-combinations of the above-
disclosed invention can be advantageously made. The example arrangements of components
are shown for purposes of illustration and combinations, additions, re-arrangements, and the
like are contemplated in alternative embodiments of the present invention. Thus, while the
invention has been described with respect to exemplary embodiments, one skilled in the art
will recognize that numerous modifications are possible.

[0123] For example, the processes described herein may be implemented using hardware
components, software components, and/or any combination thereof. The specification and

drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It

30

10

15

WO 2022/025770 PCT/NZ2021/050009

will, however, be evident that various modifications and changes may be made thereunto
without departing from the broader spirit and scope of the invention as set forth in the claims
and that the invention is intended to cover all modifications and equivalents within the scope
of the following claims.

[0124] In this specification where reference has been made to patent specifications, other
external documents, or other sources of information, this is generally for the purpose of
providing a context for discussing the features of the invention. Unless specifically stated
otherwise, reference to such external documents or such sources of information is not to be
construed as an admission that such documents or such sources of information, in any
jurisdiction, are prior art or form part of the common general knowledge in the art.

[0125] All references, including publications, patent applications, and patents, cited herein
are hereby incorporated by reference to the same extent as if each reference were individually
and specifically indicated to be incorporated by reference and were set forth in its entirety

herein.

31

WO 2022/025770 PCT/NZ2021/050009

WHAT IS CLAIMED IS:

1. A computer-implemented method for compressing image data that includes
depth information, the method comprising:
under the control of one or more computer systems configured with executable
instructions:

obtaining image dataset in computer-readable form, wherein image data in the image
dataset comprises a plurality of pixel image value arrays, wherein a first pixel
image value array having a first number of image value array samples each
having an image value, a depth value, and an association with an associated pixel
position;

determining, for the first number of image value array samples, a compressed image;

determining, for the first number of image value array samples, a compressed image
value array comprising a second number of compressed image value array
samples, wherein the second number is less than or equal to the first number and
wherein compressed image value array samples are computed from the first
number of image value array samples and combining criteria, wherein the
combining criteria are based on object data and/or depth variations of depth
values in the first pixel image value array; and

generating a modified image dataset wherein the first pixel image value array
represented in the image dataset by the first number of image value array samples
is represented in the modified image dataset by the second number of compressed

image value array samples.

2. The computer-implemented method of claim 1, wherein the image values
of samples of the first number of image value array samples comprise pixel color values,
wherein the compressed image value array samples comprise pixel color values, and wherein
the image dataset and the modified image dataset comprise pixel color values for pixels over

an image.

3. The computer-implemented method of claim 1, wherein the compressed
image value array is computed from the first number of image value array samples based on
depth values associated with the pixel image value array samples, and wherein the combining
criteria for combining a first plurality of uncompressed samples of the first pixel image value

array by a compressed sample in the compressed image value array includes whether each of

32

WO 2022/025770 PCT/NZ2021/050009

the first plurality of uncompressed samples have a depth value within a predefined limited

depth range threshold.

4. The computer-implemented method of claim 1, further comprising
obtaining object identifiers associated with the pixel image value array samples, wherein
samples of the first pixel image value array include an associated object identifier, and
wherein the combining criteria for combining a first plurality of uncompressed samples of the
first pixel image value array by a compressed sample in the compressed image value array
includes whether each of the first plurality of uncompressed samples share an object

identifier in common.

5. The computer-implemented method of claim 4, wherein the combining
criteria further comprise determining that each object represented by samples within the

predefined limited depth range threshold all share the object identifier in common.

6. The computer-implemented method of claim 1, wherein the image dataset
comprises data for a two-dimensional pixel array of R rows and C columns, R and C being
positive integers, wherein the image data comprises R times C pixel image value arrays, one
per pixel, wherein a number of image value array samples in image value arrays may vary,
wherein each image value array sample comprises a pixel color value, an alpha value, a depth
value or depth range, and each image value array sample is associated with one of the R times
C pixels of the image data, and wherein at least some image value arrays of the modified

image dataset comprise fewer image value array samples relative to the image dataset.

7. The computer-implemented method of claim 1, wherein generation of the
compressed sample is performed using a compression step selected based on a type of data

being compressed.

8. The computer-implemented method of claim 1, wherein pixel values

comprise color values and color values are combined using an “over” operation.

9. The computer-implemented method of claim 6, further comprising omitting
at least one compressed image value array corresponding to a pixel not intersected by any

objects.

33

WO 2022/025770 PCT/NZ2021/050009

10. The computer-implemented method of claim 1, wherein the first pixel
image value array comprises array samples each having depth information that indicates, for
its associated pixel, one or more contributing object that contribute to a color value of the

associated pixel, wherein the contributing object is represented by a depth or a depth range.

11. The computer-implemented method of claim 10, the contributing object is
contributing to the first pixel color when a position of the contributing object intersects, or is
within a ray or volume defined by bounds rays from, a camera position through a

corresponding pixel.

12. The computer-implemented method of claim 1, further comprising:
determining an error threshold between a second pixel color value function derived from
the compressed image value array and the first pixel image value array; and
adding an additional sample to the compressed image value array to reduce an error

below the error threshold.

13. The computer-implemented method of claim 1, further comprising:
determining whether modifying a depth range of an object in the first pixel image value
array would reduce an error between a second pixel color value function derived
from the compressed image value array and the first pixel image value array;
determining whether the error exceeds an error threshold; and
modifying the depth range to extend a boundary of adjacent objects to reduce a gap
between the adjacent objects that when combined separately from the gap would

reduce the error.

14. The computer-implemented method of claim 1, further comprising
truncating the compressed image value array at a truncation sample representing an object

that fully occludes farther objects at a pixel location of the compressed image value array.

15. A computer system comprising at least one processor and a storage
medium storing instructions, which when executed by the at least one processor, cause the

system to implement the method of claim 1.

16. A non-transitory computer-readable storage medium storing instructions,
which when executed by at least one processor of a computer system, causes the computer

system to carry out the method of claim 1.

34

WO 2022/025770 PCT/NZ2021/050009

100

104

= 124
(]—=

Virtual
Camera

200
Row Col Pixel Elements Pixel Vaiue
1 11515 e Pixel Color
11218 |81 s i Pixel Alpha
1 318 57} S| S| B0l S S Depth
- Object ID

Deep Image Dataset

1/8

PCT/NZ2021/050009

WO 2022/025770

DIOUSBIYL 04T
(n/A) sedwes pelge suiquion
pioysaill sbues yidag
suso Burkquio)

® & @ @

sainy edwiexd

I

18Xid desq
NassaIdUIo)

ebriolg o107 7 epon welboid
jaxid das(] jeusi
— P
—— ozt zze H
m%mwwmmmh%o aBeIoIS J0SIND JOSS800.d
10§ 188 BNy e e
oee vee 0ee
B— Hun Buissancld BXid
\t\.
a0¢
onjeA JOSINT JUaLND
@ Uo peseg peeies |BXid dsaq
80t
YN esnasiuy

P
A%

=

gie

(oBeLyj
j8xid desq
10 82INog
LIC)

. S :

Doy AlenDpoegpss] Joj
sigesn abew Joy) Joeiauss) abew

.\!\
%S

0

voe

1eseeq
abew) dasg

T
S

\ﬂ{ 00¢

2/8

WO 2022/025770

PCT/NZ2021/050009

400

uncompressed | S| S 1 S Sy
compressed | 8 | 3%
Pixel
Component 500
Value A/B
502
8,
1 S?»
P
Distance from camera
(depth)
Pixel 506
Component
Valus
Si'ﬁ S's

<

B

DCistance from camera

{depth}

PCT/NZ2021/050009

WO 2022/025770

'S
Nmmw mm Nw F..mw
e | | | s
<%
209 909 aneA
: wauodwon
s w BXid
P09

009

4/8

PCT/NZ2021/050009

WO 2022/025770

L4

yidag Qg LS
&
e
4
BNBA
Wwsuodwon
[eXid
1O
108lgo
Qs Ihs
QHIHLO0ONWS

7

uidsQ 5 g (5 5 'g

) 770
A 4
aneAa

804 wsuodwon
[oxid

zZ0 LO
pelgo psigo

£,

RSl RESH Rl SR s

feuwbug

09

5/8

WO 2022/025770 PCT/NZ2021/050009

(Start) WJSGO
¥

801
.

Obtain Image Dataset of Pixel Image Value
Arrays, Each Comprising Pixel Samples

¥

Determine Combining Criteria for Combining Samples of the Pixel Image Value

Array (e.g., Whether Each Sample of the Uncompressed Array to be 802

Represented by a Compressed Sample Has a Depth Value Within a Predefinedr™

Limited Depth Range Threshold, Whether Adjacent Samples are from the Same
Object, Etc)

Determine Whether Each Object Represented by Samples within the 803
Predefined Limited Depth Range Threshold All Share an Object identifier I~
in Common

¥
Determine Whether an Error Threshold Would Be Exceeded by a ,,.,,8;04

Replacement of Uncompressed Samples by a Compressed Sample

¥
Add an Additional Sample, if Needed, to Reduce a Loo°

Compression Error to Below the Error Threshold

¥

Modify a Depth Range of a Compressed Sampile, if Needed, to |~
Reduce the Compression Error to Below the Error Threshold

¥

Compute Compressed Samples for a Compressed Pixel Image Value | 807
Array from the Uncompressed Pixel image Value Array Based on Depth
Values Associated with the Pixel Image Value Array Samples

¥

Compute a Compressed Image Dataset Comprising Compressed Pixel
Image Value Arrays and the Combining Criteria

o)

808
o

6/8

PCT/NZ2021/050009

WO 2022/025770

abeiols
Builiguuios
jBuibisul
.5% 138 8Ny

. ...mmm&_owm..

| pouIguIoT) |
uoBWILY |

I G WasAg
cib Buibiew
DD +8Al

sbrioig

abewl g 006™g

onels

afeioig
BlepRISIN

8.6

1245,

| uonoy enrt |

108880014 Bunjeg

(6
JeBeuri SS8001d

M

gleis
AN&&

(1) Nm\m

s U5 |

mmmwm -

/ usangusel) _—
\‘u\

0i8

P (s1o
1310 Zr6 A
nang
¥ T
abricig
{jeuly p e lele)
‘alBls M bes
yeip “0e)
slgBiRIEd UOHOSIeS abeioig
Jepuay uognosey | 988 1 onduosaq
y Y ﬁ%&nﬁ; wisisAg
sutbuz D S uonesud &E@
m Buliepuey sbeioig uoleuluY 01
L ¢ L sousnbag ,@ﬁ {siobeupiy
s e |_HONeUy (shsiuy
JOIRIBUSD) ¥ ~
18AUQ UogeLILY [sindui Jeos @ o
6 nadiesn
wssAg Buissanosd F ebrioig
LOROY Al 1) ebejood | L (Bjweishs |
comux.\ maam 104G

018

__juonoy 8ArT

‘Joyoadip Joieiad(

LWDISASQ

ammde) g sinduj

..\!\
RS

7/8

PCT/NZ2021/050009

WO 2022/025770

8/8

1 1soH
PaGl
| m
.. By | |
N uomen | i
[wiomen V. _ 20BLIBIU|
4 eoon [T Lonesiunwiwon 1088990.d |
2201 \ J ozor s :
. | -~ ~ | [0JU0D)
ool $001 Ca— I
§
m | g
m m 9L0L
m
| -~ snd | B0IAS(]
9z0l | m m
| | i ~
jouisuy / i | ¥i0k
gzol m 3
onis | 201AB(] Aowsiy Aeidsiq
S m abeioig WO LRI ;
= | : z100
m P P p—
OEo . 0L0i 8001 9001 |
\\.\m
QO0L = = e o o o e o e -

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings

