WO 2004/084133 A2 | 0|00 000 D00 O 00 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2004/084133 A2

30 September 2004 (30.09.2004) PCT
(51) International Patent Classification’: GOON
(21) International Application Number:
PCT/US2004/006718 (74)

(22) International Filing Date: 4 March 2004 (04.03.2004)
(25) Filing Language: English 81
(26) Publication Language: English
(30) Priority Data:

60/456,035 17 March 2003 (17.03.2003) US

10/739,553 17 December 2003 (17.12.2003) US

(71) Applicant (for all designated States except US): SONY
ELECTRONICS, INC. [US/US]; 1 Sony Drive, Park
Ridge, NJ 07656 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): PLUTOWSKI, Mark,

(84)

Earl [US/US]J; 5541 Del Oro Court, San Jose, CA 95125-
6110 (US).

Agent: SALTER, James, H.; Blakely, Sokoloff, Taylor &
Zafman, 12400 Wishire Blvd., 7th Floor, Los Angeles, CA
90025-1026 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: A METHOD AND APPARATUS TO IMPLEMENT AN ERRANDS ENGINE

(57) Abstract: A method and apparatus for provid-

Errands Engine

ing an errands engine 130 is described. The errands
engine 130 comprises an errand receiving logic 210
to receive a set of tasks comprising an errand, a start-
ing state identification logic 260 to generate a char-
acteristic function that describes a set of valid start-
ing states, and a solution logic 280, 285 to generate
a tour to complete the errand.

430
Errand Receiving Cost Calculafion
Erands | Logic " Logic
Informaiion 210 230
1 Goal Enceding
240
N Location Fetching Reward Calculation
Location , | Logic Logic
Data 220 235
Errand Break-up
Logic
250
Ending Location Startinq State)
identification Logic Identification Logic
265 260
Pruning Logic
270
—
Loop Breaking Optimal Solution Apprcximati?
Logic Logic Solution Logic
290 285 280 |

Tour Data

WO 2004/084133 A2 I} N0 A000A0 T 00000 00O AR

Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2004/084133 PCT/US2004/006718

A METHOD AND APPARATUS TO IMPLEMENT AN ERRANDS ENGINE

RELATED APPLICATIONS

[0001] The present invention claims priority to U.S. Provisional
Application Serial No. 60/456,035, filed March 17, 2003, and incorporaies that
application in its entirety.

FIELD OF THE INVENTION
[0002] The present invention relaies to routing, and more pariicularly

to optimizing routing to multiple locations.

BACKGROUND

[0003] Currently available errands engines generally provide point-to-
point routing through a deterministic set of points. If a user wishes to run
errands, the prior art techniques require him or her to enter a starting position,
and each subsequent location in order. The prior art plans assume that the
ordering of the errands is predetermined. Furthermore, prior art services do not
provide contingency planning for handling failures in the route.

[0004] The application scenario, and the larger class of problems in
which it resides, have been considered at great length by the planning and
scheduling community. However, the prior art solutions utilize techniques that
either require deterministic operators (i.e., cannot handie probabilistic
operators), or cannot handle real-valued utility functions, or do not deliver an
optimal solution.SUMMARY

[0005] A method and apparatus for providing an errands engine is
described. The errands engine comprises an errand receiving logic to receive a
set of tasks comprising an errand, a starting state identification logic to generate
a characteristic function that describes a set of valid starting states, and a
solution logic to generate a tour to complete the errand.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention is illustrated by way of example, and not
by way of limitation, in the figures of the accompanying drawings and in which
like reference numerals refer to similar elements and in which:

WO 2004/084133 PCT/US2004/006718

[0007] Figure 1 is a block diagram of one embodiment of a network on
which the errands engine may be used.

[0008] Figure 2 is a block diagram of one embodiment of an errands
engine in accordance with the present invention.

[0009] Figure 3Ais a block diagram of one embodiment of a user
system for the errands engine in accordance with the present invention.

[0010] Figure 3B is an exemplary user interface for defining a set of
errands.

[0011] Figure 4 is a flow diagram of one embodiment of generating a
route using the errands engine.

[0012] Figures 5A and 5B are a policy diagram and a pruned policy
diagram in accordance with the present invention.

© [0013] Figure 6 is a block diagram of a computer system on which the

present invention may be implemented.

DETAILED DESCRIPTION

[0014] A method and apparatus for an errands engine is described.
The errands engine is designed for the optimal sequencing of visitation over a
set of locations for fulfilling a set of errands under an objective criterion function,
taking into account costs, probability of availability of desired resource, and
rewards for obtaining resource. In one embodiment, the sequencing is
performed using Symbolic-Heuristic approach (decision-theoretic symbolic
model checking combined with symbolic heuristic search).

[0015] The general problem space to which this errands engine
solution may be applied involves task of generating an optimal route for locating
a set of resources across a set of locations. The errands engine described
herein, in one embodiment, includes in its calculations the inherent uncertainty
that a given resource will be available at a particular location, while optimizing
performance over cost of visiting a location, cost of acquiring the resource from
a location, and reward for acquiring the resource from a location. The errands
engine is suitable for location-aware tasks, such as fulfilling a shopping list
across a set of stores, nonphysical (cyber-space) applications such as optimally
sequencing the visitation of a set of resources located on a network, automating
sequencing useful for creating workflow tasks, programming game characters
and robotic toys, and other multi-step tasks.

-

WO 2004/084133 PCT/US2004/006718

[0016] The invention handles “resource stores” or locations where the
desired resource is available (simply referred to herein as “store” or “location”)
which may or may not possess the desired resource. The triggering mechanism
(simply referred to herein as “user”) may be an individual, a device, an
application program, or any other entity that may trigger the errands engine. A
policy is created that directs the user to locate the next location with the best
expected uiility, where utility is 2 composition of cost and reward. Cosis account
for travel time or expense. Rewards account for subjective value and monetary
cost of attempting to obtain the resource.

[0017] In one embodiment tasks are posed as Markov decision
processes (MDP). An MDP is a tuple (S, A, P, R). S is a set of states. A is a set
of actions. P is a set of transition models, one per action, specifying the
transition probabilities P,: S x S — [0, 1]. Ris a reward Ry: S — R, where R is
the set of real numbers. The objective is to find a policy n : S — A that
maximizes expected discounted reward over a horizon H < 0,1,...,00, where D e
[0,1] is the discount factor.

[0018] Consider a set of M “resources” Ry = {r1, . . . , rw} (elsewhere
referred to as “items”), and L “locations” (respectively “stores”), Xp={xq, X, . . .,
X.}. A reasoning agent seeks to obtain M resources by sequentially visiting some
subset of the stated locations. S = S;xSpxSuxS,. The “null” state Sy is an
absorbing state used to explicitly trap illegal or otherwise “bad” moves. Sp = 2™t}
tracks where the agent has been previously, where 2% is the power set obtained
by taking all subsets of Z (i.e., all combinations of elements of Z and including
the empty subset) for some set Z. Sy =2 tracks which among the M desired
resources have been acquired by the agent. In the problem formulation S,
states the current location.

[0019] In one embodiment, S| = X,. Therefore, in this embodiment
#SL=L, #Sp =2°, #Sy = 2" and #S, = 2. In this embodiment, the state variable
encoding for representing location uses a binary encoding using at least loge (L)
bits (the binary logarithm must be rounded up to the next nearest integer value).
For given M and L, the size of this state space is L -2-"*1,

[0020] In another embodiment, the size of the state space is reduced
further by taking S, to be mutually exclusive of the other substate vectors, in

WO 2004/084133 PCT/US2004/006718
which case S = {S; x Sp x Sm} U S,. For given M and L, the size of this state
space is L 28M41.

[0021] In another embodiment Sy = 2%, and when selecting s e S, the
errands engine enforces that exactly one x; = 1, 1 <i< L, setting the remainder
to zero. This simplifies the tasks of generating ithe MDP encoding and of
extracting the policy, bui increases the size of the state space such that in this
embodiment #S, = 2". For given M and L, the size of this state space is 22~
In one embodiment, this implementation utilizes a MDP solver having space and
time complexity that is less affected by the size of the search space, including
techniques using a reachability step that prunes away unreachable states from
consideration such as sLAO",

[0022] Let actions A = {gyy, X%y, x € X, y € X} U Jo, Where gyy is “go
from x toy,” and g is “stay.” Therefore, #A = L(L - 1) + 1. This representation
does not explicitly provide actions for obtaining resources, but rather implicitly
assumes that the agent will (probably) pick up available resources upon visiting
a location, thereby greatly reducing the number of actions required to represent
the task. In one embodiment the reasoning agent is rewarded for picking up an
item it doesn't already have.

[0023] Some of the locations are also designated as rendezvous
locations. The agent is additionally rewarded for completing the tour at a
rendezvous once it has acquired the desired resources. In one embodiment the
agent is rewarded for obtaining one or more of the desired resources. In another
embodiment the agent is given an additional reward for obtaining all of the
desired resources. In one embodiment the errands engine uses an encoding
that tracks the states that have been visited via the state variable Sp, allowing it
to penalize the agent for revisiting location unnecessarily (i.e., if the location
does not possess anything that the agent still needs). This penalty is avoided if
the store has at least one item on the agent’s active shopping list, or if the
location is a rendezvous point and the active shopping list is empty.

[0024] To be somewhat more precise with respect to specifying the
rewards, in one embodiment, reward is given by the immediate value of a state

minus the action cost. R%(s) = Ri(s) - Re(a), s e Sanda e A, where R,: S — R

and R; : A —> R*, where R+ = {x e R, x>0}, Forlocations x and y in one

WO 2004/084133 PCT/US2004/006718

embodiment Rq(gx,) is the time required in traveling from x to y. In another
embodiment Rc(gy,) is the distance covered in traveling from xto y. The travel
time (respectively, distance) between any two given locations is asymmetric, i.e.
the time (resp., distance) from x to y may be more or less than the reverse
direction, i.e. in general Ry(g,) = Re(Qy,)-

[0025] To be somewhat more precise with respect to specifying the
allowable transitions, one embodiment prohibits revisits altogether by modifying
the state transitions to disallow visits to any location that is already designated in
Sp. Another embodiment allows useful revisits but disallows unnecessary revisits
by modifying the state transitions io allow visits to any location that is designated
in Sp but where either one of two cases holds: (a) the location carries in its
inventory at least one resource with probability of availability that is greater than

. zero, such that the resource is not yet designated in Sy, (i.e., the location
possesses something the agent needs), or (b) all items have been acquired (i.e.,
Sw is all “1's”), and the location is a rendezvous. Another embodiment does not
utilize the tracking state variables Sp, and allows unrestricted revisits to any
location. This embodiment utilizes a nonstationary policy that is recomputed on
the fly when the policy recommends revisiting a location. This embodiment
reduces the size of the state space greatly, thereby reducing the time required to
obtain a policy, at the expense of generally requiring replanning during run-time
to avoid unnecessary or undesirable revisits.

[0026] In one embodiment the errands engine uses an additional data
structure to represent dependencies between goals. Let G be an acyclic
directed graph over items Ry = {r1, ..., rm}. Given two nodes r; and liin G, an
edge fromri to r; represents a dependency such that r must be
obtained before r; can be obtained (i.e., goal r; is a precondition of goal ;). The
graph can be disconnected. (In a connected graph there is a path from any point
to any other point in the graph. A graph that is not connected is said to be
disconnected.) A node representing an item (respectively a “desired resource”)
which is disconnected has no dependencies on any other goal. A node rjin G
may have a plurality of dependencies, represented by having edges from a
plurality of other nodes. In one embodiment, these dependencies are encoded
in the MDP by preconditions in the transition diagram. This encoding stipulates

WO 2004/084133 PCT/US2004/006718

that when a goal has any preconditions, those preconditions must hold before
the goal can be attained.

[0027] A similar data structure and encoding may be used, in one
embodiment, to specify preconditions for actions, i.e., other actions that must
have already been "fired" before an action is enabled. Another embodiment
ulilizes a more general encoding that specifies for each action & set of states,
one or more of which must hold in order for the action to be enabled. Another
embodiment utilizes an encoding that specifies for each goal a set of states, one
or more of which must hold before the goal can be attained. This set of states
can be represented as a decision diagram, decision tree, look-up table, or other
standard representation of state utilized in encoding MDPs.

[0028] The Errands Engine is especially well-suited for location-based
activities that transpire in physical (geographically situated) space and time or
some analog or simulation thereof, such as a virtual world (e.g., computer
game), or behavioral control of a autonomous mobile robot. At first glance the
Errands Engine seems to be restricted to location-based activities — however,
the Errands Engine can be easily adapted to performing decisioning processes
situated in cyberspace. The term “cyberspace” refers to networked
environments, such as the dynamic composition of composite services from web
services situated on the world wide web. In this application, the L locations refer
to L web services. This adaptation is achieved by replacing actions A with

actions AWWW - {9y, ¥ € XL} v go, where gy is “go to y,” and gg is “stay.”

Therefore, #AWWW = | 4 1. Intuitively, each location y represents a single web
service. Note that the cost of accessing a web service does not depend upon a
“current location,” and in particular, does not depend upon the immediately
previous web service accessed by the system.

[0029] In one embodiment the errands engine uses conventional MDP
(Markov decision process) solvers (also referred to in the jargon of the field as
“flat”, or “classical” techniques) such as value iteration, policy iteration, modified
policy iteration, or linear programming. In another embodiment, the errands
engine uses algorithms based upon decision-theoretic regression using symbolic
model-checking to solve MDPs, combined with a symbolic heuristic search
strategy (sLAQO*). Symbolic Model Checking is an efficient way to apply dynamic
programming to value iteration by automatically exploiting structure in the

-6-

WO 2004/084133 PCT/US2004/006718
problem. In the technical jargon this is also referred to as a “structure” approach,
or as using a “factored” representation. Symbolic LAO* is a heuristic search
technique that also automatically exploits structure in the problem. Combining
these two approaches combines dynamic programming into heuristic search.
This technique is referred to herein as a “Symbolic-Heuristic” search.

[0030] The Symbolic-Heuristic approach provides the algorithms which
provide an errands engine with:

(a) Expressiveness — able to solve stochastic planning tasks

formulated as an MDP,

(b) Optimality — able to generate the optimal value function for a given

MDP task,

(c) Space Complexity — able to exploit problem structure via an

efficient data structure

(d) Time Complexity —able to avoid wasting computation on

unreachable states. |

[0031] Figure 2 illustrates a block diagram of one embodiment of the
errands engine 130. Errand receiving logic 210 receives the errand definition
from a user. In one embodiment, the user simply lists a set of tasks to be
accomplished. In another embodiment, the user defines any dependencies in
the task. For example, the tasks may be going to an’ATM, purchasing a
present, and-getting a drink. The purchase of the present and drink may be
dependent on first going to an ATM to obtain money. In one embodiment, the
user defines these dependencies. In another embodiment, as will be described
below, the errands engine 130 identifies such dependencies.

[0032] Location fetching logic 210 obtains a set of locations for the
stores at which the requested resources are available. In the above example,
the location fetching logic 210 would obtain locations of ATMs, locations of
stores that sell beverages, and locations that sell presents. In one embodiment,
the preferences for present type is defined by the user, i.e. the user indicates
he/she wishes to purchase a waich, and the location fetching logic 210 feiches
stores which sell waiches. In one embodiment, the location feiching logic 210
fetches a set of locations, for example, it fetches ten locations.

[0033] Cost calculation logic 230 calculates the costs of obiaining the
resource at each location. The cost includes the physical cost of an item (i.e. a

WO 2004/084133 PCT/US2004/006718

charge at the ATM, the cost of a drink, etc.) and the transaction cost (i.e. travel
time).

[0034] Reward calculation engine 240 calculates the subjective value
of accomplishing each task. This, in one embodiment, enables the errands
engine 130 to complete only a subset of tasks having the highesi rewards, in a
constrained situation. The constraini may be time, distance iraveled, or any
other constraint set by the user. In one embodiment, the user may identify
“necessary” tasks. For example, in the above example, the user may identify
the tasks of going to an ATM and purchasing a present as “necessary” while the
task of getting a drink is optional. In one embodiment, the system may default to
assuming that all tasks are optional. In another embodiment, the system may
default to assuming that all tasks are necessary. In one embodiment, the user
may set his or her preferences, as to the default assumption.

[0035] Goal encoding 240 encodes the goals set by the user (i.e. the
tasks) for the calculations. In one embodiment, the task is formulated to exploit
the benefits of the Symbolic-Heuristic approach. The encoding used minimizes
the number of state variables and exploits beneficial characteristics of both the
Symbolic Model Checking approach (used to obtain the initial heuristic), and the
Symbolic-Heuristic approach (used to compute the policy). In one embodiment,
the encoding provides a result that is very flexible and applicable to a wide class

- -of tasks-—However, in-one-embodiment,-certain-decisions are offloaded to
exogenous processes to reduce the search space considered by the errands
engine.

[0036] Errand break-up logic 250, in one embodiment, breaks up two
step errands. The errand break-up logic 250 supports resources that are
obtained in two distinct steps, each step separated by some given length of
time.

[0037] For example, when dropping off a roll of photographic film at a
Photo Shop that provides 1-hour film developing services, the user must first
visit the Photo Shop to drop off the film, and then must wait at least one hour
before returning the pick up the film. In one embodiment, the errands engine
allows another state variable to track the passage of the desired unit of time for
the particular activity (in this example, one hour from the time it is dropped off),
and then “rewards” the errands engine when the film is picked up. The reward is

WO 2004/084133 PCT/US2004/006718

specified to provide a reward in the case of this set of events: (1) the user visits
the Photo Shop, (2) one hour passes, and (3) the user visits the Photo Shop
again. The Errands engine can decide that it is better to wait rather than leave
and attempt another task given the allotted time. For example, say the user is
dropping off an automobile at a service siation for an oil change that is expected
to require 15 minutes. The Errands engine 130 computes the cost of completing
another errand on its list and decides that the net cost (reward minus travel cost)
of doing so does not exceed the cost of just waiting the 15 minutes.

[0038] In one embodiment, for each such two-step task, the underlying
MDP is supplemented with one additional multivariate state variable T, ={ly, . . .
, 1.}, where T, is a Boolean representation of the number of time steps that have
transpired since the first-step of the two-step task was initiated, such that T,
{(0,0,...,0,0),(0,0,...,0,1), (0,0,...,1,0),(0,0,...,1,1), ...,(1,1,...,1,0), (1,1,...,1,1)}.

[0039] In this embodiment, the second step of the two-step task is
enabled when T, = {1,1,...,1}, (i.e., is all ones). In this embodiment, each “tick”
(i.e., time step) of this “stopwatch” variable corresponds to a unit of time, such
as 15 minutes. In this embodiment, every action may update this stopwatch
variable and increment it according to the amount of time that the particular
action expends. Once T. is set to all ones, it remains at that value until the
second step of the two step task is completed. In this embodiment the stopwatch
variable cén“'r»epresenfé?-wi time Vété'ﬁs'.wlh another embodiment, a unéry
encoding is used for the stopwatch variable, such that T, € {(0,0,...,0,0),
(0,0,...,0,1), (C,0,...,1,1), (0,1,...,1,1), (1,1,...,1,1)}. In this embodiment, the
stopwatch variable can represent at most t time steps. In another embodiment,
a “one-of-K” encoding is used, such that for some integer K, and 1=K, T: €
{(0,0,...,0,0), (0,0,...,0,1), (0,0,...,1,0), (0,1,...,0,0), (1,0,...,0,0)}. In this
embodiment, the stopwatch variable can represent at most t time steps. In each
of these additional embodiments, the second step of the two-step task is
enabled when the highest order bit (i.e., the leftmost bit as written here) is set to
1. Once the stopwalch variable attains its highest value, it remains at that value
until the second-step of the two-step task is completed.

[0040] In one embodiment, an additional “wait” action is added to the
action set, such that the “wait” action causes the agent to remain at the same
location and has no other effect than to increment the stopwatch variable by one

-O-

WO 2004/084133 PCT/US2004/006718

tick (i.e., to expend one unit of time).

[0041] The starting state identification logic 260 defines the “initial
situation” used by the Symbolic-Heuristic approach. The starting state
identification logic 260, in one embodiment, exploits regularities in the task
description encoding to specify all of the valid siariing states, and then create a
composite “initial situation” specified by the characteristic function thai describes
the set of valid starting states. This allows an MDP solver that can exploit
reachability structure (such as sLAO*) to compute a policy valid for all valid
starting states, not just a single start state. In another embodiment, the stariing
state identification logic 260 specifies a single valid starting state. This allows an
MDP solver that can exploit reachability structure (such as sLAO*) io compute
the value and policy only for those states reachable from the given starting state.

[0042] The rendezvous logic 265 identifies the locations at which the
Tour designed by the errands engine 130 can end. In one embodiment, the
Tour may end in any location. In one embodiment, the errands engine 130
allows a subset of the Stores to be designated as “Rendezvous Locations”. A
Rendezvous Location is a location at which the errands engine may end its
Tour. A Rendezvous Location need not contain any Resources.

[0043] For example, two people may go shopping together, and then
decide to split up for some time to pursue their own individual errands. They

-—decide-to meet-whenthey-have eompleted-their-individual tasks. They designate
a Rendezvous Location such as a park (which does not contain any resources
on either of their respective Shopping Lists), or a coffee shop (which may
contain a resource that appears on one of their Shopping Lists). In one
embodiment, the errands engine also allows more than one Rendezvous
Location to be designated. This allows the first person to complete their
respective tasks to wait at the Rendezvous Location of their choice, and then
telephone the other person to let them know where they are waiting. Thus, the
Tour should end at a rendezvous location, if one is defined. Whether the Tour
actually ends at a rendezvous depends upon the reward for doing so versus the
cost of traveling to the rendezvous. The reward can be set such thai the Tour
must end at a rendezvous by setting the reward to be greater than the maximum
cost for traveling io the rendezvous.

[0044] Pruning logic 270 removes any unreachable states. In MPD

-10-

WO 2004/084133 PCT/US2004/006718

solvers certain states will not be encountered because the state transition
diagram (that stipulates how one state may be reached from another by
executing an action) may prohibit those states from ever being reached in
normal use. In other words, such staies are “unreachable” from a particular set
of starting states. These “unreachable states” based on the stariing siaies
identified by starting state identification logic 260 and ending staies identified by
rendezvous logic 285, are masked. This means that the errands engine 130
does not calculate these unreachable states. This significantly reduces the
complexity of the value diagram and policy diagram. It is quite common to have
no-masked value diagrams with hundreds of thousands of nodes, which can be
reduced by masking to tens of thousands of nodes, a reduction on the order of
90%. The reduction, of course, depends on the problem and the reachability
structure of the problem. ,

[0045] Figure 5A and 5B illustrate the difference between a pruned
(masked) policy diagram and a non-masked policy diagram. As can be seen,
the pruned policy diagram is less complex since it does not contain policy for
unreachable states, whereas the unmasked policy diagram does.

[0046] One beneficial by-product of an MDP solver that exploits
reachability (such as Symbolic LAO*) is that the resulting value function
excludes mention of unnecessary states, and the resulting policy generates a
“null” action for all unreachable states. Figure 5A and 5B illustrate the difference
between bolicy generated by the blind exhaustive approach of Spudd, versus
the “masked” policy (in this case, generated by LAO*).

[0047] Figure 5A shows an unmasked policy for a simplified version of
the errands task, using four location SVs (at0, at1, at2, at3) and a single
resource SV (parked). (Tracking SVs, which allow the policy to avoid revisiting
locations, have been omitted to simplify the figure.) Internal (i.e., non-terminal)
nodes represent SVs. If an SV is true, follow the solid line, otherwise follow the
dashed line. Leaf (i.e., terminal) nodes represent actions. For example, the
action for parked AND &i0 (given all other SVs are false) is siay. The action for
ai3 (given all other SVs are false) is go_3ie0. Any node with more than one
location variable set to true is unreachable - these nodes will never be accessed.
For example, the action for a0 AND ati (given all other SVs are false) is
go_1to2. This illustrates that the policy generated by the (unmasked) value

-11-

WO 2004/084133 PCT/US2004/006718

iteration algorithm contains policy for unreachable states.

[0048] Figure 5B shows the masked policy for the same task as in the
Figure 5A. The masked policy masks out unreachable states. As can be seen, in
one embodiment, all unreachable states trap to a single terminal node labeled
“‘none.”

[0049] For example, in a situation with 11 locations, 6 resources, and
29 state variables in all, in one embodiment the total number of states as
encoded is over 536,870,912. However, the number of reachable states is only
2,883,584. This is because of sparseness in the Location State Variables,
because the errands engine must be in exactly one location ai any one time,
and under this encoding exactly one Location State Variable is set io one, and
there are 11 locations. Therefore only 0.54% of the states are reachable.
Conventional value iteration using exhaustive (and blind) search spends cycles
evaluating the 99.46% of the states that can never be encountered in actual use.

[0050] Returning to Figure 2, in one embodiment, the system provides
approximate solutions as well as optimized solutions. In one embodiment, the
errands engine 130 includes an optimized solution generator 285 and an
approximate solution generator 280. '

[0051] The approximate solution generator 280 integrates the data
structure of the “pair terminal” ADD into the sSLAO* method. This provides the
- —option of replacing the-exact value-iteration technique-with the approximate
value iteration technique. This provides for additional speedups in scenarios
where an approximate solution is adequate, thereby obtaining simultaneously
the benefits of approximate value iteration as well as symbolic heuristic search
and the associated masking of unreachable states. In another embodiment, an
approximate solution is obtained using approximate linear programming
technique.

[0052] The optimal solution logic 285 calculates the iterative optimal
solution. In one embodiment, the loop breaking logic 290 is provided. After
profiling the resulting Symbolic-Heuristic approach on the application domain, it
was discovered that an inordinate amount of time was spent in a convergence
loop. The loop breaking logic 290 is a task-dependent parameter that allows the
optimal solution logic 285 to reduce the amount of time spent in the loop in two
ways: (a) limiting the number of iterations by designating a maximum limit,

-12-

WO 2004/084133 PCT/US2004/006718
and/or (b) allowing the loop breaking logic 290 to interrupt the loop. The optimal
solution logic 285 can re-initiate the computation if necessary. In one
embodiment, the optimal solution logic 285 can re-initiate the computation
subsequent to run-time use of the policy, by setting the initial state to the latest
state encountered while execuiing the policy.

[0053] The errands engine 130 described in Figure 2 utilizes “Stores”
(repositories of resources) and “Resources” (which are found in Stores), and a
Shopping List (also referred to as an Errand List). An errands engine creates a
“Tour” by visiting Stores and picking up Resources until the Shopping List is
empty. This Tour is then sent to the user.

[0054] Figure 3 is a block diagram of one embodiment of the user's
system. The errand sending logic sends the errand to the errand engine 130. In
one embodiment, the user defines a set of goals. In one embodiment, the user
may provide a relative priority, or a dependency between the goals. For
example, the user may enter the following:

Get money at the ATM

Get lunch at Fondue Fred's

Purchase present for son, needs ATM

e

See the most important sights of San Francisco
[0055] The above list indicates priorities (the ordering) as well as
-dependencies. In ene-embodiment; a dependency calculation logic-320 may
prompt the user to identify any dependencies. For example, when receiving the
above list, the system may query: is going to the ATM needed prior to getting
lunch?

[0056] Rendezvous setting logic 330 permits the user to identify one or
more of the destinations as rendezvous. In one embodiment, only identified
locations may be identified as rendezvous. Thus, in the above example, only
Fondue Fred’s may be designated a rendezvous, since none of the ATM,
purchase location, or sight seeing location are specifically identified. In another
embodiment, any of the above may be designated as a rendezvous.

[0057] In one embodiment, a Web interface is used. In that case, in
one embodiment, the interface may appear as shown in Figure 3B. As can be
seen, each Errand 350 has listed next to it a list of dependencies 360. In one
embodiment, the dependencies 360 are displayed as a pull-down menu 370. In

-13-

WO 2004/084133 PCT/US2004/006718
one embodiment, each possible combination is shown. In another embodiment,
only higher priorities (listed in a higher location) are shown. The designation
whether an errand is a rendezvous 380 or not is also selected. In this way, the
user may simply provide the system sufficient data to create a Tour.

[0058] In another embodiment, a knowledge-based sysiem determines
typical dependencies appropriate to the user and the given situation, based on a
given user profile, and domain knowledge. In one embodiment, the user profile
is provided by the user. In another embodiment, the user profile is provided by
observing the user over time. In another embodiment, the user profile is
obtained by observing a population of similar users. In one embodiment, the
domain knowledge is provided by an expert designer. In another embodiment,
the domain knowledge is provided by a common-sense knowledge base such as
Cyc. In another embodiment, the domain knowledge is provided by an ontology
that describes the domain and deductive rules on that domain. In another
embodiment, the domain knowledge is provided by observations over a
population of similar users.

[0059] Returning to Figure 3A, the user’s system includes a Tour
Receiving Logic 340 to receive the Tour calculated by the errands engine.

[0060] Figure 4 is a flow diagram of one embodiment of using the
errands engine. The process starts at block 405. At block 410, a list of errands

-~ ——is-reeceived:- In-on-embodiment,-the-list-of-errands-includes-at-least two

resources, to be obtained from different stores.

' [0061] At block 415, the locations for each store are identified. The
location of a store, in one embodiment, is obtained from public sources. For
example, if the stores are physical stores in a mall, a mall map (generally
publicly available on the Internet) may be used to identify the location of each
store. In another embodiment, the location of the store is obtained from
contractual agreements with private sources, such as from the mall owners, or
from marketing agents representing the mall ownership. In another
embodiment, the location of the store is obtained from third-party data vendors.

[0062] At block 420, the resource cost at each store is identified. As
noted above, the resource cost include the transaction cost (travel time, parking
costs, eic.) and the actual cost of the item itself. In one embodiment, the actual
cost of the item may be unknown. In that instance, only the transaction cost is

-14-

WO 2004/084133 PCT/US2004/006718

evaluated. In one embodiment, the inventory of the store is obtained from public
sources, such as the internet (e.g., advertisements). In another embodiment,
the store inventory is obtained from third-party data vendors. In another
embodiment, the store inventory is obtained from a community of cooperating
users.

[0063] At block 425, the process evaluates whether there are any two-
step tasks in the list of errands. Two-step tasks require two separate sieps,
usually separated by time or location. If there are two-step tasks, at block 430,
they are broken up into separate tasks. Note that this feature, along with the
ability to stipulate precondition dependencies among goals, effectively allows
multi-step tasks having more than two steps.

[0064] At block 435, the reward is identified for each task/item. In one
embodiment, the user may specify the priority/reward level for one or more of
the errands. At its simplest, the user may designate certain errands as “must be
done” while others are maintained at “should be done” or “can be done if there is
time” priority levels. In one embodiment, prioritizing may be numerical. As in
standard task planning, the user may assign a priority level to each errand. The
higher the priority, the higher the reward for the completion of the task.

[0065] At block 445, the starting states are identified. In one
embodiment, all possible starting states are identified, and a single equation
‘which-identifies all of-the-starting-states-is generated-- This-single-equation is
then used to enable the errands engine to calculate Tours for all possible
starting states. In another embodiment, all “valid” starting states are identified,
where “valid” may mean starting with an empty shopping cart and having not yet
visited any locations. A single equation which identifies all of the valid starting
states is generated. In another embodiment, a single starting state is identified,
and a single equation which identifies the starting state is generated.

[0066] At block 450, the process determines whether the user has
identified an rendezvous points. Rendezvous points are points at which the tour
may terminate. If so, at block 455, the possible end points of the Tour are
identified. Otherwise, the process assumes that the ending point can be
anywhere, in one embodiment. Note that the rendezvous point may be a point
that is not a “siore” and that does not have “resources.” For example, for a

shopping trip, the rendezvous point may be home.

-15-

WO 2004/084133 PCT/US2004/006718

[0067] At block 460, the rewards diagram generated based on the
errands list is pruned. The “standard” rewards diagram generated attempts to
plot all possible paths, i.e. it is exhaustive. However, there are a large number
of states that cannot be reached based on the known starting condition. For
example there are states in which a user is in multiple locations at the same
time. This is clearly not possible. Therefore, the pruning removes the
unattainable paths from the calculations. In one embodiment, this pruning, or
masking, means that the values of these paths are never calculaied. This leads
to significant time savings during the evaluation phase.

[0068] At block 465, the process determines whether an approximate
solution is acceptable. The system can provide an optimal solution. However, it
is less time consuming to provide an approximate solution. If an approximate
solution is acceptable, the process continues to block 470. At block 470, the
approximate solution is calculated. The approximate solution, as discussed
above, in one embodiment, uses the “pair terminal” ADD with the sLAQO*
method. In another embodiment, the approximate solution is obtained using
approximate linear programming.

[00691 The process then continues to block 490, and the Tour
information is sent to the user. In one embodiment, the Tour is calculated on a
computer system remote from the user’s portable system. In that instance, the

~Four-is-made-available to-the user-for downloading-to-the-pertable system. In
another embodiment, this step may be skipped. The process then ends at block
495,

[0070] If, at block 465, the approximate solution is not considered
acceptable, the process continues to block 475. At block 475, the iterative
optimal solution is calculated. In one embodiment, the optimal solution is
calculated using the sLAO* method. In another embodiment, the optimal
solution is calculated using classical value iteration. In another embodiment, the
optimal solution is calculated using classical policy iteration. In another
embodiment, the optimal solution is calculated using modified policy iteration. In
another embodiment, the optimal solution is calculated using a structured value
iteration technique such as SPUDD. In another embodiment, the optimal
solution is calculated using a structured value iteration technique such as
SPUDD, combined with a reachability masking approach that first performs a

-16-

WO 2004/084133 PCT/US2004/006718

reachability analysis from the initial state(s), and then applies the structured
value iteration only upon the set of reachable states. In another embodiment,
the optimal solution is calculated using classical value iteration, combined with a
reachability masking approach that first performs a reachability analysis from the
initial state(s), and then applies value iteration only upon the set of reachable
states.

[0071] At block 480, the process determines whether there is a
convergence loop lock. In one embodiment, in testing it was found that an
inordinate amount of time was spent in a convergence loop. Therefore, if the
convergence loop is detected, the process continues to block 485. At block 485,
a task-dependent parameter is used that allows the reasoning agent to reduce
the amount of time spent in the loop by two ways: (a) limiting the number of
iterations by designating a maximum limit, and (b) allowing the reasoning agent
to interrupt the loop. The agent can re-initiate the computation if necessary.

The process then return to block 475. In another embodiment, the optimal
solution logic 285 can re-initiate the computation during run-time use of the
policy, by setting the initial state to the latest state encountered while executing
the policy. This allows the MDP solver to focus its computational resources
upon exploring only those states reachable from the state corresponding to the
current real-world state. If there is no convergence loop, and the optimal solution

is suceessfully- computed;-the process-continues-to block 490.—.

[0072] Figure 6 is one embodiment of a computer system that may be
used with the present invention. It will be apparent to those of ordinary skill in
the art, however that other alternative systems of various system architectures
may also be used.

[0073] The data processing system illustrated in Figure 6 includes a
bus or other internal communication means 615 for communicating information,
and a processor 610 coupled to the bus 615 for processing information. The
system further comprises a random access memory (RAM) or other volatile
storage device 650 (referred to as memory), coupled to bus 615 for storing
information and instructions to be executed by processor 610. Main memory
850 also may be used for storing temporary variables or other intermediate
information during execution of instructions by processor 610. The system also
comprises a read only memory (ROM) and/or static storage device 620 coupled

-17-

|

WO 2004/084133 PCT/US2004/006718

to bus 615 for storing static information and instructions for processor 610, and a
data storage device 625 such as a magnetic disk or optical disk and its
corresponding disk drive. Data storage device 625 is coupled to bus 615 for
storing information and instructions.

[0074] The systemn may further be coupled to a display device 670,
such as a cathode ray tube (CRT) or a liquid crystal display (LCD) coupled to
bus 615 through bus 665 for displaying information o a computer user. An
alphanumeric input device 675, including alphanumeric and other keys, may
also be coupled to bus 615 through bus 665 for communicating information and
command selections to processor 610. An additional user input device is cursor
control device 680, such as a mouse, a trackball, stylus, or cursor direction keys
coupled to bus 615 through bus 665 for communicating direction information and
command selections to processor 610, and for controlling cursor movement on
display device 670.

[0075] Another device, which may optionally be coupled to computer
system 600, is a communication device 690 for accessing other nodes of a
distributed system via a network. The communication device 690 may include
any of a number of commercially available networking peripheral devices such
as those used for coupling to an Ethernet, token ring, Internet, or wide area
network. The communication device 690 may further be a null-modem
connection;-a-wireless connection-mechanism, or any other mechanism that
provides connectivity between the computer system 600 and the outside world.
Note that any or all of the components of this system illustrated in Figure 6 and
associated hardware may be used in various embodiments of the present
invention.

[0076] It will be appreciated by those of ordinary skill in the art that any
configuration of the system may be used for various purposes according to the
particular implementation. The control logic or software implementing the
present invention can be stored in main memory 650, mass storage device 625,
or other storage medium locally or remotely accessible to processor 810.

[0077] It will be apparent to those of ordinary skill in the art that the
system, method, and process described herein can be implemented as software
stored in main memory 650 or read only memory 620 and executed by
processor 610. This control logic or software may also be resident on an article

-18-

WO 2004/084133 PCT/US2004/006718
of manufacture comprising a computer readable medium having computer
readable program code embodied therein and being readable by the mass
storage device 625 and for causing the processor 610 to operate in accordance
with the methods and teachings herein.

[0078] The present invention may also be embodied in 2 handheld or
portable device containing a subset of the computer hardware components
described above. For example, the handheld device may be configured to
contain only the bus 615, the processor 610, and memory 650 and/or 625. The
present invention may also be embodied in a special purpose appliance
including a subset of the computer hardware components described above. For
example, the appliance may include a processor 610, a data siorage device
625, a bus 615, and memory 650, and only rudimentary communications
mechanisms, such as a small touch-screen that permits the user to
communicate in a basic manner with the device. In general, the more special-
purpose the device is, the fewer of the elements need be present for the device
to function. In some devices, communications with the user may be through a
touch-based screen, or similar mechanism.

[0079] It will be appreciated by those of ordinary skill in the art that any
configuration of the system may be used for various purposes according to the
particular implementation. The control logic or software implementing the
present-inventien can be-stored-on-any machine-readable medium locally or

remotely accessible to processor 610. A machine-readable medium includes
any mechanism for storing or transmitting information in a form readable by a
machine (e.g. a computer). For example, a machine readable medium includes
read-only memory (ROM), random access memory (RAM), magnetic disk
storage media, optical storage media, flash memory devices, electrical, optical,
acoustical or other forms of propagated signals (e.g. carrier waves, infrared
signals, digital signals, etc.).

[0080] The errands engine of the present invention is useful for
numerous applications. Some of the exemplary applications in which the
present errands engine may be used:

(@) Web Service composition: automatically create composite service

from a set of services.

-19-

WO 2004/084133 PCT/US2004/006718

(b) Travel Planning: create a personalized itinerary for visitors to a
tourist destination to visit various sites based upon interest level,
travel preferences (walking vs. taking mass transit vs. driving).

(c) Shopping Agent: creaie an itinerary for shoppers visiting a
shopping mall given their shopping list and other preferences such
as preference ranking among stores and desired price points.

(d) Museum ltinerary Planning: suggest a policy for visiting displays
within a museum based upon the visitor's preferences, mobility
(energetic single walker vs. slow strolling couple vs. wheelchair-
bound).

(e) Device Coordination: given a set of servant devices within a
proximity network that are to be utilized by a master device,
provides a policy to the master device for optimally visiting the
servant devices in order to sequence the devices for the purpose
of performing some task. For example, a digital camera takes a
snapshot, passes it along to a PDA for image processing to crop
the picture and eliminate red-eye from human subjects in the view,
sends one hardcopy to a printer at a nearby commercial printer for
pick-up at a later time, sends one copy via cell phone to the user's
Spouse, then directs the GPS device to provide walking directions
to-the-userto-locate the commercial printer in-order.to pick up the
hardcopy.

) Personal Information Assistant: optimally sequencing the visitation
of a set of resources located on a wide-area network (such as the
internet or world wide web).

(9) Workflow Tasks: Algorithm is also suitable for automating

| sequencing useful for creating document workflow or collaboration
on a shared project, such as where a document should be directed
in order for it to obtain necessary review, approval, and signatures.

(h) Programming game characters

() Programming robotic toys.

[0081] In the foregoing specification, the invention has been described

with reference to specific exemplary embodiments thereof. li will, however, be
evident that various modifications and changes may be made thereto without

-20-

WO 2004/084133 PCT/US2004/006718

departing from the broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense.

21-

WO 2004/084133 PCT/US2004/006718

CLAIMS

What is claimed is:

1. An errands engine 130 comprising:

an errand receiving logic 210 to receive a set of tasks comprising an
errand;

a starting state identification logic 260 io generate a characieristic
function that describes a set of valid starting states; and

a solution logic 280, 285 to generaie a iour to complete the errand.

2. The errands engine 130 of claim 1, further comprising:

a pruning logic 270 to mask states which are unreachable based on the
set of valid starting states.

3. The errands engine 130 of claim 1, further comprising:

a rendezvous logic 330 to define an ending location, wherein the tour
terminates at the ending location.

4, The errands engine of claim 1, further comprising:

a cost calculation logic 230 to calculate a cost of obtaining a resource
from a store.

5. The errands engine 130 of claim 4, wherein the cost comprises:
actual cost and transaction cost.

6. The errands engine 130 of claim 1, further compnsmg

a loop B}é'akjﬁgﬁo"g{é' 2-9‘6}0 terrﬁ-lﬁegg convergence loop.

7. The errands engine 130 of claim 6, wherein the loop breaking logic
is configured to limiting the number of iterations by designating a maximum limit.

8. The errands engine 130 of claim 6, wherein the loop breaking logic
290 is configured to allow the errands engine to interrupt the loop.

9. The errands engine 130 of claim 1, further comprising:

errand break-up logic 250 to break multi-step errands into separate tasks.

10. A method of constructing a tour comprising:

receiving a set of tasks 410 comprising an errand;

generating a characteristic function 445 to describe a set of valid starting
states; and ‘

generating the tour 470, 475 to complete at least a subset of the tasks,
maximizing a reward.

11. The method of claim 10, further comprising:

-22-

WO 2004/084133 PCT/US2004/006718
masking states 460 which are unreachable based on the set of valid
starting states.
12. The method of claim 10, further comprising:
receiving one or more rendezvous locations 450, 455, each rendezvous
location being a valid termination point for ihe tour.
13. The method of claim 10, further comprising:
calculating a cost 415, 420 of obtaining a resource from a store.
14. The method of claim 13, wherein the cost comprises: actual cost
and transaction cost.
18. The method of claim 10, further comprising:
identifying a convergence loop 480; and
terminating the convergence loop 485.
16. The method of claim 15, wherein terminating the convergence loop
485 comprises:
determining if a number of iterations 475, 480, 485 of the convergence
loop have exceeded a maximum limit: and
if the convergence loop has exceeded a maximum limit, terminating the
convergence loop 485.
17. The method of claim 15, wherein terminating the convergence loop
comprises interrupting the convergence loop 485.
18. A system comprising:
a user system 110 to interact with a user to identify a set of tasks for
completion;
an errands engine 130 comprising:
a starting state identification logic 260 to generate a characteristic
function that describes a set of valid starting states; and
a solution logic 280, 285 to generate a tour to complete the errand.
19. The system of claim 18, wherein the errands engine further
comprises:
a pruning logic 270 to mask states which are unreachable based on the
set of valid starting states.
20. The system of claim 18, wherein the errands engine 130 further
comprises:

-23-

WO 2004/084133 PCT/US2004/006718

a rendezvous logic 330 to define an ending location, wherein the tour
terminates at the ending location.

21. The system of claim 18, wherein the user system 110 comprises a
system providing a Web Interface to a server.

22. An errands engine 130 comprising:

a receiving logic 210 to receive a plurality of tasks comprising an errand,
each task having a completion reward associated with it;

goal encoding 240 to encode the plurality of tasks inio a plurality of stales
and state transitions;

a pruning logic 270 to mask the states and the state transitions which are
unreachable; and

a solution logic 280, 285 to generate a tour.

23. The errands engine 130 of claim 22, wherein the tour completes a
subset of the plurality of tasks.

24. The errands engine 130 of claim 22, further comprising:

a rendezvous logic 330 to define an ending location, wherein the tour
terminates at the ending location.

25. The errands engine 130 of claim 22, wherein:

a cost calculating logic 230 calculates the completion reward, the
completion reward comprising a value of a resource minus a cost of obtaining
the resource.

26. The errands engine 130 of claim 25, wherein the cost comprises:
actual cost and transaction cost.

27. An errands engine comprising:

a means 210 of receiving an errand;

a first means 270 to remove a unreachable states;

a second means 280, 285 to generate a tour based on reachable states
not masked by the first means.

28. The errands engine of claim 27, wherein the first means
comprises:

a means to encode the goals into a plurality of states; and

a means to mask a subset of the plurality of states that are unreachable,

22. A method comprising:

receiving 410 a plurality of resources to be fetched:

-24-

WO 2004/084133 PCT/US2004/006718

identifying a location 415 for each of the plurality of resources, the
location having the resource potentially available;

calculating a tour 465-485 of the locations; and

ending the tour 455 at a rendezvous location, the rendezvous location
defined by the user.

30. The method of claim 22, wherein a plurality of rendezvous
locations are received, each rendezvous location being an accepiable
termination for the tour.

31. The method of claim 29, wherein the tour includes only a subset of
the locations fetching a subset of the resources.

32. A machine readable medium having stored thereon
data representing sequences of instructions, which when executed
by a computer system, cause said computer system to construct a
tour to complete an errand, by performing the steps of:

receiving a list of resources 410 available at various locations, the
fetching of the list of resources comprising an errand:;

generating a characteristic function 445 to describe a set of valid starting
states; and

generating the tour 465-485 to complete at least a subset of the tasks,
the tour designed to maximize a reward.

- 33. The machine readable medium of claim 32, further
having stored thereon data representing sequences of instructions,
which when executed by a computer system, cause said computer
system to perform the steps of:

masking states 460 which are unreachable based on the set of valid
starting states.

34. The machine readable medium of claim 32, further having stored
thereon data representing sequences of instructions, which when executed by a
computer system, cause said computer system to perform the steps of:

calculating a cost 420 of obtaining a resource from a store, wherein the
cost comprises: actual cost and transaction cost. |

35. The machine readable medium of claim 32, furiher having stored
thereon data representing sequences of instructions, which when executed by a
computer system, cause said computer system to perform the steps of:

-25-

WO 2004/084133 PCT/US2004/006718

identifying 480 a convergence loop; and
terminating 485 the convergence loop.

-26-

WO 2004/084133

User System
110

Fig. 1

1/8

Errands
Engine
130

S—

Database
123

S

PCT/US2004/006718

Extemal
Data
Providers
125

\\:_./—'/
User

Preferences
DB

15
N~

WO 2004/084133 PCT/US2004/006718
2/8
Errands Engine
130
Errand Receiving Cost Calculation -
Errands Loai .
Information egie] Logic]
210 230
y Goal Encoding
AT 240
Location Location Fetching | Reward Calculation T
°D°at' > - Logic > Logic T
& 220 235
‘ Errand Break-up
Logic
250
. Y Y
Ending Location. Starting State
Identification Logic Identification Logic
265 260
' >
 J
Pruning Logic
- 270
Y Y
Loop Breaking Optimal Solution Approximate
Logic > Logic Solution Logic
290 285 280

r

Tour Data

WO 2004/084133 PCT/US2004/006718

3/8
User Sysiem
110
Dependency
Calculation Logic
320
N
. Errand Sending Rendezvous Setting
Errands Loqi B . Logi
S ogic ogic -
310 330
y
Route TourLRec.;elvmg
Data ' ogic
. 340

Fig. 3A

WO 2004/084133

350
Ecvznd
‘Go io ATM
Get lunch at Fondue Freds
Buy present for son

See sights

4/8

360

D@@@ﬁd@ngi@s

None
370
Depends on 1 [

None

Depends on 1
Dependson 1 &2
Depends on 2

PCT/US2004/006718

380

A

Rendezvous?

No
Yes
No

Yes

WO 2004/084133

Receive errands
410

v

each siore
413

Identify locations for

Identify resource
cost at each store
© 420

- Ye

Break task
into multiple
steps
430

Identify reward for
each task/item
435

]

Identify constraints/
trade-offs
440

1]

Identify starting
states (single
equation)
445

Any
rendezvous
points?
450

No

Y

Define end
point(s)
4355

l

.5/8

PCT/US2004/006718

¢

Prune rewards
diagram to remove
unattainable siates

- 460

Calculate

Yes- | approximaie

- solution
470

approximate
solution OK?

Calculate iterative |
- optimal solution
| 475

Is

there a Yes | Break
convergence loop - lock
" lock? . 485

480

Ng.
: A

Send Tour
information to user
490

End
. 495

<l
-5

PCT/US2004/006718

WO 2004/084133

PCT/US2004/006718

WO 2004/084133

7/8

WO 2004/084133 PCT/US2004/006718
8/8
, 6
670 25
) 600
Display <>
810 650
Processin
675 ek Memory |
Alphanumeric 2] .
Input Device | ‘ ‘
/1 i A - 818
. ‘ ' Bus .
680 |\]] ~ >
Cursor Control «—»
‘] 625) 620
Data .
- Storage Non-volatlle'
690 Device storage
Communications ‘
. Device

= }.]
O 5=
@,
o
@)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

