w0 2007/119097 A2 |10 0 00000 DO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [.

52 IO O T O O

International Bureau

(43) International Publication Date
25 October 2007 (25.10.2007)

(10) International Publication Number

WO 2007/119097 A2

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:

PCT/IB2006/003303
(22) International Filing Date: 9 August 2006 (09.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
05291811.7 31 August 2005 (31.08.2005) EP

(71) Applicant (for all designated States except US): FRANCE
TELECOM [FR/FR]; 6, place d’Alleray, F-75015 Paris
(FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALOM, Saiful
[GB/GB]; c¢/o France Telecom R & D Londres, Chiswick,
Bldg 10, Chiswick, Park 566 Chiswick High Road, London
W4 5XS London (GB). CHAUDHRY, Kashif [GB/GB];
c/o France Telecom R & D Londres, Chiswick, Bldg 10,

(74)

(81)

(34)

Chiswick, Park 566 Chiswick High Road, .ondon W4 5XS
London (GB). MESLIN-WEBER, Stéphane [GB/GB];
c/o France Telecom R & D Londres, Chiswick, Bldg 10,
Chiswick, Park 566 Chiswick High Road, London W4
5XS London (GB).

Agents: ATTALIL Pascal et al.; Cabinet Plasseraud,
65/67, rue de la Victoire, F-75440 Paris Cedex 09 (FR).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: METHOD FOR MANAGING SHARED DATA AND RELATED DEVICE

(57) Abstract: Method for
managing data stored in a
database (29-30;41) and shared
by a plurality of applications

(20-22;32-33) at least some of

42

which are implemented in a

{DE)

device, the device being provided
with a data model module

cioL)

(27-28;40) capable of updating

the database and retrieving data
from the database. According

[C1S =y w

(DE)

(DQ)

(DE)| 47

M (DM)

40

45 51

46
4)

to the method, the data model
module updates the database
on notification of a change in
data used by at least one of the
applications, and the data model
module notifies at least one other
application of said plurality when
the database has been updated.

WO 2007/119097 A2 | NIIN] DI 00 0T 0000 A O

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, T], TM), Published:

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, — without international search report and to be republished
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, upon receipt of that report

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG). o)
Q) Fortwo-letter codes and other abbreviations, refer to the "Guid-

Declaration under Rule 4.17: ance Notes on Codes and Abbreviations" appearing at the begin-
— of inventorship (Rule 4.17(iv)) ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

METHOD FOR MANAGING SHARED DATA AND RELATED DEVICE

The present invention relates to the management of data shared by a

plurality of applications.

it is common to share data between several applications, since it
avoids using several databases storing identical data. Data sharing can also be

dictated by usage patterns.

A problem posed by data sharing is to always keep an updated version
of the data, although data could be changed by any application. This is
particularly sensitive when some of the applications may be run simultaneously.

FI1G.1-3 illustrate some known methods to manage shared data.

In the example of FIG.1, each application A or B can individually
access the database 1 storing the shared data (arrows 3). Messaging 2 is used
between applications A and B for synchronisation. This means that each
access to the database 1 from one of the application is notified to the other
application. Such coordination ensures that the applications A or B always use

an updated version of the data.

In the example of FIG.2, only the application B can directly access the
database 4 (arrow 6). The access from application A has to go through the
application B (proxy access represented by the arrow 7). Every access to the
database 4 is thus controlled by the application B, which avoids that each
application could access, and possibly modify, data independently. Messaging
5 is used between the applications A and B to control the access to the

database.

However, both cases require a tight coupling between the applications,
since at least one of them must have an explicit knowledge of the other. Such

coupling occurs in the synchronisation and the data access.

Such tight coupling is undesirable as it affects maintainability,
reusability and flexibility. Maintainability and reusability are important where
numerous device types exist and short product generations compress
development lifecycles.

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-2

Moreover, the above approach gives rise to a large amount of
messaging between the applications and also large synchronisation overheads

to ensure data integrity.

In case a large number of applications are implemented,
synchronisation and direct data access relationships quickly escalate. This is
not compatible with use within a constrained device, i.e. a device having limited
resources in terms of memory and CPU (Central Processing Unit) speed for

instance.

Methods for reducing the overhead of synchronisation and data access
relationships have been developed for use specifically on desktops and

servers.

Such methods are illustrated in the example of FIG.3, in which a
desktop 8 including a single shared database 10 implements applications
A, B, ...,N. A bus 9 is used for carrying inter-application messaging and is
connected to the database 10. In this example, for illustration purposes only,
the desktop 8 has been represented as a client capable of communicating, via
a live update client 11 and a corresponding live update server 13, with a server

12 having its own database 14.

Using a messaging bus for inter-application reduces but does not
eliminate the requirement for explicit knowledge of other applications. A
number of messaging software and middleware are available and could be
used such as the Java Message Service (JMS), IBM's MQSeries, Swift, and

Tibco Rendezvous.

Even in this case, there still exists a coupling between the applications
through the bus. Moreover, such methods may be designed for server and

desktop use, but they are not suitable for resource constrained devices.

An object of the present invention is to provide a method for managing
shared data reducing the disadvantages of the known methods.

A more particular object of the present invention is to provide a method
for managing shared data reducing the coupling between the applications.

Another object of the present invention is to provide a lightweight

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-3-
solution for managing shared data, adapted to resource constrained devices.

The invention thus proposes a method for managing data stored in a
database and shared by a plurality of applications at least some of which are
implemented in a device, the device being provided with a data model module
capable of updating the database and retrieving data from the database.
According to the method, the data model module updates the database on
notification of a change in data used by at least one of the applications, and the
data model module notifies at least one other application of said plurality when

the database has been updated.

The data model module thus regulates read and write access to the
database, which ensures data integrity. With this mechanism, the applications

can always work on updated data.

Moreover, the undesirable coupling existing in the prior art solutions
does not occur here. In particular, no messaging occurs directly between the

applications.

Due to its simplicity, this mechanism can be carried out in a
constrained device, having limited resources, for instance in terms of memory

and CPU speed and usage.

The behaviour of the applications and the data model module and the
interaction therebetween can be based on the Model-View-Controller (MVC)
design pattern, although other possibilities would be suitable as well. In this
case, each application acts as a controller, and optionally as a view, and the
data model module acts as a model. Advantageously, the applications and the
data model module implement predefined template objects comprising
functions in accordance with MVC.

On request of at least one of the notified applications, the data model
module can further retrieve and return the updated data. In this way, the
notified applications dispose from the updated data.

The notification of at least one of the applications by the data model
module when the database has been updated can pass through a queue. This
allows a simple and efficient mode of notification.

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-4-

Advantageously, the notified applications correspond to a defined class
known by the data model module. They can vary depending on the data
changed. indeed, some applications could be interested in certain types of
data, whereas they would not be in other types of data they do not use when

run.

Moreover, some of the applications may be capable of interacting with
display means of the device. In this case, data intended to be displayed could

be notified to such applications by the data model module.

The invention also proposes a device implementing at least one of a
plurality of applications sharing data stored in a database, the device
comprising a data model module comprising means for updating the database
on notification of a change in data used by at least one of the applications of
said plurality, and means for notifying at least one other application of said

plurality when the database has been updated.

Some applications of said plurality could be implemented by another

entity, like a device or system.

The device could comprise display means arranged for interacting with
at least one of the applications of said plurality. It could be portable, such as a
mobile phone or a personal digital assistant. 1t could comprise means for

exchanging data with a distant entity over the air.

The invention also proposes a computer program product comprising
code instructions for implementing the above-mentioned method, when loaded

and run af least partly in a device.

Other specific features and advantages of the present invention will be
presented in the following description of non-limiting embodiments, with
reference to the appended drawings, in which:

- FIG.1-3, described above, give schematic representations of known
methods for managing shared data;

- FIG.4 gives an outline of the control flow in an MVC application;

- FIG.5 gives a schematic representation of a data management according

to the invention;

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-5-

- FIG.6 gives a schematic representation of a data management example
according to the invention; and
- FIG.7 gives a UML diagram of a possible implementation of the invention.

The invention is described herein after in an example where the Model-
View-Controller (MVC) design pattern is used as an implementation of the data
sharing and messaging mechanism. Nevertheless, it should be noted that the
objects, classes and functions which will be defined are not restricted for use
within the MVC design pattern. Other patterns or architectures can be adapted

to utilise the present invention, as will be apparent for one skilled in the art.

The MVC pattern was defined by Trygve Reenskaug in the study
"Thing-Model-View-Editor; an example from a planning system" of May 1979
and the study "Models-Views-Controllers" of December 1979.

To put it briefly, the MVC defines as an architecture which separates
the data model, the user interface and the control logic into three distinct

modules. It was initially thought as a software design pattern.

F1G.4 schematically illustrates the MVC architecture. The model 19 is a
representation of the information on which an application to be constructed
operates. The views 17-18 get data from the model 19 and put them into a form
suitable for interaction, for instance with a user interface. The model 19 can
also update the views 17-18, especially after a change in data (dotted arrows).
As for the controller 16, it can update the model 19 and the views 17-18

depending on an occurring event 15.

Such separation is convenient for the software developers, since they
can change the code corresponding to a view, without changing the model for
instance. The MVC design pattern also allows programs to be almost platform-
independent (Java, C++, efc.).

As will be described below, the present invention makes use of new

" objects and classes defined for the model, views and controller, in its MVC

based embodiment, to allow data sharing and messaging between applications,
at least some of which being implemented in a device.

More particularly, some template objects are defined. They each

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-6-

contain a list of functions with no implementation (e.g. signatures of functions).

The main template objects are listed below:

DataModel: it contains functions which are required to be implemented in a
model. One of these functions is for notifying interested parties (e.g. views
and controllers) of data changes. Some other functions are for adding or
removing listeners to notification of data changes, and for getting a list of
the current listeners to notification of data changes. Other functions aim at

getting data from a database.

MutableDataModel: this template object is mutable (changeable). It contains
additional functions as to the ones that are defined in the DataModel, which

are required to be implemented in a model.

Datalistener: it contains functions which are required to be implemented in
a controller or a view. These functions allow parties, interested in data

sharing, to receive notifications of data changes.

Selectable: it contains functions which are required to be implemented in a
view where it needs to access data in the form of a list. These functions

provide a means to select data from a list.

in addition, some classes are also defined with the invention. Each

class contains actual implementation of selected functions from one of the

above template objects. The main classes are listed below:

AbstractDataModel: it contains actual implementation of selected functions
from the DataModel template object. The use of AbstractDataModel
provides flexibility in the implementation, since a model is thus able to

implement only a subgroup of functions.

AbstractMutableDataModel: it contains actual implementation of selected
functions from the MutableDataModel template object. It also extends
AbstractDataModel. The use of AbstractMutableDataModel provides
flexibility in the implementation, since a model is thus able to implement
only a subgroup of functions from MutableDataModel and
AbstractDataModel.

DataEvent; it contains data notification information. It is passed from

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-7 -
DataModel to Datalistener when a data change occurs.

- Datalistener: it contains actual implementation of the DataListener template
object. It listens for data notifications via DataEvents. Data changes

information can thus be received with this class.

- DataQueue: this class manages a queue of data notifications. DataEvents
can be added to the queue in order to be notified to listeners and can be

removed from the queue once the corresponding event has been notified.

The above objects and classes are shown in a UML (Unified Modelling
Language) diagram in FIG. 7. This diagram shows the role and interaction
between said objects and classes as explained above, using a representation
which will be appreciated by one skilled in the art, especially the developers.

In the following, the above-defined notions will be explained in more
detail in their application to the data sharing and messaging.

FIG.5 illustrates an example of mechanism according to the invention.
it shows a high level view of the mechanism which will be appreciated by one,

even non-developer, skilled in the art.

All the modules represented in FIG.5 could be incorporated in a device,
especially a constrained device, such as mobile phone, a personal digital
assistant (PDA) or a set top box for instance. The device can have means to
exchange data with a distant entity, like a server. Advantageously, these
means could be arranged for exchanging data over the air. In case of a mobile
phone or a personal digital assistant, such means could be
radiocommunication means for example. Alternately, only some of the modules
could be incorporated in a device, whereas others could be part of another

device or system.

Every module represented in FIG.5 can be a physical module, i.e. an
electronic component, but in most cases, it will rather be a soft module, i.e.
some instructions code run on a device. Thus, the mechanism described herein
after can be carried out with a computer program loaded and run on a device.

The example of FIG.5 shows three distinct applications 20-22 which
must share data. The data are stored on three different databases 29-31. For

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-8-
instance, the database 29 contains general data that all three applications 20-
22 need to operate. The database 30 contains device status information which
may be needed by only the two applications 21-22. Finally, the database 31
contains call history information which may be needed by the application 20

only for example, if this application is the only one carrying out calls.

All three applications 20-22 include a controller (22,24,26) in the
meaning of MVC, which analyses occurring events and informs an appropriate

model 27 or 28 accordingly.

If the device incorporating the modules of FIG.5 comprises display
means, which could have any form like a screen or speaker for example, some
of the applications could interact with such display means. In the illustrated
example, it has been considered that only the applications 20 and 21 can
interact with a display means of the device. Thus, the applications 20 and 21
each include a view (23,25) in the meaning of MVC, which can help displaying
information received from a corresponding model 27 or 28. In contrast, the
application 22 does not include a view, since it is not intended to display
information. For example, the application can be in charge of exchanging data
with a distant entity like a server (not represented in FIG.5).

The device of FIG.5 also includes models 27-28 in the meaning of
MVC, which can access a database they are connected to. These data model
modules can change data in such database and also retrieve data from such

database.

In the illustrated example, both applications 20-21 have relationships
with the model 27 and both applications 21-22 have relationships with the
model 28. Besides, the model 27 is connected to both databases 29 and 31
and the model 28 is connected to both databases 29 and 30. This scheme is
adapted to the particular applications 20-22 run by the device. But, of course, it
should be understood that any other relationships between the modules could
be used instead depending on the type of the applications sharing data,
provided that the defined hierarchy (here, an MVC architecture) is respected.

The interaction between the modules is as follows: in case a change
occurs in data used by one of the applications, say the application 20, for

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-9-

example after an action of the device user, the corresponding controller, the
controller 24 in this example, informs the appropriate model, the model 27 in
this example, of the change. The model then updates the appropriate
database, say the database 29, with the bhanged data.

When a data change has occurred in the database, like the database
29 in the above example, the appropriate model, the model 27 in the example,
notifies the interested parties, e.g. the view 25 or the controller 26 of the
application 21, of the change. The notifications can further include information
about the old and/or the new data. Afterwards, the application 21 can use
updated data. For instance, the view 25 can interact with the display means of

the device, in order to show the updated data.

According to such mechanism, it will be understood that a proper data
sharing between several applications is performed, since the data are updated
by a data model module, avoiding direct access to the database from the
applications and the data changes are notified to the interested applications, so

that they can always be provided with the updated data.

Moreover, it is clear from what precedes that no tight coupling between
the applications exists, since the models manage access to the databases. No
messaging occurs directly between the applications and no explicit knowledge

of the applications is necessary between each other.

In practice, this mechanism is achieved by implementing the template
objects defined above in the different modules. Mainly, the views 23 and 25 can
implement Datalistener, the controllers 22, 24 and 26 can implement
DataListener, and the models 27 and 28 can implement DataModel for

example.

The data sharing mechanism and the use of the defined template
objects and classes will now be described more into details on a use case with
reference to FIG.6.

This use case can take place in a constrained device, for example a
mobile client. This device implements two different applications sharing data.
The application 32 is an address book application and the application 33 is a
calendar application.

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-10 -

Like for the general example of FIG.5, the device of FIG.6 comprises
different modules whose behaviour and relationships depend on their position
in the chosen design pattern (here, the MVC pattern). The model, views and
controllers used in the device of FIG.6 have been respectively represented with
their first letter M, V and C. The objects and classes implemented by each

module are also indicated in brackets.

The address book application 32 includes a controller 35 implementing
DataListener (DL) and a view 34 also implementing DatalListener (DL). It further
includes a Selectable (S) class 36 which identifies the address book in the form
of a list and can help selecting a particular entry. The view 34 can interact with
display means of the device. Thus, the address book identified by the
Selectable class 36 could be displayed on the device through the view 34.

Similarly, the calendar application 33 includes a controller 38
implementing the DataListener template object (DL). It also includes a view 37
implementing the DataListener template object (DL), through which calendar
information can be displayed on the device. But, in contrast with the view 34 of
the address book a_pplication 32, the calendar content is not displayed in the
form of a list. Therefore, the use of the Selectable class is not required in the

application 33.
The data model module 40 implements DataModel (DM) in the

ilustrated example and ensures the access to the database 46 storing data
shared between the applications 32-33. Alternately, the model 40 could
implement AbstractDataModel, MutableDataModel or AbstractDataModel.

Advantageously, DataModel will be available from the runtime
environment, for example through standard programmer interfaces, or through
some helper application, as a singleton, i.e. such that it has only one instance
at a time. This will ensure that data integrity remains by mandating a specific
route for data modifications. However, more complex construction and

provision patterns (e.g. more than one DataModel) are also possible.

A data queue 39 is also present in the device of FIG.6. It implements
the DataQueue (DQ) class.

To illustrate the data sharing mechanism, it is considered, in the use

10

15

20

25

30

WO 2007/119097 PCT/IB2006/003303

-11 -

case described with reference to FIG.6, that the device user wants to modify an
anniversary date for a contact from the address book. According to the
mechanism described below, the new anniversary date is propagated to the

calendar.

To achieve this, the user first opens up the address book (arrow 42).
The latter is thus displayed through the view 34. The address book is presented
to the user in the form of a list with the aid of the Selectable class 36. The user
then selects the contact and modifies the corresponding anniversary date
(arrow 42). The controller 35 is informed of the modification (arrow 43).
However, it should be understood that other changes in data could be detected
directly by the controller without going through a view, in particular when the
change does not result from a modification made through a display means.

The controller 35 then passes the new anniversary date to the model
40 (arrow 44), which updates the database 41 accordingly (arrows 45).
Schematically, this update can consist of a modification of the data field 46 in

the database 41, corresponding to the anniversary date of said contact.

This update is an event for which a DataEvent (DE) class is generated.
This DataEvent is added to the queue 39 by the model 40 (arrow 47), in order
to notify the interested parties implementing DatalListener, as indicated in the
DataModel implemented by the model 40.

The queue 39 dispatches the DataEvent to the controller 39 of the
calendar application 33, which implements Datalistener (arrow 48). Any
dispatching method may be used by the queue 39. In particular, dispatching
may be asynchronous and the order of notification may not be specified or

guaranteed.

Since the calendar 33 is an application having an interaction with the
display means of the means, the controller 39 sends the DataEvent to the view
37 also implementing DataListener (arrow 49).

On notification, the view 37 analyses the content of the received
DataEvent and retrieves a reference of the model 40 stored in it. With this
reference, the view 37 is capable of sending a request to the model 40 in order
to get the new anniversary date (arrow 50).

10

156

20

25

30

WO 2007/119097 PCT/IB2006/003303
-12 -

With use of appropriate functions of DataModel it implements, the
model 40 gets the content of the data field 46 in the database 41, that is the

new anniversary date for said contact (arrows 51).

The model 40 finally sends the new anniversary date to the view 37 of
the calendar application 33, which updates itself with the new date. Thus, if the
device user opens up the calendar, he will see the new anniversary date in it,

while the old anniversary date will no more appear.

The fact that the model 40 regulates read and write access to the
database 41, thanks to the DataModel template object it implements, ensures
data integrity. Moreover, no undesirable coupling occurs between the
applications 32 and 33. In particular, no messaging is exchanged between

these applications.

Of course, many other possibilities than the ones described in the
example with reference to FIG.6 exist. For instance, while FIG.6 shows that
only the controller 38 is directly notified with the DataEvent by the model 40,
the view 37, also implementing DataListener, could be notified directly. To
achieve this, the view 37 should register with DataModel of the model 40 on

initialisation. It is deregistered on destruction.

Moreover although FIG.6 only shows the view 37 retrieving data from
the model 40, the controller 38 could also retrieve data from the mode! 40 via
the received DataEvent. More generally, it is the responsibility of views or
controllers to respond to update DataEvent notifications in an appropriate

manner (visual updates, further requests, etc).

It should also be understood that, although the change in data used by
an application and the notification of other applications have been described as
consecutive steps in the above example, there may be different cases. For
example, the database 41 of FIG.6 could be updated directly without resulting
from the use of any application (e.g. insertion of an updated memory card
inside the device). In such case, the model 40 implementing DataModel could
notify every interested views and/or controllers of any application accordingly.

In the above example all the applications were run on a single device.
However, one or more applications could be run on another device or system.

10

WO 2007/119097 PCT/IB2006/003303

-13-

In an advantageous embodiment of the invention, some applications on a
constrained device share data with applications on portals. This provides a
richer and more fulfilling experience to users. It represents a means to increase

data usage by creating applications that are reliant on portal services.

it will be appreciated by one skilled in the art that the present invention
requires very limited device resources in terms of memory and CPU usage for
instance. This provides means to create more complex applications and
services relying on data sharing. It also provides the opportunity to introduce a
greater degree of OTA (Over The Air) application data sharing.

It should also be noted that the reduction of data sharing complexity
provided by the present invention and the use of data event driven processes

improve the time and ease for development.

10

15

20

25

WO 2007/119097 PCT/IB2006/003303

-14 -

CLAIMS

1. Method for managing data stored in a database (29-30;41) and
shared by a plurality of applications (20-22;32-33) at least some of which are
implemented in a device, the device being provided with a data model module
(27-28;40) capable of updating the database and retrieving data from the
database, wherein the data model module updates the database on nofification
of a change in data used by at least one of the applications, and wherein the
data model module notifies at least one other application of said plurality when

the database has been updated.

2. Method as claimed in claim 1, wherein, on request of at least one of
the notified applications, the data model module (27-28;40) further retrieves

and returns the updated data.

3. Method as claimed in claim 1 or 2, wherein the notification of at least
one other application of said plurality by the data model module (27-28;40)
when the database (29-30;41) has been updated passes through a queue (39).

4. Method as claimed in any one of the preceding claims, wherein the
notified applications correspond to a defined class (DL) known by the data

model module.

5. Method as claimed in any one of the preceding claims, wherein at
least some of the applications (20-21;32-33) are capable of interacting with

display means of the device.

6. Method as claimed in any one of the preceding claims, wherein each
one of the applications (20-22;32-33) acts as a controller (22,24,26;35,38), and
optionally as a view (23,25;34,37), and the data model module (27-28;40) acts
as a model according to the Model-View-Controller design pattern.

7. Method as claimed in claim 6, wherein each one of the applications
(20-22;32-33) and the data model module (27-28;40) implement at least one

10

15

WO 2007/119097 PCT/IB2006/003303

-15-

predefined template object (DL,DM) comprising functions in accordance with

the Model-View-Controller design pattern.

8. Device implementing at least one of a plurality of applications (20-
22;32-33) sharing data stored in a database (29-30;41), the device comprising
a data model module (27-28;40) comprising means for updating the database
on notification of a change in data used by at least one of the applications of
said plurality, and means for notifying at least one other application of said
plurality when the database has been updated. |

9. Device according to claim 8, comprising display means arranged for
interacting with at least one of the applications (20-21;32-33) of said plurality.

10. Device according to claim 8 or 9, said device being portable, such as

a mobile phone or a personal digital assistant.

11. Device according to any one of claims 8 to 10, further comprising

means for exchanging data with a distant entity over the air.

12. Computer program product comprising code instructions for
implementing the method as claimed in any one of claims 1 to 7, when loaded

and run at least partly in a device.

WO 2007/119097 PCT/IB2006/003303

1/5
2
A - Z - B
3~ ~3
]
FIG.1.
(PRIOR ART)
5
7
FIG.2.

(PRIOR ART) 4

WO 2007/119097 PCT/IB2006/003303

2/ 3

ol
|
T

\ ¥
/ .o
™M 5
‘ Og
-

! y
o~

WO 2007/119097 PCT/IB2006/003303

3/5
s
> ¥ FIG4.
CONTROLLER

17 VIEW (l l_7 viEw 18
/

FIGS.

WO 2007/119097

4/5

PCT/IB2006/003303

FIG.6.
32 34
\ /
4 /
E-:. V (DL)
[
C(DL) S
// \ \\
33 36 (DE)
" //39
(DQ)
(DE)IA?
M (DM)
45 ;%?1
46.@4:'::::3

\s_J

PCT/IB2006/003303

WO 2007/119097

59/5

[isusisitereq
<< ddh)erEep >>

A=

[oslqo:Guimos)moyieb+
199[q0:(Ju:mo))eb+

i (ez1g1eb+
ploA:(JusageleqIuans)siaus)sAlliou+
[Lausisiteieq:()sisusisiiabs
PIOA:(J8UR)SITRIR(: ISUR)SH)ISUSISITRAOLUB
PIOA: (1aus)SIeleq:Jaus)s) uous)sIppe+

japopeleq
<< DOBLIBIUI >>

w(ueigmoyieb+

i Opugamoyiabs

g (peisuwnionyebis
i: Opuguwnjon)eb+
loponeleq:()iepopiab+

jueazejeq

jspoieIegs|geIniy
<< S0BLOII >>

PioA:uangeIR(usAR)pabuey)Siusiucd+

Jauajsiteleq
<< B0BLS >>

ploA:juaageleq uaAR)yoledsip-
pioA(juaagele(JUSAS)SNaNbUs+

ananpejeq

/

snenb -

1epojyeieqioensqy

IspoyeIRga|qRINIoRASqY

ptoA(Jui:mol)oaes+

a|qe1d9(eg
<< el >>

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings

