wo 20237288099 A 1| NI 0000 AP0 00 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
19 January 2023 (19.01.2023)

(10) International Publication Number

WO 2023/288099 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 21/57 (2013.01) GO6F 8/70 (2018.01)
GO6F 8/61 (2018.01)

(21) International Application Number:
PCT/US2022/037368

(22) International Filing Date:
15 July 2022 (15.07.2022)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

17/376,864 15 July 2021 (15.07.2021) UsS

(71) Applicant: ZERONORTH, INC. [US/US], 745 Atlantic
Ave, 8th Floor, Boston, Massachusetts 02111 (US).

(72) Inventors: BOBROV, Sergey; c/o ZeroNorth, Inc., 645
Atlantic Ave, Boston, Massachusetts 02111 (US). WISSE-
MANN, William Tyler; c/o ZeroNotth, Inc., 745 Atlantic
Ave, 8th Floor, Boston, Massachusetts 02111 (US). WISE,
Aaron Phillip; c/o ZeroNorth, Inc., 745 Atlantic Ave, 8th
Floor, Boston, Massachusetts 02111 (US).

Agent: WILLIAMS, Sam L.; c/o Han Santos, PLLC, 500
Union Street, Suite 800, Seattle, Washington 98101 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
KG, KH, KN, KP, KR, KW,KZ, LA, LC,LK,LR, LS, LU,
LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,

(54) Title: NORMALIZATION, COMPRESSION, AND CORRELATION OF VULNERABILITIES

100
)

Software
under test

/—| Notification

|

Scanning
Tool
Qutputs

130
4

| Hardware |

128

132
{

Communication

[Processor(s)| Interface

122?
.
Scanning Scanning -
S(c:ngtwi::e Tool Tool Qutput @
P S’ Manager Analyzer g \
112
110g _____ - N
| Software revision
< —————
116

127

1021,@

FIG. 1

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for normaliz-
ing, compressing, and correlating vulnerabilities are disclosed. In one aspect, a method includes the actions of generating a first and
second copy of a software target. The actions further include providing the first copy to a first scanning tool and the second copy to a
second scanning tool. The actions further include receiving a first scanning tool output that identifies a first issue of the software target.
The actions further include receiving a second scanning tool output that identifies a second issue of the software target. The actions
further include determining that the first issue and the second issue are a same issue. The actions further include generating a combined
issue of the first issue and the second issue. The actions further include outputting a notification that includes the combined issue.

[Continued on next page]

WO 2023/288099 A1 |1} 00 0 00RO VA0

RS,RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

WO 2023/288099 PCT/US2022/037368

NORMALIZATION, COMPRESSION, AND CORRELATION OF VULNERABILITIES

BACKGROUND

[0001] In computer security, a vulnerability is a weakness that can be exploited by
a threat actor, such as an attacker, to cross privilege boundaries such as performing
unauthorized actions within a computer system. To exploit a vulnerability, an attacker
may need at least one applicable tool or technique that can connect to a system

weakness.

[0002] Vulnerability management is a cyclical practice that may relate to processes
that include discovering assets, assessing or performing a vulnerability scan,
reporting on results, prioritizing vulnerabilities, remediating vulnerabilities, and/or
verifying remediation. This process may be continuously repeated as the assets are

updated.
BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The detailed description is described with reference to the accompanying
figures, in which the left-most digit(s) of a reference number identifies the figure in
which the reference number first appears. The use of the same reference numbers in

different figures indicates similar or identical items.

[0004] FIG. 1 illustrates an example system that is configured to manage multiple
software scanning tools, analyze the output of those software scanning tools, and
output notifications to alert a user of any security issues identified by those software

scanning tools.

[0005] FIG. 2 illustrates an example scanning tool output analyzer that is
configured to normalize, compress, and corelate outputs from multiple software
scanning tools into notifications that identify the issues identified by those software

scanning tools.

10

15

20

25

WO 2023/288099 PCT/US2022/037368

[0006] FIG. 3 is a flowchart of an example process for analyzing outputs from

software scanning tools.

[0007] FIG. 4 is a flowchart of a process for managing a software scanning tool,
analyzing the output of the software scanning tool, and outputting notifications to alert

a user of any security issues identified by the software scanning tool.

[0008] FIG. 5 is a flowchart of a process for managing multiple software scanning
tools, analyzing the output of those software scanning tools, and outputting
notifications to alert a user of any security issues identified by those software

scanning tools.
DETAILED DESCRIPTION

[0009] Users trying to assess how secure their applications and enterprises are
may be faced with a daunting set of issues such as multiple types of artifacts (e.g.,
source code, containers, etc.), multiple artifacts of each type (e.g., source code
repositories, web services, etc.), and/or multiple scanning tools for each type of
artifact type (e.g., Nessus, nmap, etc.). Each time a tool scans an artifact, the tool
may generate thousands of security issues, which could overwhelm a development-
operations (DevOps) team trying to address the issues found. The discussion below
addresses this problem by normalizing, compressing, and tracking these potentially
large sets of issues to make them both manageable and actionable by distilling them

to a set of non-duplicate, relevant issues to remediate.

[0010] The system to address this problem may apply event-driven and
microservice architecture patterns to orchestrate a process that includes various
stages. The system may create and subsequently destroy clones of the software
targets to test. This allows the system to create and utilize disposable and safe-to-
test instances of the software targets. The system may scan those target clones
using one or more scenarios such as scanning tools that may be appropriate for use
with the software targets. The system may normalize the output of the scanning tools

by parsing and data mapping the outputs. This creates a set of refined (i.e.,

10

15

20

25

WO 2023/288099 PCT/US2022/037368

normalized and compressed) issues from the raw issues generated by the scanning
tools. The compression of the refined issues yields a smaller, more actionable set of
iIssues by removing duplicate issues. The system may remove duplicates on a per-
target granularity. This compression may be lossy in that some information
generated by the scanning tools may be lost. The system may track the scanning
tools’ detections of issues and the remediations performed by users. The system
may create and/or update stateful synthetic issues that can include correlating refined
Issue results across different scanning tools. The system may make the synthetic

issues actionable by transmitting notifications to a user according to a policy.

[0011] Users who want to keep up-to-date on the security profile of their
applications, which may include home-grown software and third-party software and
involve the use of cloud and container technologies, may benefit from using this
technique because of the automated orchestration and execution of various scanning
tools, coalescing of outputs of the scanning tools, and tracking of actionable issues.
Users may utilize these techniques in various scenarios. For repositories that may
include custom software, these techniques can manage static application security
testing and software composition analysis. For instances that may include home-
grown components and third-party components, these techniques can manage
dynamic application security testing. For system configurations, these techniques
can assist in checking cloud application programming interfaces and virtual private
cloud configurations. For containers, these techniques can assist in checking
container images for vulnerable libraries and checking the integrity and publisher of

images.

[0012] FIG. 1 illustrates an example system 100 that is configured to manage
multiple software scanning tools, analyze the output of those software scanning tools,
and output notifications to alert a user of any security issues identified by those
software scanning tools. Briefly, and as described in more detail below, the system
100 includes a server 106 that is configured to receive software to test using one or

more scanning tools. Each scanning tool may identify an issue in a portion of the

10

15

20

25

WO 2023/288099 PCT/US2022/037368

software. The server 106 may normalize, compress, and corelate those issues and

generate actionable items for a user 102 to remediate the issues.

[0013] In more detall, the server 106 may receive or access software under test
108. The software under test 108 may be stored locally on the server, stored on a
different computing device, and/or stored in the cloud, for example. The software
under test 108 may include various types of software such as home-grown software,
third-party software, open source software, and/or other similar types of software.
The software under test 108 may use cloud and/or container technologies. An
example of software that may be included in the software under test 108 may include
software stored in repositories. The repositories may include custom software.
Another example of software may include instances of, for example, home-grown
software components and third-party components. Other examples of software may

include the configuration of cloud software and containerized software.

[0014] The server 106 may include a scanning tool manager 112 that is configured
to access the software under test 108 and a software copier 110. The scanning tool
manager 112 may initiate scanning and/or testing of one or more portions of the
software under test 108. The scanning tool manager 112 may initiate scanning
and/or testing in response to various triggers and/or events. In some
implementations, the scanning tool manager 112 may initiate a scan on a periodic
basis or according to a schedule. For example, the scanning tool manager 112 may
initiate testing of a first portion of the software under test 108 every twenty-four hours.
As another example, the scanning tool manager 112 may initiate testing of a second
portion of the software under test 108 each Monday and Thursday at 3am. In some
implementations, the scanning tool manager 112 may initiate testing in response to a
request from the user 102. For example, the user 102 may update several lines of
the code for a portion of the software under test 108 and may request that server 106
initiate testing on the portion of the software under test 108. In some
implementations, the scanning tool manager 112 may initiate testing in response to

an event. An event may be generated by actions of the server 106 or another

10

15

20

25

WO 2023/288099 PCT/US2022/037368

computing device. For example, an event may be the uploading of changes code of

the software under test 108.

[0015] The scanning tool manager 112 may initiate scanning of the software under
test 108 by instructing the software copier 110 to make a copy of the portion of the
software under test 108 for testing. The scanning tool manager 112 may identify the
portion of the software under test 108 based on the event, schedule, and/or request
from the user 102. The software copier 110 may generate the software copy by
cloning the portion of the software under test 108. The software copy may be
disposable and may be a safe-to-test instance of the portion of the software under
test 108 in the sense that if the software copy becomes modified then the original

version of the software under test 108 is unaffected.

[0016] The software copier 110 may provide the software copy to the scanning tool
manager 112. The scanning tool manager 112 may access the scanning tools 114.
The scanning tool manager 112 may select a scanning tool from the scanning tools
114. The scanning tools 114 may include tools for static application security testing,
software composition analysis, dynamic application security testing, container testing,
infrastructure testing, and/or any other similar tools. The scanning tools 114 may be
configured to identify security issues and/or vulnerabilities in software. Some of the
scanning tools 114 may include static application security testing, dynamic
application security testing, software composition analysis, container image scanning,
web application security scanning, and/or any other similar scanning tools. The
scanning tools 114 may output data identifying those security issues and/or
vulnerabilities. In some instances, the scanning tools 114 may output data indicating

how to remedy the security issue and/or vulnerability.

[0017] In some implementations, one or more of the scanning tools 114 may be
configured to identify security issues and/or vulnerabilities in software using various
techniques. The scanning tools 114 may identify open source components in the
software and generate an inventory of the open source components. The scanning

tools 114 may identify the appropriate licenses for each of the open source

10

15

20

25

WO 2023/288099 PCT/US2022/037368

components and confirm that the license is compatible with the policies 118. The
scanning tools 114 may also identify whether the open source components have
vulnerabilities and whether the software calls those portions of the open source
components that have those vulnerabilities. The scanning tools 114 may also

analyze the software for vulnerabilities such as storing passwords in plain text.

[0018] In some implementations, the one or more scanning tools 114 may analyze
source code without executing the software. In some implementations, the one or
more scanning tools 114 may analyze the software by executing the software. In
some implementations, the one or more scanning tools 114 may use white box
testing. In this case, the scanning tool has access to the application from the inside
and tests the underlying framework, design, and implementation. In some
implementations, the one or more scanning tools 114 may use black box texting. In
this case, the scanning tool may simulate a hacker who is attempting to exploit the

software from the outside without knowledge of the framework of the software.

[0019] The scanning tool manager 112 may identify a type of the software of the
portion of the software under test 108. Based on the type of software, the scanning
tool manager 112 may select one or more of the scanning tools 114. For example,
the scanning tool manager 112 may select the static application security testing tools
and software composition analysis tools for repositories. The scanning tool manager
112 may select dynamic application security testing tools for a site or a subnet. The
scanning tool manager 112 may select container testing tools for containers. The
scanning tool manager 112 may select infrastructure configuration testing for on-

demand cloud computing instances.

[0020] In some implementations, the scanning tool manager 112 may select one or
more scanning tools 114 based on predetermined rules. The scanning tool manager
112 may receive these predetermined rules from a user, such as the user 102. In
some implementations, the scanning tool manager 112 may select similar scanning
tools to analyze the same software copy. Each of these tools may be configured to

analyze the same type of software and identify similar issues. It may be beneficial to

10

15

20

25

WO 2023/288099 PCT/US2022/037368

have more than one scanning tool of the same type because different scanning tools
may have varying strengths and weaknesses when it comes to identifying issues and

vulnerabilities in software.

[0021] In some implementations, the scanning tool manager 112 may select one or
more scanning tools from the scanning tools 114 based on the policies 118. The
policies 118 may include various rules and/or requests provided by an
owner/developer of the software under test 108. The policies 118 may identify
specific scanning tools to select for different types of software. For example, the
policies 118 may specify to select a specific scanning tool when scanning
repositories. The scanning tool manager 112 may select additional scanning tools to
scan repositories, but should select at least the specific scanning tool to comply with
the policies 118. In some implementations, a policy may specify the use of a single
scanning tool. In this case, the scanning tool manager 112 may comply with a policy
by selecting the scanning tool that the policy specifies. There may be multiple

policies that specify the same scanning tool.

[0022] The scanning tools 114 may store various scanning tools and/or store data
for accessing various scanning tools. In some implementations, a third-party
computing device may execute a scanning tool. In this case, the scanning tools 114
may store data identifying the identity of the third-party computing device and
credentials to access the scanning tool. The scanning tools 114 may provide that
data to the scanning tool manager 112. The scanning tool manager 112 may access
the third-party computing device and provide the third-party computing device with
the software copy. In some implementations, the scanning tools 114 store a
scanning tool locally on the server 106. In this case, the scanning tools 114 may
provide the local location of the scanning tool to the scanning tool manager 112. The
scanning tool manager 112 may access that location and run the scanning tool on

the software copy.

[0023] In some implementations, the scanning tool manager 112 may request a

unique software copy for each selected scanning tool. For example, the scanning

10

15

20

25

30

WO 2023/288099 PCT/US2022/037368

tool manager 112 may identify three scanning tools for a portion of the software
under test 108. The scanning tool manager 112 may request that the software copier
110 generate three copies of the portion of the software under test 108. In some
implementations, the scanning tool manager 112 may request more than one unique
software copy based on the selected scanning tools. If a selected scanning tool
modifies the software copy during the test, then the scanning tool manager 112 may
request a unique software copy for the selecting scanning tool that modifies the
software copy. If a selecting scanning tool does not modify the software copy during
the test, then the scanning tool manager 112 may execute initially that scanning tool.
If there are additional selected scanning tools that may modify the software copy,
then the scanning tool manager 112 may provide that software copy to the additional

selected scanning tool after the initial scanning tool.

[0024] The scanning tool manager 112 may receive outputs and results from each
of the selected scanning tools. The scanning tool manager 112 may store the
outputs and results in the scanning tool outputs 116. The outputs may come in
various forms depending on the scanning tool. Some of the scanning tools may
identify security issues or vulnerabilities in the software copy. The output may
include a location in the software copy where the issue may be located, such as afile
or section of code. In this case, the scanning tool manager 112 may identify the
corresponding location in the portion of the software under test 108 and store data
identifying that location in the scanning tool outputs 116. Some of the security issues
or vulnerabilities that the scanning tools 114 may identify include a tar vulnerability.

A tar vulnerability may exist when a user is not properly warned when extracting
setuid or setgid files. This may allow a local user or remote attacks to gain privileges.
Another example may be a hardcoded credential such as a password. Another
example may be a systemd vulnerability. A systemd vulnerability may exist when
system-tmpfiles mishandle symlinks present in non-terminal path components. This

may allow local users to obtain ownership of arbitrary files via vectors.

[0025] In some implementations, the scanning tool manager 112 may store, in the

scanning tool outputs, data relating the specific scanning tool that generated each

10

15

20

25

WO 2023/288099 PCT/US2022/037368

scanning tool output 116. The scanning tool manager 112 may store a timestamp
indicating the date and time of the scanning. The scanning tool manager 112 may
also store data identifying the portion of the software under test 108 that the selected

scanning tool scanned.

[0026] The server 106 may include a scanning tool output analyzer 122. The
scanning tool output analyzer 122 may be configured to normalize, compress, and
correlate the scanning tool outputs 116. By doing so, the scanning tool analyzer 122
is able to distill the issues and vulnerabilities identified by the multiple scanning tools
114 into a group of manageable actions and/or issues that the user 102 may view.
Without the scanning tool analyzer 122, the server 106 would output each issue or
vulnerability identified by each scanning tool, even when multiple scanning tools
identify the same issue or an individual scanning tool identifies multiple instances of

the same issue in the same portion of the software under test 108.

[0027] The scanning tool output analyzer 122 may be configured to normalize the
scanning tool outputs 116. The scanning tool output analyzer 122 may normalize the
scanning tool outputs 116 by consuming a set of raw issues identified in the scanning
tool outputs 116. Each different scanning tool may output one or more raw issues in
a slightly different format. Some scanning tools may output raw issues that identify
issues in the software under test 108 by a line number. Other scanning tools may
output raw issues that identify a function in the software under test 108. Even other
scanning tools may identify issues in the software under test 108 by a different
technique. The scanning tool output analyzer 122 translates each raw issue into a
similarly formatted normalized issue. The normalized issues may be in a common
format so that the scanning tool output analyzer 122 may compare them. A scanning
tool may output raw issues that have an arbitrary number of fields. Normalized
issues may include a fixed number of fields that may be less than the arbitrary
number of fields in the raw issues output by the scanning tool. If the raw issues
include more fields than the normalized issues, then some information may be lost

when normalizing the raw issues into the normalized issues.

10

15

20

25

30

WO 2023/288099 PCT/US2022/037368

[0028] The scanning tool output analyzer 122 may identify similar issues among the
normalized issues. Similar issues may be those issues that identify the same portion
of the software under test 108 as needing correction and/or that identity the same
security vulnerability. The scanning tool output analyzer 122 may compress the
issues by removing duplicate issues. For example, a scanning tool may identify a
vulnerability in line seventy-two of a portion of the software under test 108 and may
identify the same vulnerability in line eighty-three of the portion of the software under
test 108. The scanning tool output analyzer 122 may compress those two
normalized issues into one refined issue that identifies the vulnerability as being
present in the portion of the software under test 108. The refined issues are stored in
the refined issues table 119. As another example, a scanning tool may identify a
denial-of-service vulnerability in a first package linked to a portion of the software
under test 108 and may identify the same denial-of-service vulnerability in a second
package linked to the portion of the software under test 108. The scanning tool
output analyzer 122 may compress those two normalized issues into one refined

issue.

[0029] Normalizing and compressing the raw issues may cause a portion of the
information in scanning tool outputs 116 to be absent in the refined issues. In other
words, the scanning tool output analyzer 122 performs lossy compression. By using
lossy compression, the scanning tool output analyzer 122 is able to reduce the
number of issues presented to the user 102. This ultimately reduces the information
for the user 102 to consider and prevents the user 102 from being overwhelmed by a
list of issues that may have repetitive and/or insignificant additional information. With

a reduced set of issues, the user 102 may be able to address each issue more easily.

[0030] The scanning tool output analyzer 122 may compress the normalized issues
on a per target basis. The scanning tool output analyzer 122 may group the issues
based on the portion of the software under test 108 that the scanning tools 114
analyzed. For example, the scanning tools 114 may analyze a cloud computing
service instance. Each of the scanning tools 114 may identify one or more raw

issues in the cloud computing service instance. The scanning tool output analyzer

10

10

15

20

25

WO 2023/288099 PCT/US2022/037368

122 normalizes those raw issues and compresses the normalized issues into a
smaller set of refined issues. Each refined issue may identify a single type of issue
that may be present at one or more locations in the portion of the software under test
108.

[0031] The scanning tool output analyzer 122 may be configured to create synthetic
Issues based on the scanning tool outputs 116. The scanning tool output analyzer
122 may generate a synthetic issue in multiple scenarios. A first scenario involves
the same scanning tool analyzing the same portion of the software under test 108 at
different points in time. For example, a scanning tool may analyze a portion of the
software under test 108 on Monday. The scanning tool may identify three instances
of the same vulnerability in the portion of the software under test 108. The same
scanning tool may analyze the same portion of the software under test 108 on
Wednesday. The scanning tool may identify two instances of the same vulnerability
in the portion of the software under test 108. The scanning tool output analyzer 122
may compress the outputs of the scanning tool on multiple days into a single
synthetic issue. The synthetic issue may identify the vulnerability and indicate that

the vulnerability is present in the portion of the software under test 108.

[0032] A second scenario involves different scanning tools analyzing the same
portion of the software under test 108. For example, a scanning tool may analyze a
portion of the software under test 108. The scanning tool may identify three
instances of the same vulnerability in the portion of the software under test 108. A
different scanning tool may identity four instances of the same vulnerability in the
portion of the software under test 108. The scanning tool output analyzer 122 may
compress the outputs of the scanning tools into a single synthetic issue. The
synthetic issue may identify the vulnerability and indicate that the vulnerability is
present in the portion of the software under test 108. A third scenario involves a
single scanning tool analyzing a portion of the software under test 108 and identifying

an instance of a vulnerability.

11

10

15

20

25

WO 2023/288099 PCT/US2022/037368

[0033] The scanning tool output analyzer 122 may store data identifying the
synthetic issues and any corresponding remediation status in the synthetic issue
table 120. The synthetic issue table 120 may store data related to each synthetic
issue. Some of this data may include an identification of the corresponding portion of
the software under test 108, a timestamp of when a scanning tool identified the issue,
a remediation timestamp for the issue output by a scanning tool, and/or a status of
the issue. The status of the issue may indicate whether a user has acted upon the
issue. If a user acted upon the issue, then the status may indicate that the issue is
‘resolved”. If a user has not acted upon the issue, then the status may indicate
‘unresolved”. In some instances, the status may also indicate that the issue should
be ignored. This may be the case if the user 102 requests that server 106 not notify

the user 102 of a particular issue.

[0034] The scanning tool output analyzer 122 may be configured to output, to the
computing device 104, data identifying the issues. The scanning tool output analyzer
122 may output a notification 124 that indicates issues identified by the scanning
tools 114 and normalized and compressed by the scanning tool output analyzer 122.
The notification 124 may indicate the synthetic issues of the synthetic issue table

120. The notification 124 may also indicate statuses of the synthetic issues.

[0035] The user 102 may view the notification 124 on the computing device 104. In
addition to the synthetic issues, the notification may include a selectable option for
the user to actively reject an issue. In this case, the computing device 104 may
provide the server 106 with an issue rejection 126. The issue rejection 126 may
identify the corresponding issue in the notification 124. The scanning tool output
analyzer 122 may receive the issue rejection 126 and store data indicating to ignore
the synthetic issue in the synthetic issue table 120. The user 102 may actively reject
an issue because the issue may be a false positive, which indicates that an identified
vulnerability is not an actual vulnerability. The user 102 may reject an issue because
the user 102 views the issue as a low priority issue that does not need to be

addressed. If the user 102 rejects an issue, then the scanning tool output analyzer

12

10

15

20

25

WO 2023/288099 PCT/US2022/037368

122 may store data in the synthetic issue table 120 that indicates that the

corresponding issue should not be included in a future notification 124.

[0036] The user 102 may accept the synthetic issues included in the notification
124 by correcting the issue in the software under test 108. In this case, the user 102
may revise the software under test 108 based on the issue identified in the issue
notification 124. The software revision 127 may represent the user 102 changing the
software under test 108. In this case, the user 102 may not expressly provide data
indicating that the user 102 is correcting the issue. Because the user 102 does not
expressly provide data indicating correction of the issue, the issue may not be

marked as corrected in the synthetic issue table 120.

[0037] The scanning tool manager 112 may coordinate additional scans of the
software under test 108. The scanning tool manager 112 may coordinate scanning
of the same portions that the scanning tools 114 previously scanned. The scanning
tool manager 112 may coordinate scanning of different portions that the scanning
tools 114 previously scanned. In the case of the scanning tools 114 scanning an
unscanned portion of the software under test 108, the scanning tool output analyzer
122 may analyze the outputs of the scanning tools 114 in a manner similar to that
described above. In the case of the scanning tools 114 scanning a previously
scanned portion of the software under test, the scanning tool output analyzer 122

may update previously identified synthetic issues of the synthetic issue table 120.

[0038] As noted above, the user 102 may not expressly provide an indication that
the user 102 corrected an issue indicated in the notification 124. During a
subsequent scan of a previously scanned portion of the software under test 108, the
scanning tools 114 may generate various outputs that identify various issues of the
portion of the software under test 108. The scanning tool output analyzer 122 may
parse and normalize these issues. If the synthetic issue table 120 includes an issue
that is not included in the parsed and normalized issues, then the scanning tool

output analyzer 122 may infer that the issue has been corrected. In this case, the

13

10

15

20

25

WO 2023/288099 PCT/US2022/037368

scanning tool output analyzer 122 may update the corresponding synthetic issue of

the synthetic issue table 120 by indicating that the issue is resolved.

[0039] If the synthetic issue table 120 includes an issue that is included in the
parsed and normalized issues, then the scanning tool output analyzer 122 may
continue to present the corresponding issue in subsequent notifications. However, if
the synthetic issue table 120 includes an issue that is marked as rejected based on
the previous response of the user 102, then the scanning tool output analyzer 122

may not include the issue in subsequent notifications.

[0040] The server 106 may include a communication interface 132, one or more
processors 128, memory 134, and hardware 130. The one or more processors may
implement the software copier 110, the scanning tool manager 112, and/or the
scanning tool output analyzer 122. The communication interface 132 may include
communication components that enable the server 106 to transmit data and receive
data from devices connected to a wired and/or wireless network. The communication
interface 132 may include an interface that is configured to communicate with
network access points. The communication interface 132 may receive data that
other devices transmit to the network access points and/or transmit data to the
network access points for transmission to the other devices. In some
implementations, the communication interface 132 may be configured to
communicate over a wide area network, a local area network, the internet, a wired
connection, a wireless connection, and/or any other type of network or connection.
The wireless connections may include Wi-Fi, short-range radio, infrared, and/or any

other wireless connection.

[0041] The hardware 130 may include additional user interface, data
communication, or data storage hardware. For example, the user interfaces may
include a data output device (e.g., visual display, audio speakers), and one or more
data input devices. The data input devices may include, but are not limited to,

combinations of one or more of keypads, keyboards, mouse devices, touch screens

14

10

15

20

25

30

WO 2023/288099 PCT/US2022/037368

that accept gestures, microphones, voice or speech recognition devices, and any

other suitable devices.

[0042] The memory 134 may be implemented using computer—eadable media,
such as computer storage media. The memory 134 may store the software under
test 108, the scanning tools 114, the scanning tool outputs 116, the policies 118, the
refined issue table 119, and/or the synthetic issue table 120. Computer-readable
media includes, at least, two types of computer-readable media, namely computer
storage media and communications media. Computer storage media includes volatile
and non-volatile, removable and non-removable media implemented in any method
or technology for storage of information such as computer-readable instructions, data
structures, program modules, or other data. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD), high-definition multimedia/data storage disks,
or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other non-transmission medium that can be
used to store information for access by a computing device. In contrast,
communication media may embody computer-readable instructions, data structures,
program modules, or other data in a modulated data signal, such as a carrier wave,
or other transmission mechanism. In some implementations, the data stored in the

memory 134 may be stored externally from the server 106.

[0043] FIG. 2 illustrates an example scanning tool output analyzer that is
configured to normalize, compress, and corelate outputs from multiple software
scanning tools into notifications that identify the issues identified by those software
scanning tools. The scanning tool output analyzer 200 may be included in a server,
such as server 106 and correspond to the scanning tool output analyzer 122. The
server 106 may be any type of computing device that is configured to communicate
with other computing devices. The server 106 may communicate with other
computing devices using a wide area network, a local area network, the internet, a
wired connection, a wireless connection, and/or any other type of network or

connection. The wireless connections may include Wi-Fi, short-range radio, infrared,

15

10

15

20

25

30

WO 2023/288099 PCT/US2022/037368

and/or any other wireless connection. Some of the components of the server 106
may be implemented in a single computing device or distributed over multiple
computing devices. Some of the components may be in the form of virtual machines
or software containers that are hosted in a cloud in communication with

disaggregated storage devices.

[0044] The scanning tool output analyzer 200 may include a parser 205. The
parser 205 is configured to parse outputs from various scanning tools. The outputs
may include various raw issues identified by the various scanning tools. The parser
205 may include various modules using techniques for different types of scanning
tools. For example, the parser 205 may include a module that is configured to parse
the output of a static application security testing scanner. The parser 205 may
include another module that is configured to parse the output of a software
composition analysis scanner. Each module may be configured to identify the
different types of output generated by each type of scanner. In some
implementations, the parser 205 may identify each vulnerability outputted by a
scanning tool. The parser 205 may identify the severity, summary, details,

recommendations, and references of each vulnerability.

[0045] In some implementations, the scanning tool may output structured data. In
this case, the parser 205 may identify the labels of the structured data and determine
the corresponding fields that the parser 205 is configured to identify. In some
implementations, the scanning tool may output unstructured data. In this case, the
parser 205 may use regular expressions to identify different portions of the output of
the scanning tool and relate those portions to the corresponding fields that the parser
205 is configured to identify. In some implementations, the parser 205 may be
configured to validate the output from the scanning tool. The parser 205 may
validate the output from the scanning tool based on whether the scanning tool
generates an error. If the scanning tool generates an error, then the parser 205 may
disregard the output of that scanning tool and provide, to the scanning tool manager,
data indicating the error and an instruction to run the scanning tool again. If the

scanning tool does not generate an error, then the parser 205 may determine

16

10

15

20

25

WO 2023/288099 PCT/US2022/037368

whether to validate the output based on the output matching an expected output

format for the scanning tool.

[0046] The scanning tool output analyzer 200 may include a normalizer 210. The

normalizer 210 is configured to support a large quantity of several types of scanning
tools, specific scanning tools, and versions of those scanning tools. The normalizer
210 may prepare the outputs of the scanning tools for the compressor 215. In some
instances, the normalizer 210 may include a specific Python class for each scanning
tool. The normalizer 210 may use branching logic and functions or subroutines to

handle the idiosyncrasies of the various scanning toals.

[0047] The normalizer 210 may be configured to analyze the parsed issues from
the parser 205. The normalizer 210 may generate a normalized issue. The
normalized issue is in a standard format that is independent of the scanning tool. In
some implementations, the normalizer 210 may pick up the common vulnerabilities
and exposures that have been identified in the raw issues. In some instances, the
normalizer 210 may bypass inferring the common vulnerabilities and exposures from

the raw issues.

[0048] The scanning tool output analyzer 200 may include a compressor 215. The
compressor 215 may receive the normalized issues from the normalizer 210. The
compressor 215 may be configured to reduce the number of normalized issues by
removing duplicate issues. Duplicate issues may be those that report the same
vulnerability. The compressor 215 may be configured to generate three different
types of issues. These may include refined issues, synthetic issues, and

supplemental issues.

[0049] The compressor 215 may generate refined issues by analyzing the
normalized issues generated from the scanning of a single software target by a single
scanning tool. From the raw issues generated by the scanning tool, the parser 205
and the normalizer 210 may generate a normalized issue for each of the raw issues
that the scanning tool identified. Some normalized issues may identify the same type

of issue that appears in multiple locations in the software target. The compressor

17

10

15

20

25

WO 2023/288099 PCT/US2022/037368

215 may compress these normalized issues into a single refined issue. The
compressor 215 may generate a refined issue for each type of issue identified by the

scanning tool.

[0050] The compressor 215 may generate synthetic issues using one of two
techniques. A first technique may include analyzing the normalized issues generated
from scanning a single software target using at least two scanning tools. The
scanning tools may each generate raw issues. The parser 205 and the normalizer
210 may generate normalized issues for each of these raw issues. Some of these
normalized issues may identify the same type of issue that may be present in the
software target. Because the normalized issues may be based on raw issues from
different scanning tools, two normalized issues may correspond to the same issue in
the software target. In some instances, this issue may be present in other locations
in the software target. The compressor 215 may compress the normalized issues

that correspond to this same issue into a single synthetic issue.

[0051] A second technique may include analyzing the normalized issues generated
from scanning a single software target using a single scanning tool at different points
in time, for example one day apart. The scanning tool may generate a first set of raw
issues from the first scan and a second set of raw issues from the second scan. The
parser 205 and the normalizer 210 may generate normalized issues for each of these
raw issues. Some of these normalized issues may identify the same issue that may
be present in the software target. Some normalized issues may identity the same
issue that the scanning tool detected during each scan. The compressor 215 may
compress the normalized issues that correspond to the same issue into a single
synthetic issue. A single synthetic issue may represent the same issue that was
detected during each scan and other instances of that issue that may be present in

the first or second scan.

[0052] FIG. 3 is a flowchart of an example process 300 for analyzing outputs from
software scanning tools. In general, the process 300 analyzes outputs from various

scanning tools that scanned a same portion of the software. The process 300

18

10

15

20

25

WO 2023/288099 PCT/US2022/037368

normalizes the outputs by converting the outputs into a similar format. The process
300 compresses the normalized outputs by removing duplicate outputs. The process
300 generates and outputs notifications that allow the user to view the issues present
in the software without presenting the user with duplicates of the same issue. The
process 300 will be described as being performed by the scanning tool output
analyzer 122 of the server 106 of FIG. 1 and/or the scanning tool output analyzer 200

of FIG. 2 and will include references to other components in FIG. 1.

[0053] The scanning tool output analyzer 122 parses a message and validates data
(310). The message may be an output from a scanning tool. The output may identify
a vulnerability in the software target. The output may include a severity, summary,
details, recommendations, and/or references for the vulnerability. Outputs from
different scanning tools may be in different formats. Some outputs may be
structured, and other outputs may be unstructured. The scanning tool output
analyzer 122 may relate the portions of the structured outputs to the standard
categories for the scanning tool output analyzer 122. The scanning tool output
analyzer 122 may use regular expressions to parse unstructured outputs and assign

one of the standard categories to the parsed output.

[0054] The scanning tool output analyzer 122 may also validate the messages from
the scanning tools. The scanning tool output analyzer 122 may validate a message if
the scanning tool does not output an error. If the scanning tool does not output an
error, then the scanning tool output analyzer 122 may validate the message if the
format is in an expected format for that particular scanning tool. The scanning tool
output analyzer 122 may be able to access data indicating an expected format for the

output of the various scanning tools.

[0055] The scanning tool output analyzer 122 receives raw data and outstanding
files (320). The raw data may include the parsed data. The scanning tool output
analyzer 122 may receive raw data from each scanning tool that scanned the
software target. For example, if there are ten scanning tools to scan a software

target, then the scanning tool output analyzer 122 receives an output from each

19

10

15

20

25

WO 2023/288099 PCT/US2022/037368

scanning tool when the scanning tool identifies an issue. The scanning tool output

analyzer 122 parses those outputs.

[0056] The scanning tool output analyzer 122 receives database data for
classification (330). The database data for classification may include data that the
scanning tool output analyzer 122 may use to classify the parsed data. The scanning
tool output analyzer 122 may classify the parsed data according to the software
target scanned to generate the corresponding raw data. In some implementations,
the scanning tool output analyzer 122 may classify the parsed data based on the
type of issue identified by the parsed data. In some implementations, the scanning
tool output analyzer 122 may classify the parsed data based on the type of software

target.

[0057] The scanning tool output analyzer 122 refines parsed data and receives
supplemental issues (340). The scanning tool output analyzer 122 may refine the
parsed data that may include parsed issues by generating refined issues. The
scanning tool output analyzer 122 may generate refined issues by analyzing parsed
issues generated by multiple scanning tools analyzing the same software target. The
scanning tool output analyzer 122 determines which parsed issues identify the same
vulnerability and generates a refined issue that represents the parsed issues that
identified the same vulnerability when scanning the same software target. In some
implementations, the scanning tool output analyzer 122 generates supplemental
issues. The supplemental issues may identify an issue type of a corresponding raw

issue.

[0058] The scanning tool output analyzer 122 classifies refined and supplemental
Issues (350). The scanning tool output analyzer 122 may assign a category to each
issue. The category may be presented to the user so that issues in a similar
category can be grouped together for the user to view and determine whether to act
on the issues. The scanning tool output analyzer 122 may classify the issues
according to a type of the issue, the software target that the issue corresponds to, the

type of software target, the severity of the issue, the time that the issue has been

20

10

15

20

25

WO 2023/288099 PCT/US2022/037368

unresolved, whether the issue was previously marked as one to ignore, whether the
issue was previously present and now appears to be resolved, and/or any other

similar classification.

[0059] The scanning tool output analyzer 122 calculates job statistics (360). The
job statistics may relate to the types and frequency of issues identified by the
scanning tool output analyzer 122. For example, the job statistics may include a
number of different types of issues identified by the refined issues. The job statistics
may include the number of issues identified in each software target and/or the
number of refined issues that correspond to each software target. The job statistics
may identify a number of refined issues of each severity level. The job statistics may
identify a period of time that each refined issue has been present in the

corresponding software target.

[0060] The scanning tool output analyzer 122 calculates synthetic issues (370).
The scanning tool output analyzer 122 may generate the synthetic issues by
analyzing the normalized issues generated by one or more scanning tools analyzing
the same software target. The scanning tool output analyzer 122 determines which
normalized issues identify the same vulnerability in the software target and generates

a synthetic issue to represent these normalized issues.

[0061] In some implementations, the scanning tool output analyzer 122 may
generate the refined issues as a first step before generating the synthetic issues. In
this case, the scanning tool output analyzer 122 may generate the synthetic issues
based on the refined issues. The scanning tool output analyzer 122 may generate
the refined issues using the technique described above. The scanning tool output
analyzer 122 may generate the synthetic issues by analyzing the refined issues to

identity those refined issues that identify the same vulnerability in the software target.

[0062] FIG. 4 is a flowchart of a process 400 for managing a software scanning
tool, analyzing the output of the software scanning tool, and outputting notifications to
alert a user of any security issues identified by the software scanning tool. In

general, the process 400 includes identifying software to test for security issues and

21

10

15

20

25

WO 2023/288099 PCT/US2022/037368

other vulnerabilities using a scanning tool. The process 400 generates a copy of the
software. The process 400 analyzes the outputs of the scanning tool and
compresses them into actionable items to provide to a user. The process 400
outputs the actionable items to the user. The process 400 will be described as being
performed by the server 106 of FIG. 1 and will include references to other

components in FIG. 1.

[0063] The server 106 generates a software target copy of a software target (410).
In some implementations, the number of copies that the server 106 generates is
based on the number of scanning tools that will analyze the software target. In this

case, there is one scanning tool, so the server 106 generates a single software target

copy.

[0064] The server 106 provides the software target copy as an input to a scanning
tool (420). In some implementations, the server 106 selects the scanning tool based
on the software target. For example, if the software target is a repository, then the
server 106 may select a static application security testing scanning tool. In some
implementations, the server 106 may include various policies. The policies may
specify which scanning tools to select. For example, a policy may specify to select a

specific scanning tool. The server 106 may receive the policies from users.

[0065] The server 106 receives, from the scanning tool, a scanning tool output that
identifies a first issue of the software target and a second issue of the software target
(430). In some implementations, the server 106 may delete the first software target
copy after receiving the scanning tool output. The scanning tool output may identify
one or more issues of the software target. Each issue may identify one or more
vulnerabilities of the software target. A vulnerability may include a severity of the
vulnerability, a summary of the vulnerability, details of the vulnerability,
recommendations to correct the vulnerability, and/or references for the vulnerability.

The issues identified by the scanning tool may be considered raw issues.

[0066] The server 106 determines that the first issue of the software target and the

second issue of the software target are a same issue (440). Based on determining

22

10

15

20

25

WO 2023/288099 PCT/US2022/037368

that the first issue of the software target and the second issue of the software target
are the same issue, the server 106 generates a combined issue of the first issue and
the second issue (450). The server 106 provides, for output, a notification that
includes the combined issue (460). The server 106 may parse and normalize first
issue and the second issue of the scanning tool output. The server 106 compares
normalized first issue and the normalized second issue. If the normalized first issue
and the normalized second issue identify the same issue or vulnerability, then the
server 106 may compress the issue into a single combined issue, which may be

referred to as a refined issue.

[0067] In some implementations, the server 106 may compare the scanning tool
output to outputs from additional scanning tools. The additional scanning tools may
analyze another copy of the software target. The server 106 may determine whether
the issues identified by the additional scanning tools are the same or different than
the issues identified by the normalized first issue and the normalized second issue. If
the issues are different, then the server 106 may generate a refined or synthetic
issue that represents the different issue. If the issues are the same, then the server
106 may generate a synthetic issue that represents the issue identified by the

additional scanning tool, the normalized first issue, and the normalized second issue.

[0068] FIG. 5 is a flowchart of a process 500 for managing multiple software
scanning tools, analyzing the output of those software scanning tools, and outputting
notifications to alert a user of any security issues identified by those software
scanning tools. In general, the process 500 includes identifying software to test for
security issues and other vulnerabilities using various scanning tools. The process
500 generates a copy of the software for each scanning tool. The process 500
analyzes the outputs of each scanning tools and compresses them into actionable
items to provide to a user. The process 500 outputs the actionable items to the user.
The process 500 will be described as being performed by the server 106 of FIG. 1

and will include references to other components in FIG. 1.

23

10

15

20

25

WO 2023/288099 PCT/US2022/037368

[0069] The server 106 generates a first software target copy of a software target
and a second software target copy of the software target (510). In some
implementations, the server 106 may generate multiple copies of the software target
depending on the number of scanning tools that will be scanning the software target.
For example, if the server 106 determines to scan the software copy using three

scanning tools, then the server 106 may generate three copies of the software target.

[0070] The server 106 provides the first software target copy as an input to a first
scanning tool and the second software target copy as a second input to a second
scanning tool (520). In some implementations, the server 106 selects the first
scanning tool and the second scanning tool based on the software target. For
example, if the software target is a repository, then the server 106 may select static
application security testing scanning tools. In some implementations, the server 106
may include various policies. The policies may specify which scanning tools to
select. For example, a policy may specify to select all the available scanning tools

when scanning repositories. The server 106 may receive the policies from users.

[0071] The server 106 receives, from the first scanning tool, a first scanning tool
output that identifies a first issue of the software target (530). The server 106
receives, from the second scanning tool, a second scanning tool output that identifies
a second issue of the software target (540). In some implementations, the server
106 may delete the first software target copy and the second software target copy
after receiving the first scanning tool output and the second scanning tool output.
The first scanning tool output and the second scanning tool output may identify one
or more issues of the software target. Each issue may identify one or more
vulnerabilities of the software target. A vulnerability may include a severity of the
vulnerability, a summary of the vulnerability, details of the vulnerability,
recommendations to correct the vulnerability, and/or references for the vulnerability.
The issues identified by the first and second scanning tool may be considered raw

ISSuUEs.

24

10

15

20

25

WO 2023/288099 PCT/US2022/037368

[0072] The server 106 determines that the first issue of the software target and the
second issue of the software target are a same issue (550). Based on determining
that the first issue of the software target and the second issue of the software target
are the same issue, generating, by the computing device, a combined issue of the
first issue and the second issue (560). The server 106 may parse and normalize the
first scanning tool output and the second scanning tool output. The server 106
compares the normalized first scanning tool output and the normalized second
scanning tool output. If the first scanning tool output and the second scanning tool
output identify the same issue or vulnerability, then the server 106 may compress the

issue into a single combined issue, which may be referred to as a synthetic issue.

[0073] In some implementations, the server 106 may compare the first scanning
tool output and the second scanning tool output to outputs from additional scanning
tools. The additional scanning tools may analyze another copy of the software target.
The server 106 may determine whether the issues identified by the additional
scanning tools are the same or different than the issues identified by the first
scanning tool output and the second scanning tool output. If the issues are different,
then the server 106 may generate an additional synthetic issue. If the issues are the

same, then the server 106 may bypass generating an additional synthetic issue.

[0074] The server 106 provides, for output, a notification that includes the
combined issue (560). The notification may include actionable items that a user may
select to reject the corresponding issue. If the user rejects the issue, then the server
106 may update a synthetic issue table that stores the synthetic issues and the
corresponding status. If a synthetic issue is identified as rejected, then the server
106 may not present that issue to the user after subsequent scans of the software
target. The user may correct the issue by updating the software target. The server
106 may infer that the issue has been corrected and update the synthetic issue in the
synthetic issue table 120 to be resolved. The server 106 may infer that the issue has
been corrected if the issue does not appear in subsequent scans of the software

target.

25

WO 2023/288099 PCT/US2022/037368

[0075] Although a few implementations have been described in detail above, other
modifications are possible. In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to achieve desirable results.
In addition, other actions may be provided, or actions may be eliminated, from the
described flows, and other components may be added to, or removed from, the
described systems. Accordingly, other implementations are within the scope of the

following claims.

[0076] What is claimed is:

26

WO 2023/288099 PCT/US2022/037368

CLAIMS

1. A computer-implemented method, comprising:

generating, by a computing device, a first software target copy of a software
target and a second software target copy of the software target;

providing, by the computing device, the first software target copy as a first
input to a first scanning tool and the second software target copy as a second input
to a second scanning tool;

receiving, by the computing device and from the first scanning tool, a first
scanning tool output that identifies a first issue of the software target;

receiving, by the computing device and from the second scanning tool, a
second scanning tool output that identifies a second issue of the software target;

determining, by the computing device, that the first issue of the software target
and the second issue of the software target are a same issue;

based on determining that the first issue of the software target and the second
issue of the software target are the same issue, generating, by the computing device,
a combined issue of the first issue and the second issue; and

providing, for output by the computing device, a notification that includes the

combined issue.

2. The method of claim 1, comprising:
deleting, by the computing device, the first software target copy and the

second software target copy.

3. The method of claim 1, comprising:
selecting, by the computing device, the first scanning tool and the second

scanning tool based on the software target.

4, The method of claim 1, wherein determining that the first issue of the software
target and the second issue of the software target are a same issue comprises:

parsing, by the computing device, the first issue and the second issue;

27

WO 2023/288099 PCT/US2022/037368

normalizing, by the computing device, the parsed first issue and the parsed
second issue; and
comparing, by the computing device, the normalized first issue and the

normalized second issue.

5. The method of claim 1, comprising:

storing, by the computing device, data indicating the combined issue;

providing, by the computing device, a third software target copy as a third
input to a third scanning tool,

receiving, by the computing device and from the third scanning tool, a third
scanning tool output that identifies a third issue of the software target;

determining, by the computing device, that the third issue of the software
target and the combined issue are the same issue; and

based on determining that the third issue of the software target and the
combined issue are the same issue, bypassing providing, for output by the computing

device, an additional notification that includes the third issue.

6. The method of claim 1, comprising:

storing, by the computing device, data indicating the combined issue;

providing, by the computing device, a third software target copy as a third
input to the first scanning tool;

receiving, by the computing device and from the first scanning tool, a third
scanning tool output that does not identify the first issue; and

based on the third scanning tool output of the first scanning tool not identifying
the first issue, storing, by the computing device, data indicating that the combined

issue is resolved.
/. The method of claim 1, comprising:

receiving, by the computing device, a policy for selecting scanning tools from

multiple scanning tools; and

28

WO 2023/288099 PCT/US2022/037368

selecting, by the computing device, the first scanning tool and the second

scanning tool based on the policy.

8. The method of claim 1, comprising:
receiving, by the computing device, data indicating to bypass providing, for
output, an additional notification that includes an issue that is the same as the first

issue or the second issue.

9. The method of claim 1, wherein the first issue or the second issue include data

that is not included in the combined issue.

10. The method of claim 1, wherein the computing device uses an event-driven
and microservice architecture to interact with the first scanning tool and the second

scanning tool.

11. A system, comprising:

one or more processors; and

memory including a plurality of computer-executable components that are
executable by the one or more processors to perform the method of any preceding

claim.
12. One or more non-transitory computer-readable media of a computing device

storing computer-executable instructions that upon execution cause one or more

computers to perform the method of any one of claims 1-10.

29

PCT/US2022/037368

WO 2023/288099

l Old

c0l

Lcl

— e — — e—

UOISIASI IeM}OS |

aoel8U|

(s)lossaooid
uoledIuNWWo))

aJeMmpleH

el

o|ge] anss|
OlBYUAS

Mom_\

sindinQ
|00
Buiuueossg

Mwm_\

Mmm_\

9|ge] enss|
pauljey

9Ll

Mo__\

_Ico:|om._Mm_|m3m_L L%N>_mc< Jobeuely Jaido)
b e — — indinQ |00 [001 2IEM}OS
Buiuueog Buluueog
ocl M
—_—— ccl
UONSOMION
anss|
| enss| 1 1S9} Jopun
2JeM)os
vl Ll
— ~— - - _ — a— -
= —

WO 2023/288099

200
(

Scanning
Tool Output
Analyzer

PCT/US2022/037368
2/5
/7 205
/7 Parser 4/5_
210
Normalizer 4/5_
215
\\ Compressor 4/5_

FIG. 2

WO 2023/288099 PCT/US2022/037368

3/5

300
[«

Parse message and validate data
310
Receive raw data and outstanding files
320
Receive database data for classification
330

!

Refine parsed data and receive supplemental issues

340
\ 4
Classify refined and supplemental issues
350
\ 4
Calculate job statistics
360
\ 4
Calculate synthetic issues
370

FIG. 3

WO 2023/288099 PCT/US2022/037368

400
[«

4/5

Generate a software target copy of a software target

N
—
o

l

Provide the software target copy as an input to a scanning tool

N
o

2

l

Receive, from the scanning tool, a first scanning tool output that
identifies a first issue of the software target and a second issue of
the software target

N
o

3

l

Determine that the first issue of the software target and the second
issue of the software target are a same issue

SN

40

A 4

Based on determining that the first issue of the software target and
the second issue of the software target are the same issue,

generate a combined issue of the first issue and the second issue
450

Provide, for output, a notification that includes the combined issue

460

FIG. 4

WO 2023/288099) PCT/US2022/037368

5/5
500
<

Generate a first software target copy of a software target and a
second software target copy of the software target

l

Provide the first software target copy as a first input to a first
scanning tool and the second software target copy as a second
input to a second scanning tool

l

Receive, from the first scanning tool, a first scanning tool output that
identifies a first issue of the software target

l

Receive, from the second scanning tool, a second scanning tool
output that identifies a second issue of the software target

10

(o]
o

2

o
o

3

[©2}
o

Determine that the first issue of the software target and the second
issue of the software target are a same issue

50

A 4

Based on determining that the first issue of the software target and
the second issue of the software target are the same issue,

generate a combined issue of the first issue and the second issEtJGeo

Provide, for output, a notification that includes the combined issue

270

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2022/037368

A. CLASSIFICATION OF SUBJECT MATTER

GO6F 21/57(2013.01)i; GO6F 8/61(2018.01)i; GO6F 8/70(2018.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GOG6F 21/00(2006.01); GO6F 9/44(2006.01)

Minimum documentation searched (classification system followed by classification symbols)

GOG6F 21/57(2013.01); GO5B 23/02(2006.01); GO6F 11/36(2006.01); GO6F 17/20(2006.01); GO6F 19/00(2011.01);

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

normalizing

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: software test, second, results, duplication, same, combining, comparing, deleting,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2007-0136024 A1 (MARTIN MOSER et al.) 14 June 2007 (2007-06-14)
Y paragraphs [0004], [0033]-[0034], [0044]-[0050]; claims 1, 7-8; and figure 2 1-12

CN 105629948 A (BAIC BJEV CO.,LTD.) 01 June 2016 (2016-06-01)

Y claim 3 1-12
US 2009-0158385 Al (DONG-WOOK KIM et al.) 18 June 2009 (2009-06-18)

Y claims 1, 7 4
US 10102113 B2 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 16 October 2018
(2018-10-16)

A column 5, line 40 - column 6, line 53; and figure 2 1-12
US 7299452 B1 (WEI ZHANG et al.) 20 November 2007 (2007-11-20)

A column 8, lines 44 — 64; and figure 3 1-12

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
«A” document defining the general state of the art which is not considered
to be of particular relevance
“p” document cited by the applicant in the international application

«g» earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

«0” document referring to an oral disclosure, use, exhibition or other
means

«p>” document published prior to the international filing date but later than
the priority date claimed

wr

D&

wyr

g

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

35208, Republic of Korea
Facsimile No. +82-42-481-8578

04 November 2022 04 November 2022
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon YANG, Jeong Rok

Telephone No. +82-42-481-5709

Form PCT/ISA/210 (second sheet) (July 2022)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members

PCT/US2022/037368
. Patf‘/nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
us 2007-0136024 Al 14 June 2007 uUsS 7412349 B2 12 August 2008
CN 105629948 A 01 June 2016 CN 105629948 B 26 February 2019
uUs 2009-0158385 Al 18 June 2009 KR 10-2009-0065183 A 22 June 2009
uUs 10102113 B2 16 October 2018 uUsS 2013-0024842 Al 24 January 2013
us 2013-0024847 Al 24 January 2013
us 2016-0299837 Al 13 October 2016
us 9396094 B2 19 July 2016
us 9448916 B2 20 September 2016
US 7299452 Bl 20 November 2007 None

Form PCT/ISA/210 (patent family annex) (July 2022)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

