wo 20177222902 A1 |00 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P <
O remiation = 000 0P O O
International Bureau = (10) International Publication Number
(43) International Publication Date -—-/ WO 2017/222902 Al

28 December 2017 (28.12.2017) WIPO I PCT

(5D

2D

22)

(25)
(26)
(30$)

an

a2

International Patent Classification: Microsoft Technology Licensing, LLC, One Microsoft
GO6F 21/60(2013.01) Way, Redmond, Washington 98052-6399 (US). OHRI-
MENKO, Olga; Microsoft Technology Licensing, LLC,

International Application Number: One Microsoft Way, Redmond, Washington 98052-6399

PCT/US2017/037577 (US). SCHUSTER, Felix; Microsoft Technology Licens-
International Filing Date: ing, LLC, One Microsoft Way, Redmond, Washington
15 June 2017 (15.06.2017) 98052-6399 (US). VASWANI, Kapil; Microsoft Technol-
- . ogy Licensing, LLC, One Microsott Way, Redmond, Wash-
Filing Language: English ington 98052-6399 (US).
Publication Language: English 74 Agent: MINHAS, Sandip ct al; MICROSOFT TECH-
Priority Data: NOLOGY LICENSING, LLC, One Microsoft Way, Red-
1610883.9 22 June 2016 (22.06.2016) GB mond, Washington 98052-6399 (US).
15/245,141 23 August 2016 (23.08.2016) Us (81) Designated States (unless otherwise indicated, for every
Applicant: MICROSOFT TECHNOLOGY LI- kind of national protection available). AE, AG, AL, AM,
CENSING, LLC [US/US]; One Microsoft Way, Redmond, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
Washington 98052-6399 (US). CA,CH,CL,CN,CO,CR,CU, CZ,DE, DJ, DK, DM, DO,

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
. KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
mond, Washington 98052-6399 (US). FOURNET, Cé- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI NO, NZ,
dric Alain Marie Christophe; Microsoft Technology Li- OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
censing, LLC, One Microsoft Way, Redmond, Washing- SC. SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
ton 98052-6399 (US). MEHTA, Aastha; Microsoft Tech- TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
nology Licensing, LLC, One Microsoft Way, Redmond,

Washington 98052-6399 (US). NOWOZIN, Sebastian;

Inventors: COSTA, Manuel Silverio da Silva; Microsoft
Technology Licensing, LLC, One Microsoft Way, Red-

(34

Title: PRIVACY-PRESERVING MACHINE LEARNING

(57) Abstract: A multi-party privacy-preserving machine learning system is de-
scribed which has a trusted execution environment comprising at least one pro-
tected memory region. A code loader at the system loads machine learning code,

106

DATA CENTER WITH PRIVACY

received from at least one of the parties, into the protected memory region. A
— data uploader uploads confidential data, received from at least one of the parties,
LEARNING i to the protected memory region. The trusted execution environment executes the

machine learning code using at least one data-oblivious procedure to process the
contidential data and returns the result to at least one of the parties, where a da-
ta-oblivious procedure is a process where any patterns of memory accesses, pat-
terns of disk accesses and patterns of network accesses are such that the confi-
dential data cannot be predicted from the patterns.

TRUSTED EXECUTION ENVIRONVENT 100

DATA UPLOADER 104 | | CODE LOADER 122 |

TRANED Aserver| [B sErver TRANED
MACHINE 110 | |08 MACHINE
LEARNING LEARNING
SYSTEM SYSTEM

116 118

[Continued on next page]

WO 20177222902 A1 ||}V 00 0 O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

PRIVACY-PRESERVING MACHINE LEARNING

BACKGROUND

[0001] Where third party cloud computing systems are used to execute machine
learning code on large volumes of data there are significant security and privacy concerns.
Use of a third party computing system in the cloud provides flexibility to the user as they
can pay for computing resources when they are required. However, the user's lack of
control over the infrastructure within the cloud computing system does lead to security
and/or privacy concerns. In particular, users may wish to maintain the confidentiality and
integrity of the data which is processed by the code, and the outputs of the machine
learning. Currently however, a malicious system administrator, or other malicious
observer of the cloud computing system, is able to observe patterns of memory accesses,
patterns of disk accesses and patterns of network accesses and use those observations to
find details about the confidential data.

[0002] The embodiments described below are not limited to implementations
which solve any or all of the disadvantages of known privacy-preserving systems.
SUMMARY

[0003] The following presents a simplified summary of the disclosure in order to
provide a basic understanding to the reader. This summary is not intended to identify key
features or essential features of the claimed subject matter nor is it intended to be used to
limit the scope of the claimed subject matter. Its sole purpose is to present a selection of
concepts disclosed herein in a simplified form as a prelude to the more detailed description
that is presented later.

[0004] A multi-party privacy-preserving machine learning system is described
which has a trusted execution environment comprising at least one protected memory
region. A code loader at the system loads machine learning code, received from at least
one of the parties, into the protected memory region. A data uploader uploads confidential
data, received from at least one of the parties, to the protected memory region. The trusted
execution environment executes the machine learning code using at least one data-
oblivious procedure to process the confidential data and returns the result to at least one of
the parties, where a data-oblivious procedure is a process where any patterns of memory
accesses, patterns of disk accesses and patterns of network accesses are such that the
confidential data cannot be predicted from the patterns.

[0005] Many of the attendant features will be more readily appreciated as the same

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

becomes better understood by reference to the following detailed description considered in
connection with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS
[0006] The present description will be better understood from the following
detailed description read in light of the accompanying drawings, wherein:
FIG. 1 is a schematic diagram of a privacy-preserving machine learning system;
FIG. 2 is a schematic diagram of another privacy-preserving machine learning
system;
FIG. 3 is a flow diagram of a method of operation at a privacy-preserving machine
learning system;
FIG. 4 1s a schematic diagram of a cache line array;
FIG. S is a flow diagram of a method of clustering together with a data-oblivious
method of clustering;
FIG. 6 is a flow diagram of a method of supervised machine learning together
with a data-oblivious method of supervised machine learning;
FIG. 7 is a flow diagram of a method of training a support vector machine together
with a data-oblivious method of training a support vector machine;
FIG. 8 is a schematic diagram of a random decision forest illustrating a test time
evaluation path for a non-oblivious and an oblivious scenario;
FIG. 9 1s a flow diagram of a data-oblivious decision forest test time evaluation
process;
FIG. 10 is a schematic diagram of a matrix factorization component;
FIG. 11 is a flow diagram of a data-oblivious matrix factorization process;
FIG. 12 1is a flow diagram of part of the process of FIG. 11 in more detail;
FIG. 13 illustrates an exemplary computing-based device in which embodiments
of a privacy-preserving machine learning system are implemented.
Like reference numerals are used to designate like parts in the accompanying drawings.
DETAILED DESCRIPTION
[0007] The detailed description provided below in connection with the appended
drawings is intended as a description of the present examples and is not intended to
represent the only forms in which the present example are constructed or utilized. The
description sets forth the functions of the example and the sequence of operations for
constructing and operating the example. However, the same or equivalent functions and

sequences may be accomplished by different examples.

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

[0008] Machine learning is increasingly used in a wide variety of applications such
as robotics, medical image analysis, human computer interaction, livestock management,
agriculture, manufacturing and others. The quality and accuracy of machine learning
predictions is typically increased by using greater quantity and variety of training data
during a training phase. However, often the training data is difficult and expensive to
obtain and is confidential.

[0009] In various examples described herein a privacy-preserving machine
learning system is provided in the cloud so that multiple parties can contribute their
confidential data for use as training data without breaching the confidentiality. This
enables higher quality and more accurate machine learning outcomes (either at training
time, test time or both) to be achieved. Two or more entities are able to perform
collaborative machine learning whilst guaranteeing the privacy of their individual data
sets. A new confidential data instance, submitted to the machine learning system is used
to generate one or more predictions in a privacy preserving manner. This is achieved
without the need for complex cryptographic tools such as fully homomorphic encryption,
which introduce large runtime overheads so limiting their practical adoption for machine
learning on large data sets.

[0010] FIG. 1 is a schematic diagram of a privacy-preserving machine learning
system comprising a data center 106 comprising at least one trusted execution
environment 100 which controls a secure memory region. In this example one trusted
execution environment is shown for clarity although in practice many trusted execution
environments are deployed and these are at computational units in the data center, such as
servers with disk storage or virtual machines which are connected by a network within the
data center 106. In an example, the trusted execution environment comprises a secure
memory region which is a processor protected memory region within the address space of
a regular process. The processor monitors memory accesses to the trusted execution
environment so that only code running in a trusted execution environment is able to access
data in the trusted execution environment. When inside the physical processor package (in
the processor's caches), the trusted execution environment memory is available in
plaintext, but it is encrypted and integrity protected when written to system memory
(random access memory RAM). External code can only invoke code inside the trusted
execution environment at statically defined entry points (using a call-gate like
mechanism). In some examples, code inside an trusted execution environment is able to

have messages signed using a per-processor private key along with a digest of the trusted

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

execution environment. This enables other trusted entities to verify that messages
originated from a trusted execution environment with a specific code and data
configuration.

[0011] In some examples the trusted execution environment is implemented using
hardware such that the secure memory region is isolated from any other code, including
operating system and hypervisor. In some examples the trusted execution environment is
implemented using a trusted virtual machine.

[0012] A malicious adversary, who observes patterns of memory accesses, or
patterns of disk accesses, or patterns of network accesses made by the trusted execution
environment, is able to obtain confidential information stored in the trusted execution
environment, even where the adversary is unable to physically open and manipulate the
trusted execution environment. For example, the adversary may control all the hardware
in the cloud data center 106, except the processor chips used in the trusted execution
environment. In particular the adversary controls the network cards, disks, and other chips
in the motherboards. The adversary may record, replay, and modify network packets or
files. The adversary may also read or modify data after it left the processor chip using
physical probing, direct memory access (DMA), or similar techniques.

[0013] The adversary may also control all the software in the data center 106,
including the operating system and hypervisor. For instance, the adversary may change the
page tables so that any trusted execution environment memory accesses results in a page
fault. This active adversary is general enough to model privileged malware running in the
operating or hypervisor layers, as well as malicious cloud administrators who may try to
access the data by logging into hosts and inspecting disks and memory.

[0014] The data center 106 comprises a data uploader 104 which is configured to
receive or access data such as confidential data A 118 managed by the operator of server
A and confidential data B 120 managed by the operator of server B. The data is encrypted
confidential data to be used for machine learning either during a training or test phase.
The data uploader 104 is configured in some embodiments to securely shuffle the
uploaded data as described in more detail below.

[0015] The data center 106 comprises a code loader 122 which is configured to
access or receive code from an entity such as server A 110, or server B 108 and to upload
the code to the trusted execution environment 100. The code is machine learning code, for
example, which has been agreed upon by an operator of server A and an operator of server

B. The trusted execution environment is configured to carry out data-oblivious machine

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

learning 102 as it executes data-oblivious machine learning processes on the uploaded data
104. In some examples, the code loader 122 uploads machine learning code comprising
data-oblivious machine learning processes. In some examples, the data-oblivious machine
learning processes are already stored in the trusted execution environment and the code
loader 122 uploads details of which pre-stored data-oblivious processes to use.

[0016] The code loader 122 and the data uploader 104 comprise untrusted code or
trusted code. The machine learning code is trusted code in some examples.

[0017] In the case that the output of the trusted execution environment 100 is a
trained machine learning system 116, the output is sent to at least one of the entities which
contributed training data (for example, server A and server B in FIG. 1). Server A is then
able to provide an improved service to end user devices 114 such as for gesture
recognition, text prediction for keyboards, scene reconstruction or other applications.
Similarly server B is also able to provide the improved service. End user devices 114
illustrated in FIG. 1 include tablet computers, desktop computers, smart phones, laptop
computers and head worn computing devices but these are examples only and are not
intended to limit the scope.

[0018] In the case that the output of the trusted execution environment 100 is one
or more predictions, the output is sent direct to end user devices 114 or to servers A and B.
[0019] FIG. 2 is a schematic diagram of another privacy-preserving machine
learning system comprising a data center 106 in the cloud where the data center has a
secure trusted execution environment 100 storing machine learning code. Three hospitals
each have confidential patient data 202 encrypted using a hospital-specific key 200 with
the hospital-specific keys being shared with the secure trusted execution environment.
The operating system of the data center receives uploads of the confidential patient data
202 from each hospital and stores this in the trusted execution environment 100. The
trusted execution environment decrypts the patient data using the keys 200 and executes
the machine learning code. This is achieved in a data-oblivious manner as described in
more detail below. The results of the machine learning are encrypted and shared with the
hospitals.

[0020] Alternatively, or in addition, the functionality of the data uploader 104,
code loader 122, and trusted execution environment 100 described herein is performed, at
least in part, by one or more hardware logic components. For example, and without
limitation, illustrative types of hardware logic components that are optionally used include

Field-programmable Gate Arrays (FPGAs), Application-specific Integrated Circuits

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

(ASICs), Application-specific Standard Products (ASSPs), System-on-a-chip systems
(SOCs), Complex Programmable Logic Devices (CPLDs), Graphics Processing Units
(GPUs).

[0021] FIG. 3 is a flow diagram of a method of operation of a privacy-preserving
machine learning system such as that of FIG. 1 or FIG. 2. The data center receives 300 a
data-oblivious machine learning request, for example, from server A in the deployment of
FIG. 1. The request comprises code and static data, where the static data comprises a list
of parameters which can be made public (i.e. parameters whose values are not desired to
be kept confidential) and, where there are two or more parties contributing data to a
training phase of a machine learning process, the identities of the parties. The code
comprises machine learning code to be executed in the data center. For example, where
there are two or more parties sharing the results of the machine learning, the machine
learning code has been agreed upon by the parties.

[0022] A code loader at the data center allocates 302 resources in the data center to
be used for executing the machine learning code and storing data, and it creates at least
one trusted execution environment with that code and data.

[0023] The data center establishes 304 a secure channel with the entities (such as
server A) associated with the data-oblivious machine learning request. The data center
then receives secure data uploads 306 over the secure channel(s). The uploaded data
comprises training data and/or test data for use with the machine learning code. The
uploaded data is secure, for example by being encrypted by a secret key generated by the
entity making the data available for upload. The secret key is shared with the trusted
execution environment which receives 308 the key using the secure channel.

[0024] The trusted execution environment decrypts the data 310 using the key(s) it
received and executes 312 machine learning training or test phase processes according to
the code uploaded by the code-loader. The trusted execution environment executes the
machine learning code in a data-oblivious manner either by using oblivious random access
memory 316 or by using machine learning processes that have side channel protection
314. The output of the data-oblivious machine learning process is encrypted and output
318 from the data center to one or more of the parties, such as server A in the example of
FIG. 1 or end user devices 114 in the example of FIG. 1.

[0025] Oblivious random access memory (ORAM) is an interface between a
protected central processing unit (CPU) and a physical random access memory (RAM).

This interface executes a process which preserves the input-output behavior of an

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

algorithm executing on the CPU, but ensures that the distribution of memory access
patterns (reads/writes to the RAM) carried out by the algorithm executing on the CPU are
independent of the memory access patterns of the algorithm. For example, a simple
ORAM implementation may achieve this by scanning through the entire RAM for each
read operation and for each write operation. This introduces significant time overheads for
each memory operation. In a similar manner, ORAM is used to hide patterns of disk
accesses and patterns of network accesses.

[0026] In some examples the machine learning code is annotated to indicate which
of its data is private or not and a component is used to automatically generate new
machine learning code that does not leak information about the annotated private data.
The component in some examples comprises ORAM as an underlying block along with
sorting and hardware implementation features. This type of approach is workable for a
limited number of algorithms and for algorithms where it is workable, it is not as efficient
as the examples described herein where the machine learning algorithms themselves are
designed from the outset to be privacy preserving in an efficient manner.

[0027] A machine learning process is an operation for updating data structures in
the light of training data using learning objectives, or for accessing learnt data from data
structures using test data instances. A machine learning process with side channel
protection, is one where the training and/or test phase operation is configured such that the
memory accesses, disk accesses or network accesses carried out as part of the operation,
do not leak confidential data. .

[0028] In the examples described herein the data-oblivious machine learning 312
is shown to be data-oblivious in the following way. A simulator program is created which
gives patterns of memory accesses, patterns of disk accesses and patterns of network
accesses from the same distribution of accesses as the one produced from the machine
learning 312 and is created given only values of specified public parameters (which it is
acceptable to make public) and no other information about the confidential data. A test is
carried out to see if an adversary can guess whether it is interacting with the simulator
program or with the data-oblivious machine learning 312 by observing the pattern of
memory accesses, disk accesses or network accesses. If the adversary guesses correctly
with probability at most ¥ plus a negligible advantage, then the machine learning 312 is
data-oblivious. This test was carried out for each of the embodiments described herein
and was successful in showing the embodiments to be data oblivious.

[0029] Embodiments of machine learning with side channel protection 314 are

10

15

20

WO 2017/222902 PCT/US2017/037577

now described. In these embodiments the training and/or test phase operation is
configured such that the memory accesses, disk accesses or network accesses carried out
as part of the operation, do not leak confidential data. This is achieved through the use of
one or more oblivious primitives. An oblivious primitive is a basic operation comprising
reading and/or writing to memory, disk or network and which is configured to hide
patterns of memory, disk or network access. An oblivious primitive is an operation
comprising instructions in a low level programming language in which there is a strong or
one to one correspondence between the language and the machine code instructions of the
processor supporting the trusted execution environment. Oblivious primitives are used as
building blocks to form more complex data-oblivious operations.

[0030] In the case of primitive operations for assignments and comparisons, an
oblivious primitive is an operation with no data-dependent branches and which does not
reveal which input is used to produce its output, which is put in a private register of the
trusted execution environment secure memory region. An example of two oblivious
primitives is omove() and ogreater() which comprise the following Intel x86-64

instructions in the case of 64-bit integers:

[0031] ogreater(x, y)
mov rcX, X
mov rdx, y
cmp rex, rdx
setg al
retn
[0032] When the ogreater() primitive is executed the value of x is moved into the

register rcx, the value of y is moved into the register rdx, a comparison of the values at the
registers rcx and rdx is made, and the conditional instruction setg puts the greater of the
two values (x and y) into the register al. The value in register al is returned.

[0033] omove(cond, X, y)

mov rex, cond
mov rdx, x
mov rax, y
test ICX, ICX
cmovnz rax, rdx
retn

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

[0034] When the omove() primitive is executed the value of cond is moved into
the register rcx, the value of x is moved into the register rdx, the value of y is moved into
the register rax, a test is made on the contents of register rcx and the conditional
instruction cmovnz puts the
[0035] The omove() and ogreater() primitives are used together to implement an
oblivious min() function which takes two integers x and y and returns the smaller of the
two. The instructions in the oblivious min() function are:
int min(int X, int y) {

bool getX = oless(x, y);

return omove(getX, X, y);

[0036] In this example the oless() obliviously evaluates the guard x<y and omove()
obliviously returns either x or y, depending on that guard.

[0037] More complex primitives are built that work on arbitrary, user defined
types. An example is omoveEx() which is an extended version of omove() used to
conditionally assign any type of variable and which acts to repeatedly apply omove().
Depending on the size of the given type, omoveEx() iteratively uses the 64-bit integer and
256-bit vector version of omove().

[0038] In order to obliviously access arrays, the algorithms described herein are
able to build on the omoveEx() primitive to scan the entire array while effectively only
reading or writing a single element at a private index.

[0039] In some examples the oblivious array accesses are optimized by scanning
arrays at cache-line granularity (e.g., 64-byte granularity) rather than at element or byte
granularity. Where an adversary can at best observe memory accesses at cache-line
granularity this type of approach is possible and gives significant technical benefits of a
faster, better privacy-preserving computer. It is recognized herein that it is realistic to
assume that an adversary can at best observe memory accesses at cache-line granularity
where the trusted execution environment is implemented using a trusted processor
package.

[0040] For example, scanning at cache-line granularity is achieved by using vector
instructions. In an example, an instruction called vpgatherdd loads a 256-bit vector
register with 32-bit integer components from eight different (dynamically chosen) memory
offsets. (Note that the use of vpgatherdd is one example only which is not intended to

limit the scope and other similar instructions are used in some examples.) By loading each

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

integer from a different cache line (cache lines with a length of 64 bytes are assumed in
the following), one 32-bit integer can be obliviously read from an aligned 512-byte array
in a single instruction. Depending on the dynamic layout of the central processing unit
(CPU) caches, this technique significantly speeds-up oblivious array accesses. For larger
arrays, the technique is applied iteratively and the omove() primitive is used to extract the
values of interest from the vector register.

The technique is further improved by carefully loading seven out of eight components
from locations that span two cache lines each and one component from the desired offset.
This enables a one-instruction oblivious access to an aligned array of size 14 x 64 bytes =
896 bytes, as outlined in FIG 4. This primitive is modified to efficiently scan arrays of
arbitrary size and form.

[0041] FIG. 4 shows obliviously and efficiently reading 4 bytes (32 bits) from an
896-byte memory region (e.g., an array 404) using an vpgatherdd instruction. FIG. 4
shows 32-bit integer array 404 and cache line 402. The 4 bytes of interest are loaded into
the last component of the 256-bit vector (i.e., C7), all other components (i.e., C0—C6) are
loaded with 4-byte values that span two cache lines in the target memory region. This way,
the processor will always access 14 different cache lines (two for each component in CO—
C6). At the same time, C7 is loaded from one of these 14 cache lines. An attacker who is
only able to observe memory accesses at cache line-granularity is, depending on the actual
hardware implementation, unlikely to be able learn from which cache line in the array C7
was loaded. This is because any cache line that C7 may be read from is necessarily
accessed beforehand for one of the “dummy” components CO—C6. Thus, the read access
corresponding to C7 is very likely to be served from the processor core’s private cache.
Reasons why the read corresponding to C7 may not be served from that cache include
specific hardware implementations that do not fill vector registers in a top to bottom (i.e.,
going from CO to C7). In this case, another component than C7 may be used to perform
the secret read, e.g., CO when the vector register is filled in a bottom to top manner.

As stated above, this technique can be used to obliviously read any 4 bytes out of a cache
line-aligned 896-byte array with one instruction. Given this primitive, which we call
oget4 896(), and omove(), one can create a function oget4() that obliviously reads 4 bytes
from an array of arbitrary length. For example, the array is divided into cache line-aligned
blocks of 896 bytes. There may be a head block and a tail block containing less bytes.
Oget4 896() is iteratively used to obliviously read 4 bytes from each of the 896-byte

blocks. Omove() is used to obliviously extract the values of interest from C7. In case a

10

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

head block or a tail block with less than 896 bytes exists, a variant of oget4 896() is
applied where some of the components CO—C6 are loaded from the same location. For
example, a 100 bytes long array necessarily spans two 04-byte cache lines. By loading all
CO0—C6 from the boundary of these two cache lines, C7 can be obliviously read from any
of these two cache lines.

In case more than 4 bytes are to be read from an array, the method is further refined by
also using C1—C6 for loading secrets. For example, a function oget8 768() that
obliviously reads 8 bytes out of a cache line-aligned 768-byte array is created by using
CO0—CS5 for dummy accesses and C6 and C7 for secret accesses. In the extreme case, a
function oget56 128() is created where the only dummy access comes from CO. These
variations are combinable to efficiently and obliviously read arbitrary data from arrays of
arbitrary size. It is also possible to use the same approach to efficiently and obliviously
write to elements of an array. This is achieved by using the vpgatherdd instruction for
reading and a similar instruction for writing.

[0042] Oblivious sorting is implemented by passing the elements to be sorted
through a sorting network of carefully arranged compare-and-swap functions. Given an
input size n, the sorting network layout is fixed and, hence, the memory accesses fed to the
functions in each layer of the network depend only on n and not the content of the array
(as opposed to, e.g., quicksort). Hence, a memory trace of the sorting operation is
simulated using public parameter n and fixed element size. Optimal sorting networks are
found to incur high costs. As a result, a Batcher’s sorting network with running time of
O(n(logn)?) is used in practice. The oblivious primitives include a generic implementation
of Batcher’s sort for shuffling the data as well as re-ordering input instances to allow for
efficient (algorithm-specific) access later on. The sorting network takes as input an array
of user-defined type and an oblivious compare-and-swap function for this type. The
oblivious compare-and-swap is implemented using the ogreater() and omove() primitives
described above in some examples. A Batcher's sorting network and the Batcher's sort are
well known and sometimes referred to as Batcher's odd-even mergesort. A Batcher's
sorting network and the Batcher's sort is a sequence of comparisons which is set in
advance, regardless of the outcome of previous comparisons. This independence of
comparison sequences enables parallel execution and implementation in hardware.
Optionally, some compare-and-swap functions are evaluated in parallel leading to
improved performance.

[0043] In an example, the machine learning process is configured to cluster a

11

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

plurality of examples into a plurality of clusters. The machine learning process is
configured to be data oblivious as described with reference to FIG. 5 which shows an
example (operations 500 to 510 of FIG. 5) of a public clustering process (i.e. one where an
adversary is able to find information about the examples being clustered and/or the
clusters) and an example of a data-oblivious clustering process (operations 512 to 524 of
FIG. 5).

[0044] In the public clustering process a processor maintains a list of cluster
centroids 500 one for each of a specified number of clusters, and randomly assigns 502 a
value to each centroid at the initialization of the process. Each of the data points to be
clustered is then assigned to the cluster which is closest to it (using a specified distance
metric such as a Euclidean distance in a multi-dimensional Euclidean space of the points),
or another type of distance metric. The centroids are then recomputed 506 and a check is
made to see if the clusters are stable 508. For example, the clusters are stable is the
centroids do not change very much as a result of the recompute operation 506. If the
clusters are not stable the process repeats from operation 504. If the clusters are stable the
process ends 510 and the clusters are output.

[0045] The clustering process described with reference to operations 500 to 510
leaks information. This is because an adversary is able to infer some point coordinates by
observing memory accesses (or disk accesses or network accesses) during the assignment
operation 504, or is able to infer which cluster a point is assigned to from the point
coordinates. For example, by observing computation of distance between the point and
every center during operation 504. Also, in some cases an adversary is able to find
intermediate cluster sizes and assignments by observing memory accesses (or disk
accesses or network accesses) during the recomputation operation 506 and/or operation
504,

[0046] The oblivious clustering process (operations 512 to 524) obliviously
maintains at the trusted execution environment a list of cluster centroids and next cluster
centroids 512. This is done by using oblivious assignment primitives such as those
described above. The next cluster centroids are the centroids of the next iteration of the
process. The oblivious clustering process treats the number of points n, the number of
coordinates in each point d, the number of clusters k and the number of iterations T as
being public.

[0047] The oblivious clustering process obliviously assigns centroid values by

shuffling the set of points which are to be clustered, and randomly selecting points from

12

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

the shuftled set to be the initial centroid values. The shuffling process is a private shuffle,
which re-orders the set of points randomly in a manner where the patterns of memory
accesses, patterns of network accesses and patterns of disk accesses (used during the
shuffling process) cannot be used to predict the set of points.

[0048] The oblivious clustering process uses an efficient streaming
implementation where, for each iteration, an outer loop 516 traverses all points once, and
there are successive inner loops 518, 520. Inner loop 518, for each point, maintains a
current minimal distance of the point and a centroid index. Inner loop 520, for each next
cluster, updates the centroid of the next cluster with a dummy or real update.

[0049] Procedure 518 is optionally carried out in parallel for each point instead of
in aloop 516.

[0050] If the number of iterations has reached a specified number T (where T is
public and is set by a user or preconfigured) the process ends 524 and the clusters are
output. Otherwise the process makes another iteration from step 516.

[0051] The “privacy overhead” of the process of operations 512 to 524, as
compared with the process of operations 500 to 510 primarily consists of oblivious
assignments to loop variables which are held in registers, and to the next centroids, which
are held in a cache. In particular, instead of updating statistics for only the centroid that the
point belongs to, dummy updates are made to each centroid (using the omoveEx()
primitive for example). In the computation of new centroids, a combination of ogreater()
and omoveEx() is used to handle the case of empty clusters. These changes do not affect
the asymptotical time complexity of the process.

[0052] In an example, the machine learning process is configured carry out data-
oblivious supervised learning of a predictive model as shown in FIG. 6 operations 600 to
614 side by side with a public supervised machine learning process (operations 600 to

614). The supervised learning comprises minimizing an objective function of the form:
n
minQQw) + > Lyt fu (%)
i=1

[0053] Which is expressed in words as the minimum of the loss L. summed over
training instances i, where the loss is a function L which takes as arguments the ground
truth value yi and the prediction produced by predictive model f given weights w and
training instance xi, plus a regularizer term (1 which acts on the weights to prevent

overfitting. Overfitting is where the predictive model learns from the training examples so

13

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

closely that it is unable to generalize to new examples which are different from the
training examples.

[0054] Public supervised machine learning processes access labeled training data
600, extract a subset of that labeled training data 602 and carry out supervised learning of
a predictive model 604. If the model has changed significantly 606 the process repeats
with another subset being extracted from the labeled training data 600 and the supervised
machine learning executed again. Once the predictive model becomes stable (does not
change significantly between iterations) the process ends 608 and the model is output.
However, an adversary is able to observe extraction of the subset at operation 602 and this
leaks information about the labeled training data.

[0055] In various examples herein, there is a data-oblivious supervised machine
learning process. Labeled training data 600 is securely shuffled 610 for example, using an
oblivious implementation of Batcher's sort (as described above) or a secret shuftle such a
random permutation of the training data hidden from an adversary. That is, rather than
extracting a subset of the training data as at step 602, the complete set of training data 600
is securely shuffled 610. An oblivious supervised learning process then learns a predictive
model by accessing substantially all instances of the training data once in order to make a
training update in respect of one of the training data instances. The term "substantially all"
is used to mean that the process accesses the majority of the training data instances so that
an adversary is unable to predict information about the training data by observing patterns
of access to the training data. If the training update resulted in a significant change 614 to
the predictive model, the process repeats from operation 612. This amortizes the cost of
the secure shuffle since the shuffle is performed once only. If a stopping condition is met
the process ends and the model is output 616. For example, the stopping condition is a
fixed number of iterations.

[0056] In some examples the predictive model is a support vector machine (SVM).
A support vector machine is a representation of examples as points in space, mapped so
that training examples (labeled as being in one of two or more categories) are divided by a
clear gap that is as wide as possible. New examples (which are not labeled) are predicted
to belong to one of the categories by mapping them into the space and seeing which side
of the gap they fall on. In some cases a support vector machine operates for more than
two categories by having two or more gaps in the space. In some cases a support vector
machine operates as a regressor rather than a classifier.

[0057] FIG. 7 is a flow diagram of a public process for training a support vector

14

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

machine (operations 702 to 710) shown side by side with a data oblivious process for
training a support vector machine. In this example the support vector machine is a binary
classifier but this method is also applicable to situations where there are more than two
classes, or where regression is used rather than classification. The process receives
training data 700 such as examples which are labeled according to two possible categories.
The public process initializes a weight 702 for each of the categories where the weights
influence how the support vector machine maps examples into the space. The public
process takes 704 a subset of the training data where the support vector machine (with the
initialized weights) mis-predicts the categories. It minimizes 706 an objective function
which has the form of the objective function described above and updates the weights 708
using the outcome of the minimization. The process repeats until a stopping condition is
met, such as a fixed number of epochs or convergence 710.

[0058] The process of operations 702 to 710 leaks confidential data because
operation 704, which takes a subset of the training data where the model mis-predicts,
reveals the state of the current model to the adversary. Also, the process of minimizing
the objective function involves patterns of memory accesses which reveal information
about the training data. The process of updating the weights 708 also involves patterns of
memory accesses which reveal information about the weights.

[0059] The private support vector machine process (operations 712 to 722)
shuffles the training data 700 as described above with reference to FIG. 6. It initializes the
weights 714 , sequentially reads a subset of shuffled data and rather than updating the
model only for mis-predicted examples (as at operation 704) it computes flags 716 in an
oblivious manner for each example in a subset, where the flags indicate whether a training
example is mis-predicted by the current model or not. The objective function is
minimized by making a pass over substantially all the training data in a subset 718 using
the flags to indicate whether to make a real or a dummy action so that patterns of memory
accesses, patterns of disk accesses and patterns of network accesses are masked. This is
done using oblivious primitives such as the ogreater(), omin() and omove() primitives
described above. The private process obliviously updates the weights at operation 720 for
example, using the oblivious assignment primitives described above. The process repeats
722 until a stopping condition is met, such as a fixed number of epochs. .

[0060] In some examples the trusted execution environment executes a neural
network in an oblivious manner, either to train the neural network or to use the neural

network at test time to compute predictions.

15

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

[0061] A neural network is a collection of nodes interconnected by edges and
where there are weights associated with the nodes and/or edges. During a training phase
the weights are updated by minimizing a training objective (such as that described above
for supervised learning in general) in the light of training examples. In various examples,
the trusted execution environment is configured to train one or more neural networks using
the data oblivious supervised learning scheme of FIG. 6 above where the training data is
securely shuffled. This ensures privacy of the training process as compared with neural
network training processes which operate on subsets of the training data without carrying
out a secure shuffle.

[0062] The trusted execution environment is configured to use data oblivious
processes where neural networks compute functions using piecewise approximations.
This is because it is recognized herein that neural network computation using piecewise
approximations leaks parameter values to an adversary. A piecewise approximation is a
description of a function which assumes the function is made up of an ordered sequence of
sections or segments where the individual segments or segments are individually described
in a simpler manner than the whole function. For example, neural networks often use
tanh-activation layers which are evaluated using piecewise approximations. The trusted
execution environment is configured to evaluate tanh-activation layers of neural networks
in a data oblivious manner by using a sequence of oblivious move primitives such as the
oblivious move primitive described above. The trusted execution environment is
configured to process neural networks which use piecewise approximations in a data
oblivious manner by using a sequence of oblivious move primitives. This does not affect
the complexity of the process and yet achieves privacy.

[0063] FIG 8 is a schematic diagram of a random decision tree 800 having a root
node 806 connected to a plurality of internal nodes 808 which terminate in leaf nodes 810.
During training the structure of the tree is learnt as well as parameters of binary tests to be
carried out at the internal nodes and data is accumulated at the leaf nodes. At test time, a
new example is presented to the root node and is passed from the root node to a node in
the next layer of internal nodes, according to the results of applying the new example to
the test associated with the root node. This process is repeated so that the example is
passed along a path through the tree according to the results of the tests. The example
eventually reaches a single leaf node and the data stored at the leaf node during training is
retrieved and used to compute a prediction. In the example of FIG. 8 a path 812 is

indicated by a dotted line from the root node 806 to a leaf node which is cross hatched of

16

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

tree 800.

[0064] The test time process of evaluating the decision tree leaks data to an
adversary about the structure of the tree, the parameters of the internal nodes, and about
the new example itself. To address this, the data center of FIGs 1 and 2 is configured to
use a decision tree evaluation process which has side channel protection. An example of
this type of process is described with reference to the second random decision tree 802 of
FIG. 8 and with reference to FIG. 9.

[0065] In order to conceal the path taken through the tree, the process traverses the
entire tree (or substantially the entire tree) so that substantially every node is touched once
for each new test time example. The term "substantially every" is used to mean that all or
almost all of the nodes are traversed so that an adversary cannot infer the path taken
through the tree by observing patterns of memory accesses. The nature of the search path
taken can be depth first, breadth first, or a variation of these. For example, a depth first
path is indicated in tree 802 by the dotted line 814. It is found that using a breadth first
search direction in combination with an efficient array scanning technique is beneficial. In
particular, the process uses the optimized oget() primitive described above to efficiently
scan every level (or layer) of the tree while traversing it. (The second level of tree 802 has
cross hatched nodes in FIG. 8.) For this, the tree is laid out in memory in such a way that
each of its levels is stored as a coherent array of nodes. In summary the trusted execution
environment stores the decision tree as a plurality of arrays of nodes and evaluates the
decision tree by traversing the tree and scanning the arrays.

[0066] With reference to FIG. 9 a new test time example is input to the root node
of a random decision tree and at this current node 902 the trusted execution environment
accesses 904 learned parameter values for the current node from memory by using
oblivious primitives such as those described above. The trusted execution environment
evaluates 906 the new test time example with respect to a decision stump associated with
the current node using the accessed learned parameter values as part of the decision stump.
The decision stump is binary test. The evaluation of the decision stump is done using
oblivious primitives such as those described above. The trusted execution environment
obliviously updates a flag 908 to indicate whether the current node is on the true path
through the tree or not. The true path is the path such as path 812 which shows results of
evaluating the new test time example on the tree. In an optimized variant, the trusted
execution environment obliviously reads only one node from each level of the tree and

evaluates it.

17

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

[0067] The trusted execution environment checks 910 if there are more nodes in
the tree and if so it moves to the next node 912 according to a traversal strategy. Any
traversal strategy may be used such as depth first or breadth first. Once the trusted
execution environment moves to the next node at operation 912 it repeats the process from
operation 902 as the current node has now been updated. If there are no more nodes to
traverse the leaf label is returned 914 which is the index of the leaf node at the end of the
true evaluation path as indicated by the flag described above.

[0068] Operations 902 to 914 comprise a process 900 for obliviously evaluating a
decision tree and these operations are also used for evaluating directed acyclic graphs in
some examples. A directed acyclic graph is similar to a decision tree but with two or more
of the internal nodes merged together and is often used to form compact structures for use
on memory constrained devices.

[0069] The oblivious evaluation process 900 is repeated for multiple trees 916 (or
multiple directed acyclic graphs) in the case of random decision forests or decision
jungles.

[0070] The stored data associated with the indexed leaf nodes is obliviously
accessed 918 and obliviously aggregated 920 using the oblivious primitives described
above. One or more predictions computed from the aggregation of the accessed data is
then returned 922.

[0071] Asymptotically using oblivious RAM based techniques is more efficient
than traversing the whole tree. However, it is found that in practice, this comparison holds
only for very large trees and not for small and medium trees (less than 50,000 nodes)
because of the hidden constants in the asymptotical analysis that ignores them. In various
examples the trusted execution environment is configured to carry out data oblivious
matrix factorization. Matrix factorization is a process for taking a large matrix, which
may be sparsely filled, and computing two matrices from which the large matrix is
formed. This is useful in many application domains such as, recommender systems where
movies are recommended to users for example, topic models for finding topics that occur
in a document corpus, probabilistic latent semantic analysis (PLSA) and others. Because
the data used in matrix factorization is typically confidential data there is a need to provide
privacy-preserving systems such as the trusted execution environment of the data center
described in FIGs. 1 and 2, to execute matrix factorization.

[0072] Matrix factorization embeds users and items (or other data depending on

the application) into a latent vector space, such that the inner product of a user vector with

18

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

an item vector produces an estimate of the rating a user would assign to the item. For
example, FIG. 10 shows a matrix of users and movies 1000 where each row represents a
user, each column represents a movie, and each cell has either an observed rating
(indicated by small squares in FIG. 10) or a predicted rating. The predicted ratings are
used to propose novel movies to the users. A matrix factorization component 1002
computes a user matrix 1004 and a movie matrix 1006 from the matrix of users and
movies 1000. In the user matrix 1004 each row represents a user and each column is a
dimension in the latent vector space. Entries in the matrix indicate preferences of the
users with respect to the latent dimensions. In the movie matrix 1006 each row represents
a movie and each column is a dimension in the latent vector space. Entries in the matrix
indicate relevance of the movies with respect to the dimensions. While the individual
dimensions of the latent space are not assigned fixed meanings, empirically they often
correspond to interpretable properties of the items. For example, a latent dimension may
correspond to the level of action the movie contains. Therefore it is desired to use privacy
preserving systems to implement matrix factorization so as not to leak confidential data to
adversaries. Note that the examples about matrix factorization are described with
reference to users and items for the sake of example only. Other types of data are used in
some cases.

[0073] The matrix factorization component 1002 operates by computing a
minimization using gradient descent or any other suitable minimization process. The

minimization is of an objective function of the following form:
1 .
mlnMZ(ri,j — (uy, v;))? + regularizer term

[0074] which is expressed in words as minimize the regularized least squares on
the known ratings r compared with the predicted ratings where 7; ; denotes the rating given
by user i to movie j, where the predicted ratings are given by the inner product of the user
and movie profiles ui vj. Any suitable regularizer term is used which acts to keep the size
of each entry in the user profiles and movie profiles small.

[0075] The gradient descent process iteratively updates the component matrices U
and V based on the current prediction error on the input ratings. Iteration continues as
long as the error decreases or for a fixed number of iterations. The error e;; is computed
as the difference between the observed rating and the predicted rating 7; ; — (u;, v;) and the

user profile and the movie profile are updated in the opposite direction of the gradient as

follows

19

10

15

20

25

30

WO 2017/222902

PCT/US2017/037577

2 i

ut <y oy Z ey vj(t) — luf

t+1 t t
vj(+)<—vj()+ 14 zei,juf)—,uvf
J

Which is expressed in words as the next value of the user profile is computed from the
existing value of the user profile plus an update factor times the sum over movies rated by
this user of the movie rating errors times the corresponding movie profile minus a
regularizing factor times the existing user profile; and

the next value of the movie profile is computed from the existing value of the movie
profile plus an update factor times the sum over users who rated this movie of the user
rating errors times the corresponding user profile minus a regularizing factor times the
existing movie profile.

[0076] The update process reveals confidential information about which user-item
pairs appear in the input ratings. For example, assuming there is an indication of which
users have seen which movies, the update process reveals the popularity of each movie,
and the intersection of movie profiles between users, during the gradient update. A movie
profile is a row of the movie table 1006 and a user profile is a row of the user table 1004.
[0077] A data-oblivious matrix factorization process which uses a gradient descent
update process to compute the minimization described above, is now described with
reference to FIG. 11 and FIG. 12. The process assumes that the number of users, the
number of movies, the number of iterations of the gradient descent are public. The
process also assumes that the number of latent dimensions d and regularizer factors
A, p are public. This example is described for the case of movies and users for clarity.
However, the example is applicable to any two categories of items.

[0078] The trusted execution environment carries out a setup operation 1100 in
which data structures are allocated in memory and initialized as described in more detail
below. The data structures include at least an expanded user profile table 1202 (denoted by
symbol U herein), and an expanded movie profile table 1208 (denoted by symbol V
herein). Observed data 1200 comprising user, movie and rating observations is populated
into the data structures. The expanded user profile table 1202 is thought of as comprising

substantially all the user and movie profiles interleaved so that a user profile is followed

by the movie profiles required to update it. In practice the expanded user profile table

20

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

1202 comprises user tuples and rating tuples, and the expanded movie profile table 1208
comprises movie tuples and rating tuples. The tuples have the same form and size so that
changes in form and size are hidden from the adversary. The form is that each tuple
includes a user id, a movie id, a rating, and a vector of d values. For example, user tuples
arc of the form (i,0,0,ui) where i is the index of the user and ui is the user profile for user i.
The zeros indicate that there is no movie and no rating.

[0079] In the same way, the expanded movie profile table 1208 is thought of as
comprising substantially all the user and movie profiles interleaved so that a movie profile
is followed by the user profiles required to update it.

[0080] The interleaving is carefully arranged in the expanded user profile table so
that a single sequential scan of rows of an expanded user profile table finds a user tuples at
a fixed rate. The same type of interleaving is done in the expanded movie profile table so
that a single sequential scan of rows of an expanded movie profile table finds a movie
tuple at a fixed rate.

[0081] The interleaving (in the expanded user profile table) places user profiles of
users with many ratings interleaved with user profiles of users with few ratings. Similarly
the interleaving (in the expanded movie profile table) places movie profiles of movies with
many ratings interleaved with movie profiles of movies with few ratings. This careful
interleaving enables information to be hidden from an adversary during an extraction
process which is described in more detail below. The careful interleaving is computed in
an efficient oblivious manner as described in more detail later in this document.

[0082] The trusted execution environment obliviously computes 1102 a gradient
descent update operation for the user profiles using the equation above. This is done by
having the user profiles and the movie profiles in a single data structure (called an
expanded user profile table herein), and interleaving the user and movie profiles within
that data structure. The interleaving is done so that a single scan of the data structure,
which touches substantially all rows once, computes the update by making real or dummy
updates to each row using oblivious primitive operations. Because substantially all rows
are touched once the adversary can't find information from the scan about which user
profiles have actually been updated because he can't distinguish these from the dummy
updates. Also, because the user and movie profiles are together in a single data structure
the adversary can't observe which movie profiles are used to update which user profiles
(and vice versa) as is the case where the user and movie profiles are kept in separate data

structures. In a similar manner the movie profiles are updated obliviously 1104 and this

21

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

process optionally occurs in parallel with operation 1102.

[0083] The result of operation 1102 is that the expanded user profile table is
updated (denoted by symbol U) and has updated user profiles in it as well as movie
profiles. However, the expanded movie profile table still has the previous user profiles in
it. The trusted execution environment is therefore configured to obliviously extract 1106
the updated user profiles from the expanded user profile table and copy 1108 those
obliviously into the expanded movie profile table to produce an updated expanded movie
profile table 1206 (denoted by symbol U). Extraction is done by computing a single
sequential scan over the expanded user profile table so as to mask patterns which might
otherwise leak information. During the scan operations built from oblivious primitives
such as those described earlier in this document are used. It is not necessary to sort the
rows of the expanded user profile table so as to separate user profiles from movie profiles
and this is a significant benefit because oblivious sorting operations are highly expensive
in terms of time and memory resources. Because of the careful interleaving mentioned
above, the single sequential scan, which is acting to extract the user profiles from the
expanded table, spits out user profiles at a substantially fixed rate. Thus an adversary who
is looking at the pattern of outputs is unable to gain information such as "user A has rated

a larger number of movies than user B", or "user A has rated the most movies". The
number of extracted user profiles is n as n is the number of users. Extracted user profiles
are obliviously copied into the expanded movie profiles. Oblivious copying proceeds by
updating the expanded movie table in chunks of size n. Define ith chunk of an expanded
movie table to contain rows 1+(i-1)*n, 2+(i-1)*n,...,n + (i-1)*n. For ith chunk user
profiles are copied as follows: Each row in the copy is appended with a user field of the
same row in the ith chunk, the copy is then obliviously sorted, optionally in parallel, and
rows are duplicated such that the correct user profile is in the correct row of the expanded
movie table. Oblivious sorting here sorts n elements at a time (in chunks) which is much
more efficient than sorting whole expanded movie profile.

[0084] The trusted execution environment obliviously extracts 1110 the updated
movie profiles from the expanded movie profile table and obliviously copies 1112 those
into the expanded user profile table. This is done by computing sequential scans over the
expanded user profile table so as to mask patterns which might otherwise leak
information. During the scan operations built from oblivious primitives such as those

described earlier in this document are used. It is not necessary to sort the rows of the

22

10

15

20

25

WO 2017/222902 PCT/US2017/037577

expanded movie profile table so as to separate user profiles from movie profiles and this is
a significant benefit because oblivious sorting operations are highly expensive in terms of
time and memory resources. Similar oblivious copying is done for expanded user table.
[0085] If the fixed number of iterations has been reached at check 1114 the trusted
execution environment outputs encrypted user and movie tables 1004, 1006 after forming
those from their expanded versions. If the fixed number of iterations has not been reached
the process repeats from operation 1102.

[0086] The methods of FIGs. 11 and 12 are found empirically to give significantly
improved running times as compared with an alternative approach which carries out an
update using several sequential passes and synchronizes using a sorting network on the
whole data structure, which is global matrix of size M+n+m with M rows for ratings, n
rows for uses, and m rows for movies. Results are given in the table below where T is the

number of iterations and the values are in seconds.

T (number of iterations) Methods of FIGs 11 and 12 | Alternative method

1 8 14

10 27 67

20 49 123
[0087] A detailed example of the setup operation 1100 of FIG. 11 is now given.
[0088] The user and vector profiles are initialized, and the trusted execution

environment fills U and V using the input ratings. (1) The trusted execution environment
builds a sequence Lu (and symmetrically Lv) that, for every user, contains a pair of the
user id 1 and the count wi of the movies he has rated. To this end, the user ids are extracted
from the input ratings (discarding the other fields); the user ids are sorted obliviously and
rewritten sequentially in an oblivious manner, so that each entry is extended with a partial
count and a flag indicating whether the next user id changes; the trusted execution
environment sorts them again, this time by flag then user id, to obtain Lu as the top n
entries. (Directly outputting Lu during the sequential scan would reveal the counts.) For
instance, after the first sorting and rewriting, the entries may be of the form (1;1;L1);
(1,25 1), (1;3;,1); (2,15 L);...

[0089] (2) The trusted execution environment expands Ly (and symmetrically Lv)
into a sequence Iy of size M +n that includes, for every user i with wi ratings, one tuple

(i;0; L;k; £) for each k = 0..wi, such that the values £ are ordered by the interleaving

23

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

mentioned above and explained below in the section titled "equally-interleaved
expansion".

[0090] (3) The trusted execution environment constructs U with empty user and
rating profiles, as follows. The goal is to order the input ratings according to Ly. To this
end, the trusted execution environment extends each input rating with a user-rating
sequence number k = 1..wi, thereby producing M tuples (i, j, rij .k, 1), and appends those
to Iy. The tuples are sorted by i then k then rij, so that (i, 0, L, k, £) is directly followed by
(i,], rij .k, 1) for k = 1 ..wi; the trusted execution environment sequentially rewrites those

tuples so that they become (_, , , ,) directly followed by (i, j, rij ,k, 1); the trusted

[0091] (4) The trusted execution environment generates initial values for the user
and item profiles by scanning U and filling in ui and vj using two pseudo-random functions
(PRFs): one for uis and one for vijs. For each, user tuple (i, 0, 0, ui), the trusted execution
environment uses the first PRF on inputs (i-1)d +1,.. , id to generate d random numbers
that are normalized and written to ui. For each, rating tuple (i, j, rij ,vj), the trusted
execution environment uses the second PRF on inputs (j-1)d+1,.., jd to generate d random
numbers that are normalized and written to vj. The trusted execution environment then

uses the same two PRFs for V: the first one for rating tuples and the second one for item

tuples.

[0092] A detailed example of the update operation 1102 (or 1108) of FIG. 11 is
now given.

[0093] The trusted execution environment computes updated user profiles (and

symmetrically item profiles) in a single scan, reading each tuple of U (and symmetrically
V) and (always) rewriting its vector—that is, its last d values, storing ui for user tuples and
vj for rating tuples.

[0094] The trusted execution environment uses 4 loop variables u, 6, u°, and 6°
each holding a R? vector, to record partially-updated profiles for the current user and for
user [It is first explained how u and § are updated for the current user (i). During the
scan, upon reading a user tuple (i, 0, 0, ui), as is always the case for the first tuple, the
trusted execution environment sets u to u; and 8 to u; (1 — Ay) and overwrites u; (to hide
the fact that it scanned a user tuple). Upon reading a rating tuple (i, j, rij ,vj) for the current
user i, the trusted execution environment updates § to yv; (ri, i —{u vj)) + 6 and

overwrites vj with §. Hence, the last rating tuple (before the next user tuple) now stores the

24

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

updated profile uftﬂ) for the current user i.

[0095] Recall that the interleaving of users U splits the rating tuples for some
users. In such cases, if there are ratings left to scan, the running value & written to v;
(before scanning the next user) may not contain the updated profile. Accordingly the

trusted execution environment uses i°, u°

, and 6° to save the state of the split user while
the trusted execution environment processes the next user, and restores it later as it scans
the next rating tuple of the form (i°, j, 1i° ,vj). During the expansion of Ly at most one

user is split at a time so a single state copy suffices.

[0096] A detailed example of the extracting step (1104, 1110) of FIG. 11 is now
given.

[0097] The update leaves the values ugtﬂ) scattered within U (and similarly for
v within 7). The trusted execution environment extracts U from U in two steps: (2a)

J
the trusted execution environment rewrites all vectors (from the last to the first) to copy
the updated ugt“) profiles into all tuples with user index 1i; this scan is similar to the one
used in step (1), then (2b) the trusted execution environment makes a split of U in n
chunks of size (M+n)/n, it reads only the first and the last tuples of each chunk, and write
one user profile. This step relies on a preliminary re-ordering and interleaving of users,
such that the ith chunk of tuples always contains (a copy of) a user profile, and all n user
profiles can be collected by reading only 2n tuples of U (details of the expansion
properties that are used here are described in the section "equally-interleaved expansion"

below).

[0098] A detailed example of the copying operation 1106 (or 1112) of FIG. 11 is
now given.
[0099] The trusted execution environment propagates the updated user profiles

U®D to the rating tuples in ¥, which still carry (multiple copies of) the user profiles U®.
The trusted execution environment updates V sequentially in chunks of size n, that is, we
first update the first n rows of V, then rows n+1 to 2n and so on until all V is updated, each
time copying from the same n user profiles of UV, as follows. (The exact chunk size is
irrelevant, but n is asymptotically optimal.)

[00100] Recall that each rating tuple of ¥ is of the form (i, j, rij , uf, £vj) where i #
0 and ¢ indicates the interleaved position of the tuple in V. To each chunk of V, the

trusted execution environment appends the profiles of UtV extended with dummy values,

25

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

of the form (i, 0,_, uftﬂ),_); the trusted execution environment sorts those 2n tuples by i

then j, so that each tuple from U immediately precedes tuples from (the chunk of) ¥

(t+1)

whose user profile must be updated by u; ; the trusted execution environment

performs all updates by a linear rewriting; it sorts again by €, and keeps the first n tuples.
Finally, V&V is the concatenation of those updated chunks.

[00101] Equally-interleaved expansion

[00102] Detail about how to obliviously and efficiently compute the interleaving in
the expanded user profile and expanded movie profile tables is now given.

[00103] A weighted list L is a sequence of pairs (i;wi) with n elements i and integer
weights wi = 1.

[00104] An expansion I of L is a sequence of elements of length).} w; such that
every element i occurs exactly wi times.

[00105] Let @ = Y, w; /n be the average weight of L and the jth chunk of I be the
sub-sequence of [a] elements I (;_1)g11, --» I}ja.

[00106] I equally interleaves L when all its elements can be collected by selecting
one element from each chunk.

[00107] For example, for L = (a,4), (b,1), (c,1), every chunk has a = 2 elements.
The expansion I = a,b,a,c.a,a equally interleaves L, as its elements a, b, and ¢ can be
chosen from its third, first, and second chunks, respectively. The expansion I' = a,a,a,ab,c
does not.

[00108] An efficient method for generating equal interleavings is now described.
Since it is used as an oblivious building block, the trusted execution environments ensures
that it accesses L, I and intermediate data structures in a manner that depends only on n
and M = Y w;, not on the individual weights. (In matrix factorization, M is the total
number of input ratings.) Note that the expansions do not involve padding, as the trusted
execution environment does not require that copies of the same element are adjacent in
this process).

[00109] Given a weighted list L, element i is heavy when w; > a, and light
otherwise. The main idea is to put at most one light element in every chunk, filling the rest
with heavy elements. The trusted execution environment proceeds in two steps: (1) reorder
L so that each heavy element is followed by light elements that compensate for it; (2)
sequentially produce chunks containing copies of one or two elements.

[00110] Step 1: Assume L is sorted by decreasing weights (w; > w;, 4 fori €

26

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

[1,m—1]), and b is its last heavy element (w, = a > wy.,). Let §; be the sum of
differences defined as ¥, je[;,1](w; — @) for heavy elements and Y je[p+1,7(@ — w;) for light
elements. Let S be L (obliviously) sorted by &;, breaking ties in favor of higher element
indices. This does not yet guarantee that lights elements appear after the heavy element
they compensate for. To this end, the trusted execution environment scans S starting from
its last element (which is always the lightest), swapping any light element followed by a
heavy element (so that, eventually, the first element is the heaviest).

[00111] Step 2: The trusted execution environment is configured to produce I
sequentially, using two loop variables: k, the latest heavy element read so far; and w, the
remaining number of copies of k to place in I. The trusted execution environment
repeatedly reads an element from the re-ordered list and produces a chunk of elements. For
the first element ki, it produces a copies of ki, and sets k = kiand w = wy, — a. For
each light element ki, the trusted execution environment produces wy, copies of ki and a —
wy, copies of k, and it decrements w by a@ —wy, . For each heavy element ki, the trusted
execution environment produces w copies of k and @ — w copies of ki, and it sets k = ki
andw = wy, —(a—w).

[00112] Continuing with the example sequence L above, a is heavy, b and ¢ are
light, and 6, = 2, 8, = 1, and 6. = 2. Sorting L by & yields (b,1), (a,4), (c,1). Swapping
heavy and light elements yields (a,4), (b,1), (c,1) and produces the expansion I =
a,ab.ac.a.

[00113] FIG. 13 illustrates various components of an exemplary computing-based
device 1300 which are implemented as any form of a computing and/or electronic device,
and in which embodiments of a computation unit of a data center such as the data center of
FIG. 1 or FIG. 2 are implemented in some examples.

[00114] Computing-based device 1300 comprises one or more processors 1302
which are microprocessors, controllers or any other suitable type of processors for
processing computer executable instructions to control the operation of the device in order
to form part of a data center which gives privacy-preserving machine learning services. In
some examples, for example where a system on a chip architecture is used, the processors
1302 include one or more fixed function blocks (also referred to as accelerators) which
implement a part of the method of any of FIGs. 3 to 12 in hardware (rather than software
or firmware). Platform software comprising an operating system 1304 or any other

suitable platform software is provided at the computing-based device to enable application

27

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

software 1306 to be executed on the device. At least one of the processors 1302 is
configured to implement a processor protected memory region at memory 1308
comprising trusted execution environment 100. Computer executable instructions are
stored at memory 1308 to implement data uploader 104 and code loader 122.

[00115] The computer executable instructions are provided using any computer-
readable media that is accessible by computing based device 1300. Computer-readable
media includes, for example, computer storage media such as memory 1308 and
communications media. Computer storage media, such as memory 1308, includes volatile
and non-volatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data
structures, program modules or the like. Computer storage media includes, but is not
limited to, random access memory (RAM), read only memory (ROM), erasable
programmable read only memory (EPROM), electronic erasable programmable read only
memory (EEPROM), flash memory or other memory technology, compact disc read only
memory (CD-ROM), digital versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any
other non-transmission medium that is used to store information for access by a computing
device. In contrast, communication media embody computer readable instructions, data
structures, program modules, or the like in a modulated data signal, such as a carrier wave,
or other transport mechanism. As defined herein, computer storage media does not
include communication media. Therefore, a computer storage medium should not be
interpreted to be a propagating signal per se. Although the computer storage media
(memory 1308) is shown within the computing-based device 1300 it will be appreciated
that the storage is, in some examples, distributed or located remotely and accessed via a
network or other communication link (e.g. using communication interface 1310).

[00116] The computing-based device 1300 also comprises an input/output
controller 1312 arranged to output display information to an optional display device 1314
which may be separate from or integral to the computing-based device 1300. The display
information may provide a graphical user interface to display machine learning results for
example. The input/output controller 1312 is also arranged to receive and process input
from one or more devices, such as a user input device 1316 (e.g. a mouse, keyboard,
camera, microphone or other sensor). In some examples the user input device 1316
detects voice input, user gestures or other user actions and provides a natural user interface

(NUI). This user input may be used to specify training data to be used, set machine

28

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

learning parameters, access machine learning results and for other purposes. In an
embodiment the display device 1314 also acts as the user input device 1316 if it is a touch
sensitive display device. The input/output controller 1312 outputs data to devices other
than the display device in some examples, e.g. a locally connected printing device.

[00117] Any of the input/output controller 1312, display device 1314 and the user
input device 1316 may comprise natural user interface (NUI) technology which enables a
user to interact with the computing-based device in a natural manner, free from artificial
constraints imposed by input devices such as mice, keyboards, remote controls and the
like. Examples of NUI technology that are provided in some examples include but are not
limited to those relying on voice and/or speech recognition, touch and/or stylus
recognition (touch sensitive displays), gesture recognition both on screen and adjacent to
the screen, air gestures, head and eye tracking, voice and speech, vision, touch, gestures,
and machine intelligence. Other examples of NUI technology that are used in some
examples include intention and goal understanding systems, motion gesture detection
systems using depth cameras (such as stereoscopic camera systems, infrared camera
systems, red green blue (rgb) camera systems and combinations of these), motion gesture
detection using accelerometers/gyroscopes, facial recognition, three dimensional (3D)
displays, head, eye and gaze tracking, immersive augmented reality and virtual reality
systems and technologies for sensing brain activity using electric field sensing electrodes
(electro encephalogram (EEG) and related methods).

[00118] Alternatively or in addition to the other examples described herein,

examples include any combination of the following:

[00119] A multi-party privacy-preserving machine learning system comprising;
[00120] a trusted execution environment comprising at least one protected memory
region;

[00121] an code loader which loads machine learning code, received from at least

one of the parties, into the protected memory region;

[00122] a data uploader which uploads confidential data, received from at least one
of the parties, to the protected memory region;

[00123] where the trusted execution environment executes the machine learning
code using a data-oblivious procedure to process the confidential data and return the result
to at least one of the parties, where a data-oblivious procedure is a process where any
patterns of memory accesses, patterns of disk accesses and patterns of network accesses

are such that the confidential data cannot be predicted from the patterns.

29

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

[00124] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment executes the machine learning code
either to train a machine learning system or to use an already trained machine learning
system to generate predictions.

[00125] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment implements the data-oblivious procedure
using oblivious random access memory to access the confidential data, and wherein the
machine learning code is adapted to use the oblivious random access memory.

[00126] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment implements the data-oblivious procedure
using machine learning code which is data-oblivious.

[00127] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment implements the data-oblivious procedure
using combinations of one or more data oblivious primitives, at least one of the data-
oblivious primitives being an operation to access an array by scanning the array at cache-
line granularity rather than at element or byte granularity. For example, by using vector
instructions

[00128] The multi-party privacy preserving machine learning system described
above wherein a vector operation is used to implement the scanning of the array at cache-
line granularity.

[00129] The multi-party privacy-preserving machine learning system described
above where the received data comprises labeled training data, and wherein the data
uploader or the trusted execution environment is configured to securely shuffle the labeled
training data prior to execution of the machine learning code.

[00130] The multi-party privacy-preserving machine learning system described
above wherein the secure shuffle comprises an oblivious implementation of a sorting
process or a random permutation of the training data hidden from an adversary.

[00131] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment uses a data-oblivious procedure which
iteratively computes centroids of clusters of data.

[00132] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment uses a data-oblivious procedure which
iteratively computes weights of a support vector machine.

[00133] The multi-party privacy-preserving machine learning system described

30

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

above wherein the trusted execution environment uses a data-oblivious procedure which
computes a piece-wise approximation of a neural network transformation.

[00134] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment uses a data-oblivious procedure which
computes an evaluation of a decision tree.

[00135] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment stores the decision tree as a plurality of
arrays of nodes and evaluates the decision tree by traversing the tree and scanning the
arrays.

[00136] The multi-party privacy-preserving machine learning system described
above wherein the trusted execution environment uses a data-oblivious procedure which
computes a matrix factorization by obliviously scanning at least one matrix comprising
rows of user data and rows of item data, the rows being interleaved such that a scan of a
column of the matrix outputs data for an individual user at a specified rate.

[00137] A method of multi-party privacy-preserving machine learning comprising:
[00138] loading machine learning code, received from at least one of the parties,
into a protected memory region at a trusted execution environment;

[00139] uploading confidential data, received from at least one of the parties, to the
protected memory region;

[00140] executing the machine learning code in the trusted execution environment
using a data-oblivious procedure to process the confidential data and return the result to at
least one of the parties, where a data-oblivious procedure is a process where any patterns
of memory accesses, patterns of disk accesses and patterns of network accesses are such
that the confidential data cannot be predicted from the patterns.

[00141] The multi-party privacy-preserving machine learning method described
above comprising securely shuffling the confidential data in the protected memory region.
[00142] The multi-party privacy-preserving machine learning method described
above comprising executing the machine learning code as either a training process or a test
time process.

[00143] The multi-party privacy-preserving machine learning method described
above comprising implementing the data-oblivious procedure using oblivious random
access memory to access the confidential data, and wherein the machine learning code is
adapted to use the oblivious random access memory.

[00144] The multi-party privacy-preserving machine learning method described

31

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

above comprising implementing the data-oblivious procedure using machine learning code
which is data-oblivious.

[00145] A multi-party privacy-preserving machine learning system comprising:
[00146] means for loading machine learning code, received from at least one of the
parties, into a protected memory region at an trusted execution environment;

[00147] means for uploading confidential data, received from at least one of the
parties, to the protected memory region and securely shuffling the confidential data in the
protected memory region;

[00148] means for executing the machine learning code using a data-oblivious
procedure to process the confidential data and return the result to at least one of the
parties, where a data-oblivious procedure is a process where any patterns of memory
accesses, patterns of disk accesses and patterns of network accesses are such that the
confidential data cannot be predicted from the patterns.

[00149] For example, the code loader 122 such as a web server or other computing
entity with instructions to receive machine learning code and store that in a protected
memory region constitutes exemplary means for loading machine learning code, received
from at least one of the parties, into a protected memory region at an trusted execution
environment. For example, the data uploader 104 such as a web server or other computing
entity with instructions to access data, shuffle and store that data in a protected memory
region constitutes exemplary means for uploading confidential data, received from at least
one of the parties, to the protected memory region and securely shuffling the confidential
data in the protected memory region.

[00150] For example the operations in the flow diagrams, or the processor 1302
when programmed to execute the operations illustrated in the flow diagrams constitute
means for executing the machine learning code using a data-oblivious procedure to
process the confidential data and return the result to at least one of the parties, where a
data-oblivious procedure is a process where any patterns of memory accesses, patterns of
disk accesses and patterns of network accesses are such that the confidential data cannot
be predicted from the patterns.

[00151] The term 'computer' or 'computing-based device' is used herein to refer to
any device with processing capability such that it executes instructions. Those skilled in
the art will realize that such processing capabilities are incorporated into many different
devices and therefore the terms 'computer' and 'computing-based device' each include

personal computers (PCs), servers, mobile telephones (including smart phones), tablet

32

10

15

20

25

30

WO 2017/222902 PCT/US2017/037577

computers, set-top boxes, media players, games consoles, personal digital assistants,
wearable computers, and many other devices.

[00152] The methods described herein are performed, in some examples, by
software in machine readable form on a tangible storage medium e.g. in the form of a
computer program comprising computer program code means adapted to perform all the
operations of one or more of the methods described herein when the program is run on a
computer and where the computer program may be embodied on a computer readable
medium. The software is suitable for execution on a parallel processor or a serial
processor such that the method operations may be carried out in any suitable order, or
simultaneously.

[00153] This acknowledges that software is a wvaluable, separately tradable
commodity. It is intended to encompass software, which runs on or controls “dumb” or
standard hardware, to carry out the desired functions. It is also intended to encompass
software which “describes” or defines the configuration of hardware, such as HDL
(hardware description language) software, as is used for designing silicon chips, or for
configuring universal programmable chips, to carry out desired functions.

[00154] Those skilled in the art will realize that storage devices utilized to store
program instructions are optionally distributed across a network. For example, a remote
computer is able to store an example of the process described as software. A local or
terminal computer is able to access the remote computer and download a part or all of the
software to run the program. Alternatively, the local computer may download pieces of the
software as needed, or execute some software instructions at the local terminal and some
at the remote computer (or computer network). Those skilled in the art will also realize
that by utilizing conventional techniques known to those skilled in the art that all, or a
portion of the software instructions may be carried out by a dedicated circuit, such as a
digital signal processor (DSP), programmable logic array, or the like.

[00155] Any range or device value given herein may be extended or altered without
losing the effect sought, as will be apparent to the skilled person.

[00156] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as
example forms of implementing the claims.

[00157] It will be understood that the benefits and advantages described above may

33

10

15

20

WO 2017/222902 PCT/US2017/037577

relate to one embodiment or may relate to several embodiments. The embodiments are not
limited to those that solve any or all of the stated problems or those that have any or all of
the stated benefits and advantages. It will further be understood that reference to 'an' item
refers to one or more of those items.

[00158] The operations of the methods described herein may be carried out in any
suitable order, or simultaneously where appropriate. Additionally, individual blocks may
be deleted from any of the methods without departing from the scope of the subject matter
described herein. Aspects of any of the examples described above may be combined with
aspects of any of the other examples described to form further examples without losing the
effect sought.

[00159] The term 'comprising' is used herein to mean including the method blocks
or elements identified, but that such blocks or elements do not comprise an exclusive list
and a method or apparatus may contain additional blocks or elements.

[00160] The term ‘subset’ is used herein to refer to a proper subset such that a
subset of a set does not comprise all the elements of the set (i.e. at least one of the
elements of the set is missing from the subset).

[00161] It will be understood that the above description is given by way of example
only and that various modifications may be made by those skilled in the art. The above
specification, examples and data provide a complete description of the structure and use of
exemplary embodiments. Although various embodiments have been described above with
a certain degree of particularity, or with reference to one or more individual embodiments,
those skilled in the art could make numerous alterations to the disclosed embodiments

without departing from the spirit or scope of this specification.

34

WO 2017/222902 PCT/US2017/037577

CLAIMS

1. A multi-party privacy-preserving machine learning system comprising:

a trusted execution environment comprising at least one protected memory region;

a code loader which loads machine learning code, received from at least one of the parties,
into the protected memory region; and

a data uploader which uploads confidential data, received from at least one of the parties,
to the protected memory region;

where the trusted execution environment executes the machine learning code using a data-
oblivious procedure to process the confidential data and return the result to at least one of
the parties, where a data-oblivious procedure is a process where any patterns of memory
accesses, patterns of disk accesses and patterns of network accesses are such that the
confidential data cannot be predicted from the patterns.

2. The multi-party privacy-preserving machine learning system of claim 1
wherein the trusted execution environment executes the machine learning code either to
train a machine learning system or to use an already trained machine learning system to
generate predictions.

3. The multi-party privacy-preserving machine learning system of claim 1 or
claim 2 wherein the trusted execution environment implements the data-oblivious
procedure using oblivious random access memory to access the confidential data, and
wherein the machine learning code is adapted to use the oblivious random access memory.
4. The multi-party privacy-preserving machine learning system of claim 1 or
claim 2 wherein the trusted execution environment implements the data-oblivious
procedure using machine learning code which is data-oblivious.

5. The multi-party privacy-preserving machine learning system of any of
claims 1, 2 and 4 wherein the trusted execution environment implements the data-
oblivious procedure using combinations of one or more data oblivious primitives, at least
one of the data-oblivious primitives being an operation to access an array by scanning the
array at cache-line granularity rather than at element or byte granularity. For example, by
using vector instructions.

6. The multi-party privacy-preserving machine learning system of claim 5
wherein a vector operation is used to implement the scanning of the array at cache-line
granularity.

7. The multi-party privacy-preserving machine learning system of claim any

preceding claim where the received data comprises labeled training data, and wherein the

35

WO 2017/222902 PCT/US2017/037577

data uploader or the trusted execution environment is configured to securely shuffle the
labeled training data prior to execution of the machine learning code.

8. The multi-party privacy-preserving machine learning system of claim 7
wherein the secure shuffle comprises an oblivious implementation of a sorting process or a
random permutation of the training data hidden from an adversary.

9. The multi-party privacy-preserving machine learning system of any of
claims 1, 2 and 4 to 8 wherein the trusted execution environment uses a data-oblivious
procedure which iteratively computes centroids of clusters of data.

10. The multi-party privacy-preserving machine learning system of any of
claims 1, 2 and 4 to 8 wherein the trusted execution environment uses a data-oblivious
procedure which iteratively computes weights of a support vector machine.

11. The multi-party privacy-preserving machine learning system of any of
claims 1, 2 and 4 to 8 wherein the trusted execution environment uses a data-oblivious
procedure which computes a piece-wise approximation of a neural network
transformation.

12. The multi-party privacy-preserving machine learning system of any of
claims 1, 2 and 4 to 8 wherein the trusted execution environment uses a data-oblivious
procedure which computes an evaluation of a decision tree.

13. The multi-party privacy-preserving machine learning system of claim 12
wherein the trusted execution environment stores the decision tree as a plurality of arrays
of nodes and evaluates the decision tree by traversing the tree and scanning the arrays.

14. The multi-party privacy-preserving machine learning system of any of
claims 1, 2 and 4 to 8 wherein the trusted execution environment uses a data-oblivious
procedure which computes a matrix factorization by obliviously scanning at least one
matrix comprising rows of user data and rows of item data, the rows being interleaved
such that a scan of a column of the matrix outputs data for an individual user at a specified
rate.

15. A method at a multi-party privacy-preserving machine learning system
comprising:

loading machine learning code, received from at least one of the parties, into a protected
memory region at a trusted execution environment;

uploading confidential data, received from at least one of the parties, to the protected
memory region; and

executing the machine learning code in the trusted execution environment using a data-

36

WO 2017/222902 PCT/US2017/037577

oblivious procedure to process the confidential data and return the result to at least one of
the parties, where a data-oblivious procedure is a process where any patterns of memory
accesses, patterns of disk accesses and patterns of network accesses are such that the

confidential data cannot be predicted from the patterns.

37

WO 2017/222902

1/13

PCT/US2017/037577

106

/_/

DATA CENTER WITH PRIVACY

TRUSTED EXECUTION ENVIRONMENT 100

DATA-OBLIVIOUS MACHINE

LEARNING
102
DATA UPLOADER 104 CODE LOADER 122
TRAINED A SERVER| |B SERVER TRAINED
MACHINE 110 108 MACHINE
LEARNING LEARNING
SYSTEM SYSTEM

116

116

COMMUNICATIONS
NETWORK 112

WO 2017/222902 PCT/US2017/037577

2/13

~

\ RUSTED EXECUTION
ENVIRONMENT
ﬂ MACHINE LEARNING

T 00

A,

_ OPERATING SYSTEMS .

106

200

PATIENT DATA

202
202

FIG. 2

WO 2017/222902 PCT/US2017/037577

3/13

RECEIVE DATA-OBLIVIOUS MACHINE LEARNING REQUEST —~— 300

ALLOCATE RESOURCES AND CREATE TRUSTED EXECUTION
~— 302
ENVIRONMENT
Vv
ESTABLISH SECURE CHANNELS - 304
\
RECEIVE SECURE DATA UPLOADS —~— 306
WV
RECEIVE KEYS —~— 308
Vv
314
DECRYPT DATA —~— 310 8
312

4 / MACHINE LEARNING

WITH SIDE CHANNEL

D
EXECUTE MACHINE LEARNING TRAINING OR TEST |+ 7 PROTECTION

PHASE VAR

OBLIVIOUS RANDOM
3 ACCESS MEMORY

ENCRYPTED RESULT OUTPUT —~— 318 \(

FIG. 3

316

WO 2017/222902 PCT/US2017/037577

4/13

> £

402

FIG. 4

WO 2017/222902

PCT/US2017/037577

STABLE?

Y
510

FIG. 5

5/13
OBLIVIOUSLY MAINTAIN LIST
MAINTAIN LIST OF CLUSTER | _ 500 OF CLUSTER CENTROIDS | 512
CENTROIDS AND NEXT CLUSTER
CENTROIDS
VvV P
E’;E?g(’;"gvﬁi'sg L~ 902 OBLIVIOUSLY ASSIGN 514
CENTROID VALUES FROM P~
SHUFFLED DATA
vV
% 516
A /\/
_| ASSIGNEACHPOINTTO | 504 PASS OVER EACH CENTROID AND
CLOSEST CLUSTER — OBLIVIOUSLY RECOMPUTE IT
Y FOR EACH POINT:
505 MAINTAIN CURRENT
CENTROID INDEX
520
/\/
FOR EACH NEXT CLUSTER
UPDATE CENTROID WITH
L J A DUMMY OR REAL UPDATE
508 599
CLUSTERS NUMBER OF

TERATIONS = T7

WO 2017/222902 PCT/US2017/037577

6/13
LABELLED 600 LABELLED 600
TRAINING DATA TRAINING DATA
N
EXTRACT SECURE 610
> ~— 602 ~—
SUBSET SHUFFLE
A\ g
SUPERVISED LEARNING OF SUPERVISED LEARNING OF
~_- 604 612
PREDICTIVE MODEL PREDICTIVE MODEL BY |
LINEARLY ACCESSING ALL
INSTANCES ONCE
614

(B~ 508

FIG. 6

WO 2017/222902

702

fJ

7/13

PCT/US2017/037577

INITIALISE WEIGHTS

I\

TAKE SUBSET OF DATA
WHERE MODEL MIS-
PREDICTS

L~ 712

714

MINIMIZE OBJECTIVE
FUNCTION

UPDATE WEIGHTS

REPEAT UNTIL
CONVERGENCE

~—716

718

720

RECEIVE TRAINING DATA P~ 700
N A\
SHUFFLE DATA
N
INITIALISE WEIGHTS
Y g
704
N\ COMPUTE OBLIVIOUS
FLAGS FOR A SUBSET OF
SHUFFLED DATA
N
L~ 06 MINIMIZE OBJECTIVE
FUNCTION BY PASSING
OVER ALL DATA IN A
SUBSET
N
708
OBLIVIOUSLY UPDATE
A WEIGHTS
710
N NUMBER OF

FIG. 7

TERATIONS = T7

722

WO 2017/222902 PCT/US2017/037577

8/13

FIG. 8

WO 2017/222902 PCT/US2017/037577

9/13

900

AT CURRENT NODE —~— 902

N

ACCESS LEARNED PARAMETER VALUES FOR THE
CURRENT NODE USING OBLIVIOUS PRIMITIVES

L 904

~N~

EVALUATE DECISION STUMP USING OBLIVIOUS
PRIMITIVES

—~~ 906

N~

OBLIVIOUSLY UPDATE FLAG —~—908

912
MOVE TO NEXT 910
— Y MORE NODES?
NODE
N
RETURN LEAF LABEL I~ 914

~

REPEAT FOR MULTIPLE TREES p~—916

OBLIVIOUSY ACCESS DATA STORED
AT LEAF LABELS

L~_ 918

~

OBLIVIOUSLY AGGREGATE ~— 920

RETURN PREDICTION ~— 922

FIG. 9

WO 2017/222902 PCT/US2017/037577

10/13
1 MovVIES M
1
]]
—~— 1000
]]
]
USERS []
]
N
[]]
]
N
N
MATRIX FACTORISATION COMPONENT —~— 1002

UsERS U MOVIES i

1 1004 1'l 006

FIG. 10

WO 2017/222902

Y

PCT/US2017/037577
11/13
SETuP 1100
UPDATE USER PROFILES
1102
OBLIVIOUSLY e
UPDATE MOVIE PROFILES
OBLIVIOUSLY _ 1104
EXTRACT UPDATED USER 1106
VALUES OBLIVIOUSLY
COPY UPDATED VALUES
INTO EXPANDED Movie _1108
TABLE OBLIVIOUSLY
EXTRACT UPDATED MOVIE |~ 1110
VALUES OBLIVIOUSLY
COPY INTO EXPANDED |~ 1112
USER TABLE OBLIVIOUSLY
STOPPING 1114
ONDITION MET?
Y
OUTPUT USER AND MOVIE |~ 1116

TABLES

FIG. 11

PCT/US2017/037577

WO 2017/222902

12/13

¢l Old

SANIL | F1vH3l|

371404d q

4O SFTANL DNV

374Nl G 938N

3do¥d v WaL| |-

3714d04d &

00cl

' 1 oNILYY

JRVEN
193sn

80¢l

(saL) A

Wiy

A

90cl

371404dd & 49391 |-

37140dd e 1439

N

r0cl

(s¥3sn) N

c0cl

!

!

MEMORY 1395 TRUSTED 1306
EXECUTION ~
OPERATING ENVIRONMENT APPLICATION
SYSTEM 100 SOFTWARE
DATA 104
UPLOADER CODE LOADER 122

WO 2017/222902 PCT/US2017/037577
13/13
1314
1302 1310 1312 -
| —~/ —~/ ~
PROCESSOR COMMUNICATION INPUT/OUTPUT — DisPLAY
INTERFACE CONTROLLER DEVICE

USER
INPUT
DEVICE

\\\\

1316

[, ~_1300

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/037577

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/60
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

6B, 6C

X US 2011/211692 Al (RAYKOVA MARIANA [US] ET
AL) 1 September 2011 (2011-09-01)
paragraphs [0056] - [0085]; figures 5, 6A,

X US 2012/233460 Al (KAMARA SENY F [US] ET
AL) 13 September 2012 (2012-09-13)
paragraphs [0015] - [0043]; figures 1, 2

1-15

1-15

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 July 2017

Date of mailing of the international search report

08/08/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Winkelbauer, Andreas

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/037577

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

VALERIA NIKOLAENKO ET AL:
"Privacy-Preserving Ridge Regression on
Hundreds of Millions of Records",
SECURITY AND PRIVACY (SP), 2013 IEEE
SYMPOSIUM ON, IEEE,

19 May 2013 (2013-05-19), pages 334-348,
XP032431333,

DOI: 10.1109/SP.2013.30

ISBN: 978-1-4673-6166-8

the whole document

US 20147007250 Al (STEFANOV EMIL [US] ET
AL) 2 January 2014 (2014-01-02)
paragraphs [0043] - [0064], [0171] -
[0175], [0284] - [0296]

1-15

1-15

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/037577
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011211692 Al 01-09-2011 US 2011211692 Al 01-09-2011
US 2013254532 Al 26-09-2013
US 2016044003 Al 11-02-2016
US 2017048208 Al 16-02-2017
US 2012233460 Al 13-09-2012 NONE
US 2014007250 Al 02-01-2014 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

