
US 20220129162A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0129162 A1 .

Faibish et al . (43) Pub . Date : Apr. 28 , 2022

(54) ADAPTIVE INLINE COMPRESSION (52) U.S. CI .
CPC

(71) Applicant : EMC IP Holding Company LLC ,
Hopkinton , MA (US)

GO6F 370608 (2013.01) ; G06F 37067
(2013.01) ; G06F 370653 (2013.01) ; G06F

37064 (2013.01)

(57) ABSTRACT
(72) Inventors : Sorin Faibish , Newton , MA (US) ; Ivan

Bassov , Brookline , MA (US) ; Istvan
Gonczi , Berkley , MA (US) ; Philippe
Armangau , Acton , MA (US) ; Vamsi K.
Vankamamidi , Hopkinton , MA (US)

(21) Appl . No .: 17 / 082,800
(22) Filed : Oct. 28 , 2020

A technique for managing data storage includes generating
entropy of blocks on a per - block basis and selectively
performing inline compression on blocks based at least in
part on their entropy . Entropy of a block provides a rough
measure of the block's compressibility . Thus , using per
block entropy enables a storage system to steer compression
decisions , e.g. , whether to compress and / or how much to
compress , flexibly and with high granularity , striking a
balance between throughput and storage efficiency .

Publication Classification
(51) Int . Ci .

G06F 3/06 (2006.01)

Host 1 Host 2 Host N - 110
100

10 IO 10 -112

Network
114

-120
Computing Node 120a

Communication Interface (s) 122 120b
116

Processor (s) 124

142 Memory 130

OC Cache 140

144

OO ... O
154

Deduplication Mgr
150 OD

Storage 180
152

DOD ... O COCO Adaptive
Compression Mgr

160

162

To Storage 180

Patent Application Publication Apr. 28 , 2022 Sheet 1 of 6 US 2022/0129162 A1

Host 1 Host 2 Host N 110
100

10 IO 10 4 112

Network
114

120

Computing Node 120a

Communication Interface (s) 122 -120b
116 Processor (s) 124

142 Memory 130
ODDOD0D0D0D ... O Cache 140

144

DDDDDDDD ... O
154

Deduplication Mgr
150 DD

Storage 180
152

OOO OOO ... O OD Adaptive
Compression Mgr

160

162

? ? 0

To Storage 180 FIG . 1

Patent Application Publication Apr. 28 , 2022 Sheet 2 of 6 US 2022/0129162 A1

160

HWM
- 224

Length
222

220 230

II . DDDDDDDD Compressor 210 DOOD

Selector 212

Compression
Level Selection
(CLS) 262

Per - Block
Entropy 242

Per - Batch Comp .
Result (CR) 252 Entropy

Calculator
240

Orchestrator 260
Batch

Calculator
250

FIG . 2

Patent Application Publication Apr. 28 , 2022 Sheet 3 of 6 US 2022/0129162 A1

160 HWM
- 224

Length
222 324

322
320 220 324b 322c 320c 230 za 0-00000100 OC II Compressor 210

Selector 212

CLS 262
Slow / High

B : Fast / Low
Back - Off ?

Per - Block
Entropy 242 Entropy

Calculator
240

Orchestrator 260
Batch

- Calculator
1 250 DE = 0.34

O E = 0.64
ZE = 0.95

FIG . 3A

HWM
224

Length
222

160
Treat blocks 370
based on CR of

blocks 360

M - N
Blocks 370

1st N Blocks
360

1st N Blocks
(Compressed)

360c 220 230

II . DDDDDDDD Compressor 210 0000

Selector 212
1 350 Batch

of M Blocks

CLS 262

1
| Entropy
| Calculator

240

Per - Batch
CR 252

Orchestrator 260
Batch

Calculator
250

FIG . 3B

Patent Application Publication Apr. 28 , 2022 Sheet 4 of 6 US 2022/0129162 A1

-410

420

STUSTUSSUUNNITINIUI ... INM -410

420

Decimated Entropy
242d Calculate

Entropy
410

FIG . 4

510
500

1 Monitor busyness (e.g. ,
based on queue length)

520

Busyness
T1 N Y

530 540

Process data for
compression on
per - block basis

Process data for
compression on
per - batch basis FIG . 5

Patent Application Publication Apr. 28 , 2022 Sheet 5 of 6 US 2022/0129162 A1

600 700

Process for compression on
per - block basis

Process for compression on
per - batch basis

610 710

Calculate entropy E of current
block

Identify M blocks in a current
batch

720

?

Compress 1st N blocks of
current batch , e.g. , using Slow /
High , yielding compression

result (CR)
620

E in
1st Rng , e.g. ,

E1 ?
-N

630
730

Y 2nd Rng ; use back - off
for current block CR < C1 (e.g. ,

10 %) 740

N

640
E in

1 st sub - rng ,
e.g. , >
E2 ?

Use back - off for rest
of batch -N

660
750

CR <
C2 , e.g.

50 % 2nd Sub - Rng : use
Slow / High for current

block

760
Y

N
Use Fast / Low for rest

of batch
650 770

1st Sub - Rng : use Fast /
Low for current block

Use Slow / High for rest
of batch

FIG . 6 FIG . 7

Patent Application Publication Apr. 28 , 2022 Sheet 6 of 6 US 2022/0129162 A1

800

8104 Receive data

850

820 Generate entropy values of respective
blocks of the data

830 Selectively compress the blocks of the
data based on the entropy values

840 Persist the data , including persisting
compressed blocks for at least some

of the data
FIG . 8

US 2022/0129162 A1 Apr. 28 , 2022
1

ADAPTIVE INLINE COMPRESSION

BACKGROUND
[0001] Data storage systems are arrangements of hardware
and software in which storage processors are coupled to
arrays of non - volatile storage devices , such as magnetic disk
drives , electronic flash drives , and / or optical drives . The
storage processors service storage requests , arriving from
host machines (" hosts ”) , which specify blocks , files , and / or
other data elements to be written , read , created , deleted , and
so forth . Software running on the storage processors man
ages incoming storage requests and performs various data
processing tasks to organize and secure the data elements on
the non - volatile storage devices .
[0002] Some storage systems improve efficiency by com
pressing data inline with write requests . For example , a
storage system receives a write request specifying data to be
written . The storage system arranges the data into blocks and
compresses the blocks prior to flushing them to disk . The
first storage to disk of the newly - arriving data is thus in the
form of compressed blocks . Later , when the system receives
a read request to access the same data , the system reads the
compressed blocks from disk , decompresses them , and
returns the decompressed data to the requestor .
[0003] Some storage systems that support inline compres
sion implement a back - off feature . Back - off temporarily
shuts down inline compression when the systems get too
busy . Inline compression can add greatly to the processing
load of a storage system and can thus prevent the system
from achieving desired throughput . Throughput is typically
measured as latency (response time to input / output (I / O)
requests) and / or IOPs (I / O’s per second) . A storage system
may detect or predict a drop in throughput and invoke the
back - off feature to correct or prevent the reduction in
service . Back - off effectively shuts down inline compression ,
such that the storage system no longer compresses blocks
and simply writes them to disk without compressing them .

[0006] Certain embodiments are directed to a method of
managing data storage . The method includes receiving data ,
generating entropy values of respective blocks of the data ,
selectively compressing the blocks of the data based on the
entropy values , and persisting the data , including persisting
compressed blocks for at least some of the data .
[0007] Other embodiments are directed to a computerized
apparatus constructed and arranged to perform a method of
managing data storage , such as the method described above .
Still other embodiments are directed to a computer program
product . The computer program product stores instructions
which , when executed on control circuitry of a computerized
apparatus , cause the computerized apparatus to perform a
method of managing data storage , such as the method
described above .
[0008] The foregoing summary is presented for illustrative
purposes to assist the reader in readily grasping example
features presented herein ; however , this summary is not
intended to set forth required elements or to limit embodi
ments hereof in any way . One should appreciate that the
above - described features can be combined in any manner
that makes technological sense , and that all such combina
tions are intended to be disclosed herein , regardless of
whether such combinations are identified explicitly or not .

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

a

SUMMARY

[0009] The foregoing and other features and advantages
will be apparent from the following description of particular
embodiments , as illustrated in the accompanying drawings ,
in which like reference characters refer to the same or
similar parts throughout the different views .
[0010] FIG . 1 is a block diagram of an example environ
ment in which embodiments of the improved technique can
be practiced .
[0011] FIG . 2 is a block diagram of an example adaptive
compression manager of FIG . 1 .
[0012] FIGS . 3A and 3B are respective block diagrams
showing the adaptive compression manager of FIG . 2
arranged for processing compression on a per - block basis
(FIG . 3A) and on a per - batch basis (FIG . 3B) .
[0013] FIG . 4 is a block diagram showing an example
arrangement for calculating entropy using byte - based deci
mation .
[0014] FIG . 5 is a flowchart showing an example method
of selectively performing data compression in the environ
ment of FIG . 1 .
[0015) FIG . 6 is a flowchart showing an example method
of performing compression on a per - block basis .
[0016] FIG . 7 is a flowchart showing an example method
of performing compression on a per - batch basis .
[0017] FIG . 8 is a flowchart showing an example method
of managing data storage in the environment of FIG . 1 .

a

a

a

[0004] Unfortunately , known back - off features tend to
operate in an all - or - none manner . Either no incoming blocks
are compressed , when a system is too busy , or all of them
are , when the system is not too busy . This all - or - none
operation can result in many highly - compressible blocks
remaining uncompressed . Although back - off helps to pre
serve throughput by stopping compression when systems get
busy , it typically does so at the expense of storage efficiency ,
as many opportunities to compress data are lost . Customers
increasingly demand both high throughput and high storage
efficiency . Thus , a more flexible approach is needed .
[0005] In contrast with the above - described arrangement ,
in which back - off is implemented as an all - or - none feature ,
an improved technique for managing data storage includes
generating entropy of blocks on a per - block basis and
selectively performing inline compression on blocks based
at least in part on their entropy . Entropy of a block can be
computed inexpensively and provides a rough measure of
the block's compressibility . Thus , using per - block entropy
enables a storage system to steer compression decisions ,
e.g. , whether to compress and / or how much to compress ,
flexibly and with high granularity , striking a balance
between throughput and storage efficiency .

DETAILED DESCRIPTION

[0018] Embodiments of the improved technique will now
be described . One should appreciate that such embodiments
are provided by way of example to illustrate certain features
and principles of the disclosure but are not intended to be
limiting .
[0019] An improved technique for managing data storage
includes generating entropy of blocks on a per - block basis
and selectively performing inline compression on blocks

US 2022/0129162 A1 Apr. 28 , 2022
2

> >

based at least in part on their entropy . Unlike prior back - off
solutions , which can sacrifice data reduction to maintain
high throughput , the improved technique can achieve a
better balance between both . For example , highly compress
ible blocks can be compressed , promoting storage efficiency ,
while uncompressible blocks can be skipped , preserving
high throughput . In some examples , a storage system sup
ports multiple levels of compression , e.g. , with a first level
providing lower compression but executing faster , and a
second level providing higher compression but executing
more slowly . In some examples , entropy values steer not
only decisions on whether to compress but also which level
of compression to use . Such examples provide an even finer
degree of granular control over the tradeoff between
throughput and storage efficiency .
[0020] FIG . 1 shows an example environment 100 in
which embodiments of the improved technique can be
practiced . As shown , multiple hosts 110 are arranged to
access a data storage appliance 116 over a network 114. The
data storage appliance 116 includes a computing node 120a
(also referred to as a “ node , ” “ storage processor , ” or “ SP ”)
and storage 180 , such as magnetic disk drives , electronic
flash drives , and / or the like . The data storage appliance 116
may include multiple nodes 120 (e.g. , a second node 120b) .
Multiple nodes 120 may be provided as circuit board assem
blies or blades , which plug into a chassis that encloses and
cools the nodes 120. The chassis has a backplane for
interconnecting the nodes 120 , and additional connections
may be made among nodes 120 using cables . In some
examples , the appliance 116 is part of a storage cluster , such
as one that contains any number of storage appliances 116 ,
where each appliance includes a pair of nodes 120 coupled
to shared storage devices . In some arrangements , a host
application runs directly on a node (or nodes) , such that
separate host machines 110 need not be present . No particu
lar hardware configuration is required , and any number of
nodes 120 may be provided , including a single node 120 , in
any arrangement , and the node or nodes 120 can be any type
of computing device capable of running software and pro
cessing host I / O's .
[0021] The network 114 may be any type of network or
combination of networks , such as a storage area network
(SAN) , a local area network (LAN) , a wide area network
(WAN) , the Internet , and / or some other type of network or
combination of networks , for example . In cases where hosts
110 are provided , such hosts 110 may connect to the SP 120a
using various technologies , such as Fibre Channel , iSCSI
(Internet small computer system interface) , NFS (network
file system) , and CIFS (common Internet file system) , for
example . As is known , Fibre Channel and iSCSI are block
based protocols , whereas NFS and CIFS are file - based
protocols . Each node 120 is configured to receive I / O
requests 112 according to block - based and / or file - based
protocols and to respond to such I / O requests 112 by reading
or writing the storage 180 .
[0022] As shown , the node 120a includes one or more
communication interfaces 122 , a set of processors 124 , and
memory 130. The communication interfaces 122 include , for
example , SCSI target adapters and / or network interface
adapters for converting electronic and / or optical signals
received over the network 114 to electronic form for use by
the node 120a . The processor (s) 124 include one or more
processing chips and / or assemblies , such as numerous multi
core CPUs (central processing units) . The processor (s) 124

may further include one or more coprocessors , one example
being the QAT (Quick Assist Technology) Adapter , available
from Intel® Corporation of Santa Clara , Calif . The QAT
provides hardware acceleration for data compression and
decompression .
[0023] The memory 130 includes both volatile memory ,
e.g. , RAM (Random Access Memory) , and non - volatile
memory , such as one or more ROMs (Read - Only Memo
ries) , disk drives , solid state drives , and the like . The
processor (s) 124 and memory 130 together form control
circuitry , which is constructed and arranged to carry out
various methods and functions as described herein . Also , the
memory 130 includes a variety of software constructs real
ized in the form of executable instructions . When the
executable instructions are run by the processor (s) 124 , the
processor (s) 124 carry out the operations of the software
constructs . Although certain software constructs are specifi
cally shown and described , it is understood that the memory
130 typically includes many other software components ,
which are not shown , such as an operating system , various
applications , processes , and daemons .
[0024] As further shown in FIG . 1 , the memory 130
“ includes , " i.e. , realizes by execution of software instruc
tions , a cache 140 , a deduplication manager 150 , and an
adaptive compression manager 160. The cache 140 is con
figured to receive incoming data from hosts 110 , e.g. , in
response to write requests issued by applications running
thereon , and to arrange the data in blocks 142. A “ block ” is
a storage extent that usually corresponds to a smallest
addressable unit of storage space . Block sizes are typically
uniform for any given storage system and can vary between
storage systems , with typical block sizes being 4 kB (kilo
bytes) or 8 kB , for example . In some examples , the cache
140 is further configured to arrange blocks 142 based on
LUN (Logical UNit) and / or based on logical address , such
that logically contiguous blocks may be arranged in order .
[0025] The deduplication manager 150 is configured to
perform inline deduplication . Such deduplication may pro
ceed by computing digests (e.g. , hash values) of blocks 142
and attempting to match the digests to those stored in a
digest cache (not shown) . A match of the digest of a new
block to an entry in the digest cache identifies a block that
has already been stored , and the deduplication manager 150
can effect storage of the new block by arranging pointers but
without having to redundantly store of the matched block .
[0026] The adaptive compression manager 160 is config
ured to perform compression on blocks 142 selectively
based on generated values of entropy . As is known , the
" entropy ” of a block provides a measure of the block's
information content . Entropy may be expressed , for
example , as a percentage that varies between 0 % and 100 % .
A block with low entropy has low information content and
high internal redundancy , whereas a block with high entropy
has high information content and low internal redundancy .
Given that data compression generally works by removing
redundancy , the entropy of a block provides a good predic
tion of that block's compressibility . For instance , a low
entropy block tends to be highly compressible and a high
entropy block tends to be uncompressible , or nearly so .
Computations of entropy are known in the art , but they
typically involve floating - point arithmetic , which can be
burdensome to processors and difficult to use in high
throughput applications .

9

a

US 2022/0129162 A1 Apr. 28 , 2022
3

may decide , based on a third block having high entropy , not
to compress the third block at all . The decision not to
compress may be based on a prediction that the third block
is not compressible , or that it is not compressible enough to
justify the cost in throughput that compressing the third
block would entail . Uncompressible blocks may include , for
example , blocks that already contain compressed data , such
as data of MPEG files , JPEG files , or the like . Although first
and second compression procedures are described , one
should appreciate that embodiments may provide any num
ber of compression procedures , e.g. , those covering a range
of execution speeds and compression levels . Some embodi
ments may provide only a single compression level , how
ever .

[0027] Fortunately , an efficient technique has been devel
oped for computing entropy without requiring floating - point
arithmetic . An example of such a technique is disclosed in
copending U.S. application Ser . No. 16 / 669,160 , filed Oct.
30 , 2019 , the contents and teachings of which are incorpo
rated herein by reference . In some examples , the adaptive
compression manager 160 applies the efficient technique of
the incorporated application for computing the entropy of
blocks at low computational cost . The incorporated tech
nique is not required , however , as it is still possible for
embodiments to use less efficient techniques for computing
entropy to great advantage .
[0028] In example operation , the hosts 110 issue I / O
requests 112 to the data storage appliance 116. Node 120a
receives the I / O requests 112 at the communication interface
(s) 122 and initiates further processing . In the case of write
I / O requests , node 120s receives data specified by such
requests into cache 140. The data may arrive from hosts 110
in various size increments , which typically range , for
example , from 512 B (0.5 kB) to 256 kB . Cache 140 may
arrange the incoming data in blocks 142 , e.g. , 4 - kB blocks .
Cache 140 may further arrange blocks 142 based on LUN ,
based on logical address , and / or based on other factors .
[0029] At some point , cache 140 may perform a flush
operation to flush certain blocks to lower - level structures
(e.g. , a mapping subsystem , RAID subsystem , etc .; not
shown) , which place the blocks into persistent structures in
the storage 180. The flush operation may work on one batch
of blocks at a time , such as batch 144. Each batch typically
includes at least several blocks , and up to thousands of
blocks . In various examples , flushing is repeated at regular
intervals and may be conducted in parallel by multiple
threads running on node 120a .
[0030] Upon the cache 140 initiating a flush of batch 144 ,
the deduplication manager 150 checks the blocks in the
batch 144 for matches to blocks recorded in the digest cache .
In the example shown , blocks 154 are found to match blocks
that are already stored in the storage appliance 116. Such
blocks 154 may be pulled out of the batch 144 and dedu
plicated , e.g. , by associating logical addresses of the blocks
154 with respective locations of matching blocks in storage
180. The remaining blocks 152 may be processed for
adaptive compression .
[0031] The adaptive compression manager 160 processes
the batch 152 by computing entropy values of at least some
of the blocks in batch 152 and steering compression deci
sions based on the computed entropy values . In one
example , the compression manager 160 computes the
entropy of each of the blocks in the batch 152 and uses the
respective entropy values in deciding how to compress the
respective blocks . For instance , the compression manager
160 may decide , based on a first block having moderate
entropy , to compress the first block with a first compression
procedure . Likewise , the compression manager 160 may
decide , based on a second block having lower entropy , to
compress the second block with a second compression
procedure . The first compression procedure may execute
faster than the second compression procedure but may yield
a lesser degree of data compression than the second com
pression procedure . For convenience , the first compression
procedure is referred to herein as “ fast / low ” and the second
compression procedure is referred to herein as " slow / high , "
where “ fast ” and “ slow ” are used in a comparative sense , as
are " high ” and “ low . ” Further , the compression manager 160

[0032] In another example , embodiments may use a sam
pling approach in generating the entropy of blocks , rather
than computing the entropy of each and every block .
Entropy may be computed , for example , on every other
block , on every fourth block , on every hundredth block , and
so on . Sampling may be especially attractive when blocks
contain similar data , such as email data or video data . When
using sampling , the adaptive compression manager 160 may
use the entropy of sampled blocks as representatives of
blocks that follow , and / or of other blocks in the same batch .
Based on the entropy of a sampled block (or of multiple
sampled blocks) , a compression decision may be made , e.g. ,
to use the first compression procedure , the second compres
sion procedure , or no compression (also called “ back - off ”) ,
and that decision can be applied to unsampled blocks as well
as to sampled blocks .
[0033] FIG . 2 shows an example arrangement of the
adaptive compression manager 160 of FIG . 1. Here , the
adaptive compression manager 160 includes a compressor
210 , an input queue 220 , and an output queue 230. An
entropy calculator 240 is operatively coupled to the input
queue 220 , and a batch calculator 250 is operatively coupled a
to the output queue 230. An orchestrator 260 is provided to
control operations .
[0034] The compressor 210 may be implemented using
hardware , software , firmware , or any combination thereof .
In a particular example , the compressor 210 includes the
above - described Intel QAT adapter , which provides hard
ware acceleration for data compression and decompression .
The QAT adapter implements four levels of compression ,
referred to as L1 - L4 . In a particular embodiment , the above
described first (fast / low) compression level corresponds to
QAT Adapter level L1 , which roughly corresponds to Lem
pel - Ziv compression level LZ1 . Also , the above - described
second (slow / high) compression level corresponds to QAT
Adapter level L4 , which roughly corresponds to Lempel - Ziv
compression level LZ9 . QAT Adapter levels L2 and L3 may
be used in some embodiments but are not illustrated in those
which are depicted . For implementing no compression (e.g. ,
back - off) , it may be necessary to bypass the QAT adapter
(e.g. , if the QAT Adapter does not natively support a bypass
function) . Compressor 210 may implement a copy feature
(not shown) for this purpose , e.g. , one that identifies blocks
in the input queue 220 for which no compression is specified
and copies the identified blocks to the output queue 230 .
[0035] As shown , the compressor 210 has a selector input
212 , which is configured to receive a compression level
selection (CLS) 262. The CLS 262 may specify , for
example , the first (fast / low) compression procedure , the
second (slow / high) compression procedure , some other

US 2022/0129162 A1 Apr. 28 , 2022
4

320 , fast / low compression for block 322 , and no compres
sion (back - off) for block 324. Each selection is made based
on the computed entropy of the respective block . The
compressor 210 receives these settings 262 at selector input
212 and proceeds to implement the corresponding compres
sion procedures (or no compression) for the corresponding
blocks .
[0042] The output queue 230 shows example results of
operation . As shown , compressed block 320c appears as a
highly compressed version of block 320. Compressed block
322c appears as a somewhat less - highly compressed version
of block 322. Also , block 324b appears as a back - off block ,
which is identical to block 324 as it appeared in the input
queue 220 .

compression procedure (if supported) , or no compression
(back - off) . The compressor 210 is configured to respond to
the CLS 262 on a per - block basis , for compressing blocks in
the input queue 220 based on respective settings of the CLS
262. In an example , the compressor 210 is configured for
pipelined operation , and the CLS 262 provides a pipelined
sequence of settings , e.g. , one setting for each of multiple
blocks in the input queue 220 .
[0036] In an example , the input queue 220 and output
queue 230 are implemented in memory 130 of the comput
ing node 120a (FIG . 1) , as are the entropy calculator 240 ,
batch calculator 250 , and orchestrator 260. Although one
input queue 220 and one output queue 230 are shown , any
number of such queues may be provided . For example , the
QAT Adaptor is known to include three endpoints that
support three - way parallel compression . For implementa
tions that employ the QAT Adaptor , the adaptive compres
sion manager 160 may include three input queues 220 and
three output queues 230 , with the orchestrator 260 config
ured to load balance among them .
[0037] As further shown , the input queue 220 has a length
222 and a high - water mark (HWM) 224. The length 222
indicates a number of blocks waiting to be processed in the
input queue 220 , and the high - water mark 224 indicates a
queue length at which the input queue 230 is close to being
full . In an example , the high - water mark 224 is set to 90 %
of the maximum length of the input queue 220 ; however ,
other values may be used . Also , the high - water mark 224
may be adjustable .
[0038] The entropy calculator 240 is configured to gener
ate values of per - block entropy 242 , e.g. , one entropy value
for each block . In some examples , the entropy calculator 240
may operate on a sampling basis , such that entropy values
need not be generated for each and every block . Per - block
operation is described more fully in connection with FIG .
?? .
[0039] The batch calculator 250 is configured to select a
desired per - batch compression result (CR) 252 , e.g. , for
cases in which entropy or compressibility of certain blocks
in a batch is used to steer compression decisions for other
blocks in the same batch . Per - batch operation is described
more fully in connection with FIG . 3B .
[0040] In some examples , the orchestrator 260 is config
ured to monitor the length 222 of the input queue 220 and
respond to changes by modifying how compression is per
formed . For instance , the orchestrator 260 may temporarily
disable the slow / high compression option when the length
222 exceeds the high - water mark 224 or some other thresh
old . Also , the orchestrator 260 may switch from per - block
operation to per - batch operation depending on the length
222 of input queue 220 .
[0041] FIG . 3A shows an example of the adaptive com
pression manager 160 of FIG . 2 configured for per - block
operation . Here , blocks in cache 140 , such as blocks 320 ,
322 , and 324 , are arranged in the input queue 220. Entropy
calculator 240 may generate the entropy of blocks in the
input queue 220 on a first - in - first - out (FIFO) basis . For
instance , entropy calculator 240 calculates an entropy E = 0 .
34 for block 320 , then calculates an entropy E = 0.64 for
block 322 , then calculates an entropy E = 0.95 for block 324 ,
and so on . These entropy values may be input to orchestrator
260 , which produces respective compression level settings
(CLS) 262 for the respective entropy values . For example ,
orchestrator 260 selects slow / high compression for block

[0043] In some examples , orchestrator 260 may base its
per - block compression decisions on additional factors
besides entropy . For example , some embodiments may store
compression headers appended to compressed blocks but
may not store such headers for uncompressed blocks . The
header for a compressed block may include metadata , such
as compressed size , compression procedure used in com
pressing the block , a checksum , and so forth . Where com
pression headers are used , the total size of a compressed
block includes not only the size of the compressed data but
also the size of the header . If the sum of compressed data
plus header would approach or exceed the block size (e.g. ,
4 kB) , the orchestrator 260 may opt for back - off , even if the
data itself would compress to something smaller than the
block size .
[0044] Processing with entropy sampling works the same
way as per - block processing without sampling , except that
entropy may be calculated on every Nth block in the input
queue 220 , rather than on each and every block . In an
example , the orchestrator 260 produces a CLS value 262 for
every Nth block and maintains that value until the next Nth
block is processed , at which point the CLS value 262 is
changed to reflect the new entropy value .
[0045] Given that sampling does not separately consider
the entropy of each block that gets compressed , sampling
raises the risk that some compressed blocks may end up
being larger than the block size , particularly when they
include headers . To avoid this result , orchestrator 260 may
check the sizes of blocks in the output queue 230 and replace
any compressed blocks larger than the block size with their
uncompressed counterparts . Such counterparts may still
reside in cache 140 .
[0046] FIG . 3B shows an example of the adaptive com
pression manager 160 of FIG . 2 configured for per - batch
operation . In some examples , the adaptive compression
manager 160 switches from per - block processing to per
batch processing when its gets busy . Busyness may be
estimated , for example , based on queue length 222. When
queue length 222 exceeds the high - water mark 224 , the
adaptive compression manager 160 may switch from per
block processing to per - batch processing . It may later switch
back to per - block processing when the queue length 222
falls below the high - water mark 224 (or when it falls below
some lower threshold , to prevent chattering) . In other
examples , the adaptive compression manager 160 uses per
batch processing under other circumstances , which may be
independent of busyness .
[0047] Per - batch processing may proceed by identifying a
batch 350 of M blocks in the input queue 222 , where M may
be several tens , hundreds , or thousands , for example . Com

US 2022/0129162 A1 Apr. 28 , 2022
5

pressor 210 may proceed to compress a first N blocks 360 of
the M blocks (N < M) , e.g. , using the slow / high compression
procedure , thus producing N compressed blocks 360c . The
batch calculator 250 computes a compression result (CR)
252 of the first N blocks , e.g. , by comparing a total size of
the N compressed blocks 360c with the size of the N blocks
360 prior to compression .
[0048] The compression result 252 may be expressed as a
total compressed size of compressed blocks 360c (e.g. ,
across all N blocks) , as a mean compressed size of com
pressed blocks 360c , as a ratio of total compressed size to
total uncompressed size , or in any other suitable manner . In
the example shown , compression result 252 is expressed as
a reduction ratio , such as

Uncompressed Size - Compressed Size
CR = Uncompressed Size

of information content among bytes in a block . The more
even the distribution , the better the accuracy , and the more
closely decimated entropy values 242d match with undeci
mated entropy values .
[0054] In some examples , the adaptive compression man
ager 160 may initially be configured to operate the entropy
calculator 240 without decimation . It may further be con
figured to switch operation of the entropy calculator 240 to
a decimation mode when the system gets busy and / or when
it is compressing certain types of data , e.g. , that known to
have uniform information content , such as text .
[0055] FIGS . 5-8 show example methods that may be
carried out in connection with the environment 100. Such
methods are typically performed , for example , by the soft
ware constructs described in connection with FIG . 1 , which
reside in the memory 130 of the computing node 120a and
are run by the processor (s) 124. The various acts of the
depicted methods may be ordered in any suitable way .
Accordingly , embodiments may be constructed in which
acts are performed in orders different from those illustrated ,
which may include performing some acts simultaneously .
[0056] FIG . 5 shows an example method 500 for manag
ing data compression in the environment of FIG . 1. Method
500 may be carried out by the adaptive compression man
ager 160 , for example .
[0057] At 510 , the adaptive compression manager 160
monitors system busyness , e.g. , by monitoring the length
222 of the input queue 220 to compressor 210 (FIG . 2) .
Additional factors may be considered in evaluating busy
ness , such as memory usage , CPU utilization , and the like .
[0058] At 520 , the adaptive compression manager 160
determines whether the monitored busyness falls below a
predetermined threshold T1 . If so , operation proceeds to
530 , whereupon the adaptive compression manager 160
processes data for compression on a per - block basis , such as
described above in connection with FIG . 3A . If not , opera
tion proceeds to 540 , whereupon the adaptive compression
manager 160 processes data for compression on a per - batch
basis , such as described above in connection with FIG . 3B .
[0059] In an example , threshold T1 corresponds to the
high - water mark 224 of the input queue 220 (FIG . 2) .
Busyness below threshold T1 thus corresponds to length 222
of the input queue 220 being below the high - water mark
224. Likewise , busyness exceeding threshold T1 corre
sponds to length 222 of the input queue 220 exceeding the
high - water mark 224 .
[0060] FIG . 6 shows an example method 600 of process
ing data for compression on a per - block basis . FIG . 6 thus
presents a more expanded view of act 530 of FIG . 5 .
[0061] At 610 , entropy calculator 240 calculates the
entropy of a current block . The calculation may be based on
the entire block or a decimated version thereof . Orchestrator
260 compares the calculated entropy “ E ” with one or more
thresholds to determine how to treat the current block for
compression .
[0062] For example , at 620 , orchestrator 260 determines
whether the entropy E of the current block falls within a first
range or within a second range . Entropy values within the
first range are processed for compression , whereas entropy
values within the second range are not . A threshold E1
distinguishes the first range from the second range and may
be set to a high value , such as 90 % . Blocks with entropy
values that fall within the second range are thus uncom
pressible or compressible to such as small extent that there

[0049] The batch calculator 250 outputs the compression
result 252 of the first N blocks 360 to the orchestrator 260 .
In response , the orchestrator 260 establishes a CLS value
262 for the rest of the batch 350 , e.g. , for the remaining M - N
blocks 370 , based on the compression result 252 for the first
N blocks 360. For example , if the first N blocks 360 were
only 5 % compressible , the orchestrator 260 would set the
CLS value 262 to back - off , indicating no compression . The
compressor 210 would then perform no compression on the
remaining M - N blocks 370 of the batch 350. If the first N
blocks were 40 % compressible , however , the orchestrator
260 would set the CLS value 262 to the first compression
level , causing the compressor 210 to perform fast / low com
pression on the remaining N - M blocks 370. But if the first
N blocks were 75 % compressible , the orchestrator 260
would set the CLS value 262 to the second compression
level , causing the compressor 210 to perform slow / high
compression on the remaining N - M blocks 370 .
[0050] Although the depicted example bases compression
of remaining blocks in a batch on actual compression results
obtained by compressing the first N blocks 360 , the decision
could alternatively be based on average entropy of the first
N blocks 360. As before , if any compressed blocks (includ
ing headers) turn out to be larger than the system block size
(e.g. , 4 kB) , such compressed blocks may be replaced with
their uncompressed counterparts , e.g. , from cache 140 .
[0051] FIG . 4 shows an example arrangement for further
optimizing entropy calculations . The activities described
may be performed , for example , by the entropy calculator
240 of FIG . 2. As shown , a decimation (undersampling)
process reduces the number of bytes 420 in a block 410 from
which entropy is computed .
[0052] For example , the entropy calculator 240 may
receive a block 410 and sample particular bytes of the block ,
such as every fourth , eighth , sixteenth , etc. , byte in block
410. The resulting data set 420 is smaller than the original
block 410 , enabling an entropy calculation to proceed much
more quickly . It is noted that the efficient entropy calculation
described in incorporated U.S. application Ser . No. 16/669 ,
160 works with variable numbers of bytes and is thus
compatible with decimation .
[0053] The resulting decimated entropy values 242d may
be used for steering compression decisions in the same way
that entropy values 242 are used above . The accuracy of
decimated entropy values 242d depends on the distribution

a

a

a

US 2022/0129162 A1 Apr. 28 , 2022
6

is little or no benefit to compressing them . If the entropy of
the current block falls outside the first range , operation
proceeds to 630 , whereupon the orchestrator 260 selects
back - off for the current block , indicating that no compres
sion is to be performed . Otherwise , operation proceeds to
640 .

operation proceeds to 770 , whereupon the orchestrator 260
applies the slow / high compression procedure to the remain
ing M - N blocks 370 in the current batch . In this manner ,
slow / high compression is performed on blocks that are
expected to be highly compressible , whereas fast / low com
pression is performed on blocks that are expected to be
somewhat less compressible . The method 700 may then be
repeated for a next batch of blocks .
[0071] The particular operation as shown in method 700
may be varied while achieving similar results . Also , one can
readily see that the particular thresholds can be varied . Thus ,
FIG . 7 is intended to be illustrative rather than limiting .
[0072] FIG . 8 shows a method 800 that may be carried out
in the environment 100 and provides a high - level review of
some of the features described above .
[0073] At 810 , data is received . As shown in FIG . 1 , for
example , computing node 120a may receive data arriving in
write I / O requests issued by hosts 110. The computing node
120a may receive such data into cache 140 , which organizes
the data into blocks 142 .
[0074] At 820 , entropy values are generated from respec
tive blocks of the data received . For example , entropy
calculator 240 (FIG . 2) , running within adaptive compres
sion manager 160 , generates per - block entropy values 242 of
blocks 152 , e.g. , blocks received into cache 140 but not
deduplicated . The entropy calculator 240 may generate
entropy values on all such blocks or any subset of them . For
example , entropy calculator 240 may operate on a sampling
basis . Also , entropy calculator 240 may operate with byte
based decimation or without .
[0075] At 830 , the blocks of the data are selectively
compressed based on the entropy values . For example ,
orchestrator 260 (FIG . 2) may direct compressor 210 to
compress blocks in the input queue 220 based on the entropy
values 242 calculated for the respective blocks , such as by
using back - off for high - entropy blocks , fast / low compres
sion for moderate entropy blocks , and slow / high compres
sion for low - entropy blocks . If sampling is used , the entropy
calculated on sampled blocks may be used in steering
compression decisions for nearby , unsampled blocks .
[0076] At 840 , the data is persisted , which includes per
sisting compressed blocks for at least some of the data . For
example , blocks 162 processed by the adaptive compression
manager 160 may be persisted to storage 180. Such blocks
162 may include both compressed blocks and uncompressed
blocks .
[0077] An improved technique has been described for
managing data storage . The technique includes generating
entropy of blocks on a per - block basis and selectively
performing inline compression on blocks based at least in
part on their entropy . Entropy of a block can be computed
inexpensively and provides a rough measure of the block's
compressibility . Thus , using per - block entropy enables a
storage system to steer compression decisions , e.g. , whether
to compress and / or how much to compress , flexibly and with
high granularity , striking a balance between throughput and
storage efficiency .
[0078] Having described certain embodiments , numerous
alternative embodiments or variations can be made . For
instance , a certain efficient entropy calculation is described .
But this is merely one suitable example . Also , a particular
hardware accelerator is described . But this is also merely
one example . Neither example is intended to be limiting .

[0063] Given that the illustrated embodiments support two
levels of compression , an additional comparison may be
performed (at 640) to determine whether the entropy of the
current block falls within a first sub - range or a second
sub - range of the first range . Here , threshold E2 distinguishes
the two subranges and may assume an intermediate entropy
value , such as 50 % . If the current block has an entropy value
less than E2 , operation proceeds to 650 , whereupon the
current block may be processed using the first compression
procedure (e.g. , fast / low) . Otherwise , operation may pro
ceed to 660 , whereupon the current block may be processed
using the second compression procedure (e.g. , slow / high) .
The current block is then processed , and a next block in the
input queue 220 may be identified as a new current block , at
which point the method 600 is repeated .
[0064] One should appreciate that the particular operation
as shown in method 600 may be varied while achieving
similar results . For example , the particular thresholds can be
varied . Also , additional sub - ranges may be added , for sup
porting additional compression levels . Thus , FIG . 6 is
intended to be illustrative rather than limiting .
[0065] FIG . 7 shows an example method 700 of process
ing data for compression on a per - batch basis . FIG . 7 thus
presents a more expanded view of act 540 of FIG . 5 .
[006] At 710 , a current batch 350 is identified . For
example , the batch is identified as M blocks 350 within the
input queue 220 of the adaptive compression manager 160 .
In an example , the batch corresponds to a set of blocks being
processed as part of a flush transaction from cache 140 .
[0067] At 720 , the adaptive compression manager 160
compresses a first N blocks 360 of the current batch , e.g. , as
shown in FIG . 3B , thus yielding compressed blocks 360c . In
an example , blocks 360 are compressed using the slow / high
compression procedure . Batch calculator 250 then computes
a compression result 252 of the N - block compression . In the
example shown , compression result 252 is expressed as a
reduction ratio , such as that described in connection with
FIG . 3B . The acts that follow then have the effect of steering
compression of the remaining M - N blocks 370 of the current
batch based on the results obtained by compressing the first
N blocks 350 .
[0068] For example , at 730 the orchestrator 260 deter
mines whether the compression result (CR) falls below a
first threshold C1 , which may represent a minimal reduction
in size , such as 10 % . If the compression result falls below
C1 (indicating less than 10 % reduction) , operation proceeds
to 740 , whereupon the orchestrator 260 applies back - off (no
compression) to the remaining M - N blocks 370 of the
current batch .
[0069] At 750 , the orchestrator 260 determines whether
CR falls below a second threshold C2 , which may represent
a good reduction in size , such as 50 % . If CR for the first N
blocks 350 falls below C2 , indicating only fair data reduc
tion , operation proceeds to 760 , whereupon the orchestrator
260 applies the fast / low compression procedure to the
remaining M - N blocks 370 in the current batch .
[0070] Otherwise , if the orchestrator 260 determines that
CR exceeds C2 (indicating good - to - excellent compression) ,

a

2

-

US 2022/0129162 A1 Apr. 28 , 2022
7

one or

4

[0079] Further , although features have been shown and
described with reference to particular embodiments hereof ,
such features may be included and hereby are included in
any of the disclosed embodiments and their variants . Thus ,
it is understood that features disclosed in connection with
any embodiment are included in any other embodiment .
[0080] Further still , the improvement or portions thereof
may be embodied as a computer program product including

more non - transient , computer - readable storage
media , such as a magnetic disk , magnetic tape , compact
disk , DVD , optical disk , flash drive , solid state drive , SD
(Secure Digital) chip or device , Application Specific Inte
grated Circuit (ASIC) , Field Programmable Gate Array
(FPGA) , and / or the like (shown by way of example as
medium 850 in FIG . 8) . Any number of computer - readable
media may be used . The media may be encoded with
instructions which , when executed on one or more comput
ers or other processors , perform the process or processes
described herein . Such media may be considered articles of
manufacture or machines , and may be transportable from
one machine to another .
[0081] As used throughout this document , the words
" comprising , " " including , " " containing , " and " having " are
intended to set forth certain items , steps , elements , or aspects
of something in an open - ended fashion . Also , as used herein
and unless a specific statement is made to the contrary , the
word “ set ” means one or more of something . This is the case
regardless of whether the phrase " set of ” is followed by a
singular or plural object and regardless of whether it is
conjugated with a singular or plural verb . Also , a “ set of
elements can describe fewer than all elements present . Thus ,
there may be additional elements of the same kind that are
not part of the set . Further , ordinal expressions , such as
“ first , ” “ second , ” “ third , ” and so on , may be used as adjec
tives herein for identification purposes . Unless specifically
indicated , these ordinal expressions are not intended to
imply any ordering or sequence . Thus , for example , a
“ second ” event may take place before or after a “ first event , "
or even if no first event ever occurs . In addition , an identi
fication herein of a particular element , feature , or act as
being a " first ” such element , feature , or act should not be
construed as requiring that there must also be a " second " or
other such element , feature or act . Rather , the “ first ” item
may be the only one . Also , and unless specifically stated to
the contrary , “ based on ” is intended to be nonexclusive .
Thus , “ based on ” should not be interpreted as meaning
“ based exclusively on ” but rather “ based at least in part on ”
unless specifically indicated otherwise . Although certain
embodiments are disclosed herein , it is understood that these
are provided by way of example only and should not be
construed as limiting .
[0082] Those skilled in the art will therefore understand
that various changes in form and detail may be made to the
embodiments disclosed herein without departing from the
scope of the following claims .
What is claimed is :
1. A method of managing data storage , comprising :
receiving data ;
generating entropy values of respective blocks of the data ;
selectively compressing the blocks of the data based on

the entropy values ; and
persisting the data , including persisting compressed

blocks for at least some of the data .

2. The method of claim 1 , wherein selectively compress
ing the blocks of the data includes :

compressing a first set of blocks having entropy values
within a first range ; and

skipping compression of a second set of blocks having
entropy values outside the first range .

3. The method of claim 2 , wherein compressing the first
set of blocks includes :

compressing a first subset of blocks having entropy values
within a first sub - range of the first range using a first
compression procedure ; and

compressing a second subset of blocks having entropy
values within a second sub - range of the first range
using a second compression procedure .

4. The method of claim 3 , wherein the first compression
procedure executes faster than the second compression
procedure and yields a lesser degree of data compression
than the second compression procedure .

5. The method of claim 3 ,
wherein blocks of the data are arranged in a queue ,
wherein generating entropy values of respective blocks of

the data is performed by sampling fewer than all blocks
in the queue , and

wherein the method further comprises selectively com
pressing un - sampled blocks in the queue based on
entropy values generated from one or more sampled
blocks in the queue .

6. The method of claim 3 , wherein generating entropy
values of respective blocks includes , for at least one block ,
generating an entropy value based on mpling bytes within
the respective block , the entropy value thus reflecting
sampled bytes but not un - sampled bytes within the respec
tive block .

7. The method of claim 3 , wherein blocks of the data are
arranged in a queue , and wherein the method further com
prises disabling the second compression procedure in
response to a length of the queue exceeding a predetermined
high water mark .

8. The method of claim 3 , further comprising :
providing an ordered set of M blocks of data ;
determining a compressibility level of a first N blocks of

the M blocks of data (N < M) ;
based on the compressibility level of the first N blocks ,

selecting a processing procedure as one of (i) no
compression , (ii) the first compression procedure , or
(iii) the second compression procedure ; and

processing a remaining M - N blocks of the M blocks using
the selected processing procedure .

9. The method of claim 8 , wherein the ordered set of M
blocks of data are blocks contained within a flush transaction
for flushing the M blocks of data from a cache .

10. The method of claim 3 , wherein persisting the data
includes :

storing a compressed block with a compression header
that includes metadata describing a compression pro
cedure used to compress the compressed block ; and

storing an uncompressed block without a compression
header .

11. A computerized apparatus , comprising control cir
cuitry that includes a set of processing units coupled to
memory , the control circuitry constructed and arranged to :

receive data ;
generate entropy values of respective blocks of the data ;

a

US 2022/0129162 A1 Apr. 28 , 2022
8

selectively compress the blocks of the data based on the
entropy values ; and

persist the data , including compressed blocks for at least
some of the data .

12. A computer program product including a set of
non - transitory , computer - readable media having instructions
which , when executed by control circuitry of a computerized
apparatus , cause the computerized apparatus to perform a
method of managing data storage , the method comprising :

receiving data ;
generating entropy values of respective blocks of the data ;
selectively compressing the blocks of the data based on

the entropy values , and
persisting the data , including persisting compressed

blocks for at least some of the data .
13. The computer program product of claim 12 , wherein

selectively compressing the blocks of the data includes :
compressing a first set of blocks having entropy values

within a first range ; and
skipping compression of a second set of blocks having

entropy values outside the first range .
14. The computer program product of claim 12 , wherein

compressing the first set of blocks includes :
compressing a first subset of blocks having entropy values

within a first sub - range of the first range using a first
compression procedure ; and

compressing a second subset of blocks having entropy
values within a second sub - range of the first range
using a second compression procedure .

15. The computer program product of claim 14 , wherein
the first compression procedure executes faster than the
second compression procedure and yields a lesser degree of
data compression than the second compression procedure .

16. The computer program product of claim 14 ,
wherein blocks of the data are arranged in a queue ,
wherein generating entropy values of respective blocks of

the data is performed by sampling fewer than all blocks
in the queue , and

wherein the method further comprises selectively com
pressing un - sampled blocks in the queue based on
entropy values generated from one or more sampled
blocks in the queue .

17. The computer program product of claim 14 , wherein
generating entropy values of respective blocks includes , for
at least one block , generating an entropy value based on
sampling bytes within the respective block , the entropy
value thus reflecting sampled bytes but not un - sampled bytes
within the respective block .

18. The computer program product of claim 14 , wherein
blocks of the data are arranged in a queue , and wherein the
method further comprises disabling the second compression
procedure in response to a length of the queue exceeding a
predetermined high water mark .

19. The computer program product of claim 14 , further
comprising :

providing an ordered set of M blocks of data ;
determining a compressibility level of a first N blocks of

the M blocks of data (N < M) ;
based on the compressibility level of the first N blocks ,

selecting a processing procedure as one of (i) no
compression , (ii) the first compression procedure , or
(iii) the second compression procedure ; and

processing a remaining M - N blocks of the M blocks using
the selected processing procedure .

20. The computer program product of claim 19 , wherein
the ordered set of M blocks of data are blocks contained
within a flush transaction for flushing the M blocks of data
from a cache .

a

