
US 20220129162A1 
IN 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2022/0129162 A1 . 

Faibish et al . ( 43 ) Pub . Date : Apr. 28 , 2022 

( 54 ) ADAPTIVE INLINE COMPRESSION ( 52 ) U.S. CI . 
CPC 

( 71 ) Applicant : EMC IP Holding Company LLC , 
Hopkinton , MA ( US ) 

GO6F 370608 ( 2013.01 ) ; G06F 37067 
( 2013.01 ) ; G06F 370653 ( 2013.01 ) ; G06F 

37064 ( 2013.01 ) 

( 57 ) ABSTRACT 
( 72 ) Inventors : Sorin Faibish , Newton , MA ( US ) ; Ivan 

Bassov , Brookline , MA ( US ) ; Istvan 
Gonczi , Berkley , MA ( US ) ; Philippe 
Armangau , Acton , MA ( US ) ; Vamsi K. 
Vankamamidi , Hopkinton , MA ( US ) 

( 21 ) Appl . No .: 17 / 082,800 
( 22 ) Filed : Oct. 28 , 2020 

A technique for managing data storage includes generating 
entropy of blocks on a per - block basis and selectively 
performing inline compression on blocks based at least in 
part on their entropy . Entropy of a block provides a rough 
measure of the block's compressibility . Thus , using per 
block entropy enables a storage system to steer compression 
decisions , e.g. , whether to compress and / or how much to 
compress , flexibly and with high granularity , striking a 
balance between throughput and storage efficiency . 

Publication Classification 
( 51 ) Int . Ci . 

G06F 3/06 ( 2006.01 ) 

Host 1 Host 2 Host N - 110 
100 

10 IO 10 -112 

Network 
114 

-120 
Computing Node 120a 

Communication Interface ( s ) 122 120b 
116 

Processor ( s ) 124 

142 Memory 130 

OC Cache 140 

144 

OO ... O 
154 

Deduplication Mgr 
150 OD 

Storage 180 
152 

DOD ... O COCO Adaptive 
Compression Mgr 

160 

162 

To Storage 180 



Patent Application Publication Apr. 28 , 2022 Sheet 1 of 6 US 2022/0129162 A1 

Host 1 Host 2 Host N 110 
100 

10 IO 10 4 112 

Network 
114 

120 

Computing Node 120a 

Communication Interface ( s ) 122 -120b 
116 Processor ( s ) 124 

142 Memory 130 
ODDOD0D0D0D ... O Cache 140 

144 

DDDDDDDD ... O 
154 

Deduplication Mgr 
150 DD 

Storage 180 
152 

OOO OOO ... O OD Adaptive 
Compression Mgr 

160 

162 

? ? 0 

To Storage 180 FIG . 1 



Patent Application Publication Apr. 28 , 2022 Sheet 2 of 6 US 2022/0129162 A1 

160 

HWM 
- 224 

Length 
222 

220 230 

II . DDDDDDDD Compressor 210 DOOD 

Selector 212 

Compression 
Level Selection 
( CLS ) 262 

Per - Block 
Entropy 242 

Per - Batch Comp . 
Result ( CR ) 252 Entropy 

Calculator 
240 

Orchestrator 260 
Batch 

Calculator 
250 

FIG . 2 



Patent Application Publication Apr. 28 , 2022 Sheet 3 of 6 US 2022/0129162 A1 

160 HWM 
- 224 

Length 
222 324 

322 
320 220 324b 322c 320c 230 za 0-00000100 OC II Compressor 210 

Selector 212 

CLS 262 
Slow / High 

B : Fast / Low 
Back - Off ? 

Per - Block 
Entropy 242 Entropy 

Calculator 
240 

Orchestrator 260 
Batch 

- Calculator 
1 250 DE = 0.34 

O E = 0.64 
ZE = 0.95 

FIG . 3A 

HWM 
224 

Length 
222 

160 
Treat blocks 370 
based on CR of 

blocks 360 

M - N 
Blocks 370 

1st N Blocks 
360 

1st N Blocks 
( Compressed ) 

360c 220 230 

II . DDDDDDDD Compressor 210 0000 

Selector 212 
1 350 Batch 

of M Blocks 

CLS 262 

1 
| Entropy 
| Calculator 

240 

Per - Batch 
CR 252 

Orchestrator 260 
Batch 

Calculator 
250 

FIG . 3B 



Patent Application Publication Apr. 28 , 2022 Sheet 4 of 6 US 2022/0129162 A1 

-410 

420 

STUSTUSSUUNNITINIUI ... INM -410 

420 

Decimated Entropy 
242d Calculate 

Entropy 
410 

FIG . 4 

510 
500 

1 Monitor busyness ( e.g. , 
based on queue length ) 

520 

Busyness 
T1 N Y 

530 540 

Process data for 
compression on 
per - block basis 

Process data for 
compression on 
per - batch basis FIG . 5 



Patent Application Publication Apr. 28 , 2022 Sheet 5 of 6 US 2022/0129162 A1 

600 700 

Process for compression on 
per - block basis 

Process for compression on 
per - batch basis 

610 710 

Calculate entropy E of current 
block 

Identify M blocks in a current 
batch 

720 

? 

Compress 1st N blocks of 
current batch , e.g. , using Slow / 
High , yielding compression 

result ( CR ) 
620 

E in 
1st Rng , e.g. , 

E1 ? 
-N 

630 
730 

Y 2nd Rng ; use back - off 
for current block CR < C1 ( e.g. , 

10 % ) 740 

N 

640 
E in 

1 st sub - rng , 
e.g. , > 
E2 ? 

Use back - off for rest 
of batch -N 

660 
750 

CR < 
C2 , e.g. 

50 % 2nd Sub - Rng : use 
Slow / High for current 

block 

760 
Y 

N 
Use Fast / Low for rest 

of batch 
650 770 

1st Sub - Rng : use Fast / 
Low for current block 

Use Slow / High for rest 
of batch 

FIG . 6 FIG . 7 



Patent Application Publication Apr. 28 , 2022 Sheet 6 of 6 US 2022/0129162 A1 

800 

8104 Receive data 

850 

820 Generate entropy values of respective 
blocks of the data 

830 Selectively compress the blocks of the 
data based on the entropy values 

840 Persist the data , including persisting 
compressed blocks for at least some 

of the data 
FIG . 8 



US 2022/0129162 A1 Apr. 28 , 2022 
1 

ADAPTIVE INLINE COMPRESSION 

BACKGROUND 
[ 0001 ] Data storage systems are arrangements of hardware 
and software in which storage processors are coupled to 
arrays of non - volatile storage devices , such as magnetic disk 
drives , electronic flash drives , and / or optical drives . The 
storage processors service storage requests , arriving from 
host machines ( " hosts ” ) , which specify blocks , files , and / or 
other data elements to be written , read , created , deleted , and 
so forth . Software running on the storage processors man 
ages incoming storage requests and performs various data 
processing tasks to organize and secure the data elements on 
the non - volatile storage devices . 
[ 0002 ] Some storage systems improve efficiency by com 
pressing data inline with write requests . For example , a 
storage system receives a write request specifying data to be 
written . The storage system arranges the data into blocks and 
compresses the blocks prior to flushing them to disk . The 
first storage to disk of the newly - arriving data is thus in the 
form of compressed blocks . Later , when the system receives 
a read request to access the same data , the system reads the 
compressed blocks from disk , decompresses them , and 
returns the decompressed data to the requestor . 
[ 0003 ] Some storage systems that support inline compres 
sion implement a back - off feature . Back - off temporarily 
shuts down inline compression when the systems get too 
busy . Inline compression can add greatly to the processing 
load of a storage system and can thus prevent the system 
from achieving desired throughput . Throughput is typically 
measured as latency ( response time to input / output ( I / O ) 
requests ) and / or IOPs ( I / O’s per second ) . A storage system 
may detect or predict a drop in throughput and invoke the 
back - off feature to correct or prevent the reduction in 
service . Back - off effectively shuts down inline compression , 
such that the storage system no longer compresses blocks 
and simply writes them to disk without compressing them . 

[ 0006 ] Certain embodiments are directed to a method of 
managing data storage . The method includes receiving data , 
generating entropy values of respective blocks of the data , 
selectively compressing the blocks of the data based on the 
entropy values , and persisting the data , including persisting 
compressed blocks for at least some of the data . 
[ 0007 ] Other embodiments are directed to a computerized 
apparatus constructed and arranged to perform a method of 
managing data storage , such as the method described above . 
Still other embodiments are directed to a computer program 
product . The computer program product stores instructions 
which , when executed on control circuitry of a computerized 
apparatus , cause the computerized apparatus to perform a 
method of managing data storage , such as the method 
described above . 
[ 0008 ] The foregoing summary is presented for illustrative 
purposes to assist the reader in readily grasping example 
features presented herein ; however , this summary is not 
intended to set forth required elements or to limit embodi 
ments hereof in any way . One should appreciate that the 
above - described features can be combined in any manner 
that makes technological sense , and that all such combina 
tions are intended to be disclosed herein , regardless of 
whether such combinations are identified explicitly or not . 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

a 

SUMMARY 

[ 0009 ] The foregoing and other features and advantages 
will be apparent from the following description of particular 
embodiments , as illustrated in the accompanying drawings , 
in which like reference characters refer to the same or 
similar parts throughout the different views . 
[ 0010 ] FIG . 1 is a block diagram of an example environ 
ment in which embodiments of the improved technique can 
be practiced . 
[ 0011 ] FIG . 2 is a block diagram of an example adaptive 
compression manager of FIG . 1 . 
[ 0012 ] FIGS . 3A and 3B are respective block diagrams 
showing the adaptive compression manager of FIG . 2 
arranged for processing compression on a per - block basis 
( FIG . 3A ) and on a per - batch basis ( FIG . 3B ) . 
[ 0013 ] FIG . 4 is a block diagram showing an example 
arrangement for calculating entropy using byte - based deci 
mation . 
[ 0014 ] FIG . 5 is a flowchart showing an example method 
of selectively performing data compression in the environ 
ment of FIG . 1 . 
[ 0015 ) FIG . 6 is a flowchart showing an example method 
of performing compression on a per - block basis . 
[ 0016 ] FIG . 7 is a flowchart showing an example method 
of performing compression on a per - batch basis . 
[ 0017 ] FIG . 8 is a flowchart showing an example method 
of managing data storage in the environment of FIG . 1 . 

a 

a 

a 

[ 0004 ] Unfortunately , known back - off features tend to 
operate in an all - or - none manner . Either no incoming blocks 
are compressed , when a system is too busy , or all of them 
are , when the system is not too busy . This all - or - none 
operation can result in many highly - compressible blocks 
remaining uncompressed . Although back - off helps to pre 
serve throughput by stopping compression when systems get 
busy , it typically does so at the expense of storage efficiency , 
as many opportunities to compress data are lost . Customers 
increasingly demand both high throughput and high storage 
efficiency . Thus , a more flexible approach is needed . 
[ 0005 ] In contrast with the above - described arrangement , 
in which back - off is implemented as an all - or - none feature , 
an improved technique for managing data storage includes 
generating entropy of blocks on a per - block basis and 
selectively performing inline compression on blocks based 
at least in part on their entropy . Entropy of a block can be 
computed inexpensively and provides a rough measure of 
the block's compressibility . Thus , using per - block entropy 
enables a storage system to steer compression decisions , 
e.g. , whether to compress and / or how much to compress , 
flexibly and with high granularity , striking a balance 
between throughput and storage efficiency . 

DETAILED DESCRIPTION 

[ 0018 ] Embodiments of the improved technique will now 
be described . One should appreciate that such embodiments 
are provided by way of example to illustrate certain features 
and principles of the disclosure but are not intended to be 
limiting . 
[ 0019 ] An improved technique for managing data storage 
includes generating entropy of blocks on a per - block basis 
and selectively performing inline compression on blocks 



US 2022/0129162 A1 Apr. 28 , 2022 
2 

> > 

based at least in part on their entropy . Unlike prior back - off 
solutions , which can sacrifice data reduction to maintain 
high throughput , the improved technique can achieve a 
better balance between both . For example , highly compress 
ible blocks can be compressed , promoting storage efficiency , 
while uncompressible blocks can be skipped , preserving 
high throughput . In some examples , a storage system sup 
ports multiple levels of compression , e.g. , with a first level 
providing lower compression but executing faster , and a 
second level providing higher compression but executing 
more slowly . In some examples , entropy values steer not 
only decisions on whether to compress but also which level 
of compression to use . Such examples provide an even finer 
degree of granular control over the tradeoff between 
throughput and storage efficiency . 
[ 0020 ] FIG . 1 shows an example environment 100 in 
which embodiments of the improved technique can be 
practiced . As shown , multiple hosts 110 are arranged to 
access a data storage appliance 116 over a network 114. The 
data storage appliance 116 includes a computing node 120a 
( also referred to as a “ node , ” “ storage processor , ” or “ SP ” ) 
and storage 180 , such as magnetic disk drives , electronic 
flash drives , and / or the like . The data storage appliance 116 
may include multiple nodes 120 ( e.g. , a second node 120b ) . 
Multiple nodes 120 may be provided as circuit board assem 
blies or blades , which plug into a chassis that encloses and 
cools the nodes 120. The chassis has a backplane for 
interconnecting the nodes 120 , and additional connections 
may be made among nodes 120 using cables . In some 
examples , the appliance 116 is part of a storage cluster , such 
as one that contains any number of storage appliances 116 , 
where each appliance includes a pair of nodes 120 coupled 
to shared storage devices . In some arrangements , a host 
application runs directly on a node ( or nodes ) , such that 
separate host machines 110 need not be present . No particu 
lar hardware configuration is required , and any number of 
nodes 120 may be provided , including a single node 120 , in 
any arrangement , and the node or nodes 120 can be any type 
of computing device capable of running software and pro 
cessing host I / O's . 
[ 0021 ] The network 114 may be any type of network or 
combination of networks , such as a storage area network 
( SAN ) , a local area network ( LAN ) , a wide area network 
( WAN ) , the Internet , and / or some other type of network or 
combination of networks , for example . In cases where hosts 
110 are provided , such hosts 110 may connect to the SP 120a 
using various technologies , such as Fibre Channel , iSCSI 
( Internet small computer system interface ) , NFS ( network 
file system ) , and CIFS ( common Internet file system ) , for 
example . As is known , Fibre Channel and iSCSI are block 
based protocols , whereas NFS and CIFS are file - based 
protocols . Each node 120 is configured to receive I / O 
requests 112 according to block - based and / or file - based 
protocols and to respond to such I / O requests 112 by reading 
or writing the storage 180 . 
[ 0022 ] As shown , the node 120a includes one or more 
communication interfaces 122 , a set of processors 124 , and 
memory 130. The communication interfaces 122 include , for 
example , SCSI target adapters and / or network interface 
adapters for converting electronic and / or optical signals 
received over the network 114 to electronic form for use by 
the node 120a . The processor ( s ) 124 include one or more 
processing chips and / or assemblies , such as numerous multi 
core CPUs ( central processing units ) . The processor ( s ) 124 

may further include one or more coprocessors , one example 
being the QAT ( Quick Assist Technology ) Adapter , available 
from Intel® Corporation of Santa Clara , Calif . The QAT 
provides hardware acceleration for data compression and 
decompression . 
[ 0023 ] The memory 130 includes both volatile memory , 
e.g. , RAM ( Random Access Memory ) , and non - volatile 
memory , such as one or more ROMs ( Read - Only Memo 
ries ) , disk drives , solid state drives , and the like . The 
processor ( s ) 124 and memory 130 together form control 
circuitry , which is constructed and arranged to carry out 
various methods and functions as described herein . Also , the 
memory 130 includes a variety of software constructs real 
ized in the form of executable instructions . When the 
executable instructions are run by the processor ( s ) 124 , the 
processor ( s ) 124 carry out the operations of the software 
constructs . Although certain software constructs are specifi 
cally shown and described , it is understood that the memory 
130 typically includes many other software components , 
which are not shown , such as an operating system , various 
applications , processes , and daemons . 
[ 0024 ] As further shown in FIG . 1 , the memory 130 
“ includes , " i.e. , realizes by execution of software instruc 
tions , a cache 140 , a deduplication manager 150 , and an 
adaptive compression manager 160. The cache 140 is con 
figured to receive incoming data from hosts 110 , e.g. , in 
response to write requests issued by applications running 
thereon , and to arrange the data in blocks 142. A “ block ” is 
a storage extent that usually corresponds to a smallest 
addressable unit of storage space . Block sizes are typically 
uniform for any given storage system and can vary between 
storage systems , with typical block sizes being 4 kB ( kilo 
bytes ) or 8 kB , for example . In some examples , the cache 
140 is further configured to arrange blocks 142 based on 
LUN ( Logical UNit ) and / or based on logical address , such 
that logically contiguous blocks may be arranged in order . 
[ 0025 ] The deduplication manager 150 is configured to 
perform inline deduplication . Such deduplication may pro 
ceed by computing digests ( e.g. , hash values ) of blocks 142 
and attempting to match the digests to those stored in a 
digest cache ( not shown ) . A match of the digest of a new 
block to an entry in the digest cache identifies a block that 
has already been stored , and the deduplication manager 150 
can effect storage of the new block by arranging pointers but 
without having to redundantly store of the matched block . 
[ 0026 ] The adaptive compression manager 160 is config 
ured to perform compression on blocks 142 selectively 
based on generated values of entropy . As is known , the 
" entropy ” of a block provides a measure of the block's 
information content . Entropy may be expressed , for 
example , as a percentage that varies between 0 % and 100 % . 
A block with low entropy has low information content and 
high internal redundancy , whereas a block with high entropy 
has high information content and low internal redundancy . 
Given that data compression generally works by removing 
redundancy , the entropy of a block provides a good predic 
tion of that block's compressibility . For instance , a low 
entropy block tends to be highly compressible and a high 
entropy block tends to be uncompressible , or nearly so . 
Computations of entropy are known in the art , but they 
typically involve floating - point arithmetic , which can be 
burdensome to processors and difficult to use in high 
throughput applications . 
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may decide , based on a third block having high entropy , not 
to compress the third block at all . The decision not to 
compress may be based on a prediction that the third block 
is not compressible , or that it is not compressible enough to 
justify the cost in throughput that compressing the third 
block would entail . Uncompressible blocks may include , for 
example , blocks that already contain compressed data , such 
as data of MPEG files , JPEG files , or the like . Although first 
and second compression procedures are described , one 
should appreciate that embodiments may provide any num 
ber of compression procedures , e.g. , those covering a range 
of execution speeds and compression levels . Some embodi 
ments may provide only a single compression level , how 
ever . 

[ 0027 ] Fortunately , an efficient technique has been devel 
oped for computing entropy without requiring floating - point 
arithmetic . An example of such a technique is disclosed in 
copending U.S. application Ser . No. 16 / 669,160 , filed Oct. 
30 , 2019 , the contents and teachings of which are incorpo 
rated herein by reference . In some examples , the adaptive 
compression manager 160 applies the efficient technique of 
the incorporated application for computing the entropy of 
blocks at low computational cost . The incorporated tech 
nique is not required , however , as it is still possible for 
embodiments to use less efficient techniques for computing 
entropy to great advantage . 
[ 0028 ] In example operation , the hosts 110 issue I / O 
requests 112 to the data storage appliance 116. Node 120a 
receives the I / O requests 112 at the communication interface 
( s ) 122 and initiates further processing . In the case of write 
I / O requests , node 120s receives data specified by such 
requests into cache 140. The data may arrive from hosts 110 
in various size increments , which typically range , for 
example , from 512 B ( 0.5 kB ) to 256 kB . Cache 140 may 
arrange the incoming data in blocks 142 , e.g. , 4 - kB blocks . 
Cache 140 may further arrange blocks 142 based on LUN , 
based on logical address , and / or based on other factors . 
[ 0029 ] At some point , cache 140 may perform a flush 
operation to flush certain blocks to lower - level structures 
( e.g. , a mapping subsystem , RAID subsystem , etc .; not 
shown ) , which place the blocks into persistent structures in 
the storage 180. The flush operation may work on one batch 
of blocks at a time , such as batch 144. Each batch typically 
includes at least several blocks , and up to thousands of 
blocks . In various examples , flushing is repeated at regular 
intervals and may be conducted in parallel by multiple 
threads running on node 120a . 
[ 0030 ] Upon the cache 140 initiating a flush of batch 144 , 
the deduplication manager 150 checks the blocks in the 
batch 144 for matches to blocks recorded in the digest cache . 
In the example shown , blocks 154 are found to match blocks 
that are already stored in the storage appliance 116. Such 
blocks 154 may be pulled out of the batch 144 and dedu 
plicated , e.g. , by associating logical addresses of the blocks 
154 with respective locations of matching blocks in storage 
180. The remaining blocks 152 may be processed for 
adaptive compression . 
[ 0031 ] The adaptive compression manager 160 processes 
the batch 152 by computing entropy values of at least some 
of the blocks in batch 152 and steering compression deci 
sions based on the computed entropy values . In one 
example , the compression manager 160 computes the 
entropy of each of the blocks in the batch 152 and uses the 
respective entropy values in deciding how to compress the 
respective blocks . For instance , the compression manager 
160 may decide , based on a first block having moderate 
entropy , to compress the first block with a first compression 
procedure . Likewise , the compression manager 160 may 
decide , based on a second block having lower entropy , to 
compress the second block with a second compression 
procedure . The first compression procedure may execute 
faster than the second compression procedure but may yield 
a lesser degree of data compression than the second com 
pression procedure . For convenience , the first compression 
procedure is referred to herein as “ fast / low ” and the second 
compression procedure is referred to herein as " slow / high , " 
where “ fast ” and “ slow ” are used in a comparative sense , as 
are " high ” and “ low . ” Further , the compression manager 160 

[ 0032 ] In another example , embodiments may use a sam 
pling approach in generating the entropy of blocks , rather 
than computing the entropy of each and every block . 
Entropy may be computed , for example , on every other 
block , on every fourth block , on every hundredth block , and 
so on . Sampling may be especially attractive when blocks 
contain similar data , such as email data or video data . When 
using sampling , the adaptive compression manager 160 may 
use the entropy of sampled blocks as representatives of 
blocks that follow , and / or of other blocks in the same batch . 
Based on the entropy of a sampled block ( or of multiple 
sampled blocks ) , a compression decision may be made , e.g. , 
to use the first compression procedure , the second compres 
sion procedure , or no compression ( also called “ back - off ” ) , 
and that decision can be applied to unsampled blocks as well 
as to sampled blocks . 
[ 0033 ] FIG . 2 shows an example arrangement of the 
adaptive compression manager 160 of FIG . 1. Here , the 
adaptive compression manager 160 includes a compressor 
210 , an input queue 220 , and an output queue 230. An 
entropy calculator 240 is operatively coupled to the input 
queue 220 , and a batch calculator 250 is operatively coupled a 
to the output queue 230. An orchestrator 260 is provided to 
control operations . 
[ 0034 ] The compressor 210 may be implemented using 
hardware , software , firmware , or any combination thereof . 
In a particular example , the compressor 210 includes the 
above - described Intel QAT adapter , which provides hard 
ware acceleration for data compression and decompression . 
The QAT adapter implements four levels of compression , 
referred to as L1 - L4 . In a particular embodiment , the above 
described first ( fast / low ) compression level corresponds to 
QAT Adapter level L1 , which roughly corresponds to Lem 
pel - Ziv compression level LZ1 . Also , the above - described 
second ( slow / high ) compression level corresponds to QAT 
Adapter level L4 , which roughly corresponds to Lempel - Ziv 
compression level LZ9 . QAT Adapter levels L2 and L3 may 
be used in some embodiments but are not illustrated in those 
which are depicted . For implementing no compression ( e.g. , 
back - off ) , it may be necessary to bypass the QAT adapter 
( e.g. , if the QAT Adapter does not natively support a bypass 
function ) . Compressor 210 may implement a copy feature 
( not shown ) for this purpose , e.g. , one that identifies blocks 
in the input queue 220 for which no compression is specified 
and copies the identified blocks to the output queue 230 . 
[ 0035 ] As shown , the compressor 210 has a selector input 
212 , which is configured to receive a compression level 
selection ( CLS ) 262. The CLS 262 may specify , for 
example , the first ( fast / low ) compression procedure , the 
second ( slow / high ) compression procedure , some other 
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320 , fast / low compression for block 322 , and no compres 
sion ( back - off ) for block 324. Each selection is made based 
on the computed entropy of the respective block . The 
compressor 210 receives these settings 262 at selector input 
212 and proceeds to implement the corresponding compres 
sion procedures ( or no compression ) for the corresponding 
blocks . 
[ 0042 ] The output queue 230 shows example results of 
operation . As shown , compressed block 320c appears as a 
highly compressed version of block 320. Compressed block 
322c appears as a somewhat less - highly compressed version 
of block 322. Also , block 324b appears as a back - off block , 
which is identical to block 324 as it appeared in the input 
queue 220 . 

compression procedure ( if supported ) , or no compression 
( back - off ) . The compressor 210 is configured to respond to 
the CLS 262 on a per - block basis , for compressing blocks in 
the input queue 220 based on respective settings of the CLS 
262. In an example , the compressor 210 is configured for 
pipelined operation , and the CLS 262 provides a pipelined 
sequence of settings , e.g. , one setting for each of multiple 
blocks in the input queue 220 . 
[ 0036 ] In an example , the input queue 220 and output 
queue 230 are implemented in memory 130 of the comput 
ing node 120a ( FIG . 1 ) , as are the entropy calculator 240 , 
batch calculator 250 , and orchestrator 260. Although one 
input queue 220 and one output queue 230 are shown , any 
number of such queues may be provided . For example , the 
QAT Adaptor is known to include three endpoints that 
support three - way parallel compression . For implementa 
tions that employ the QAT Adaptor , the adaptive compres 
sion manager 160 may include three input queues 220 and 
three output queues 230 , with the orchestrator 260 config 
ured to load balance among them . 
[ 0037 ] As further shown , the input queue 220 has a length 
222 and a high - water mark ( HWM ) 224. The length 222 
indicates a number of blocks waiting to be processed in the 
input queue 220 , and the high - water mark 224 indicates a 
queue length at which the input queue 230 is close to being 
full . In an example , the high - water mark 224 is set to 90 % 
of the maximum length of the input queue 220 ; however , 
other values may be used . Also , the high - water mark 224 
may be adjustable . 
[ 0038 ] The entropy calculator 240 is configured to gener 
ate values of per - block entropy 242 , e.g. , one entropy value 
for each block . In some examples , the entropy calculator 240 
may operate on a sampling basis , such that entropy values 
need not be generated for each and every block . Per - block 
operation is described more fully in connection with FIG . 
?? . 
[ 0039 ] The batch calculator 250 is configured to select a 
desired per - batch compression result ( CR ) 252 , e.g. , for 
cases in which entropy or compressibility of certain blocks 
in a batch is used to steer compression decisions for other 
blocks in the same batch . Per - batch operation is described 
more fully in connection with FIG . 3B . 
[ 0040 ] In some examples , the orchestrator 260 is config 
ured to monitor the length 222 of the input queue 220 and 
respond to changes by modifying how compression is per 
formed . For instance , the orchestrator 260 may temporarily 
disable the slow / high compression option when the length 
222 exceeds the high - water mark 224 or some other thresh 
old . Also , the orchestrator 260 may switch from per - block 
operation to per - batch operation depending on the length 
222 of input queue 220 . 
[ 0041 ] FIG . 3A shows an example of the adaptive com 
pression manager 160 of FIG . 2 configured for per - block 
operation . Here , blocks in cache 140 , such as blocks 320 , 
322 , and 324 , are arranged in the input queue 220. Entropy 
calculator 240 may generate the entropy of blocks in the 
input queue 220 on a first - in - first - out ( FIFO ) basis . For 
instance , entropy calculator 240 calculates an entropy E = 0 . 
34 for block 320 , then calculates an entropy E = 0.64 for 
block 322 , then calculates an entropy E = 0.95 for block 324 , 
and so on . These entropy values may be input to orchestrator 
260 , which produces respective compression level settings 
( CLS ) 262 for the respective entropy values . For example , 
orchestrator 260 selects slow / high compression for block 

[ 0043 ] In some examples , orchestrator 260 may base its 
per - block compression decisions on additional factors 
besides entropy . For example , some embodiments may store 
compression headers appended to compressed blocks but 
may not store such headers for uncompressed blocks . The 
header for a compressed block may include metadata , such 
as compressed size , compression procedure used in com 
pressing the block , a checksum , and so forth . Where com 
pression headers are used , the total size of a compressed 
block includes not only the size of the compressed data but 
also the size of the header . If the sum of compressed data 
plus header would approach or exceed the block size ( e.g. , 
4 kB ) , the orchestrator 260 may opt for back - off , even if the 
data itself would compress to something smaller than the 
block size . 
[ 0044 ] Processing with entropy sampling works the same 
way as per - block processing without sampling , except that 
entropy may be calculated on every Nth block in the input 
queue 220 , rather than on each and every block . In an 
example , the orchestrator 260 produces a CLS value 262 for 
every Nth block and maintains that value until the next Nth 
block is processed , at which point the CLS value 262 is 
changed to reflect the new entropy value . 
[ 0045 ] Given that sampling does not separately consider 
the entropy of each block that gets compressed , sampling 
raises the risk that some compressed blocks may end up 
being larger than the block size , particularly when they 
include headers . To avoid this result , orchestrator 260 may 
check the sizes of blocks in the output queue 230 and replace 
any compressed blocks larger than the block size with their 
uncompressed counterparts . Such counterparts may still 
reside in cache 140 . 
[ 0046 ] FIG . 3B shows an example of the adaptive com 
pression manager 160 of FIG . 2 configured for per - batch 
operation . In some examples , the adaptive compression 
manager 160 switches from per - block processing to per 
batch processing when its gets busy . Busyness may be 
estimated , for example , based on queue length 222. When 
queue length 222 exceeds the high - water mark 224 , the 
adaptive compression manager 160 may switch from per 
block processing to per - batch processing . It may later switch 
back to per - block processing when the queue length 222 
falls below the high - water mark 224 ( or when it falls below 
some lower threshold , to prevent chattering ) . In other 
examples , the adaptive compression manager 160 uses per 
batch processing under other circumstances , which may be 
independent of busyness . 
[ 0047 ] Per - batch processing may proceed by identifying a 
batch 350 of M blocks in the input queue 222 , where M may 
be several tens , hundreds , or thousands , for example . Com 
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pressor 210 may proceed to compress a first N blocks 360 of 
the M blocks ( N < M ) , e.g. , using the slow / high compression 
procedure , thus producing N compressed blocks 360c . The 
batch calculator 250 computes a compression result ( CR ) 
252 of the first N blocks , e.g. , by comparing a total size of 
the N compressed blocks 360c with the size of the N blocks 
360 prior to compression . 
[ 0048 ] The compression result 252 may be expressed as a 
total compressed size of compressed blocks 360c ( e.g. , 
across all N blocks ) , as a mean compressed size of com 
pressed blocks 360c , as a ratio of total compressed size to 
total uncompressed size , or in any other suitable manner . In 
the example shown , compression result 252 is expressed as 
a reduction ratio , such as 

Uncompressed Size - Compressed Size 
CR = Uncompressed Size 

of information content among bytes in a block . The more 
even the distribution , the better the accuracy , and the more 
closely decimated entropy values 242d match with undeci 
mated entropy values . 
[ 0054 ] In some examples , the adaptive compression man 
ager 160 may initially be configured to operate the entropy 
calculator 240 without decimation . It may further be con 
figured to switch operation of the entropy calculator 240 to 
a decimation mode when the system gets busy and / or when 
it is compressing certain types of data , e.g. , that known to 
have uniform information content , such as text . 
[ 0055 ] FIGS . 5-8 show example methods that may be 
carried out in connection with the environment 100. Such 
methods are typically performed , for example , by the soft 
ware constructs described in connection with FIG . 1 , which 
reside in the memory 130 of the computing node 120a and 
are run by the processor ( s ) 124. The various acts of the 
depicted methods may be ordered in any suitable way . 
Accordingly , embodiments may be constructed in which 
acts are performed in orders different from those illustrated , 
which may include performing some acts simultaneously . 
[ 0056 ] FIG . 5 shows an example method 500 for manag 
ing data compression in the environment of FIG . 1. Method 
500 may be carried out by the adaptive compression man 
ager 160 , for example . 
[ 0057 ] At 510 , the adaptive compression manager 160 
monitors system busyness , e.g. , by monitoring the length 
222 of the input queue 220 to compressor 210 ( FIG . 2 ) . 
Additional factors may be considered in evaluating busy 
ness , such as memory usage , CPU utilization , and the like . 
[ 0058 ] At 520 , the adaptive compression manager 160 
determines whether the monitored busyness falls below a 
predetermined threshold T1 . If so , operation proceeds to 
530 , whereupon the adaptive compression manager 160 
processes data for compression on a per - block basis , such as 
described above in connection with FIG . 3A . If not , opera 
tion proceeds to 540 , whereupon the adaptive compression 
manager 160 processes data for compression on a per - batch 
basis , such as described above in connection with FIG . 3B . 
[ 0059 ] In an example , threshold T1 corresponds to the 
high - water mark 224 of the input queue 220 ( FIG . 2 ) . 
Busyness below threshold T1 thus corresponds to length 222 
of the input queue 220 being below the high - water mark 
224. Likewise , busyness exceeding threshold T1 corre 
sponds to length 222 of the input queue 220 exceeding the 
high - water mark 224 . 
[ 0060 ] FIG . 6 shows an example method 600 of process 
ing data for compression on a per - block basis . FIG . 6 thus 
presents a more expanded view of act 530 of FIG . 5 . 
[ 0061 ] At 610 , entropy calculator 240 calculates the 
entropy of a current block . The calculation may be based on 
the entire block or a decimated version thereof . Orchestrator 
260 compares the calculated entropy “ E ” with one or more 
thresholds to determine how to treat the current block for 
compression . 
[ 0062 ] For example , at 620 , orchestrator 260 determines 
whether the entropy E of the current block falls within a first 
range or within a second range . Entropy values within the 
first range are processed for compression , whereas entropy 
values within the second range are not . A threshold E1 
distinguishes the first range from the second range and may 
be set to a high value , such as 90 % . Blocks with entropy 
values that fall within the second range are thus uncom 
pressible or compressible to such as small extent that there 

[ 0049 ] The batch calculator 250 outputs the compression 
result 252 of the first N blocks 360 to the orchestrator 260 . 
In response , the orchestrator 260 establishes a CLS value 
262 for the rest of the batch 350 , e.g. , for the remaining M - N 
blocks 370 , based on the compression result 252 for the first 
N blocks 360. For example , if the first N blocks 360 were 
only 5 % compressible , the orchestrator 260 would set the 
CLS value 262 to back - off , indicating no compression . The 
compressor 210 would then perform no compression on the 
remaining M - N blocks 370 of the batch 350. If the first N 
blocks were 40 % compressible , however , the orchestrator 
260 would set the CLS value 262 to the first compression 
level , causing the compressor 210 to perform fast / low com 
pression on the remaining N - M blocks 370. But if the first 
N blocks were 75 % compressible , the orchestrator 260 
would set the CLS value 262 to the second compression 
level , causing the compressor 210 to perform slow / high 
compression on the remaining N - M blocks 370 . 
[ 0050 ] Although the depicted example bases compression 
of remaining blocks in a batch on actual compression results 
obtained by compressing the first N blocks 360 , the decision 
could alternatively be based on average entropy of the first 
N blocks 360. As before , if any compressed blocks ( includ 
ing headers ) turn out to be larger than the system block size 
( e.g. , 4 kB ) , such compressed blocks may be replaced with 
their uncompressed counterparts , e.g. , from cache 140 . 
[ 0051 ] FIG . 4 shows an example arrangement for further 
optimizing entropy calculations . The activities described 
may be performed , for example , by the entropy calculator 
240 of FIG . 2. As shown , a decimation ( undersampling ) 
process reduces the number of bytes 420 in a block 410 from 
which entropy is computed . 
[ 0052 ] For example , the entropy calculator 240 may 
receive a block 410 and sample particular bytes of the block , 
such as every fourth , eighth , sixteenth , etc. , byte in block 
410. The resulting data set 420 is smaller than the original 
block 410 , enabling an entropy calculation to proceed much 
more quickly . It is noted that the efficient entropy calculation 
described in incorporated U.S. application Ser . No. 16/669 , 
160 works with variable numbers of bytes and is thus 
compatible with decimation . 
[ 0053 ] The resulting decimated entropy values 242d may 
be used for steering compression decisions in the same way 
that entropy values 242 are used above . The accuracy of 
decimated entropy values 242d depends on the distribution 

a 

a 
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is little or no benefit to compressing them . If the entropy of 
the current block falls outside the first range , operation 
proceeds to 630 , whereupon the orchestrator 260 selects 
back - off for the current block , indicating that no compres 
sion is to be performed . Otherwise , operation proceeds to 
640 . 

operation proceeds to 770 , whereupon the orchestrator 260 
applies the slow / high compression procedure to the remain 
ing M - N blocks 370 in the current batch . In this manner , 
slow / high compression is performed on blocks that are 
expected to be highly compressible , whereas fast / low com 
pression is performed on blocks that are expected to be 
somewhat less compressible . The method 700 may then be 
repeated for a next batch of blocks . 
[ 0071 ] The particular operation as shown in method 700 
may be varied while achieving similar results . Also , one can 
readily see that the particular thresholds can be varied . Thus , 
FIG . 7 is intended to be illustrative rather than limiting . 
[ 0072 ] FIG . 8 shows a method 800 that may be carried out 
in the environment 100 and provides a high - level review of 
some of the features described above . 
[ 0073 ] At 810 , data is received . As shown in FIG . 1 , for 
example , computing node 120a may receive data arriving in 
write I / O requests issued by hosts 110. The computing node 
120a may receive such data into cache 140 , which organizes 
the data into blocks 142 . 
[ 0074 ] At 820 , entropy values are generated from respec 
tive blocks of the data received . For example , entropy 
calculator 240 ( FIG . 2 ) , running within adaptive compres 
sion manager 160 , generates per - block entropy values 242 of 
blocks 152 , e.g. , blocks received into cache 140 but not 
deduplicated . The entropy calculator 240 may generate 
entropy values on all such blocks or any subset of them . For 
example , entropy calculator 240 may operate on a sampling 
basis . Also , entropy calculator 240 may operate with byte 
based decimation or without . 
[ 0075 ] At 830 , the blocks of the data are selectively 
compressed based on the entropy values . For example , 
orchestrator 260 ( FIG . 2 ) may direct compressor 210 to 
compress blocks in the input queue 220 based on the entropy 
values 242 calculated for the respective blocks , such as by 
using back - off for high - entropy blocks , fast / low compres 
sion for moderate entropy blocks , and slow / high compres 
sion for low - entropy blocks . If sampling is used , the entropy 
calculated on sampled blocks may be used in steering 
compression decisions for nearby , unsampled blocks . 
[ 0076 ] At 840 , the data is persisted , which includes per 
sisting compressed blocks for at least some of the data . For 
example , blocks 162 processed by the adaptive compression 
manager 160 may be persisted to storage 180. Such blocks 
162 may include both compressed blocks and uncompressed 
blocks . 
[ 0077 ] An improved technique has been described for 
managing data storage . The technique includes generating 
entropy of blocks on a per - block basis and selectively 
performing inline compression on blocks based at least in 
part on their entropy . Entropy of a block can be computed 
inexpensively and provides a rough measure of the block's 
compressibility . Thus , using per - block entropy enables a 
storage system to steer compression decisions , e.g. , whether 
to compress and / or how much to compress , flexibly and with 
high granularity , striking a balance between throughput and 
storage efficiency . 
[ 0078 ] Having described certain embodiments , numerous 
alternative embodiments or variations can be made . For 
instance , a certain efficient entropy calculation is described . 
But this is merely one suitable example . Also , a particular 
hardware accelerator is described . But this is also merely 
one example . Neither example is intended to be limiting . 

[ 0063 ] Given that the illustrated embodiments support two 
levels of compression , an additional comparison may be 
performed ( at 640 ) to determine whether the entropy of the 
current block falls within a first sub - range or a second 
sub - range of the first range . Here , threshold E2 distinguishes 
the two subranges and may assume an intermediate entropy 
value , such as 50 % . If the current block has an entropy value 
less than E2 , operation proceeds to 650 , whereupon the 
current block may be processed using the first compression 
procedure ( e.g. , fast / low ) . Otherwise , operation may pro 
ceed to 660 , whereupon the current block may be processed 
using the second compression procedure ( e.g. , slow / high ) . 
The current block is then processed , and a next block in the 
input queue 220 may be identified as a new current block , at 
which point the method 600 is repeated . 
[ 0064 ] One should appreciate that the particular operation 
as shown in method 600 may be varied while achieving 
similar results . For example , the particular thresholds can be 
varied . Also , additional sub - ranges may be added , for sup 
porting additional compression levels . Thus , FIG . 6 is 
intended to be illustrative rather than limiting . 
[ 0065 ] FIG . 7 shows an example method 700 of process 
ing data for compression on a per - batch basis . FIG . 7 thus 
presents a more expanded view of act 540 of FIG . 5 . 
[ 006 ] At 710 , a current batch 350 is identified . For 
example , the batch is identified as M blocks 350 within the 
input queue 220 of the adaptive compression manager 160 . 
In an example , the batch corresponds to a set of blocks being 
processed as part of a flush transaction from cache 140 . 
[ 0067 ] At 720 , the adaptive compression manager 160 
compresses a first N blocks 360 of the current batch , e.g. , as 
shown in FIG . 3B , thus yielding compressed blocks 360c . In 
an example , blocks 360 are compressed using the slow / high 
compression procedure . Batch calculator 250 then computes 
a compression result 252 of the N - block compression . In the 
example shown , compression result 252 is expressed as a 
reduction ratio , such as that described in connection with 
FIG . 3B . The acts that follow then have the effect of steering 
compression of the remaining M - N blocks 370 of the current 
batch based on the results obtained by compressing the first 
N blocks 350 . 
[ 0068 ] For example , at 730 the orchestrator 260 deter 
mines whether the compression result ( CR ) falls below a 
first threshold C1 , which may represent a minimal reduction 
in size , such as 10 % . If the compression result falls below 
C1 ( indicating less than 10 % reduction ) , operation proceeds 
to 740 , whereupon the orchestrator 260 applies back - off ( no 
compression ) to the remaining M - N blocks 370 of the 
current batch . 
[ 0069 ] At 750 , the orchestrator 260 determines whether 
CR falls below a second threshold C2 , which may represent 
a good reduction in size , such as 50 % . If CR for the first N 
blocks 350 falls below C2 , indicating only fair data reduc 
tion , operation proceeds to 760 , whereupon the orchestrator 
260 applies the fast / low compression procedure to the 
remaining M - N blocks 370 in the current batch . 
[ 0070 ] Otherwise , if the orchestrator 260 determines that 
CR exceeds C2 ( indicating good - to - excellent compression ) , 
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[ 0079 ] Further , although features have been shown and 
described with reference to particular embodiments hereof , 
such features may be included and hereby are included in 
any of the disclosed embodiments and their variants . Thus , 
it is understood that features disclosed in connection with 
any embodiment are included in any other embodiment . 
[ 0080 ] Further still , the improvement or portions thereof 
may be embodied as a computer program product including 

more non - transient , computer - readable storage 
media , such as a magnetic disk , magnetic tape , compact 
disk , DVD , optical disk , flash drive , solid state drive , SD 
( Secure Digital ) chip or device , Application Specific Inte 
grated Circuit ( ASIC ) , Field Programmable Gate Array 
( FPGA ) , and / or the like ( shown by way of example as 
medium 850 in FIG . 8 ) . Any number of computer - readable 
media may be used . The media may be encoded with 
instructions which , when executed on one or more comput 
ers or other processors , perform the process or processes 
described herein . Such media may be considered articles of 
manufacture or machines , and may be transportable from 
one machine to another . 
[ 0081 ] As used throughout this document , the words 
" comprising , " " including , " " containing , " and " having " are 
intended to set forth certain items , steps , elements , or aspects 
of something in an open - ended fashion . Also , as used herein 
and unless a specific statement is made to the contrary , the 
word “ set ” means one or more of something . This is the case 
regardless of whether the phrase " set of ” is followed by a 
singular or plural object and regardless of whether it is 
conjugated with a singular or plural verb . Also , a “ set of 
elements can describe fewer than all elements present . Thus , 
there may be additional elements of the same kind that are 
not part of the set . Further , ordinal expressions , such as 
“ first , ” “ second , ” “ third , ” and so on , may be used as adjec 
tives herein for identification purposes . Unless specifically 
indicated , these ordinal expressions are not intended to 
imply any ordering or sequence . Thus , for example , a 
“ second ” event may take place before or after a “ first event , " 
or even if no first event ever occurs . In addition , an identi 
fication herein of a particular element , feature , or act as 
being a " first ” such element , feature , or act should not be 
construed as requiring that there must also be a " second " or 
other such element , feature or act . Rather , the “ first ” item 
may be the only one . Also , and unless specifically stated to 
the contrary , “ based on ” is intended to be nonexclusive . 
Thus , “ based on ” should not be interpreted as meaning 
“ based exclusively on ” but rather “ based at least in part on ” 
unless specifically indicated otherwise . Although certain 
embodiments are disclosed herein , it is understood that these 
are provided by way of example only and should not be 
construed as limiting . 
[ 0082 ] Those skilled in the art will therefore understand 
that various changes in form and detail may be made to the 
embodiments disclosed herein without departing from the 
scope of the following claims . 
What is claimed is : 
1. A method of managing data storage , comprising : 
receiving data ; 
generating entropy values of respective blocks of the data ; 
selectively compressing the blocks of the data based on 

the entropy values ; and 
persisting the data , including persisting compressed 

blocks for at least some of the data . 

2. The method of claim 1 , wherein selectively compress 
ing the blocks of the data includes : 

compressing a first set of blocks having entropy values 
within a first range ; and 

skipping compression of a second set of blocks having 
entropy values outside the first range . 

3. The method of claim 2 , wherein compressing the first 
set of blocks includes : 

compressing a first subset of blocks having entropy values 
within a first sub - range of the first range using a first 
compression procedure ; and 

compressing a second subset of blocks having entropy 
values within a second sub - range of the first range 
using a second compression procedure . 

4. The method of claim 3 , wherein the first compression 
procedure executes faster than the second compression 
procedure and yields a lesser degree of data compression 
than the second compression procedure . 

5. The method of claim 3 , 
wherein blocks of the data are arranged in a queue , 
wherein generating entropy values of respective blocks of 

the data is performed by sampling fewer than all blocks 
in the queue , and 

wherein the method further comprises selectively com 
pressing un - sampled blocks in the queue based on 
entropy values generated from one or more sampled 
blocks in the queue . 

6. The method of claim 3 , wherein generating entropy 
values of respective blocks includes , for at least one block , 
generating an entropy value based on mpling bytes within 
the respective block , the entropy value thus reflecting 
sampled bytes but not un - sampled bytes within the respec 
tive block . 

7. The method of claim 3 , wherein blocks of the data are 
arranged in a queue , and wherein the method further com 
prises disabling the second compression procedure in 
response to a length of the queue exceeding a predetermined 
high water mark . 

8. The method of claim 3 , further comprising : 
providing an ordered set of M blocks of data ; 
determining a compressibility level of a first N blocks of 

the M blocks of data ( N < M ) ; 
based on the compressibility level of the first N blocks , 

selecting a processing procedure as one of ( i ) no 
compression , ( ii ) the first compression procedure , or 
( iii ) the second compression procedure ; and 

processing a remaining M - N blocks of the M blocks using 
the selected processing procedure . 

9. The method of claim 8 , wherein the ordered set of M 
blocks of data are blocks contained within a flush transaction 
for flushing the M blocks of data from a cache . 

10. The method of claim 3 , wherein persisting the data 
includes : 

storing a compressed block with a compression header 
that includes metadata describing a compression pro 
cedure used to compress the compressed block ; and 

storing an uncompressed block without a compression 
header . 

11. A computerized apparatus , comprising control cir 
cuitry that includes a set of processing units coupled to 
memory , the control circuitry constructed and arranged to : 

receive data ; 
generate entropy values of respective blocks of the data ; 
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selectively compress the blocks of the data based on the 
entropy values ; and 

persist the data , including compressed blocks for at least 
some of the data . 

12. A computer program product including a set of 
non - transitory , computer - readable media having instructions 
which , when executed by control circuitry of a computerized 
apparatus , cause the computerized apparatus to perform a 
method of managing data storage , the method comprising : 

receiving data ; 
generating entropy values of respective blocks of the data ; 
selectively compressing the blocks of the data based on 

the entropy values , and 
persisting the data , including persisting compressed 

blocks for at least some of the data . 
13. The computer program product of claim 12 , wherein 

selectively compressing the blocks of the data includes : 
compressing a first set of blocks having entropy values 

within a first range ; and 
skipping compression of a second set of blocks having 

entropy values outside the first range . 
14. The computer program product of claim 12 , wherein 

compressing the first set of blocks includes : 
compressing a first subset of blocks having entropy values 

within a first sub - range of the first range using a first 
compression procedure ; and 

compressing a second subset of blocks having entropy 
values within a second sub - range of the first range 
using a second compression procedure . 

15. The computer program product of claim 14 , wherein 
the first compression procedure executes faster than the 
second compression procedure and yields a lesser degree of 
data compression than the second compression procedure . 

16. The computer program product of claim 14 , 
wherein blocks of the data are arranged in a queue , 
wherein generating entropy values of respective blocks of 

the data is performed by sampling fewer than all blocks 
in the queue , and 

wherein the method further comprises selectively com 
pressing un - sampled blocks in the queue based on 
entropy values generated from one or more sampled 
blocks in the queue . 

17. The computer program product of claim 14 , wherein 
generating entropy values of respective blocks includes , for 
at least one block , generating an entropy value based on 
sampling bytes within the respective block , the entropy 
value thus reflecting sampled bytes but not un - sampled bytes 
within the respective block . 

18. The computer program product of claim 14 , wherein 
blocks of the data are arranged in a queue , and wherein the 
method further comprises disabling the second compression 
procedure in response to a length of the queue exceeding a 
predetermined high water mark . 

19. The computer program product of claim 14 , further 
comprising : 

providing an ordered set of M blocks of data ; 
determining a compressibility level of a first N blocks of 

the M blocks of data ( N < M ) ; 
based on the compressibility level of the first N blocks , 

selecting a processing procedure as one of ( i ) no 
compression , ( ii ) the first compression procedure , or 
( iii ) the second compression procedure ; and 

processing a remaining M - N blocks of the M blocks using 
the selected processing procedure . 

20. The computer program product of claim 19 , wherein 
the ordered set of M blocks of data are blocks contained 
within a flush transaction for flushing the M blocks of data 
from a cache . 
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