
US 2009.0024980A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0024980 A1

Sundararajan et al. (43) Pub. Date: Jan. 22, 2009

(54) USER INTERFACES AND SOFTWARE REUSE Related U.S. Application Data
IN MODEL BASED SOFTWARE SYSTEMS

(62) Division of application No. 1 1/065,007, filed on Feb.
24, 2005.

(75) Inventors: Parthasarathy Sundararaj an, (60) Provisional application No. 60/553,091, filed on Mar.
Chennai (IN); Srinivasan 15, 2004, provisional application No. 60/553,089,
Ramaswamy, Chennai (IN); filed on Mar. 15, 2004, provisional application No.
Rajagopalan Sethuraman, 60/553,088, filed on Mar. 15, 2004.
Chennai (IN); Raghuram Devalla, O O
Chennai (IN) Publication Classification

(51) Int. Cl.
Correspondence Address: 52 se:/44 (2006.01) 717/104
GLOBAL IPSERVICES, PLLC (52) U.S. Cl. ..
1O CRESTWOOD LANE (57) ABSTRACT

NASHUA, NH 03062 (US) In a model based software system, a set of business rules is
scanned, and patterns are identified. The patterns are then

(73) Assignee: RAMCO SYSTEMS LIMITED, compared, and similarities identified which indicate that soft
Chennai (IN) ware can be reused in the system. In one embodiment, iden

tifiers of the rules are scanned. In another embodiment, usage
patterns are used for designing a middle layer and generating

(21) Appl. No.: 12/238,469 code. In another embodiment of the invention, a data model is
generated by capturing data from a user interface for a busi

(22) Filed: Sep. 26, 2008 ness document.

PROGRAM
MODULES

PROGRAM
DATA

A.

MONITOR

PROCESSINC
UNIT VIDEO

ADAPTER

SYSTEM BUS

-2)

53

HARD DISK MACNETIC DISK OPTICAL SERIAL OCA AREA NETWORK
DRIVE DRIVE R NETWORK DRIVE PORT INTERFACE

INTERFACE INTERFACE INTERFACE INTERFACE

REMOTE
COMPUTER

A.

as APPLICATION - - - - -
PROGRAMS 5.

OTHER
PROGRAM
MODULES

Patent Application Publication Jan. 22, 2009 Sheet 1 of 2 US 2009/0024980 A1

START

SOFTWARE SYSTEM BUSINESS RULES

SCANNING BUSINESS RULES

EXTRACTING DESCRIPTIONS

FORMING PATTERN SIGNATURES

DETERMINING REUSE POTENTIAL

Az/

Jan. 22, 2009 Sheet 2 of 2 Patent Application Publication US 2009/0024980 A1

US 2009/0024980 A1

USER INTERFACES AND SOFTWARE REUSE
IN MODEL BASED SOFTWARE SYSTEMS

RELATED APPLICATIONS

0001. This is a divisional patent application of co-pending
application Ser. No. 1 1/065,007 filed on Feb. 24, 2005
entitled “User interfaces and software reuse in model based
Software systems’ which was a complete patent application
claiming priority to the following three provisional applica
tions:
0002 U.S. Provisional Application Ser. No. 60/553,091,
entitled “User Interface Driven Data Modeling Approach’ by
inventor Sundararajan Parthasarathy et al., filed Mar. 15,
2004, which is herein incorporated in its entirety by reference
for all purposes.
0003 U.S. Provisional Application Ser. No. 60/553,089,
entitled “An Approach to Identify Software Re-Use in a
Model Based Software Solution” by inventor Raghuraman
Devalla et al., filed Mar. 15, 2004, which is herein incorpo
rated in its entirety by reference for all purposes.
0004 U.S. Provisional Application Ser. No. 60/553,088,
entitled “A Formal Approach to Design Generation of Multi
tier Applications Using Behavior Patterns” by inventor Raja
gopalan Sethuraman et al., filed Mar. 15, 2004, which is
herein incorporated in its entirety by reference for all pur
poses. The aforementioned applications are hereby incorpo
rated herein by reference in its entirety.

FIELD OF INVENTION

0005. The present invention relates to model based soft
ware systems, and in particular, user interfaces and the reuse
of Software in Such model based systems.

BACKGROUND

0006 Model based software solutions involve approaches
and implementations in which every significant part of a
Software development lifecycle is modeled as data and per
sisted with capabilities that enable a user to perform various
steps in the software development lifecycle. This data mod
eling requires a high level of specialization, and is usually
carried out just before the start of coding. The modeled data is
persisted and can be used by downstream processes thereby
ensuring that all relevant data that is captured by upstream
processes are used in the downstream processes without any
significant loss of information.
0007. The traditional approach to the data modeling
involves an understanding of the system in its entirety includ
ing all the data dependencies between various entities in the
system. A schema designer who models data, requires
detailed information on various business processes addressed
by the system and various constituents of the system. For
example, the schema designer requires information in terms
of entities that need to be stored in the system and their
relationship with other data that are to be stored in the system.
The data types and sizes of those entities also need to be
stored.
0008. This schema can then be represented diagrammati
cally and reviewed by functional specialists. As the number of
entities increase, their interconnections with other entities
also increase thereby increasing the complexity of the
schema. A fully represented Schematic diagram for a fairly

Jan. 22, 2009

complex system has many interconnections that explain the
origin and destination of the relationship lines between enti
ties.
0009. The granularity of data captured in a model based
environment depends on an extent that the model is used. For
example, if functional requirements are captured at a very
granular level, it enables a designer to implement these
requirements with the exact business logic as envisioned by a
requirements engineer.
0010. During a typical modeling process, business logic
that is captured at one point in a system is quite often appli
cable at some other point in the system. However, because of
the granularity of the business logic, the set of business rules
that may be needed to be reused may not be a single rule but
a set of business rules which may form a subset of the business
logic implemented elsewhere. Even though these business
rules are not reused by the requirements engineer, the design
engineer who analyzes them may benefit if he can identify the
reuse of the business rules across the various actions. Unfor
tunately, the task of identifying this subset of the huge set of
business rules that exist in the business process is time con
Suming and strenuous. This makes reuse identification a near
impossibility for the design engineer.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 Embodiments of the present invention are illus
trated by way of an example and not limited to the figures of
the accompanying drawings, in which like references indicate
similar elements and in which:
0012 FIG. 1 is a flow chart of an embodiment of the
invention.
0013 FIG. 2 illustrates a computer system that may be
used in connection with the present invention.
0014. Other features of the present embodiments will be
apparent from the accompanying drawings and from the
detailed description that follows.

DETAILED DESCRIPTION

0015. Any software solution is a collection of user inter
faces between a user and a repository, where the user's data
are stored. These interfaces could be displays, reports, and/or
devices such as scanners and readers.
0016. Any such interface can be visualized as a business
document with a header section that uniquely identifies the
business document. The business document further has vari
ous sections, each of which captures related data at various
stages in a lifecycle of the business document. Such business
documents also refer to other documents for information
relating to certain key data items in the document. These
could be references to external documents or data copied
from the relevant business documents.
0017. An usual approach of designing the user interfaces

is to capture data for an underlying business in various stages.
Each stage adds value to the data that has been already cap
tured. At each of these stages the data captured has direct
relevance to the business document that has been considered
for automation.

0018. In an embodiment of the invention, a user interface
may normally have several types of elements. There are single
instance user interface elements such as edit controls, check
boxes and text areas. There are also multiple instance data sets
that reflect the various constituents of a business document.
These normally reflect the table of data that is present in the

US 2009/0024980 A1

business documents, and are incorporated in the user inter
faces as grid controls. Also, there are single instance data
items that have a predefined list of values of which one can be
selected for a particular instance of a business document.
These are incorporated in the user interface as Combo Boxes
or List controls. Additionally, sets of single instance data
items are present as elements, some or all of which could be
applicable for the instance of the business document. These
can be incorporated as a group of checkboxes. There are also
non-editable user elements that reflect various business states
in which a document can exist at any point in time. These are
typically incorporated as display only controls. And there are
links to other user interfaces that reflect the references to other
business documents that could be referred to for additional
information. These may be incorporated as hyperlinks or
command buttons that invoke other user interfaces by passing
the required context information. Lastly, there are reference
data items that reflect data that are copied from the other
business documents and are displayed in the user interface.
These are incorporated as display only controls in the user
interface.
0019. After establishing the methodology of mapping
various user elements to probable business documents, the
data model is formed for the business document. A business
object (BO) represents the business document, and an inter
face business object (IBO) refers to the business documents
from where the information is acquired. Both business
objects and interface business objects have data segments that
refer to the various sections of the business documents and the
related business documents. Each data segment has a unique
identifier which uniquely identifies an instance of data in the
data segment. A hierarchy of data segments can also be estab
lished. This can be accomplished by specifying a parent seg
ment to each data segment. A data item of a data segment
could be owned by the data segment itself or be present as a
reference to another interface business object, a data segment,
or a data item.

0020. In an embodiment, factors that affect such abusiness
object hierarchy are as follows. First, every collection of
related user interfaces forms a business object. Second, every
related collection of referred user interfaces forms an inter
face business object. Third, every section in the user interface
is a data segment. Fourth, any list of values is a data segment
from an interface business object. Fifth, any display only field
that displays data from other collections is not stored as data
but refers to the corresponding data in the interface business
objects. Recording the corresponding interface business
object, segment, and data items depicts such relations.
0021. In another embodiment, a database schema can be
derived out of this structure of business objects and interface
business objects. The physical representation of this embodi
ment is as follows. Every data segment is represented as
database tables, and each of these tables has a primary key
formed by the identifier that is a part of the segment and the
identifiers of its parent segments. Foreign keys are identified
for any data items that refer to interface business objects.
Every data segment of an interface business object can be
represented as database views or database stored procedures.
The data items of the data segment are columns for the cor
responding database tables. The data items of the interface
business objects are the columns of the corresponding data
base views or the parameters of the database stored proce
dures used for integration. This embodiment directly attempts
to arrive at a fairly comprehensive database schema that can

Jan. 22, 2009

be further refined for any specific database requirements such
as audit trail and concurrency control implications. This
embodiment provides a direct relationship of the database
schemato the user interface, an intuitive approach to database
design that enables a high level of consistency with the user
interface, and a quick first cut Schema to facilitate overall
understanding of the business functionality.
0022. In another embodiment, every function in the sys
tem has a set of business rules, and a group of business rules
is associated with a particular action performed by an end
user. These groups can be completely or partially used as part
of another task. Identifying this set of business rules is a
challenge for a design engineer. In this embodiment, there are
two categories of reuse. First, there are a set of rules in which
their identification markers repeat across other actions. Sec
ond, there are a set of rules that, after considering the contents
of the business rules, repeat across other actions. In either
instance however, the repetition indicates the possibility of
U.S.

0023. In an embodiment, each distinct action is consid
ered. For each action, a sequential scan is made from the first
business rule to the last business rule. As the scan progresses
the system forms a pattern signature that uniquely identifies
the business rules encountered so far in the sequence. The
result is that at the end of this step each action may have a
pattern signature associated with it.
0024. Thereafter, each task is again considered. A scan is
made through the pattern signature to identify if any part of
the signature occurs in the pattern signature of the other
actions. If such an occurrence is made then the Subset is
identified as a pattern and recorded separately along with its
OCCUCCS.

0025. This process is continued for all actions. If in this
process a pattern is identified that consists of other patterns,
then this pattern hierarchy is also maintained. At the end of
this process the system has data in terms of the various pat
terns and their occurrences.

0026. A designer then analyzes this data, and identifies the
best possible reuse(s). There are several points that a designer
may consider in this process. First, a designer may want to
maximize business rule reuse by selecting a pattern with the
maximum size, irrespective of its occurrences. The advantage
of this approach is that the designer can identify bigger
chunks of business logic that can be implemented across the
system. Second, a designer may choose to maximize occur
rence reuse by selecting patterns that cover the maximum
number of actions. This embodiment permits a designer to
reduce design effort by spreading the effort over a greater
number of tasks. Since the reuse is high with this embodi
ment, adequate care could be exercised in designing for Such
patterns. Third, a designer could maximize the total number
of business rules that need not be designed for, as a result of
pattern reuse. This embodiment ensures that the maximum
amount of patterns that can be reused has been extracted,
thereby reducing the overall design effort.
0027. In several embodiments, various aspects may be
considered before finally arriving at the patterns whose reuses
are to be adopted. One such consideration is that as a pattern
size is reduced, the reuse of that pattern becomes trivial. That
is to say, certain business rules repeat in all actions and are
trivial in nature. These should be reused only if it gives a
significant benefit for the designers. Reusing patterns that

US 2009/0024980 A1

have a negligible business rule count could result in a design
overhead that would impact the overall size and effectiveness
of the solution.
0028. In an embodiment, in the process of identifying the
pattern signature, the description of the business rule is con
sidered. First, white spaces and special characters other than
numerical operators are removed. The actions are then ana
lyzed and pattern signatures formed for every action. Then
once the pattern signature is formed, the reuse identification
process is similar to that of the embodiment of the first
approach.
0029. The advantage of this approach is that it relies on the
content of the business rule rather than the identifier of the
business rule. While in all likelihood this may be a more time
consuming process as the operations have to be carried out on
the business rule descriptions (rather than just the identifiers),
the result may be more effective than that obtained from the
other approach (since it is based on the description which by
design holds more information). The approach a user adopts
depends on the user's needs and the satisfaction level he/she
obtains in analyzing the reuse in each of the approaches. The
process flow is illustrated in FIG. 1.
0030 These approaches for identifying reuse in a model
based environment have several advantages. First, there is a
tremendous saving of time as a majority of the operations
described can be automated. Second, the embodiments are
highly effective as each and every business rule is analyzed
and all the various combinations are identified. Third, there is
a significant saving of design effort as patterns identified may
result in decreased design effort leading to a reduction in the
construction efforts also.

0031. In another embodiment of the invention, a specifi
cation repository captures extensive information on the inter
faces and sequence of actions that are needed at different
layers. This is a humungous task when there is a need to
develop and deploy software systems that involve hundreds
of business components and/or functions. This embodiment
then abstracts interfaces and action sequences based on the
expected response of the system. This abstraction is based on
the study of different user actions and the expected behavior
of the system in response, and also the participating user
interface elements. The expected response of the system is
captured as a set of specification data for each action.
0032 Eachuser action is associated with the user interface
information that influences the behavior, and each user action
is modeled as a different variety of action based on the
expected behavior of the system. For example, a user inter
action may be modeled as a document fetch type if the action
requires that the system take a key element from the user
interface and come up with all information pertaining to that
particular business document.
0033. In an embodiment, to design the middle tier ele
ments for implementing the system response for a user inter
action, the designer specifies the type of user action, the user
interface controls that are involved in this action, and the
expected behavior of the system. The expected response of
the system is specified as binary logic (Yes/No) to a variety of
questions (e.g., whether refresh is required, related combo to
be filled, etc.) This information is stored in the data model.
Design generators then use this model information to gener
ate the service interfaces and method interfaces, and invoking
back end objects interfaces also, to generate the sequence of
these method calls. A facility is provided to override these
interfaces to do a dataset reduction of the interface elements

Jan. 22, 2009

of the methods. The design generators take care of passing the
appropriate parameters across the different layers.
0034. The salient advantages of this pattern based design
are, first, the resulting simplified interface and sequence
specifications across layers. This simplified procedure
enables the design work to be done by non-specialists who
have an understanding of the application. Second, automated
plumbing of interfaces across different software artifacts in
different layers leads to reduced defects in terms of interface
mismatches. Third, there is a standardized design across the
entire development team leading to better maintainability.
This helps to reduce the dependency of persons to either
enhance the product or fix defects. Fourth, there is reduced
time for design specifications leading to better productivity.
Since the middle layer design is driven by expected response
it does not require any special skills and can be effectively
done by a business user also.
0035 FIG. 2 is an overview diagram of hardware and an
operating environment in conjunction with which embodi
ments of the invention may be practiced. The description of
FIG. 2 is intended to provide a brief, a general description of
Suitable computer hardware and a suitable computing envi
ronment in conjunction with which the invention may be
implemented. In some embodiments, the invention is
described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer, such as a personal computer. Generally, the pro
gram modules include routines, programs, objects, compo
nents, data structures, etc., that perform particular tasks or
implement particular abstract data types.
0036 Moreover, those skilled in the art will appreciate that
the invention may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
electronics, network PCS, minicomputers, mainframe com
puters, and the like. The invention may also be practiced in
distributed computer environments, where tasks are per
formed by I/O remote processing devices that are linked
through a communications network. In a distributed comput
ing environment, the program modules may be located in both
local and remote memory storage devices.
0037. In the embodiment shown in FIG. 2, the hardware
and operating environment is provided that is applicable to
any of the servers and/or remote clients shown in FIG. 1.
0038. As shown in FIG. 2, one embodiment of the hard
ware and operating environment includes a general purpose
computing device in the form of a computer 20 (e.g., a per
Sonal computer, workstation, or server), including one or
more processing units 21, a system memory 22, and a system
buS 23 that operatively couples various system components
including the system memory 22 to the processing unit 21.
There may be only one or there may be more than one pro
cessing unit 21, Such that the processor of the computer 20
includes a single central-processing unit (CPU), or a plurality
of processing units, commonly referred to as a multiprocessor
or parallel-processor environment. In various embodiments,
the computer 20 is a conventional computer, a distributed
computer, or any other type of computer.
0039. The system bus 23 can be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory 22 can also be referred to
as simply the memory, and, in some embodiments, includes
read-only memory (ROM) 24 and random-access memory

US 2009/0024980 A1

(RAM) 25. A basic input/output system (BIOS) 26, contain
ing the basic routines that help to transfer information
between elements within the computer 20, such as during
start-up, may be stored in the ROM 24. The computer 20
further includes a hard disk drive 27 for reading from and
writing to a hard disk (not shown), a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29.
and an optical disk drive 30 for reading from or writing to a
removable optical disk31 such as a CD ROM or other optical
media.

0040. The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are coupled with a hard disk drive inter
face 32, a magnetic disk drive interface 33, and an optical
drive interface 34, respectively. The drives and their associ
ated computer-readable media provide a non Volatile storage
of computer-readable instructions, data structures, program
modules and other data for the computer 20. It should be
appreciated by those skilled in the art that any type of com
puter-readable media which can store data that is accessible
by the computer 20, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random
access memories (RAMs), read only memories (ROMs),
redundant arrays of independent disks (e.g., RAID) and the
like, can be used in the exemplary hardware and operating
environment.

0041 A plurality of program modules can be stored on the
hard disk drive 27, magnetic disk drive 29, optical disk drive
31, ROM 24, or RAM 25, including an operating system 35,
one or more application programs 36, other program modules
37, and program data 38. A plug-in containing a security
transmission engine for the present invention can be resident
on any one or number of these computer-readable media.
0042. A user may enter commands and information into
the computer 20 through input devices such as a keyboard 40
and a pointing device 42. Other input devices (not shown) can
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These other input devices are often con
nected to the processing unit 21 through a serial port interface
46 that is coupled to the system bus 23, but can be connected
by other interfaces, such as a parallel port, game port, or a
universal serial bus (USB). A monitor 47 or other type of
display device can also be connected to the system bus 23 via
an interface, such as a video adapter 48. The monitor 47 can
display a graphical user interface (GUI) for the user. In addi
tion to the monitor 47, the computer 20 typically include other
peripheral output devices (not shown). Such as speakers and
printers.
0043. The computer 20 may operate in a networked envi
ronment using logical connections to one or more remote
computers or servers, such as a remote computer 49. These
logical connections are achieved by a communication device
coupled to or a part of the computer 20; the invention is not
limited to a particular type of communications device. The
remote computer 49 can be another computer, a server, a
router, a network PC, a client, a peer device or other common
network node, and typically includes many or all of the ele
ments described above I/O relative to the computer 20,
although only a memory storage device 50 has been illus
trated. The logical connections depicted in FIG. 2 include a
local area network (LAN) 51 and/or a wide area network
(WAN) 52. Such networking environments are commonplace
in office networks, enterprise-wide computer networks, intra
nets and the internet, which are all types of networks.

Jan. 22, 2009

0044) When used in a LAN-networking environment, the
computer 20 is connected to the LAN 51 through a network
interface or adapter 53, which is one type of communications
device. In some embodiments, when used in a WAN-net
working environment, the computer 20 typically includes a
modem 54 (another type of communications device) or any
other type of communications device, e.g., a wireless trans
ceiver, for establishing communications over the wide-area
network 52, such as the internet. The modem 54, which may
be internal or external, is connected to the system bus 23 via
the serial port interface 46. In a networked environment,
program modules depicted relative to the computer 20 can be
stored in the remote memory storage device 50 of the remote
computer or server 49. It is appreciated that the network
connections shown are exemplary and other means of, and
communications devices for, establishing a communications
link between the computers may be used including hybrid
fiber-coax connections, T1-T3 lines, DSL's, OC-3 and/or
OC-12, TCP/IP. microwave, wireless application protocol,
and any other electronic media through any suitable Switches,
routers, outlets and power lines, as the same are known and
understood by one of ordinary skilled in the art.
0045. In the foregoing detailed description of embodi
ments of the invention, various features are grouped together
in a single embodiment for the purpose of streamlining the
disclosure. This method of disclosure is not to be interpreted
as reflecting an intention that the claimed embodiments of the
invention require more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
Subject matterlies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo
rated into the detailed description of embodiments of the
invention, with each claim standing on its own as a separate
embodiment. It is understood that the above description is
intended to be illustrative, and not restrictive. It is intended to
cover all alternatives, modifications and equivalents as may
be included within the spirit and scope of the invention as
defined in the appended claims. Many other embodiments
will be apparent to those of skilled in the art upon reviewing
the above description. The scope of the invention should,
therefore, be determined with reference to the appended
claims, along with the full scope of equivalents to which Such
claims are entitled. In the appended claims, the terms “includ
ing” and “in which are used as the plain-English equivalents
of the respective terms “comprising and “wherein respec
tively. Moreover, the terms “first,” “second, and “third, etc.,
are used merely as labels, and are not intended to impose
numerical requirements on their objects.
What is claimed is:
1. A method comprising:
capturing user interface and user action data for a system in

a specification repository;
abstracting user interface and user action sequences based

on an expected response of said system; and
capturing said expected response of said system as a set of

specification data for each said user action.
2. The method of claim 1, further comprising:
specifying a type of said user action;
specifying user interface controls that are involved in said

user action;
specifying a second expected response of said system; and
storing said second expected response into a model.
3. The method of claim 2, further comprising:
using said model to generate service interfaces and method

interfaces; and
generating a sequence of method calls.

US 2009/0024980 A1 Jan. 22, 2009
5

4. A computer readable medium comprising instructions receiving a type of said user action,
available thereon for executing a method comprising: receiving user interface controls that are involved in said

user action,
capturing user interface and user action data for a system in receiving a second expected response of said system, and

a specification repository; storing said second expected response into a model.
abstracting user interface and user action sequences based 6. The computer readable medium of claim 5, further com

on an expected response of said system; and prising instructions for:
using said model to generate service interfaces and method

interfaces, and
generating a sequence of method calls.

capturing said expected response of said system as a set of
specification data for each said user action.

5. The computer readable medium of claim 4, further com
prising instructions for: ck

