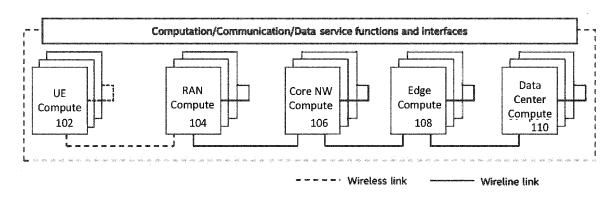
(19)

(12)



- (22) Date of filing: 03.03.2023
- (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB CHOU, Joey GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL Scottsdale, 85258 (US) NO PL PT RO RS SE SI SK SM TR LU, Xusheng Chandler, 85226 (US) **Designated Extension States:** BA YAO, Yizhi **Designated Validation States:** Chandler, 85248 (US) KH MA MD TN (74) Representative: Viering, Jentschura & Partner (30) Priority: 03.03.2022 US 202263316287 P mbB Patent- und Rechtsanwälte (71) Applicant: INTEL Corporation Am Brauhaus 8 Santa Clara, CA 95054 (US) 01099 Dresden (DE)

ORCHESTRATION OF COMPUTING SERVICES AND RESOURCES FOR NEXT GENERATION (54)SYSTEMS

(57)An apparatus of a next generation distributed cloud system for resource orchestration, comprising one or more processors, configured to: receive, from one or more computing functions, first information about computing resources for the one or more computing functions; receive, from a second entity, a request to provide one or more available computing functions for supporting

one or more computing services; select one or more computing functions from the one or more available computing functions for the request, based on the received first information; and provide the selected one or more available computing functions, in a response, to the second entity.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

⁵ **[0001]** This application claims priority to US Provisional Application 63/316,287, filed on March 3, 2023, the entire contents of which are incorporated herein by reference.

BACKGROUND

- 10 [0002] Various embodiments may generally relate to the field of wireless communications and in particular next generation mobile systems, also referred to as sixth-generation (6G) systems, in which ubiquitous computing services are provided by the distributed cloud system with built-in cloud native technology. These distributed cloud systems can support balancing between in-node computation and distributed computation to optimize resource usage and power consumption while meeting the task's KPI requirements (e.g., latency and/or data rate). The computations may occur
- 15 at different points in the network depending on device/network capabilities and application requirements. The scale of the mobile system can be leveraged to extend compute services beyond central data centers to encompass network compute and mobile device compute.

BRIEF DESCRIPTION OF THE FIGURES

20

[0003] In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the exemplary principles of the disclosure. In the following description, various exemplary embodiments of the disclosure are described with reference to the following drawings, in which:

25

30

35

FIG. 1 depicts a distributed cloud system;

FIG. 2 depicts an example of a system for orchestration of computing services and resources for a next generation system;

- FIG. 3 depicts a service based system framework for orchestration of computing services and resources; and
- FIG. 4 depicts a functional view of the system framework, based on the service based system framework according to option 1;

FIG. 5 depicts the functional view of the system framework, based on the service based system framework according to option 2;

FIG. 6 depicts a functional view of the system framework according to option 3, based on the service based system framework of option 1.

- FIG. 7 depicts a mechanism according to option 4, in which coordination between the control function and the registration and discovery function occurs with support of the resource management function;
 - FIG. 8 illustrates a network in accordance with various embodiments;
- FIG. 9 schematically illustrates a wireless network in accordance with various embodiments;
- 40 FIG. 10 is a block diagram illustrating components; and
 - FIG. 11 depicts a process.

DETAILED DESCRIPTION

- ⁴⁵ **[0004]** The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of the various embodiments. However, it will be apparent to those skilled in the art having the benefit of the present disclosure that the various aspects of the various
- 50 embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the various embodiments with unnecessary detail. For the purposes of the present document, the phrases "A or B" and "A/B" mean (A), (B), or (A and B).
- [0005] In next generation mobile systems, also referred to as sixth-generation (6G) systems, ubiquitous computing services are provided by the distributed cloud system with built-in cloud native technology. The distributed cloud system supports balancing between in-node computation and distributed computation to optimize resource usage and power consumption while meeting the task's KPI requirements (e.g., latency and/or data rate). The computations may occur at different points in the network depending on device/network capabilities and application requirements. The scale of

the mobile system can be leveraged to extend compute services beyond central data centers to encompass network compute and mobile device compute.

[0006] FIG. 1 depicts a distributed cloud system, as described herein. The distributed cloud system may include a UE compute 102, a RAN compute 104, a core network compute 106, an edge compute 108, a data center compute 110, or any of these.

[0007] The system needs to support a dynamic computing workload distribution with a service continuum across mobile devices (e.g. mobile device compute), the network (e.g. the network computes), and the edge/data center (e.g. the edge/data center compute).

[0008] The computing services and the computing resources need to be orchestrated to provide functionality such as:

- allocating suitable computing resource to the users, with consideration of UE location, UE capability, QoS requirements, service category, resource capacity requirements, capacity, capability, usage and status of computing nodes, etc.
- dynamic resource adjustment according to a user's request;
- load balancing and sharing between computing nodes.

[0009] Among other things, embodiments of the present disclosure are directed to the orchestration of computing services and resources for next generation systems. Some embodiments help enable ubiquitous computing services for next generation mobile systems. It should be noted that the names of the functions described herein are exemplary only, and alternate embodiments may have the same (or different) names for components and functions.

- [0010] A system framework in accordance with some aspects of this disclosure will be described in more detail below.
- **[0011]** A first option of an implementation of the system framework is shown in FIG. 2.

[0012] FIG. 2 depicts an example of a system for orchestration of computing services and resources for next generation systems including the following functions:

25

35

5

10

15

20

- a computing function 202, which provides the computing resources and/or services;
- a control function 204, which provides the service to control the user's request for the computing service;
- an orchestration function 206, which provides the service or services to manage and orchestrate the computing resource and services; and
- 30 a registration and discovery function 208, which provides the service or services to register and discover the related functions and services.
 - **[0013]** A second option of an implementation of the system framework is shown in FIG. 3.

[0014] FIG. 3 depicts a service based system framework for orchestration of computing services and resources otherwise referred to as Option 2.

[0015] In this option, compared to option 1, the system includes an additional function called the resource management function 302, which provides the services for managing the computing resources, while the orchestration function does not manage the computing resources directly.

[0016] In the following, mechanisms for orchestration of computing services and resources will be described. It is 40 expressly noted that the sequence of steps in all of the mechanisms are exemplary only, and alternate embodiments may include some steps performed in a different order.

[0017] A first option of an implementation of a mechanism for coordination between the control function and the orchestration function.

[0018] FIG. 4 depicts a functional view of the system framework, based on the service-based system framework of 45 option 1, above.

1. The orchestration function 206 may manage and orchestrate the computing resources provided by the computing functions 202. The orchestration function 206 may receive any of the following information from each computing function 202:

50

55

- total capacity and type of resources provided by each computing function; -
- usage, and/or available capacity of each computing function; -
- status (e.g., alarms) of the computing resource and computing function; -
- energy efficiency level of the computing resources;
- type of services supported by each computing function; and/or
 - location of the computing resources (or computing function).

[0019] The orchestration function may manage an affinity and/or anti-affinity relation between computing functions.

2. The orchestration function 206 may register itself, or be registered, to the registration and discovery function 208, with some or all of the following information:

- service area (e.g., geographical area) of the orchestration function;
- total capacity and types of resources orchestrated by the orchestration function; and/or
- type of services supported by each computing function orchestrated by the orchestration function.

3. UE 402 may send to the control function a request to use the computing services, wherein the request may be for a new service or for updating an existing service. The information may be related to some or all of:

10

5

- LTE location;
- type of computing service;
- resource requirements for the computing service; and/or
- QoS requirements for the computing service.
- 15

30

40

50

[0020] It is noted that the other nodes (e.g., RAN nodes, access control nodes, etc.), which the message may be passed over (e.g., through which the message may be passed) between LTE and control function, are not shown for purposes of simplicity.

- 4. The control function 204 may select the orchestration function 206 to request the computing resources. If no suitable orchestration function is known, the control function 204 may request the registration and discovery function 208 to provide the available orchestration function or functions 206 that can serve the UE location and type of service requested by the user. The request from the control function 204 may include information about the service location and the service type. The registration and discovery function 208 may look up the available orchestration function
- ²⁵ or functions per the request received from the control function 204, and may provide a suitable orchestration function or functions 206 to the control function 204. If multiple orchestration functions are provided, the control function 204 may then select one to continue the service request.

5. The control function 204 may select the computing function 202 to fulfill the user's service request. If no suitable computing function 202 is known, the control function 204 may request the orchestration function 206, determined in step 4, above, to provide the available computing function or functions 202 that can serve (e.g., satisfy) service requests by the UE. The request from the control function 204 may include some or all of the information about the service location, service type, resource requirements and QoS requirements. The orchestration function 206 may look up the available computing function or functions per the request received from the control function, and may provide the suitable computing function or functions 202 to the control function 204. If multiple computing functions

35 are provided, the control function 204 may then select a computing function of the multiple computing functions to continue the service request.

6. The control function 204 may request the computing function 202, determined by step 5, to fulfill the service request for the user. The request from the control function 204 may include some or all information about any of the service location, service type, resource requirements, and/or QoS requirements. The computing function 202 may acknowledge the requests, and it may respond with a result of whether the service request is accepted.

7. If the service request is accepted by the computing function 202, the control function 204 may inform the LTE to continue the service, and the LTE 402 and computing function 202 may exchange the user data to fulfill the computing service.

⁴⁵ [0021] For completeness, it is noted that the other nodes (e.g., additional nodes such as RAN nodes, data plane function, etc.), over which the data may be passed between the UE and computing function are not shown.
[00221] A second option of an implementation of a mechanism for coordination between the control function and the

[0022] A second option of an implementation of a mechanism for coordination between the control function and the orchestration function is shown in FIG. 5.

[0023] In the second option, there is a coordination between the control function and the orchestration function with support of the resource management function.

[0024] FIG. 5 depicts a functional view of the system framework, based on the service based system framework of option 2.

[0025] A difference between option 2 and option 1 is that in option 2, the orchestration function 206 does not directly manage the computing resources from the computing function 204, but rather via a resource management function 302.

⁵⁵ **[0026]** 1a. The resource management function 302 manages the computing resources provided by the computing function 202, for the information listed in step 1 of option 1.

[0027] 1b. The resource management function 302 provides the information obtained in step 1a to the orchestration function 206.

[0028] The other steps of option 2 are the same as in option 1.

[0029] A third option of an implementation of a mechanism for coordination between the control function and the orchestration function is shown in FIG. 6.

[0030] The third option provides a coordination between the control function and the registration and discovery function with support of the resource management function.

[0031] FIG. 6 depicts a functional view of the system framework according to option 3, based on the service based system framework of option 1.

1. The same as step 1 of option 1.

2. The computing function 202 may register itself to the registration and discovery function 208.

2a. When the computing function 202 registers itself, it may report its status to the registration and discovery function 208, with any of the following information:

- service area (e.g., geographical area) of the computing function 202;
 - total capacity and types of resources supported by the computing function 202;
 - energy efficiency level of the computing resources;
 - type of services supported by the computing function 202;
 - usage and/or available capacity of the computing function 202; and/or
 - status (e.g., alarms) of the computing resource and computing function 202.
- 20

45

50

5

10

15

2b. The orchestration function may register the computing function 202 to the registration and discovery function 208, with the same information as listed in 2a above, and optionally with additional information, such as an affinity and/or anti-affinity relation between computing functions.

- 3. The same as in step 3 of option 1, above.
- 4. The control function 204 selects the computing function 202 to fulfill the user's service request. If no suitable computing function is known, the control function 204 may request the registration and discovery function 208 to provide the available computing function or available computing functions 202 that can serve (e.g. provide, perform) the service requested by the UE. The request from the control function may include some or all the information about service location, service type, resource requirements, and/or QoS requirements. The registration and discovery
- ³⁰ function 208 may look up the available computing function(s) 202 per the request received from the control function 204, and it may provide the one or more computing functions 202 (e.g. one or more suitable computing functions) to the control function 204. If multiple computing functions are provided, the control function may then select one to continue the service request.
 - 5. Not applicable in this option.
- 6. The same as step 6 of mechanism option 1.
 - 7. The same as step 7 of mechanism option 1.

[0032] A fourth option of an implementation of a mechanism for coordination between the control function and the orchestration function is shown in FIG. 7.

- ⁴⁰ **[0033]** FIG. 7 depicts a mechanism according to option 4, in which coordination between the control function 204 and the registration and discovery function 208 occurs with support of the resource management function 302.
 - 1. 1a and 1b are the same as steps 1a and 1b of mechanism option 2.
 - 2. The computing function 202 may register itself, or be registered, to the registration and discovery function 208.
 - 2a. The resource management function 302 may register the computing function 202 and report its status to the registration and discovery function 208, with any of the following information:
 - service area (e.g., geographical area) of the computing function;
 - total capacity and types of resources supported by the computing function;
 - energy efficiency level of the computing resources;
 - type of services supported by the computing function;
 - usage, and/or available capacity of the computing function; and/or
 - status (e.g., alarms) of the computing resource and computing function.
- ⁵⁵ 2b. The same as step 2b of mechanism option 3.
 - 3. The same as step 3 of mechanism option 3.
 - 4. The same as step 4 of mechanism option 3.
 - 5. Not applicable in this option.

- 6. The same as step 6 of mechanism option 3.
- 7. The same as step 7 of mechanism option 3.

SYSTEMS AND IMPLEMENTATIONS

5

10

[0034] FIGs. 8-10 illustrate various systems, devices, and components that may implement aspects of disclosed embodiments.

[0035] FIG. 8 illustrates a network 800 in accordance with various embodiments. The network 800 may operate in a manner consistent with 3GPP technical specifications for LTE or 5G/NR systems. However, the example embodiments are not limited in this regard and the described embodiments may apply to other networks that benefit from the principles described herein, such as future 3GPP systems, or the like.

[0036] The network 800 may include a UE 802, which may include any mobile or non-mobile computing device designed to communicate with a RAN 804 via an over-the-air connection. The UE 802 may be communicatively coupled with the RAN 804 by a Uu interface. The UE 802 may be, but is not limited to, a smartphone, tablet computer, wearable computer

- ¹⁵ device, desktop computer, laptop computer, in-vehicle infotainment, in-car entertainment device, instrument cluster, head-up display device, onboard diagnostic device, dashtop mobile equipment, mobile data terminal, electronic engine management system, electronic/engine control unit, electronic/engine control module, embedded system, sensor, microcontroller, control module, engine management system, networked appliance, machine-type communication device, M2M or D2D device, loT device, etc.
- 20 [0037] In some embodiments, the network 800 may include a plurality of UEs coupled directly with one another via a sidelink interface. The UEs may be M2M/D2D devices that communicate using physical sidelink channels such as, but not limited to, PSBCH, PSDCH, PSSCH, PSFCH, etc.

[0038] In some embodiments, the UE 802 may additionally communicate with an AP 806 via an over-the-air connection. The AP 806 may manage a WLAN connection, which may serve to offload some/all network traffic from the RAN 804.

- ²⁵ The connection between the UE 802 and the AP 806 may be consistent with any IEEE 802.11 protocol, wherein the AP 806 could be a wireless fidelity (Wi-Fi[®]) router. In some embodiments, the UE 802, RAN 804, and AP 806 may utilize cellular-WLAN aggregation (for example, LWA/LWIP). Cellular-WLAN aggregation may involve the UE 802 being configured by the RAN 804 to utilize both cellular radio resources and WLAN resources.
- [0039] The RAN 804 may include one or more access nodes, for example, AN 808. AN 808 may terminate air-interface protocols for the LTE 802 by providing access stratum protocols including RRC, PDCP, RLC, MAC, and L1 protocols. In this manner, the AN 808 may enable data/voice connectivity between CN 820 and the UE 802. In some embodiments, the AN 808 may be implemented in a discrete device or as one or more software entities running on server computers as part of, for example, a virtual network, which may be referred to as a CRAN or virtual baseband unit pool. The AN 808 be referred to as a BS, gNB, RAN node, eNB, ng-eNB, NodeB, RSU, TRxP, TRP, etc. The AN 808 may be a macrocell base station or a low power base station for providing femtocells, picocells or other like cells having smaller
- ³⁵ macrocell base station or a low power base station for providing femtocells, picocells or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
 [0040] In embodiments in which the RAN 804 includes a plurality of ANs, they may be coupled with one another via an X2 interface (if the RAN 804 is an LTE RAN) or an Xn interface (if the RAN 804 is a 5G RAN). The X2/Xn interfaces, which may be separated into control/user plane interfaces in some embodiments, may allow the ANs to communicate
- ⁴⁰ information related to handovers, data/context transfers, mobility, load management, interference coordination, etc. [0041] The ANs of the RAN 804 may each manage one or more cells, cell groups, component carriers, etc. to provide the UE 802 with an air interface for network access. The UE 802 may be simultaneously connected with a plurality of cells provided by the same or different ANs of the RAN 804. For example, the UE 802 and RAN 804 may use carrier aggregation to allow the UE 802 to connect with a plurality of component carriers, each corresponding to a Pcell or Scell.
- ⁴⁵ In dual connectivity scenarios, a first AN may be a master node that provides an MCG and a second AN may be secondary node that provides an SCG. The first/second ANs may be any combination of eNB, gNB, ng-eNB, etc.
 [0042] The RAN 804 may provide the air interface over a licensed spectrum or an unlicensed spectrum. To operate in the unlicensed spectrum, the nodes may use LAA, eLAA, and/or feLAA mechanisms based on CA technology with PCells/Scells. Prior to accessing the unlicensed spectrum, the nodes may perform medium/carrier-sensing operations
- ⁵⁰ based on, for example, a listen-before-talk (LBT) protocol. [0043] In V2X scenarios the LTE 802 or AN 808 may be or act as an RSU, which may refer to any transportation infrastructure entity used for V2X communications. An RSU may be implemented in or by a suitable AN or a stationary (or relatively stationary) UE. An RSU implemented in or by: a UE may be referred to as a "UE-type RSU"; an eNB may be referred to as an "eNB-type RSU"; a gNB may be referred to as a "gNB-type RSU"; and the like. In one example, an
- ⁵⁵ RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs. The RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/software to sense and control ongoing vehicular and pedestrian traffic. The RSU may provide very low latency communications required for high speed events, such as crash avoidance, traffic

warnings, and the like. Additionally or alternatively, the RSU may provide other cellular/WLAN communications services. The components of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation, and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller or a backhaul network.

- ⁵ [0044] In some embodiments, the RAN 804 may be an LTE RAN 810 with eNBs, for example, eNB 812. The LTE RAN 810 may provide an LTE air interface with the following characteristics: SCS of 15 kHz; CP-OFDM waveform for DL and SC-FDMA waveform for UL; turbo codes for data and TBCC for control; etc. The LTE air interface may rely on CSI-RS for CSI acquisition and beam management; PDSCH/PDCCH DMRS for PDSCH/PDCCH demodulation; and CRS for cell search and initial acquisition, channel quality measurements, and channel estimation for coherent demodulation/detection at the UE. The LTE air interface may operate on sub-6 GHz bands.
- ¹⁰ ulation/detection at the UE. The LTE air interface may operate on sub-6 GHz bands. [0045] In some embodiments, the RAN 804 may be an NG-RAN 814 with gNBs, for example, gNB 816, or ng-eNBs, for example, ng-eNB 818. The gNB 816 may connect with SG-enabled UEs using a 5G NR interface. The gNB 816 may connect with a 5G core through an NG interface, which may include an N2 interface or an N3 interface. The ng-eNB 818 may also connect with the 5G core through an NG interface, but may connect with a UE via an LTE air interface.
- ¹⁵ The gNB 816 and the ng-eNB 818 may connect with each other over an Xn interface.
 [0046] In some embodiments, the NG interface may be split into two parts, an NG user plane (NG-U) interface, which carries traffic data between the nodes of the NG-RAN 814 and a UPF 848 (e.g., N3 interface), and an NG control plane (NG-C) interface, which is a signaling interface between the nodes of the NG-RAN814 and an AMF 844 (e.g., N2 interface).
 [0047] The NG-RAN 814 may provide a 5G-NR air interface with the following characteristics: variable SCS; CP-
- OFDM for DL, CP-OFDM and DFT-s-OFDM for LTL; polar, repetition, simplex, and Reed-Muller codes for control and LDPC for data. The 5G-NR air interface may rely on CSI-RS, PDSCH/PDCCH DMRS similar to the LTE air interface. The 5G-NR air interface may not use a CRS, but may use PBCH DMRS for PBCH demodulation; PTRS for phase tracking for PDSCH; and tracking reference signal for time tracking. The 5G-NR air interface may operate on FR1 bands that include sub-6 GHz bands or FR2 bands that include bands from 24.25 GHz to 52.6 GHz. The 5G-NR air interface
- ²⁵ may include an SSB that is an area of a downlink resource grid that includes PSS/SSS/PBCH. [0048] In some embodiments, the 5G-NR air interface may utilize BWPs for various purposes. For example, BWP can be used for dynamic adaptation of the SCS. For example, the UE 802 can be configured with multiple BWPs where each BWP configuration has a different SCS. When a BWP change is indicated to the UE 802, the SCS of the transmission is changed as well. Another use case example of BWP is related to power saving. In particular, multiple BWPs can be
- 30 configured for the LTE 802 with different amount of frequency resources (for example, PRBs) to support data transmission under different traffic loading scenarios. A BWP containing a smaller number of PRBs can be used for data transmission with small traffic load while allowing power saving at the LTE 802 and in some cases at the gNB 816. A BWP containing a larger number of PRBs can be used for scenarios with higher traffic load.
 - **[0049]** The RAN 804 is communicatively coupled to CN 820 that includes network elements to provide various functions to support data and telecommunications services to customers/subscribers (for example, users of UE 802). The com-
- to support data and telecommunications services to customers/subscribers (for example, users of UE 802). The components of the CN 820 may be implemented in one physical node or separate physical nodes. In some embodiments, NFV may be utilized to virtualize any or all of the functions provided by the network elements of the CN 820 onto physical compute/storage resources in servers, switches, etc. A logical instantiation of the CN 820 may be referred to as a network slice, and a logical instantiation of a portion of the CN 820 may be referred to as a network sub-slice.
- 40 [0050] In some embodiments, the CN 820 may be an LTE CN 822, which may also be referred to as an EPC. The LTE CN 822 may include MME 824, SGW 826, SGSN 828, HSS 830, PGW 832, and PCRF 834 coupled with one another over interfaces (or "reference points") as shown. Functions of the elements of the LTE CN 822 may be briefly introduced as follows.
- [0051] The MME 824 may implement mobility management functions to track a current location of the LTE 802 to facilitate paging, bearer activation/deactivation, handovers, gateway selection, authentication, etc.
- **[0052]** The SGW 826 may terminate an S 1 interface toward the RAN and route data packets between the RAN and the LTE CN 822. The SGW 826 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement.
- 50 [0053] The SGSN 828 may track a location of the LTE 802 and perform security functions and access control. In addition, the SGSN 828 may perform inter-EPC node signaling for mobility between different RAT networks; PDN and S-GW selection as specified by MME 824; MME selection for handovers; etc. The S3 reference point between the MME 824 and the SGSN 828 may enable user and bearer information exchange for inter-3GPP access network mobility in idle/active states.
- ⁵⁵ **[0054]** The HSS 830 may include a database for network users, including subscription-related information to support the network entities' handling of communication sessions. The HSS 830 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc. An S6a reference point between the HSS 830 and the MME 824 may enable transfer of subscription and authentication data for authenticating/authorizing

user access to the LTE CN 820.

[0055] The PGW 832 may terminate an SGi interface toward a data network (DN) 836 that may include an application/content server 838. The PGW 832 may route data packets between the LTE CN 822 and the data network 836. The PGW 832 may be coupled with the SGW 826 by an S5 reference point to facilitate user plane tunneling and tunnel

- ⁵ management. The PGW 832 may further include a node for policy enforcement and charging data collection (for example, PCEF). Additionally, the SGi reference point between the PGW 832 and the data network 8 36 may be an operator external public, a private PDN, or an intra-operator packet data network, for example, for provision of IMS services. The PGW 832 may be coupled with a PCRF 834 via a Gx reference point.
- [0056] The PCRF 834 is the policy and charging control element of the LTE CN 822. The PCRF 834 may be communicatively coupled to the app/content server 838 to determine appropriate QoS and charging parameters for service flows. The PCRF 832 may provision associated rules into a PCEF (via Gx reference point) with appropriate TFT and QCI.
 [0057] In some embodiments, the CN 820 may be a 5GC 840. The 5GC 840 may include an AUSF 842, AMF 844, SMF 846, UPF 848, NSSF 850, NEF 852, NRF 854, PCF 856, UDM 858, and AF 860 coupled with one another over interfaces (or "reference points") as shown. Functions of the elements of the 5GC 840 may be briefly introduced as follows.
- ¹⁵ **[0058]** The AUSF 842 may store data for authentication of LTE 802 and handle authentication-related functionality. The AUSF 842 may facilitate a common authentication framework for various access types. In addition to communicating with other elements of the 5GC 840 over reference points as shown, the AUSF 842 may exhibit an Nausf service-based interface.
- [0059] The AMF 844 may allow other functions of the 5GC 840 to communicate with the UE 802 and the RAN 804 and to subscribe to notifications about mobility events with respect to the UE 802. The AMF 844 may be responsible for registration management (for example, for registering UE 802), connection management, reachability management, mobility management, lawful interception of AMF-related events, and access authentication and authorization. The AMF 844 may provide transport for SM messages between the UE 802 and the SMF 846, and act as a transparent proxy for routing SM messages. AMF 844 may also provide transport for SMS messages between UE 802 and an SMSF. AMF
- ²⁵ 844 may interact with the AUSF 842 and the UE 802 to perform various security anchor and context management functions. Furthermore, AMF 844 may be a termination point of a RAN CP interface, which may include or be an N2 reference point between the RAN 804 and the AMF 844; and the AMF 844 may be a termination point of NAS (N1) signaling, and perform NAS ciphering and integrity protection. AMF 844 may also support NAS signaling with the UE 802 over an N3 IWF interface.
- 30 [0060] The SMF 846 may be responsible for SM (for example, session establishment, tunnel management between UPF 848 and AN 808); UE IP address allocation and management (including optional authorization); selection and control of UP function; configuring traffic steering at UPF 848 to route traffic to proper destination; termination of interfaces toward policy control functions; controlling part of policy enforcement, charging, and QoS; lawful intercept (for SM events and interface to LI system); termination of SM parts of NAS messages; downlink data notification; initiating AN specific
- SM information, sent via AMF 844 over N2 to AN 808; and determining SSC mode of a session. SM may refer to management of a PDU session, and a PDU session or "session" may refer to a PDU connectivity service that provides or enables the exchange of PDUs between the LTE 802 and the data network 836.
 [0061] The UPF 848 may act as an anchor point for intra-RAT and inter-RAT mobility, an external PDU session point
- of interconnect to data network 836, and a branching point to support multi-homed PDU session. The UPF 848 may also perform packet routing and forwarding, perform packet inspection, enforce the user plane part of policy rules, lawfully intercept packets (UP collection), perform traffic usage reporting, perform QoS handling for a user plane (e.g., packet filtering, gating, LTL/DL rate enforcement), perform uplink traffic verification (e.g., SDF-to-QoS flow mapping), transport level packet marking in the uplink and downlink, and perform downlink packet buffering and downlink data notification triggering. UPF 848 may include an uplink classifier to support routing traffic flows to a data network.
- ⁴⁵ [0062] The NSSF 850 may select a set of network slice instances serving the UE 802. The NSSF 850 may also determine allowed NSSAI and the mapping to the subscribed S-NSSAIs, if needed. The NSSF 850 may also determine the AMF set to be used to serve the LTE 802, or a list of candidate AMFs based on a suitable configuration and possibly by querying the NRF 854. The selection of a set of network slice instances for the UE 802 may be triggered by the AMF 844 with which the LTE 802 is registered by interacting with the NSSF 850, which may lead to a change of AMF. The
- ⁵⁰ NSSF 850 may interact with the AMF 844 via an N22 reference point; and may communicate with another NSSF in a visited network via an N31 reference point (not shown). Additionally, the NSSF 850 may exhibit an Nnssf service-based interface.

[0063] The NEF 852 may securely expose services and capabilities provided by 3GPP network functions for third party, internal exposure/re-exposure, AFs (e.g., AF 860), edge computing or fog computing systems, etc. In such em-

⁵⁵ bodiments, the NEF 852 may authenticate, authorize, or throttle the AFs. NEF 852 may also translate information exchanged with the AF 860 and information exchanged with internal network functions. For example, the NEF 852 may translate between an AF-Service-Identifier and an internal 5GC information. NEF 852 may also receive information from other NFs based on exposed capabilities of other NFs. This information may be stored at the NEF 852 as structured

data, or at a data storage NF using standardized interfaces. The stored information can then be re-exposed by the NEF 852 to other NFs and AFs, or used for other purposes such as analytics. Additionally, the NEF 852 may exhibit an Nnef service-based interface.

- [0064] The NRF 854 may support service discovery functions, receive NF discovery requests from NF instances, and provide the information of the discovered NF instances to the NF instances. NRF 854 also maintains information of available NF instances and their supported services. As used herein, the terms "instantiate," "instantiation," and the like may refer to the creation of an instance, and an "instance" may refer to a concrete occurrence of an object, which may occur, for example, during execution of program code. Additionally, the NRF 854 may exhibit the Nnrf service-based interface.
- 10 [0065] The PCF 856 may provide policy rules to control plane functions to enforce them, and may also support unified policy framework to govern network behavior. The PCF 856 may also implement a front end to access subscription information relevant for policy decisions in a UDR of the UDM 858. In addition to communicating with functions over reference points as shown, the PCF 856 exhibit an Npcf service-based interface.
- [0066] The UDM 858 may handle subscription-related information to support the network entities' handling of communication sessions, and may store subscription data of UE 802. For example, subscription data may be communicated via an N8 reference point between the UDM 858 and the AMF 844. The UDM 858 may include two parts, an application front end and a UDR. The UDR may store subscription data and policy data for the UDM 858 and the PCF 856, and/or structured data for exposure and application data (including PFDs for application detection, application request information for multiple UEs 802) for the NEF 852. The Nudr service-based interface may be exhibited by the UDR 221 to
- allow the UDM 858, PCF 856, and NEF 852 to access a particular set of the stored data, as well as to read, update (e.g., add, modify), delete, and subscribe to notification of relevant data changes in the UDR. The UDM may include a UDM-FE, which is in charge of processing credentials, location management, subscription management and so on. Several different front ends may serve the same user in different transactions. The UDM-FE accesses subscription information stored in the UDR and performs authentication credential processing, user identification handling, access authorization,
- registration/mobility management, and subscription management. In addition to communicating with other NFs over reference points as shown, the UDM 858 may exhibit the Nudm service-based interface.
 [0067] The AF 860 may provide application influence on traffic routing, provide access to NEF, and interact with the policy framework for policy control.
- [0068] In some embodiments, the 5GC 840 may enable edge computing by selecting operator/3rd party services to be geographically close to a point that the LTE 802 is attached to the network. This may reduce latency and load on the network. To provide edge-computing implementations, the 5GC 840 may select a UPF 848 close to the UE 802 and execute traffic steering from the UPF 848 to data network 836 via the N6 interface. This may be based on the LTE subscription data, LTE location, and information provided by the AF 860. In this way, the AF 860 may influence UPF (re)selection and traffic routing. Based on operator deployment, when AF 860 is considered to be a trusted entity, the
- ³⁵ network operator may permit AF 860 to interact directly with relevant NFs. Additionally, the AF 860 may exhibit an Naf service-based interface.

[0069] The data network 836 may represent various network operator services, Internet access, or third party services that may be provided by one or more servers including, for example, application/content server 838.

[0070] FIG. 9 schematically illustrates a wireless network 900 in accordance with various embodiments. The wireless network 900 may include a LTE 902 in wireless communication with an AN 904. The UE 902 and AN 904 may be similar to, and substantially interchangeable with, like-named components described elsewhere herein.

[0071] The UE 902 may be communicatively coupled with the AN 904 via connection 906. The connection 906 is illustrated as an air interface to enable communicative coupling, and can be consistent with cellular communications protocols such as an LTE protocol or a 5G NR protocol operating at mmWave or sub-6GHz frequencies.

- ⁴⁵ [0072] The UE 902 may include a host platform 908 coupled with a modem platform 910. The host platform 908 may include application processing circuitry 912, which may be coupled with protocol processing circuitry 914 of the modem platform 910. The application processing circuitry 912 may run various applications for the LTE 902 that source/sink application data. The application processing circuitry 912 may further implement one or more layer operations to transmit/receive application data to/from a data network. These layer operations may include transport (for example UDP) and Internet (for example, IP) operations
- **[0073]** The protocol processing circuitry 914 may implement one or more of layer operations to facilitate transmission or reception of data over the connection 906. The layer operations implemented by the protocol processing circuitry 914 may include, for example, MAC, RLC, PDCP, RRC and NAS operations.
- [0074] The modem platform 910 may further include digital baseband circuitry 916 that may implement one or more layer operations that are "below" layer operations performed by the protocol processing circuitry 914 in a network protocol stack. These operations may include, for example, PHY operations including one or more of HARQ-ACK functions, scrambling/descrambling, encoding/decoding, layer mapping/de-mapping, modulation symbol mapping, received symbol/bit metric determination, multi-antenna port precoding/decoding, which may include one or more of space-time,

space-frequency or spatial coding, reference signal generation/detection, preamble sequence generation and/or decoding, synchronization sequence generation/detection, control channel signal blind decoding, and other related functions. **[0075]** The modem platform 910 may further include transmit circuitry 918, receive circuitry 920, RF circuitry 922, and RF front end (RFFE) 924, which may include or connect to one or more antenna panels 926. Briefly, the transmit circuitry

- ⁵ 918 may include a digital-to-analog converter, mixer, intermediate frequency (IF) components, etc.; the receive circuitry 920 may include an analog-to-digital converter, mixer, IF components, etc.; the RF circuitry 922 may include a low-noise amplifier, a power amplifier, power tracking components, etc.; RFFE 924 may include filters (for example, surface/bulk acoustic wave filters), switches, antenna tuners, beamforming components (for example, phase-array antenna components), etc. The selection and arrangement of the components of the transmit circuitry 918, receive circuitry 920, RF
- ¹⁰ circuitry 922, RFFE 924, and antenna panels 926 (referred generically as "transmit/receive components") may be specific to details of a specific implementation such as, for example, whether communication is TDM or FDM, in mmWave or sub-6 gHz frequencies, etc. In some embodiments, the transmit/receive components may be arranged in multiple parallel transmit/receive chains, may be disposed in the same or different chips/modules, etc.
- [0076] In some embodiments, the protocol processing circuitry 914 may include one or more instances of control circuitry (not shown) to provide control functions for the transmit/receive components.
- **[0077]** A UE reception may be established by and via the antenna panels 926, RFFE 924, RF circuitry 922, receive circuitry 920, digital baseband circuitry 916, and protocol processing circuitry 914. In some embodiments, the antenna panels 926 may receive a transmission from the AN 904 by receive-beamforming signals received by a plurality of antennas/antenna elements of the one or more antenna panels 926.
- 20 [0078] A UE transmission may be established by and via the protocol processing circuitry 914, digital baseband circuitry 916, transmit circuitry 918, RF circuitry 922, RFFE 924, and antenna panels 926. In some embodiments, the transmit components of the UE 904 may apply a spatial filter to the data to be transmitted to form a transmit beam emitted by the antenna elements of the antenna panels 926.

[0079] Similar to the UE 902, the AN 904 may include a host platform 928 coupled with a modem platform 930. The

- ²⁵ host platform 928 may include application processing circuitry 932 coupled with protocol processing circuitry 934 of the modem platform 930. The modem platform may further include digital baseband circuitry 936, transmit circuitry 938, receive circuitry 940, RF circuitry 942, RFFE circuitry 944, and antenna panels 946. The components of the AN 904 may be similar to and substantially interchangeable with like-named components of the UE 902. In addition to performing data transmission/reception as described above, the components of the AN 908 may perform various logical functions
- that include, for example, RNC functions such as radio bearer management, uplink and downlink dynamic radio resource management, and data packet scheduling.
 [0080] FIG. 10 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 10 shows a diagrammatic
- ³⁵ representation of hardware resources 1000 including one or more processors (or processor cores) 1010, one or more memory/storage devices 1020, and one or more communication resources 1030, each of which may be communicatively coupled via a bus 1040 or other interface circuitry. For embodiments where node virtualization (e.g., NFV) is utilized, a hypervisor 1002 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize the hardware resources 1000.
- 40 [0081] The processors 1010 may include, for example, a processor 1012 and a processor 1014. The processors 1010 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio-frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof.
- ⁴⁵ [0082] The memory/storage devices 1020 may include main memory, disk storage, or any suitable combination thereof. The memory/storage devices 1020 may include, but are not limited to, any type of volatile, non-volatile, or semi-volatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory, solid-state storage, etc.
- 50 [0083] The communication resources 1030 may include interconnection or network interface controllers, components, or other suitable devices to communicate with one or more peripheral devices 1004 or one or more databases 1006 or other network elements via a network 1008. For example, the communication resources 1030 may include wired communication components (e.g., for coupling via USB, Ethernet, etc.), cellular communication components, NFC components, Bluetooth[®] (or Bluetooth[®] Low Energy) components, Wi-Fi[®] components, and other communication components.
- ⁵⁵ **[0084]** Instructions 1050 may include software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 1010 to perform any one or more of the methodologies discussed herein. The instructions 1050 may reside, completely or partially, within at least one of the processors 1010 (e.g., within the processor's cache memory), the memory/storage devices 1020, or any suitable combination thereof. Furthermore, any portion of

the instructions 1050 may be transferred to the hardware resources 1000 from any combination of the peripheral devices 1004 or the databases 1006. Accordingly, the memory of processors 1010, the memory/storage devices 1020, the peripheral devices 1004, and the databases 1006 are examples of computer-readable and machine-readable media.

5 EXAMPLE PROCEDURES

[0085] In some embodiments, the electronic device(s), network(s), system(s), chip(s) or component(s), or portions or implementations thereof, of FIGs. 8-10, or some other figure herein, may be configured to perform one or more processes, techniques, or methods as described herein, or portions thereof. One such process is depicted in FIG. 11. For example,

- the process may include, at 1101, receiving, from a user equipment (UE), a request for computing services. The process further includes, at 1102, selecting, based on the request for computing services, an orchestration function that is to manage and orchestrate computing resources associated with the requested computing services. The process further includes, at 1103, selecting, based on the request for computing services, a computing function, associated with the selected orchestration function, that is to fulfill the request for computing services. The process further includes, at 1104,
- ¹⁵ sending a request to the selected computing function to fulfill the request for computing services, wherein the request to fulfill the request for computing services includes an indication of information associated with: a service location, a service type, a resource requirement, or a quality-of service (QoS) requirement.

[0086] For one or more embodiments, at least one of the components set forth in one or more of the preceding FIGs. may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example

- 20 section below. For example, the baseband circuitry as described above in connection with one or more of the preceding FIGs. may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a LTE, base station, network element, etc. as described above in connection with one or more of the preceding FIGs. may be configured to operate in accordance with one or more of the examples set forth below in the example section.
- 25

35

40

EXAMPLES

[0087] Example 1 may include an apparatus configured to operate for resource orchestration in a next generation system, the apparatus may include processing circuitry configured to: receive, from one or more first entities, first information about the computing resources for one or more computing function(s); receive, from a second entity, a request to provide available computing function(s) for supporting the computing service(s); select the suitable computing function(s) hased on the received first information for the request; and provide the selected computing function(s), in a response, to the second entity.

[0088] Example 2 may include the apparatus of example 1, or some other example herein, wherein the first entity is a computing function.

[0089] Example 3 may include the apparatus of example 1 or 2, or some other example herein, wherein the first entity is a resource management function.

[0090] Example 4 may include the apparatus of any one of examples 1 to 3, or some other example herein, further including processing circuitry configured to: send a request to a registration and discovery function, register the orchestration function; and receive a response indicating a registration result from registration and discovery function.

- **[0091]** Example 5 may include an apparatus configured to operate for resource management in the next generation system, the apparatus including processing circuitry configured to: receive, from one or more computing function(s), the first information about the computing resources for the computing function(s); and send, to a third entity, the first information about the computing resources for the computing function(s).
- ⁴⁵ **[0092]** Example 6 may include the apparatus of example 5, or some other example herein, wherein the third entity is the orchestration function.

[0093] Example 7 may include the apparatus of example 5 or 6, or some other example herein, wherein the third entity is the registration and discovery function.

- [0094] Example 8 may include an apparatus configured to operate for session or service request control in a next generation system, the apparatus including processing circuitry configured to: receive, from a LTE, a request for using the computing service; select the computing function to serve the UE; send a request to the selected computing function to fulfill the service request for the LTE; and receive a response indicating the service request result from the computing function.
- [0095] Example 9 may include the apparatus of example 8, or some other example herein, further including processing circuitry configured to: send, to a fourth entity, a request for requiring the suitable computing functions; and receive a response indicating the suitable computing functions from the fourth entity.

[0096] Example 10 may include the apparatus of example 9, or some other example herein, wherein the fourth entity is an orchestration function.

[0097] Example 11 may include the apparatus of example 9 or 10, or some other example herein, wherein the fourth entity is a registration and discovery function.

[0098] Example 12 may include the apparatus of any one of examples 8 to 11, or some other example herein, further including processing circuitry configured to: send, to a registration and discovery function, a request for inquiring the suitable orchestration functions; and to receive a response indicating the suitable orchestration functions from the reg-

istration and discovery function. [0099] Example 13 may include an apparatus configured to operate for function or service registration and discovery in a next generation system, the apparatus including processing circuitry configured to: receive, from a fifth entity, a request to register services for function; register the services for the function; and send a response to the fifth entity of a result of the registration.

[0100] Example 14 may include the apparatus of example 13, or some other example herein, wherein the fifth entity is an orchestration function or a resource management function.

[0101] Example 15 may include the apparatus of example 13 or 14, or some other example herein, further including processing circuitry configured to: receive, from a sixth entity, a request to inquire a function for the computing services; retrieve the available functions per the request; and send a response to the available functions to the sixth entity.

[0102] Example 16 may include the apparatus of example 15, or some other example herein, wherein the sixth entity is the control function.

[0103] Example 17 may include the apparatus of example 15 or 16, or some other example herein, wherein the function for the computing services is an orchestration function or a computing function.

- ²⁰ **[0104]** Example 18 may include the apparatus of any one of examples 1 to 7, or some other example herein, wherein the first information includes any of the following:
 - total capacity and type of resources provided by the computing function;
 - usage, and/or available capacity of the computing function;
- ²⁵ status (e.g., alarms) of the computing resource and computing function;
 - energy efficiency level of the computing resources;
 - types of services supported by the computing function; and/or
 - location of the computing resources (or computing function).
- ³⁰ **[0105]** Example 19 may include the apparatus of any one of examples 1 to 7, or some other example herein, wherein the request for registering the orchestration function includes at least of the following:
 - service area (e.g., geographical area) of the orchestration function;
 - types of services supported by each computing function orchestrated by the orchestration function.
 - total capacity and types of resources provided by the computing function;
 - usage, and/or available capacity of the computing function;
 - status (e.g., alarms) of the computing resource and computing function;
 - energy efficiency level of the computing resources;
 - location of the computing resources (or computing function); and/or
- 40 affinity and/or anti-affinity relation between computing functions.

[0106] Example 20 may include the apparatus of any one of examples 8 to 11, or some other example herein, wherein the request for requiring the suitable computing functions includes at least one of the following:

45 - service location,

5

10

15

35

- service type,
- resource requirements; or
- QoS requirements.
- ⁵⁰ **[0107]** Example 21 includes a method of a control function, including: receiving, from a user equipment (UE), a request for computing services; selecting, based on the request for computing services, an orchestration function that is to manage and orchestrate computing resources associated with the requested computing services; selecting, based on the request for computing services, a computing function, associated with the selected orchestration function, that is to fulfill the request for computing services; and sending a request to the selected computing function to fulfill the request
- ⁵⁵ for computing services, wherein the request to fulfill the request for computing services includes an indication of information associated with: a service location, a service type, a resource requirement, and/or a quality-of service (QoS) requirement.

[0108] Example 22 includes the method of example 21, or some other example herein, wherein the method further

includes receiving, from the computing function, a message indicating whether the request to fulfill the request for computing services is accepted or denied.

[0109] Example 23 includes the method of example 22, or some other example herein, wherein the message indicates the request to fulfill the request for computing services is accepted, and wherein the method further includes sending the UE information to exchange data with the computing function to fulfill the computing service.

[0110] Example 24 includes the method of example 21, or some other example herein, wherein selection of the orchestration function is based on computing function information received by the orchestration function.

5

40

[0111] Example 25 includes the method of example 24, or some other example herein, wherein the computing function information received by the orchestration function includes an indication of: a total capacity and type of resources provided by the computing function; usage or available capacity of the computing function; a status of the computing resources or the computing function; an energy efficiency level of the computing resources; a type of services supported by the computing function; and/or a location of the computing resources or computing function.

[0112] Example 26 includes the method of any one of examples 21 to 25, or some other example herein, wherein the selected orchestration function is to manage an affinity or anti-affinity relation between computing functions.

- [0113] Example 27 includes the method of any one of examples 21 to 26, or some other example herein, wherein the selected orchestration function is registered with a registration and discovery function.
 [0114] Example 28 includes the method of example 27, or some other example herein, wherein the registration of the selected orchestration function to the registration and discovery function is based on a service area of the selected orchestration function, a total capacity and types of resources orchestrated by the selected orchestration function, or a
- 20 type of services supported by the selected computing function orchestrated by the selected orchestration function. [0115] Example 29 includes the method of example 21, or some other example herein, wherein the request for computing services from the UE includes an indication of: a location of the UE, a type of computing service being requested, resource requirements for the requested computing services, and/or a QoS requirement for the requested computing service.
- [0116] In Example 30, an apparatus of a next generation distributed cloud system for resource orchestration, comprising one or more processors, configured to: receive, from one or more computing functions, first information about computing resources for the one or more computing functions; receive, from a second entity, a request to provide one or more available computing functions for supporting one or more computing services; select one or more computing functions from the one or more available computing functions for the request, based on the received first information; and provide the selected one or more available computing functions. In a response, to the second entity.
- the selected one or more available computing functions, in a response, to the second entity.
 [0117] In Example 31, the apparatus of example 30, wherein the first information received from the one or more computing functions comprises any of: total capacity and type of resources provided by each computing function; usage and/or available capacity of each computing function; status of the computing resources and computing function; energy efficiency level of the computing resources; type of computing services supported by each computing function; location of the computing resources or computing function.

[0118] In Example 32, the apparatus of any one of examples 30 or 31, wherein the second entity is a User Equipment, UE.

[0119] In Example 33, the apparatus of example 32, wherein the request to provide the one or more available computing functions for supporting one or more computing services comprises information about any of service location, service type, resource requirements, and QoS requirements.

[0120] In Example 34, the apparatus of any one of examples 30 to 33, wherein the one or more processors are further configured to: send a request to a registration and discovery function; register an orchestration function configured to provide a service or services to manage and orchestrate the computing resources and computing services; and receive a response indicating a registration result from the registration and discovery function.

- ⁴⁵ **[0121]** In Example 35, the apparatus of example 34, wherein the one or more processors are further configured to register the orchestration function with some or all of the following information: service area of the orchestration function; total capacity and types of computing resources orchestrated by the orchestration function; and/or type of computing services supported by each computing function orchestrated by the orchestration function.
- **[0122]** In Example 36, the apparatus of example 30 to 35, wherein a control function is configured to request the selected one or more computing functions to fulfill the service request, and preferably wherein the request from the control function comprises information about any of service location, service type, resource requirements, and/or QoS requirements.

[0123] In Example 37, the apparatus of example 36, wherein if the computing function accepts the request of the control function, the control function is configured to inform the second entity to continue the service, and wherein second entity and the computing function are configured to exchange user data to fulfill the one or more computing services.

⁵⁵ entity and the computing function are configured to exchange user data to fulfill the one or more computing services. [0124] In Example 38, the apparatus of any one of examples 30 to 37, wherein the one or more processors are further configured to send, to a third entity, the first information about the computing resources for the one or more computing functions.

[0125] In Example 39, the apparatus of example 38, wherein the one or more processors are configured to select an orchestration function from one or more orchestration functions to request the computing resources, wherein each of the orchestration functions is configured to provide a service or services to manage and orchestrate the computing resources and computing services.

⁵ **[0126]** In Example 40, the apparatus of example 39, wherein the second entity is a User Equipment, LTE; wherein if no suitable orchestration function is known, the control function is configured to request the registration and discovery function to provide one or more available orchestration functions that can serve a UE location and type of service requested.

[0127] In Example 41, the apparatus of example 39, wherein if no suitable computing function is known, the control function is configured to request the orchestration function to provide the one or more available computing functions that can serve a service requested by the UE.

15

55

[0128] In Example 42, the apparatus of any one of examples 30 to 41, further comprising: a resource management function; wherein the resource management function is configured to receive information regarding computing resources from the selected one or more computing functions, and to provide the information regarding computing resource to an orchestration function.

[0129] In Example 43, the apparatus of any one of examples 30 to 42, wherein the second entity is a User Equipment, LTE; and wherein the one or more processors are further configured to send, to the orchestration function, a request, to provide the available one or more orchestration functions that can serve the UE location and type of service requested. **[0130]** In Example 44, a method of a control function, comprising: receiving, from a user equipment (LTE), a request

- for computing services; selecting, based on the request for computing services, an orchestration function that is to manage and orchestrate computing resources associated with the requested computing services; selecting, based on the request for computing services, a computing function, associated with the selected orchestration function, that is to fulfill the request for computing services; and sending a request to the selected computing function to fulfill the request for computing services; wherein the request to fulfill the request for computing services; wherein the request to fulfill the request for computing services an indication of infor-
- ²⁵ mation associated with: a service location, a service type, a resource requirement, or a quality-of service (QoS) requirement.

[0131] Example 45 may include an apparatus including means to perform one or more elements of a method described in or related to any of examples 1-44, or any other method or process described herein.

[0132] Example 46 may include one or more non-transitory computer-readable media including instructions to cause an electronic device, upon execution of the instructions by one or more processors of the electronic device, to perform one or more elements of a method described in or related to any of examples 1-44, or any other method or process described herein.

[0133] Example 47 may include an apparatus including logic, modules, or circuitry to perform one or more elements of a method described in or related to any of examples 1-44, or any other method or process described herein.

³⁵ **[0134]** Example 48 may include a method, technique, or process as described in or related to any of examples 1-44, or portions or parts thereof.

[0135] Example 49 may include an apparatus including: one or more processors and one or more computer-readable media including instructions that, when executed by the one or more processors, cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-44, or portions thereof.

- [0136] Example 50 may include a signal as described in or related to any of examples 1-44, or portions or parts thereof.
 [0137] Example 51 may include a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-44, or portions or parts thereof, or otherwise described in the present disclosure.
 [0138] Example 52 may include a signal encoded with data as described in or related to any of examples 1-44, or portions or parts thereof, or otherwise described in or related to any of examples 1-44, or portions or parts thereof.
- ⁴⁵ **[0139]** Example 53 may include a signal encoded with a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-44, or portions or parts thereof, or otherwise described in the present disclosure.

[0140] Example 54 may include an electromagnetic signal carrying computer-readable instructions, wherein execution of the computer-readable instructions by one or more processors is to cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-44, or portions thereof.

- 50 method, techniques, or process as described in or related to any of examples 1-44, or portions thereof. [0141] Example 55 may include a computer program including instructions, wherein execution of the program by a processing element is to cause the processing element to carry out the method, techniques, or process as described in or related to any of examples 1-44, or portions thereof.
- [0142] Example 56 may include a signal in a wireless network as shown and described herein.
 - [0143] Example 57 may include a method of communicating in a wireless network as shown and described herein.
 - [0144] Example 58 may include a system for providing wireless communication as shown and described herein.
 - [0145] Example 59 may include a device for providing wireless communication as shown and described herein.
 - [0146] Any of the above-described examples may be combined with any other example (or combination of examples),

unless explicitly stated otherwise. The foregoing description of one or more implementations provides illustration and description, but is not intended to be exhaustive or to limit the scope of embodiments to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of various embodiments.

5

10

Abbreviations

[0147] Unless used differently herein, terms, definitions, and abbreviations may be consistent with terms, definitions, and abbreviations defined in 3GPP TR 21.905 v16.0.0 (2019-06). For the purposes of the present document, the following abbreviations may apply to the examples and embodiments discussed herein.

15			
20			
25			
30			
35			
40			
45			
50			
55			

	3GPP Th	nird Generation	API	Applic	ation	BS	Base S	Station
	Pa	urtnership Project	Progra	mming	Interface	BSR	Buffer	· Status
5	4G Fo	ourth Generation	APN	Access	s Point Name	Report	Ē	
	5G Fit	fth Generation	ARP	Alloca	tion and	BW	Bandv	vidth
	5GC 5G	G Core network	Retent	ion	Priority	BWP	Bandv	vidth Part
10	AC	Application	ARQ	Autom	atic Repeat	C-RN]	ΓΙ	Cell Radio
	Client		Reque	st		Netwo	rk	Temporary
	ACR A	pplication	AS	Acces	s Stratum	Identit	у	
15	Context R	Relocation	ASP		Application	CA	Carrie	r
	ACK Acknowledgement		Servic	e Provid	ler	Aggreg	gation,	
	ACID	Application					Certifi	cation
20	Client Ide	entification	ASN.1	Abstra	ct Syntax	Author	rity	
	AF Ap	oplication	Notati	on	One	CAPE	X	CAPital
	Function		AUSF	Auther	ntication	EXpen	diture	
05	AM Acknowledged		Server Function		on	CBRA Contention Based		ntion Based
25	Mode		AWG	N	Additive	Rando	m	Access
	AMBRAg	ggregate	White	Gaussia	an	CC	Comp	onent Carrier,
	Maximum	n Bit Rate		Noise			Count	ry Code,
30	AMF Ac	ccess and	BAP Backhaul		aul		Crypto	ographic
	Mobility		Adapta	ation	Protocol	Checks	sum	
	Μ	anagement	BCH	Broad	cast Channel	CCA	Clear	Channel
35	Function		BER	Bit En	or Ratio	Assess	ment	
	AN AG	ccess Network	BFD	В	eam Failure	CCE	Contro	ol Channel
	ANR Au	utomatic	Detect	ion		Elemen	nt	
40	Neighbou	r Relation	BLER	Block	Error Rate	CCCH	Comm	ion Control
	AOA	Angle of	BPSK	Binary	Phase Shift	Chann	el	
	Arrival		Keying	g		CE	Cover	age
45	AP Ap	oplication	BRAS	Broad	oand Remote	Enhan	cement	
	Protocol,	Antenna	Access	5	Server	CDM	Conter	nt Delivery
	Port, Acce	ess Point	BSS	Busine	ess Support	Netwo	rk	
50			System	n				

50

	CDMA Code-	CO Conditional	CRC Cyclic Redundancy		
Division Multiple		Optional	Check		
5	Access	CoMP Coordinated Multi-	CRI Channel-State		
	CDR Charging Data	Point	Information Resource		
	Request	CORESET Control	Indicator, CSI-RS		
10	CDR Charging Data	Resource Set	Resource Indicator		
	Response	COTS Commercial Off-	C-RNTI Cell RNTI		
	CFRA Contention Free	The-Shelf	CS Circuit Switched		
15	Random Access	CP Control Plane,	CSCF call session		
	CG Cell Group	Cyclic Prefix, Connection	control function		
	CGF Charging	Point	CSAR Cloud Service		
20	Gateway Function	CPD Connection Point	Archive		
	CHF Charging	Descriptor	CSI Channel-State		
	Function	CPE Customer Premise	Information		
25	CI Cell Identity	Equipment	CSI-IM CSI		
	CID Cell-ID (e.g.,	CPICHCommon Pilot	Interference		
	positioning method)	Channel	Measurement		
30	CIM Common	CQI Channel Quality	CSI-RS CSI		
	Information Model	Indicator	Reference Signal		
	CIR Carrier to	CPU CSI processing	CSI-RSRP CSI		
35	Interference Ratio	unit, Central Processing	reference signal		
00	CK Cipher Key	Unit	received power		
	CM Connection	C/R	CSI-RSRQ CSI		
40	Management, Conditional	Command/Respons	reference signal		
40	Mandatory	e field bit	received quality		
	CMAS Commercial	CRAN Cloud Radio	CSI-SINR CSI signal-		
	Mobile Alert Service	Access Network,	to-noise and interference		
45	CMD Command	Cloud RAN	ratio		
	CMS Cloud Management	CRB Common Resource	CSMA Carrier Sense		
	System	Block	Multiple Access		
50					

	CSMA/CA CSMA with		EASID Edge	
	collision avoidance	DRB Data Radio Bearer	Application Server	
5	CSS Common Search	DRS Discovery	Identification	
	Space, Cell- specific	Reference Signal	ECS Edge	
	Search Space	DRX Discontinuous	Configuration Server	
10	CTF Charging	Reception	ECSP Edge	
	Trigger Function	DSL Domain Specific	Computing Service	
	CTS Clear-to-Send	Language. Digital	Provider	
15	CW Codeword	Subscriber Line	EDN Edge Data	
	CWS Contention	DSLAM DSL Access	Network	
	Window Size	Multiplexer	EEC Edge	
20	D2D Device-to-Device	DwPTS Downlink	Enabler Client	
	DC Dual Connectivity,	Pilot Time Slot	EECID Edge	
	Direct Current	E-LAN Ethernet	Enabler Client	
25	DCI Downlink Control	Local Area Network	Identification	
	Information	E2E End-to-End	EES Edge	
	DF Deployment	EAS Edge Application	Enabler Server	
30	Flavour	Server	EESID Edge	
	DL Downlink	ECCA extended clear	Enabler Server	
	DMTF Distributed	channel assessment,	Identification	
35	Management Task Force	extended CCA	EHE Edge	
	DPDK Data Plane	ECCE Enhanced Control	Hosting Environment	
	Development Kit	Channel Element,	EGMF Exposure	
40	DM-RS, DMRS	Enhanced CCE	Governance	
	Demodulation	ED Energy Detection	Management	
	Reference Signal	EDGE Enhanced Datarates	Function	
45	DN Data network	for GSM Evolution	EGPRS Enhanced	
	DNN Data Network	(GSM Evolution)	GPRS	
	Name	EAS Edge	EIR Equipment Identity	
50	DNAI Data Network	Application Server	Register	
	Access Identifier			

	eLAA enhanced Licensed	ETWS Earthquake and	FBI Feedback
	Assisted Access,	Tsunami Warning	Information
5	enhanced LAA	System	FCC Federal
	EM Element Manager	eUICC embedded UICC,	Communications
	eMBB Enhanced Mobile	embedded Universal	Commission
10	Broadband	Integrated Circuit Card	FCCH Frequency
	EMS Element	E-UTRA Evolved	Correction CHannel
	Management System	UTRA	FDD Frequency Division
15	eNB evolved NodeB, E-	E-UTRAN Evolved	Duplex
	UTRAN Node B	UTRAN	FDM Frequency Division
	EN-DC E-UTRA-	EV2X Enhanced V2X	Multiplex
20	NR Dual	F1AP F1 Application	FDMA Frequency Division
	Connectivity	Protocol	Multiple Access
	EPC Evolved Packet	F1-C F1 Control plane	FE Front End
05	Core	interface	FEC Forward Error
25	EPDCCH enhanced	F1-U F1 User plane	Correction
	PDCCH, enhanced	interface	FFS For Further Study
	Physical Downlink	FACCH Fast	FFT Fast Fourier
30	Control Cannel	Associated Control	Transformation
	EPRE Energy per	CHannel	feLAA further enhanced
	resource element	FACCH/F Fast	Licensed Assisted
35	EPS Evolved Packet	Associated Control	Access, further
	System	Channel/Full rate	enhanced LAA
	EREG enhanced REG,	FACCH/H Fast	FN Frame Number
40	enhanced resource	Associated Control	FPGA Field-
	element groups	Channel/Half rate	Programmable Gate
	ETSI European	FACH Forward Access	Array
45	Telecommunication	Channel	FR Frequency Range
	s Standards Institute	FAUSCH Fast Uplink	FQDN Fully Qualified
		Signalling Channel	Domain Name
50		FB Functional Block	

	G-RNTI	GERAN	GPSI		Generic	HPLN	4N	Home
	Radio Network		Public	c Subsc	ription	Public	Land	Mobile
5	Tem	porary Identity		Ident	ifier		Netw	ork
	GERAN		GSM	Glob	al System for	HSDF	ΡA	High Speed
	GSM	I EDGE RAN,	Mobil	e		Down	link	Packet
10	GSM EDGE	Radio		Com	munications,	Acces	S	
	Access Netw	vork	Group	be	Spécial	HSN	Норр	ing Sequence
	GGSN Gate	way GPRS	Mobil	e		Numb	er	
15	Support	Node	GTP	GPR	S Tunneling	HSPA	. High	Speed Packet
	GLONASS		Protoc	col		Acces	S	
	GLO	bal'naya	GTP-	UGPR	S Tunnelling	HSS	Home	e Subscriber
20	NAv	igatsionnaya	Proto	col	for User	Serve	r	
	Sput	nikovaya	Plane			HSUF	ΡA	High Speed
	Sistema	(Engl.:	GTS	Go T	o Sleep Signal	Uplin	k Packe	et Access
25	Global Navi	gation	(relate	ed	to WUS)	HTTP	• Hype	r Text
	Satel	lite System)	GUM	MEI	Globally	Trans	fer	Protocol
	gNB Next	Generation	Uniqu	ie MM	E Identifier	HTTP	'S	Hyper Text
30	NodeB		GUTI	Glob	ally Unique	Trans	fer	Protocol
	gNB-CU	gNB-	Temp	orary	UE Identity	Secur	e (https	is
	centralized u	nit, Next	HAR	Q Hybr	id ARQ,		http/1	.1 over SSL,
35	Gene	eration NodeB	Hybri	d	Automatic	i.e. pc	rt	443)
	centr	alized unit	Repea	it Requ	est	I-Bloc	ж	Information
	gNB-DU	gNB-	HAN	DO I	Handover	Block		
40	distributed u	nit, Next	HFN	Нуре	erFrame	ICCII) Integr	rated Circuit
	Gene	Generation NodeB		per		Card	Identi	fication
	distri	buted unit	HHO	Hard	Handover	IAB	Integr	rated Access
45	GNSS Glob	al Navigation	HLR	Hom	e Location	and	Backl	haul
	Satellite	System	Regis	ter		ICIC	Inter-	Cell
	GPRS Gene	eral Packet	HN		e Network	Interfe	erence	
50	Radio Servio	e	НО		Handover			lination
						ID	Identi	tv identifier

Identity, identifier

ID

	IDFT Inverse Discrete	IMPI IP Multimedia	ISO International	
	Fourier Transform	Private Identity	Organisation for	
5	IE Information	IMPU IP Multimedia	Standardisation	
	element	PUblic identity	ISP Internet Service	
	IBE In-Band Emission	IMS IP Multimedia	Provider	
10		Subsystem	IWF Interworking-	
	IEEE Institute of	IMSI International	Function	
	Electrical and Electronics	Mobile Subscriber	I-WLAN	
15	Engineers	Identity	Interworking	
	IEI Information	IoT Internet of Things	WLAN	
	Element Identifier	IP Internet Protocol	Constraint length of	
20	IEIDL Information	Ipsec IP Security,	the convolutional code,	
	Element Identifier	Internet Protocol	USIM Individual key	
	Data Length	Security	kB Kilobyte (1000	
25	IETF Internet	IP-CAN IP-	bytes)	
	Engineering Task	Connectivity Access	kbps kilo-bits per second	
	Force	Network	Kc Ciphering key	
30	IF Infrastructure	IP-M IP Multicast	Ki Individual	
	IIOT Industrial Internet	IPv4 Internet Protocol	subscriber	
	of Things	Version 4	authentication key	
35	IM Interference	IPv6 Internet Protocol	KPI Key Performance	
35	Measurement,	Version 6	Indicator	
	Intermodulation, IP	IR Infrared	KQI Key Quality	
	Multimedia	IS In Sync	Indicator	
40	IMC IMS Credentials	IRP Integration	KSI Key Set Identifier	
	IMEI International	Reference Point	ksps kilo-symbols per	
	Mobile Equipment	ISDN Integrated Services	second	
45	Identity	Digital Network	KVM Kernel Virtual	
	IMGI International	ISIM IM Services	Machine	
	mobile group identity	Identity Module	L1 Layer 1 (physical	
50			layer)	

	L1-RSRP Layer 1	LPP LTE Positioning	MANO		
	reference signal	Protocol	Management and		
5	received power	LSB Least Significant	Orchestration		
	L2 Layer 2 (data link	Bit	MBMS Multimedia		
	layer)	LTE Long Term	Broadcast and Multicast		
10	L3 Layer 3 (network	Evolution	Service		
	layer)	LWA LTE-WLAN	MBSFN Multimedia		
	LAA Licensed Assisted	aggregation	Broadcast multicast		
15	Access	LWIP LTE/WLAN Radio	service Single Frequency		
	LAN Local Area	Level Integration with	Network		
	Network	IPsec Tunnel	MCC Mobile Country		
20	LADN Local Area	LTE Long Term	Code		
	Data Network	Evolution	MCG Master Cell Group		
	LBT Listen Before Talk	M2M Machine-to-	MCOT Maximum Channel		
25	LCM LifeCycle	Machine	Occupancy Time		
	Management	MAC Medium Access	MCS Modulation and		
	LCR Low Chip Rate	Control (protocol	coding scheme		
30	LCS Location Services	layering context)	MDAF Management Data		
	LCID Logical	MAC Message	Analytics Function		
	Channel ID	authentication code	MDAS Management Data		
35	LI Layer Indicator	(security/encryption	Analytics Service		
00	LLC Logical Link	context)	MDT Minimization of		
	Control, Low Layer	MAC-A MAC used	Drive Tests		
10	Compatibility	for authentication and	ME Mobile Equipment		
40	LMF Location	key agreement (TSG T	MeNB master eNB		
	Management Function	WG3 context)	MER Message Error		
	LOS Line of	MAC-IMAC used for data	Ratio		
45	Sight	integrity of	MGL Measurement Gap		
	LPLMN Local	signalling messages (TSG	Length		
	PLMN	T WG3 context)	MGRP Measurement Gap		
50			Repetition Period		

	MIB Master Information	MPUSCH MTC	MWUS MTC wake-
	Block, Management	Physical Uplink Shared	up signal, MTC
5	Information Base	Channel	WUS
	MIMO Multiple Input	MPLS MultiProtocol	NACK Negative
	Multiple Output	Label Switching	Acknowledgement
10	MLC Mobile Location	MS Mobile Station	NAI Network Access
	Centre	MSB Most Significant	Identifier
	MM Mobility	Bit	NAS Non-Access
15	Management	MSC Mobile Switching	Stratum, Non- Access
15	MME Mobility	Centre	Stratum layer
	Management Entity	MSI Minimum System	NCT Network
	MN Master Node	Information, MCH	Connectivity Topology
20	MNO Mobile	Scheduling	NC-JT Non-
	Network Operator	Information	Coherent Joint
	MO Measurement	MSID Mobile Station	Transmission
25	Object, Mobile	Identifier	NEC Network Capability
	Originated	MSIN Mobile Station	Exposure
	MPBCH MTC	Identification	NE-DC NR-E-
30	Physical Broadcast	Number	UTRA Dual
	CHannel	MSISDN Mobile	Connectivity
	MPDCCH MTC	Subscriber ISDN	NEF Network Exposure
35	Physical Downlink	Number	Function
	Control CHannel	MT Mobile Terminated,	NF Network Function
	MPDSCH MTC	Mobile Termination	NFP Network
40	Physical Downlink	MTC Machine-Type	Forwarding Path
	Shared CHannel	Communications	NFPD Network
	MPRACH MTC	mMTCmassive MTC,	Forwarding Path
45	Physical Random	massive Machine-	Descriptor
	Access CHannel	Type Communications	NFV Network Functions
		MU-MIMO Multi User	Virtualization
50		MIMO	NFVI NFV Infrastructure

	NFVO NFV	Orchestrator		Synch	nronization	O&M	Opera	tion and
	NG Next Generation,		Signa	1		Maintenance		
5	Next Gen		NSSS	Narro	wband	ODU2	Optic	al channel
	NGEN-DC	NG-RAN	Secon	ıdary		Data U	Jnit -	type 2
	E-UTRA-NR	Dual		Synch	ronization	OFDM	1 Ortho	gonal
10	Conne	ectivity	Signa	1		Freque	ency	Division
	NM Netwo	ork Manager	NR	New I	Radio,	Multip	lexing	
	NMS Netwo	ork	Neigh	ıbour	Relation	OFDM	ÍA	Orthogonal
15	Management	System	NRF	NF R	epository	Freque	ency	Division
15	N-PoP Netwo	ork Point of	Funct	ion		Multip	le Acc	ess
	Presence		NRS	Narro	wband	OOB	Out-o	f-band
	NMIB, N-MI	В	Refer	ence	Signal	OOS	(Out of Sync
20	Narrowband	MIB	NS	Netwo	ork Service	OPEX	OPera	ting EXpense
	NPBCH	Narrowband	NSA	Non-S	Standalone	OSI	Other	System
	Physical	Broadcast	opera	tion	mode	Inform	ation	
25	CHannel		NSD	Netwo	ork Service	OSS	Opera	tions Support
	NPDCCH	Narrowband	Descr	iptor		System	1	
	Physical	Downlink	NSR	Netwo	ork Service	ΟΤΑ	over-t	he-air
30	Control CHannel		Record		PAPR Peak-to-Average		to-Average	
	NPDSCH	Narrowband	NSSA	AI Netwo	ork Slice	Power	Ratio	
	Physical	Downlink	Select	tion	Assistance	PAR	Peak t	to Average
	Shared CHan	nel	Inform	nation		Ratio		
35	NPRACH	Narrowband	S-NN	SAI	Single-	РВСН	Physic	cal Broadcast
	Physical	Random	NSSA	I		Channe	el	
	Access CHan	nel	NSSF	Netwo	ork Slice	PC	Power	r Control,
40	NPUSCH	Narrowband	Select	tion	Function	Person	al	Computer
	Physical	Uplink	NW	Netwo	ork	PCC	Prima	ry
	Shared CHan	nel	NWU	SNarro	wband wake-	Compo	onent	Carrier,
45	NPSS Narro	wband	up	signal	, Narrowband	Primar	y CC	
	Primary		WUS			P-CSC	F	Proxy
			NZP	Non-2	Zero Power	CSCF		

	PCell Primary Cell	PEI Permanent	PRB Physical resource
	PCI Physical Cell ID,	Equipment Identifiers	block
5	Physical Cell	PFD Packet Flow	PRG Physical resource
	Identity	Description	block group
	PCEF Policy and	P-GW PDN Gateway	ProSe Proximity Services,
10	Charging	PHICH Physical	Proximity-Based
	Enforcement	hybrid-ARQ indicator	Service
	Function	channel	PRS Positioning
15	PCF Policy Control	PHY Physical layer	Reference Signal
10	Function	PLMN Public Land Mobile	PRR Packet Reception
	PCRF Policy Control and	Network	Radio
20	Charging Rules	PIN Personal	PS Packet Services
20	Function	Identification Number	PSBCH Physical
	PDCP Packet Data	PM Performance	Sidelink Broadcast
	Convergence Protocol,	Measurement	Channel
25	Packet Data	PMI Precoding Matrix	PSDCH Physical
	Convergence	Indicator	Sidelink Downlink
	Protocol layer	PNF Physical Network	Channel
30	PDCCH Physical	Function	PSCCH Physical
	Downlink Control	PNFD Physical Network	Sidelink Control
	Channel	Function Descriptor	Channel
35	PDCP Packet Data	PNFR Physical Network	PSSCH Physical
	Convergence Protocol	Function Record	Sidelink Shared
	PDN Packet Data	POC PTT over Cellular	Channel
40	Network, Public Data	PP, PTP Point-to-	PSCell Primary SCell
	Network	Point	PSS Primary
	PDSCH Physical	PPP Point-to-Point	Synchronization
45	Downlink Shared	Protocol	Signal
	Channel	PRACH Physical	PSTN Public Switched
	PDU Protocol Data Unit	RACH	Telephone Network

	PT-RS Phase-tracking	RADIUS Remote	RLC AM RLC	
	reference signal	Authentication Dial In	Acknowledged Mode	
5	PTT Push-to-Talk	User Service	RLC UM RLC	
	PUCCH Physical	RAN Radio Access	Unacknowledged Mode	
	Uplink Control	Network	RLF Radio Link Failure	
10	Channel	RAND RANDom number	RLM Radio Link	
	PUSCH Physical	(used for	Monitoring	
	Uplink Shared	authentication)	RLM-RS Reference	
15	Channel	RAR Random Access	Signal for RLM	
	QAM Quadrature	Response	RM Registration	
	Amplitude Modulation	RAT Radio Access	Management	
20	QCI QoS class of	Technology	RMC Reference	
20	identifier	RAU Routing Area	Measurement Channel	
	QCL Quasi co-location	Update	RMSI Remaining MSI,	
	QFI QoS Flow ID, QoS	RB Resource block,	Remaining Minimum	
25	Flow Identifier	Radio Bearer	System Information	
	QoS Quality of Service	RBG Resource block	RN Relay Node	
	QPSK Quadrature	group	RNC Radio Network	
30	(Quaternary) Phase Shift	REG Resource Element	Controller	
	Keying	Group	RNL Radio Network	
	QZSS Quasi-Zenith	Rel Release	Layer	
35	Satellite System	REQ REQuest	RNTI Radio Network	
	RA-RNTI Random	RF Radio Frequency	Temporary Identifier	
	Access RNTI	RI Rank Indicator	ROHC RObust Header	
40	RAB Radio Access	RIV Resource indicator	Compression	
	Bearer, Random	value	RRC Radio Resource	
	Access Burst	RL Radio Link	Control, Radio	
45	RACH Random Access	RLC Radio Link	Resource Control layer	
	Channel	Control, Radio Link	RRM Radio Resource	
		Control layer	Management	
50			RS Reference Signal	

	RSRP Reference Signal	SAE System	SDL Supplementary	
	Received Power	Architecture Evolution	Downlink	
5	RSRQ Reference Signal	SAP Service Access	SDNF Structured Data	
	Received Quality	Point	Storage Network	
	RSSI Received Signal	SAPD Service Access	Function	
10	Strength Indicator	Point Descriptor	SDP Session Description	
	RSU Road Side Unit	SAPI Service Access	Protocol	
	RSTD Reference Signal	Point Identifier	SDSF Structured Data	
15	Time difference	SCC Secondary	Storage Function	
	RTP Real Time Protocol	Component Carrier,	SDT Small Data	
	RTS Ready-To-Send	Secondary CC	Transmission	
20	RTT Round Trip Time	SCell Secondary Cell	SDU Service Data Unit	
20	Rx Reception,	SCEF Service	SEAF Security Anchor	
	Receiving, Receiver	Capability Exposure	Function	
25	S1AP S1 Application	Function	SeNB secondary eNB	
	Protocol	SC-FDMA Single	SEPP Security Edge	
	S1-MME S1 for the	Carrier Frequency	Protection Proxy	
	control plane	Division Multiple	SFI Slot format	
30	S1-U S1 for the user	Access	indication	
	plane	SCG Secondary Cell	SFTD Space-Frequency	
	S-CSCF serving	Group	Time Diversity, SFN and	
35	CSCF	SCM Security Context	frame timing difference	
	S-GW Serving Gateway	Management	SFN System Frame	
	S-RNTI SRNC	SCS Subcarrier Spacing	Number	
40	Radio Network	SCTP Stream Control	SgNB Secondary gNB	
	Temporary Identity	Transmission	SGSN Serving GPRS	
	S-TMSI SAE	Protocol	Support Node	
45	Temporary Mobile	SDAP Service Data	S-GW Serving Gateway	
	Station Identifier	Adaptation Protocol,	SI System Information	
	SA Standalone	Service Data Adaptation	SI-RNTI System	
50	operation mode	Protocol layer	Information RNTI	

	SIB System Information	SR Scheduling Request	Signal based Signal to		
	Block	SRB Signalling Radio	Noise and Interference		
5	SIM Subscriber Identity	Bearer	Ratio		
	Module	SRS Sounding	SSS Secondary		
	SIP Session Initiated	Reference Signal	Synchronization		
10	Protocol	SS Synchronization	Signal		
	SiP System in Package	Signal	SSSG Search Space Set		
	SL Sidelink	SSB Synchronization	Group		
15	SLA Service Level	Signal Block	SSSIF Search Space Set		
	Agreement	SSID Service Set	Indicator		
	SM Session	Identifier	SST Slice/Service Types		
20	Management	SS/PBCH Block	SU-MIMO Single User		
	SMF Session	SSBRI SS/PBCH Block	MIMO		
	Management Function	Resource Indicator,	SUL Supplementary		
25	SMS Short Message	Synchronization	Uplink		
	Service	Signal Block	TA Timing Advance,		
	SMSF SMS Function	Resource Indicator	Tracking Area		
	SMTC SSB-based	SSC Session and Service	TAC Tracking Area		
30	Measurement Timing	Continuity	Code		
	Configuration	SS-RSRP	TAG Timing Advance		
	SN Secondary Node,	Synchronization	Group		
35	Sequence Number	Signal based Reference	TAI Tracking		
	SoC System on Chip	Signal Received	Area Identity		
	SON Self-Organizing	Power	TAU Tracking Area		
40	Network	SS-RSRQ	Update		
	SpCell Special Cell	Synchronization	TB Transport Block		
	SP-CSI-RNTISemi-	Signal based Reference	TBS Transport Block		
45	Persistent CSI RNTI	Signal Received	Size		
10	SPS Semi-Persistent	Quality	TBD To Be Defined		
	Scheduling	SS-SINR	TCI Transmission		
	SQN Sequence number	Synchronization	Configuration Indicator		
50					

	ТСР	Transmission	TS	Technical		UML	Unified Modelling	
		Communication	Specif	ications,		Langu	age	
5	Protoc	col		Technical Sta	andard	UMTS	S Universal Mobile	
	TDD	Time Division	TTI	Transmission	n Time		Telecommunication	
	Duplex		Interval			s System		
10	TDM	Time Division	Tx	Transmission	I,	UP	User Plane	
	Multiplexing		Transmitting,		UPF	User Plane		
	TDMATime Division		Transmitter			Function		
15	Multip	ole Access	U-RN'	ΓI UTR.	AN	URI	Uniform Resource	
	TE Terminal		Radio Network			Identifier		
	Equipment			Temporary Id	lentity	URL	Uniform Resource	
20	TEID Tunnel End Point		UART Universal			Locator		
	Identifier		Asynchronous		URLL	C Ultra-		
	TFT	FFT Traffic Flow		Receiver and		Reliable and Low		
	Template		Transmitter			Latency		
25	TMSI	Temporary Mobile	UCI	Uplink Contr	ol	USB	Universal Serial	
	Subscriber Identity		Inform	ation		Bus		
	TNL	Transport Network	UE	User Equipm	ent	USIM	Universal	
30	Layer		UDM	Unified Data		Subsci	riber Identity Module	
	TPC	Transmit Power	Manag	gement		USS	UE-specific search	
	Control		UDP	User Datagra	m	space		
35	TPMI	Transmitted	Protoc	ol		UTRA	UMTS Terrestrial	
	Precoding Matrix		UDSF Unstructured Data		Radio Access			
		Indicator	Storag	e Netw	ork	UTRA	N Universal	
40	TR	FR Technical Report		Function		Terrestrial Radio		
	TRP, TRxP		UICC Universal			Access Network		
		Transmission	Integra	ated Circuit	Card	UwPT	S Uplink Pilot	
45	Reception Point		UL	Uplink		Time Slot		
45	TRS	Tracking Reference	UM	Unacknowle	dged	V2I	Vehicle-to-	
	Signal	l	Mode			Infrast	ruction	
	TRx	Transceiver						

	V2P Vehicle-to-	VNFFGD VNF	WLANWireless Local	
	Pedestrian	Forwarding Graph	Area Network	
5	V2V Vehicle-to-Vehicle	Descriptor	WMAN Wireless	
	V2X Vehicle-to-	VNFM VNF Manager	Metropolitan Area	
	everything	VoIP Voice-over-IP,	Network	
10	VIM Virtualized	Voice-over- Internet	WPANWireless Personal	
	Infrastructure Manager	Protocol	Area Network	
15	VL Virtual Link,	VPLMN Visited	X2-C X2-Control plane	
	VLAN Virtual LAN,	Public Land Mobile	X2-U X2-User plane	
	Virtual Local Area	Network	XML eXtensible Markup	
	Network	VPN Virtual Private	Language	
20	VM Virtual Machine	Network	XRES EXpected user	
	VNF Virtualized	VRB Virtual Resource	RESponse	
	Network Function	Block	XOR eXclusive OR	
25	VNFFG VNF	WiMAX Worldwide	ZC Zadoff-Chu	
	Forwarding Graph	Interoperability for	ZP Zero Power	
		Microwave Access		

35

Terminology

[0148] For the purposes of the present document, the following terms and definitions are applicable to the examples and embodiments discussed herein.

The term "circuitry" as used herein refers to, is part of, or includes hardware components such as an electronic circuit, a logic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group), an Application Specific Integrated Circuit (ASIC), a field-programmable device (FPD) (e.g., a field-programmable gate array (FPGA), a programmable logic device (PLD), a complex PLD (CPLD), a high-capacity PLD (HCPLD), a structured ASIC, or a

- 40 programmable SoC), digital signal processors (DSPs), etc., that are configured to provide the described functionality. In some embodiments, the circuitry may execute one or more software or firmware programs to provide at least some of the described functionality. The term "circuitry" may also refer to a combination of one or more hardware elements (or a combination of circuits used in an electrical or electronic system) with the program code used to carry out the functionality of that program code. In these embodiments, the combination of hardware elements and program code 45 may be referred to as a particular type of circuitry.
- ⁴⁵ may be referred to as a particular type of circuitry. [0149] The term "processor circuitry" as used herein refers to, is part of, or includes circuitry capable of sequentially and automatically carrying out a sequence of arithmetic or logical operations, or recording, storing, and/or transferring digital data. Processing circuitry may include one or more processing cores to execute instructions and one or more memory structures to store program and data information. The term "processor circuitry" may refer to one or more
- ⁵⁰ application processors, one or more baseband processors, a physical central processing unit (CPU), a single-core processor, a dual-core processor, and/or any other device capable of executing or otherwise operating computer-executable instructions, such as program code, software modules, and/or functional processes. Processing circuitry may include more hardware accelerators, which may be microprocessors, programmable processing devices, or the like. The one or more hardware accelerators may include, for example, com-
- ⁵⁵ puter vision (CV) and/or deep learning (DL) accelerators. The terms "application circuitry" and/or "baseband circuitry" may be considered synonymous to, and may be referred to as, "processor circuitry."
 [0150] The term "interface circuitry" as used herein refers to, is part of, or includes circuitry that enables the exchange of information between two or more components or devices. The term "interface circuitry" may refer to one or more

hardware interfaces, for example, buses, I/O interfaces, peripheral component interfaces, network interface cards, and/or the like.

[0151] The term "user equipment" or "LTE" as used herein refers to a device with radio communication capabilities and may describe a remote user of network resources in a communications network. The term "user equipment" or

- ⁵ "LTE" may be considered synonymous to, and may be referred to as, client, mobile, mobile device, mobile terminal, user terminal, mobile unit, mobile station, mobile user, subscriber, user, remote station, access agent, user agent, receiver, radio equipment, reconfigurable radio equipment, reconfigurable mobile device, etc. Furthermore, the term "user equipment" or "UE" may include any type of wireless/wired device or any computing device including a wireless communications interface.
- 10 [0152] The term "network element" as used herein refers to physical or virtualized equipment and/or infrastructure used to provide wired or wireless communication network services. The term "network element" may be considered synonymous to and/or referred to as a networked computer, networking hardware, network equipment, network node, router, switch, hub, bridge, radio network controller, RAN device, RAN node, gateway, server, virtualized VNF, NFVI, and/or the like.
- ¹⁵ **[0153]** The term "computer system" as used herein refers to any type interconnected electronic devices, computer devices, or components thereof. Additionally, the term "computer system" and/or "system" may refer to various components of a computer that are communicatively coupled with one another. Furthermore, the term "computer system" and/or "system" may refer to multiple computer devices and/or multiple computing systems that are communicatively coupled with one another.
- 20 [0154] The term "appliance," "computer appliance," or the like, as used herein refers to a computer device or computer system with program code (e.g., software or firmware) that is specifically designed to provide a specific computing resource. A "virtual appliance" is a virtual machine image to be implemented by a hypervisor-equipped device that virtualizes or emulates a computer appliance or otherwise is dedicated to provide a specific computing resource.
 [0155] The term "resource" as used herein refers to a physical or virtual device, a physical or virtual component within
- ²⁵ a computing environment, and/or a physical or virtual component within a particular device, such as computer devices, mechanical devices, memory space, processor/CPU time, processor/CPU usage, processor and accelerator loads, hardware time or usage, electrical power, input/output operations, ports or network sockets, channel/link allocation, throughput, memory usage, storage, network, database and applications, workload units, and/or the like. A "hardware resource" may refer to compute, storage, and/or network resources provided by physical hardware element(s). A "vir-
- tualized resource" may refer to compute, storage, and/or network resources provided by virtualization infrastructure to an application, device, system, etc. The term "network resource" or "communication resource" may refer to resources that are accessible by computer devices/systems via a communications network. The term "system resources" may refer to any kind of shared entities to provide services, and may include computing and/or network resources. System resources may be considered as a set of coherent functions, network data objects or services, accessible through a
- ³⁵ server where such system resources reside on a single host or multiple hosts and are clearly identifiable. [0156] The term "channel" as used herein refers to any transmission medium, either tangible or intangible, which is used to communicate data or a data stream. The term "channel" may be synonymous with and/or equivalent to "communications channel," "data communications channel," "transmission channel," "data transmission channel," "access channel," "data access channel," "lata link," "carrier," "radiofrequency carrier," and/or any other like term denoting
- a pathway or medium through which data is communicated. Additionally, the term "link" as used herein refers to a connection between two devices through a RAT for the purpose of transmitting and receiving information.
 [0157] The terms "instantiate," "instantiation," and the like as used herein refers to the creation of an instance. An "instance" also refers to a concrete occurrence of an object, which may occur, for example, during execution of program code.
- ⁴⁵ **[0158]** The terms "coupled," "communicatively coupled," along with derivatives thereof are used herein. The term "coupled" may mean two or more elements are in direct physical or electrical contact with one another, may mean that two or more elements indirectly contact each other but still cooperate or interact with each other, and/or may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other. The term "directly coupled" may mean that two or more elements are in direct between the elements are in direct contact with one another.
- ⁵⁰ "communicatively coupled" may mean that two or more elements may be in contact with one another by a means of communication including through a wire or other interconnect connection, through a wireless communication channel or link, and/or the like.

[0159] The term "information element" refers to a structural element containing one or more fields. The term "field" refers to individual contents of an information element, or a data element that contains content.

- ⁵⁵ **[0160]** The term "SMTC" refers to an SSB-based measurement timing configuration configured by SSB-MeasurementTimingConfiguration.
 - [0161] The term "SSB" refers to an SS/PBCH block.
 - [0162] The term "a "Primary Cell" refers to the MCG cell, operating on the primary frequency, in which the UE either

[0163] The term "Primary SCG Cell" refers to the SCG cell in which the LTE performs random access when performing the Reconfiguration with Sync procedure for DC operation.

[0164] The term "Secondary Cell" refers to a cell providing additional radio resources on top of a Special Cell for a UE configured with CA.

[0165] The term "Secondary Cell Group" refers to the subset of serving cells comprising the PSCell and zero or more secondary cells for a UE configured with DC.

[0166] The term "Serving Cell" refers to the primary cell for a LTE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell.

10 [0167] The term "serving cell" or "serving cells" refers to the set of cells comprising the Special Cell(s) and all secondary cells for a UE in RRC_CONNECTED configured with CA/.
[0168] The term "Special Cell" refers to the RCell of the MCC or the RSCell of the SCC for DC operation: otherwise

[0168] The term "Special Cell" refers to the PCell of the MCG or the PSCell of the SCG for DC operation; otherwise, the term "Special Cell" refers to the Pcell.

15

5

Claims

1. An apparatus of a next generation distributed cloud system for resource orchestration, comprising: one or more processors, configured to:

20

30

35

receive, from one or more computing functions, first information about computing resources for the one or more computing functions;

receive, from a second entity, a request to provide one or more available computing functions for supporting one or more computing services;

25 select one or more computing functions from the one or more available computing functions for the request, based on the received first information; and

provide the selected one or more available computing functions, in a response, to the second entity.

2. The apparatus of claim 1, wherein the first information received from the one or more computing functions comprises any of:

total capacity and type of resources provided by each computing function; usage and/or available capacity of each computing function; status of the computing resources and computing function; energy efficiency level of the computing resources;

- type of computing services supported by each computing function; location of the computing resources or computing function.
- 3. The apparatus of any one of claims 1 or 2,
- 40 wherein the second entity is a User Equipment, UE.
 - 4. The apparatus of claim 3,

wherein the request to provide the one or more available computing functions for supporting one or more computing services comprises information about any of service location, service type, resource requirements, and QoS requirements.

- 45 quirements.
 - 5. The apparatus of any one of claims 1 to 4, wherein the one or more processors are further configured to:
 - send a request to a registration and discovery function; register an orchestration function configured to provide a service or services to manage and orchestrate the
- 50 register an orchestration function configured to provide a service or services to manage and orchestrate the computing resources and computing services; and receive a response indicating a registration result from the registration and discovery function.
- 6. The apparatus of claim 5, wherein the one or more processors are further configured to register the orchestration ⁵⁵ function with some or all of the following information:

service area of the orchestration function; total capacity and types of computing resources orchestrated by the orchestration function;

type of computing services supported by each computing function orchestrated by the orchestration function.

- 7. The apparatus of claim 1 to 6, wherein a control function is configured to request the selected one or more computing functions to fulfill the service request, and preferably wherein the request from the control function comprises information about any of service location, service type, resource requirements, and/or QoS requirements.
- 8. The apparatus of claim 7, wherein if the computing function accepts the request of the control function, the control function is configured to inform the second entity to continue the service, and wherein second entity and the computing function are configured to exchange user data to fulfill the one or more computing services.
- 10

15

5

- **9.** The apparatus of any one of claims 1 to 8, wherein the one or more processors are further configured to send, to a third entity, the first information about the computing resources for the one or more computing functions.
- 10. The apparatus of claim 9, wherein the one or more processors are configured to select an orchestration function from one or more orchestration functions to request the computing resources, wherein each of the orchestration functions is configured to provide a service or services to manage and orchestrate the computing resources and computing services.
 - 11. The apparatus of claim 10,
- 20

wherein the second entity is a User Equipment, UE;

wherein if no suitable orchestration function is known, the control function is configured to request the registration and discovery function to provide one or more available orchestration functions that can serve a UE location and type of service requested.

25

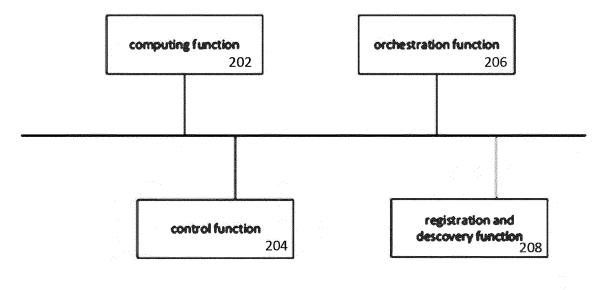
35

- **12.** The apparatus of claim 10, wherein if no suitable computing function is known, the control function is configured to request the orchestration function to provide the one or more available computing functions that can serve a service requested by the UE.
- **13.** The apparatus of any one of claims 1 to 12, further comprising:

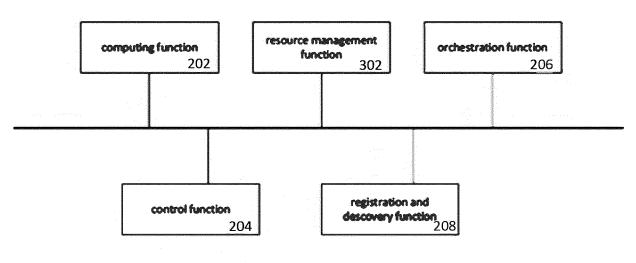
a resource management function;

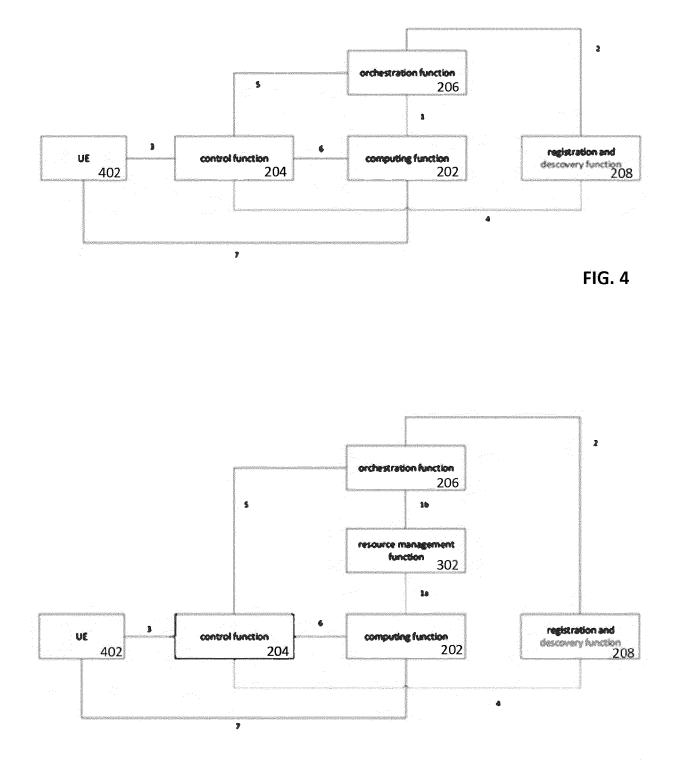
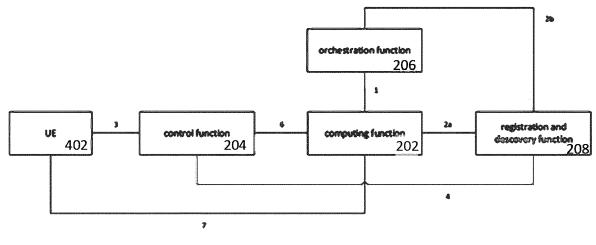
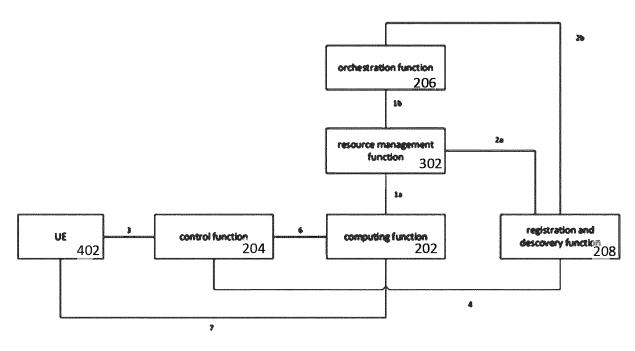
wherein the resource management function is configured to receive information regarding computing resources from the selected one or more computing functions, and to provide the information regarding computing resource to an orchestration function.

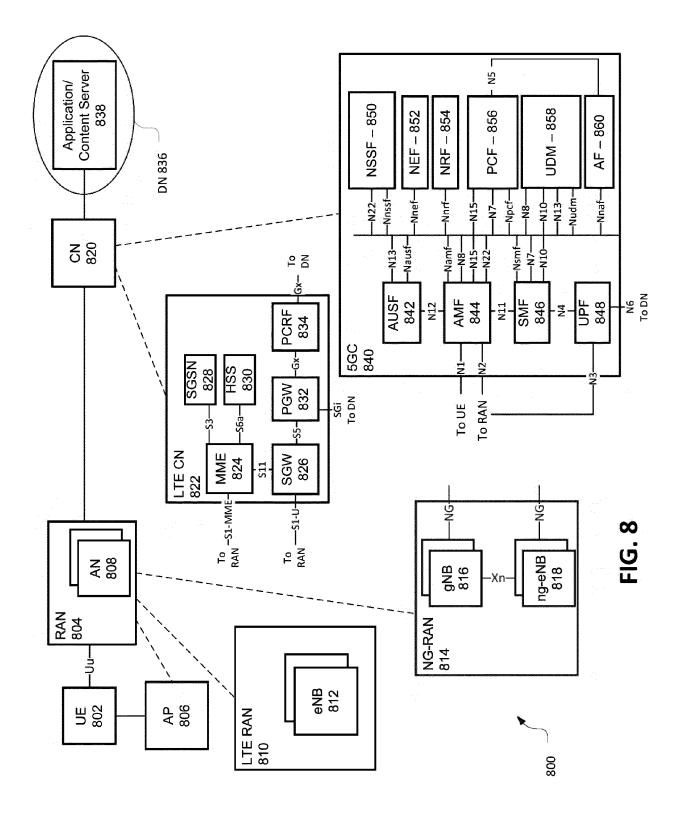
- 14. The apparatus of any one of claims 1 to 13,
 - wherein the second entity is a User Equipment, UE; and
- 40 wherein the one or more processors are further configured to send, to the orchestration function, a request, to provide the available one or more orchestration functions that can serve the UE location and type of service requested.
 - **15.** A method of a control function, comprising:
- 45


50

receiving, from a user equipment (UE), a request for computing services; selecting, based on the request for computing services, an orchestration function that is to manage and orchestrate computing resources associated with the requested computing services;


- selecting, based on the request for computing services, a computing function, associated with the selected orchestration function, that is to fulfill the request for computing services; and
- sending a request to the selected computing function to fulfill the request for computing services; wherein the request to fulfill the request for computing services includes an indication of information associated with: a service location, a service type, a resource requirement, or a quality-of service (QoS) requirement.


FIG. 5

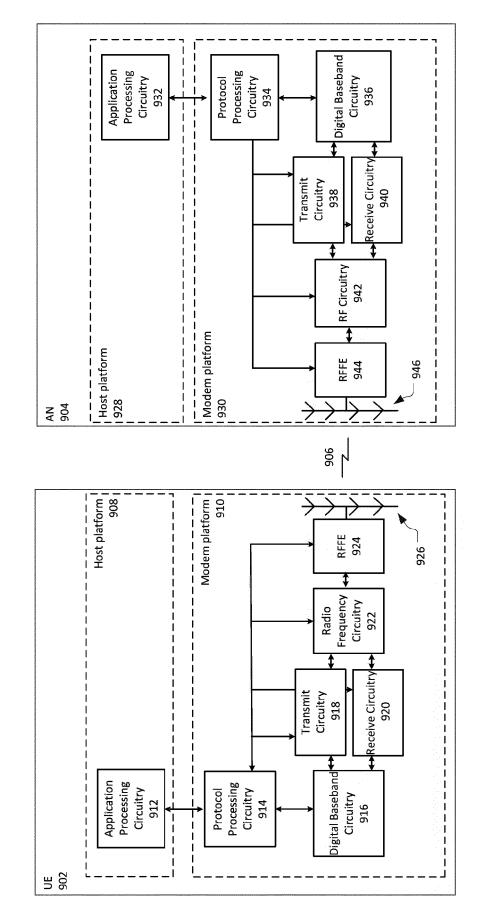


FIG. 9

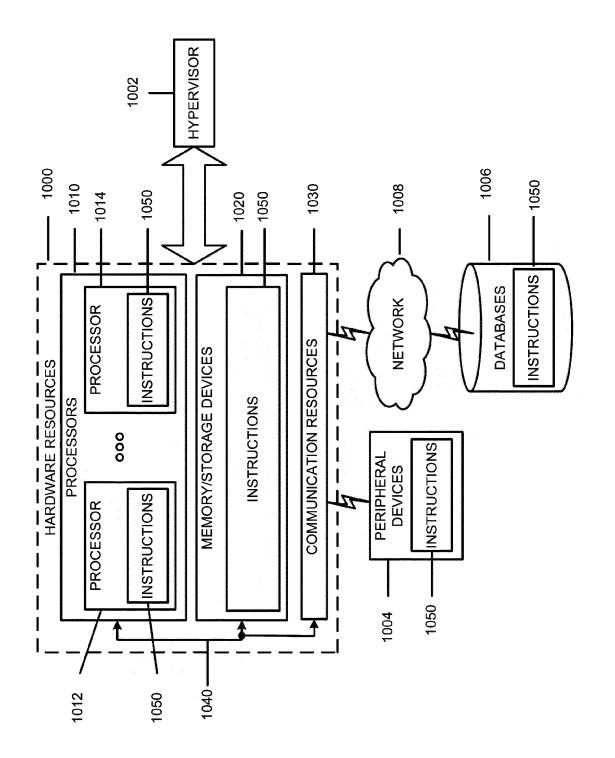


FIG. 10

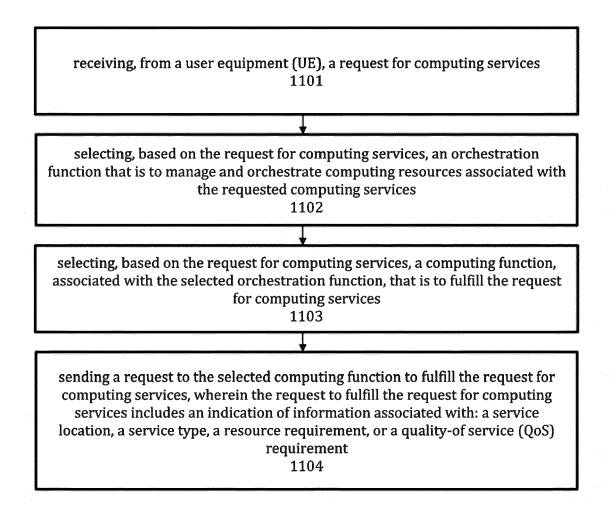


FIG. 11

5

EUROPEAN SEARCH REPORT

Application Number

EP 23 15 9878

			ED TO BE RELEVANT		
	Category	Citation of document with indica of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
	x	US 2020/007414 A1 (SM 2 January 2020 (2020-0 * abstract *		1–15	INV. G06F9/50
		<pre>* paragraph [0018] - p * paragraph [0041] - p * paragraph [0260] - p * figures 1-3 *</pre>	paragraph [0059] *		
	x	US 2020/136906 A1 (GU [ES] ET AL) 30 April 2 * abstract *		1–15	
		* paragraph [0003] * * paragraph [0040] - p	paragraph [0045] *		
	x	US 2020/329464 A1 (MAI VIJAYAN [US] ET AL) 15 October 2020 (2020 * abstract *		1–15	
		* paragraph [0001] - p ORAZIO TOMARCHIO ET AN		1-15	TECHNICAL FIELDS
	A	orchestration in the r landscape: a systemat:	nulti-cloud	1-15	SEARCHED (IPC)
		frameworks", JOURNAL OF CLOUD COMPU- LTD, LONDON, UK, vol. 9, no. 1, 10 September 2020 (202 1-24, XP021281554, DOI: 10.1186/S13677-02 * the whole document	20-09-10), pages 20-0019 4 -7		
	A	WO 2019/227483 A1 (HUZ [CN]) 5 December 2019 * the whole document	 AWEI TECH CO LTD (2019-12-05)	1–15	
1		The present search report has beer	n drawn up for all claims		
14001)		Place of search The Hague	Date of completion of the search 3 May 2023	Bel	Examiner trán-Escavy, José
EORM 1503 03 82 (P04C01)	X : part Y : part doc A : tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another ument of the same category inological background	T : theory or principle E : earlier patent doc after the filing dat D : document cited in L : document cited fo	ument, but publi e n the application or other reasons	shed on, or
EPO EOI	O : nor P : inte	-written disclosure rmediate document	& : member of the sa document	ime patent family	/, corresponding

ANNEX TO THE EUROPEAN SEARCH REPORT **ON EUROPEAN PATENT APPLICATION NO.**

EP 23 15 9878

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-05-2023

- T	US 2020007 4 1		02-01-2020	DE	3792758 20210032272 2020007414 111865647 111865648 114026834 102020203877 102020203881 11202000054	A A1 A A A A A1 A1	17-03-2021 24-03-2021 02-01-2020 30-10-2020 08-02-2022 05-11-2020 05-11-2020
	US 202013690	6 A1	30-04-2020	US CN CN DE DE DE	2020007414 111865647 111865648 114026834 102020203877 102020203881	A1 A A A A1 A1	02-01-2020 30-10-2020 30-10-2020 08-02-2022 05-11-2020
	US 202013690	6 Al	30-04-2020	CN CN CN DE DE DE	111865647 111865648 114026834 102020203877 102020203881	A A A A1 A1	30-10-2020 30-10-2020 08-02-2022 05-11-2020
	us 202013690	6 A1	30-04-2020	CN CN DE DE DE	111865648 114026834 102020203877 102020203881	A A A1 A1	30-10-2020 08-02-2022 05-11-2020
				CN DE DE DE	114026834 102020203877 102020203881	A A1 A1	08-02-2022 05-11-2020
				DE DE DE	102020203877 102020203881	A1 A1	05-11-2020
				DE DE	102020203881	A1	
				DE			05-11-2020
- T					112020000054		
- T				ΓD		т5	11-03-2021
-					3734453	A1	04-11-2020
-				EP	3963866	A2	09-03-2022
-				\mathbf{JP}	2022530580	A	30-06-2022
- T				KR	20210149576	A	09-12-2021
- T				US	2020136906	A1	30-04-2020
- t				US	2020167196	A1	28-05-2020
- t				US	2020167205	A1	28-05-2020
- τ				US	2021144517	A1	13-05-2021
- t				US	2022247635	A1	04-08-2022
- T				US	2022337481	A1	20-10-2022
τ				WO	2020226979		12-11-2020
	US 202032946	4 A1	15-10-2020	AU	2020271056		04-11-2021
				JP	7217816	в2	03-02-2023
				JP	2022527390	A	01-06-2022
				KR	20210151196	A	13-12-2021
				US	2020329464	A1	15-10-2020
_				WO	2020210342	A1	15-10-2020
Þ	WO 201922748	3 A1	05-12-2019	CN	112166579		01-01-2021
				EP	3735765		11-11-2020
				US	2020387406		10-12-2020
_				WO	2019227483	A1 	05-12-2019
Ø							
FORM P0459							

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 63316287 [0001]