
US 20220019462A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0019462 A1

Nishiguchi et al . (43) Pub . Date : Jan. 20 , 2022

Publication Classification (54) EVENT STREAM PROCESSING METHOD
AND EVENT STREAM PROCESSING
PROGRAM

(71) Applicant : FUJITSU LIMITED , Kawasaki - shi
(JP)

(72) Inventors : Naoki Nishiguchi , Kawasaki (JP) ;
HISATOSHI YAMAOKA , Kawasaki
(JP) ; Eiichi Takahashi , Kawasaki (JP) ;
Miwa Okabayashi , Sagamihara (JP) ;
Tatsuro Matsumoto , Yokohama (JP)

a

a

(51) Int . Ci .
G06F 9/48 (2006.01)
G06F 9/50 (2006.01)

(52) U.S. CI .
CPC G06F 9/4881 (2013.01) ; GO6F 9/505

(2013.01)
(57) ABSTRACT
An event stream processing system includes processing
threads including a distribution control thread in a first stage
for transmitting a processing message , first and second event
processing thread in a second stage to execute processing of
the processing message , and a standard thread able to be a
copy of the event processing thread . A method of event
stream processing includes transmitting , by the distribution
control thread , when the first or second event processing
thread is in a heavy load state , a copy request message
converting the standard thread to the copy to a heavy - load
event processing thread , transmitting , by the heavy - load
event processing thread , parameters to the standard thread in
response to the copy request message , and executing , by a
copy standard thread that has being converted to the copy ,
processing corresponding to the processing message by
using the received parameters .

(73) Assignee : FUJITSU LIMITED , Kawasaki - shi
(JP)

(21) Appl . No .: 17 / 244,833

(22) Filed : Apr. 29 , 2021

(30) Foreign Application Priority Data

Jul . 17 , 2020 (JP) 2020-122797

EVD 1 EVD 2

TOT DEVICES TOT DEVICE

1
un

t

t

12
1

3
{
3
3
3
{
>

3
{
3
{
3

MEMORY
}

28 1
1 PRG STRG DATA STRGO

3 para
ev prc prg ob tbl 3 $

4 PARAMETER ? EVENT STREAM PROCESSING
PROGRAM
PROCESSING DISTRIBUTION
SETTING PROGRAM

OBJECT TABLE
OBJECT STATE TBL
PLUG - IN TBL plo

PLUG - IN
3
{
3
*
3

1

EVD

EVD_2

FIG . 1

IOT DEVICE

IOT DEVICE

Patent Application Publication

12

CPU

MAIN MEMORY

1

A

28

Jan. 20 , 2022 Sheet 1 of 27

PRG STRG

DATA STRG

? ??? ? ??? ? ?????? ? ????

V

1

1

W

1

A

para

ev pre prg

ob tbl

PARAMETER

EVENT STREAM PROCESSING
PROGRAM PROCESSING DISTRIBUTION SETTING PROGRAM

OBJECT TABLE OBJECT STATE TBL

plg

TTO

3 3 3

US 2022/0019462 A1

}

}

X **** ******

+

}

FIG . 2

LOGICAL CONFIGURATION OF
PROCESSING

ev21 EVENT PROCESSING

SERVICE EVENT PROCESSING

PROCESSING

{

in 12

Patent Application Publication

.

" evnttime " : 1520228399 ,

32

SERVICE EVENT PROCESSING

*

EVENT PROCESSING

PROCESSING

}

ev2n

inin
INPUT EVENT PROCESSING

EVENT PROCESSING

SERVICE EVENT PROCESSING

WWWWWWWWWWW

HTU

WWW

wwwwwwwwwwww

Www

PHYSICAL CONFIGURATION OF PROCESSING (PHYSICAL MACHINEPMX

SB TASK 21

SUB TASK11

SUB TASK31

un

Jan. 20 , 2022 Sheet 2 of 27

CORET TASK SL1

SUBTASK11

SUBTASK21

SUBTASK31

SUB TASK12

SUB TASK32

CORE2 TASK SL2

SUBTASK12

SUBTASK22

SUBTASK32

? ? 16 !

SUB TASKin

SUB TASK3n

US 2022/0019462 A1

COREm TASK Sum

SUBTASKIN

SUBTASK2n

SUBTASK3n

FIG . 3

Patent Application Publication

ev prc (in11 ~ inin , ev21 - ev2n , 31-13n)

msgrov MESSAGE RECEPTION

msg01

prc1

id , et , k - v

PROCESSING 1

Jan. 20 , 2022 Sheet 3 of 27

K - V , PARA

prc2
PROCESSING 2

msgo2

trg ont TRIGGER CONTROL

id , et , k - v

US 2022/0019462 A1

FIG . 4

EVENT PROCESSING

Patent Application Publication

S10

MESSAGE RECEIVED ?
YES

NO

S11

STORE STATE VALUE OF MESSAGE IN OBJECT STATE TABLE

Jan. 20 , 2022 Sheet 4 of 27

S12

EVENT OCCURRED ?

NO

YES

S13

EXECUTE PLUG - IN CORRESPONDING TO STATE

US 2022/0019462 A1

FIG . 5

msg_rev MESSAGE RECEPTION

ob_st tbl

plotbl

OBJECT STATE TABLE

Patent Application Publication

OBJECT ID : bulldozer_4325 id

OBJECT ID : bulldozer4325

STATE STATE NAME
st om

STATE VALUE
st_v1

STATE NAME
st nm

60.3

speed latitude

Speed latitude

PLUG - IN
plg plgmidi plo_id2 plg id3

N 47.70143

longitude

E 12.03620

longitude

Jan. 20 , 2022 Sheet 5 of 27

WHY

PARA

parao

paral

para2

trg.cnt

d21

MINUTES)

MINUTES

MINUTES

ITRIGGER CONTROL

T2 (30 TO 59 MINUTES)

10 TO 19 MINUTES
id12

id22

MINUTES

US 2022/0019462 A1

20 TO 29 MINUTES
013

50 TO 59 MINUTES
1023

FIG . 6

W

EVENT STREAM PROCESSING SYSTEM
EVENT PROCESSING THREAD

Patent Application Publication

PROCESSING THREAD
{ }

e.msg.1

e msg_2

d31

id , et , k - V

emmsg2
in12 :

d32

e msg_2

Jan. 20 , 2022 Sheet 6 of 27

MESSAGE WHOSE ET IS O TO 29 MINUTES

MESSAGE WHOSE ET IS 30 TO 59 MINUTES

in11

e_msg_2

e.msg2

}

d31

?? } ??

X

in 12

}

}

??

d32

I I

} f

US 2022/0019462 A1

inin

}

tort

M

w w

w

MM MM

w

w w

w

4

W

M

M

w

M

w

W

m

FIG . 7

Patent Application Publication

* * * * *

* * *

Sink

*

* Vt

EVENT STREAM PROCESSING SYSTEM

NIM

1

141 SERVICE
1

} }

EVENT PROCESSING

mm

p21

e_msg_2

PROCESSING

e msg.1

mmm
RELAY PROCESSING
mmmm

DISTRIBUTION EVENT PROCESSING

in12 INPUT EVENT PROCESSINGI
m

142 SERVICE EVENT PROCESSING
mo

0

1)

?

p22

d32 DISTRIBUTION EVENT PROCESSING

Jan. 20 , 2022 Sheet 7 of 27

in13

mm

RELAY PROCESSING

143
SERVICE

EVENT PROCESSING

PROCESSING

in14 INPUT

144 SERVICE

}

m
PROCESSING

PROCESSING
US 2022/0019462 A1

!

w

w

w

M

W

w

WW ww

M

w

w

W w

w

w

w

w

w w

M

w

W W

M

w

M w
w

w M

}

w

ww

W mm

m

w

m

w

M

w

M

w

M

FIG , 8 1

*

W *

EVENT STREAM PROCESSING SYSTEM

..

Patent Application Publication

}
?

p21 eumsg d31
RELAY AND

DISTRIBUTION
DISTRIBUTION

PROCESSING
S001

{ {

INPUT

SERVICE

{ {

STANDARD

PROCESSING
e msg

PROCESSING
S002

e msg 1

842 SERVICE

STANDARD

PROCESSING

PROCESSING
Jan. 20 , 2022 Sheet 8 of 27

5003

743

3 $

1

STANDARD

SERVICE EVENT PROCESSING

{ {

PROCESSING

S004

{

in14 INPUT

STANDARD

SERVICE EVENT PROCESSING

}

PROCESSING

p22 RELAY AND DISTRIBUTION CONTROL

DISTRIBUTION EVENT PROCESSING
wwwww

US 2022/0019462 A1

MN

*

FIG . 9

M

M

M

W

w

M

MMM

M M M

M

M

W

w

w

M

M

EVENT STREAM PROCESSING SYSTEM

144

Patent Application Publication

zoos / 100s bidoo

8

Izd

copy.s001
d31 DISTRIBUTION EVENT PROCESSING

RELAY AND DISTRIBUTION CONTROL

} } }

5001 (d31.1)

141 SERVICE EVENT PROCESSING
?

COPY EVENT PROCESSING

PROCESSING
e msg

3

copy.s002

S002 (031 2)

emmsg1
in12 INPUT

42 SERVICE

MOOD

COPY EVENT PROCESSING

PROCESSING

PROCESSING
Jan. 20 , 2022 Sheet 9 of 27

} } }

in13 INPUT

r43 SERVICE EVENT PROCESSING
STANDARD

PROCESSING
3

S004 STANDARD

SERVICE EVENT PROCESSING

}

PROCESSING

p22 RELAY AND DISTRIBUTION CONTROL
d32 DISTRIBUTION

}

PROCESSING

US 2022/0019462 A1

FIG . 10
1 1

w

EVENT STREAM PROCESSING SYSTEM

Patent Application Publication

X

}

eumsg 3

DISTRIBUTION
e msg2

p21 RELAY AND DISTRIBUTION CONTROL
INPUT EVENT

PROCESSING @ msg.la

0311

PROCESSING

COPY EVENT PROCESSING

SERVICE EVENT PROCESSING
d31 2

emmsg.1

142 SERVICE

EVENT PROCESSING

PROCESSING
PROCESSING

Jan. 20 , 2022 Sheet 10 of 27

{

S003 STANDARD

EVENT PROCESSING

SERVICE EVENT PROCESSING

? } }

S004

EVENT PROCESSING

d32

SERVICE EVENT PROCESSING

{

p22 RELAY AND DISTRIBUTION CONTROL
DISTRIBUTION EVENT PROCESSING

US 2022/0019462 A1

Y

A

* Wand

-

* Wonder W. ******

In White Ho

do not und *** *

FIG . 11

PROCESSING DISTRIBUTION SETTING PROGRAM

s id list

Patent Application Publication

520

STANDARD ID LIST

GENERATE STANDARD ID LIST

twt o 04

1
spikk pite

dist list

GENERATE DISTRIBUTION DESTINATION LIST

DISTRIBUTION DESTINATION LIST

Nube

Plo1

522

M

SET DISTRIBUTION CONTROL

DISTRIBUTION CONTROL PLUG IN

Jan. 20 , 2022 Sheet 11 of 27

}

f

S23

Plg 2

SET COPY CONTROL PROCESSING

COPY REQUEST CONTROL PROCESSING PLUG - IN

17

Pig . 3

US 2022/0019462 A1

COPY CONTROL
PROCESSING PLUG - IN

FIG . 12
$ 20

S21

START GENERATION OF STANDARD ID LIST

START GENERATION OF DISTRIBUTION DESTINATION LIST

Patent Application Publication

S201

S211

CALCULATE NEEDED NUMBER OF STANDARD THREADS SERVING AS DISTRIBUTION DESTINATION CANDIDATES

ACQUIRE NEEDED NUMBER OF IDS FROM STANDARD D

S202

GENERATE NEEDED NUMBER OF IDS OF STANDARD THREADS BY UUID OR THE LIKE

LIST ACQUIRED STANDARD IDS WITH USAGE FLAG SET TO false

Jan. 20 , 2022 Sheet 12 of 27

S203

S213

STORE GENERATED IDS IN STANDARD ID LIST

STORE GENERATED LIST IN DISTRIBUTION DESTINATION LIST IN DISTRIBUTION CONTROL THREAD
5214

ENDED FOR ALL DISTRIBUTION CONTROL THREADS ?

US 2022/0019462 A1

END

S22

523

FIG . 13

START DISTRIBUTION CONTROL SETTING

START COPY CONTROL SETTING

5221

S231

ACQUIRE DISTRIBUTION CONTROL PLUG - IN

SET COPY REQUEST
CONTROL PLUG - IN OPERATING IN RESPONSE TO COPY REQUEST MSG IN OBJECT PROCESSING THREAD

Patent Application Publication

5222

ACQUIRE DISTRIBUTION DESTINATION LIST OF DISTRIBUTION CONTROL THREADS

S232

SET COPY CONTROL PLUG IN OPERATING IN RESPONSE TO COPY MSG IN STANDARD THREAD

ACQUIRE DISTRIBUTION OF DISTRIBUTION CONTROL THREADS

Jan. 20 , 2022 Sheet 13 of 27

5224

END

STORE DISTRIBUTION CONTROL PLUG - IN , DISTRIBUTION
DESTINATION LIST , AND DISTRIBUTION CONTROL MANAGEMENT TABLE IN DISTRIBUTION CONTROL THREAD .

S225

ENDED FOR ALL DISTRIBUTION CONTROL THREADS ?

US 2022/0019462 A1

FIG . 14

STANDARD ID LIST S id list

STAMDARD ID

Patent Application Publication

S003 S004

DISTRIBUTION DESTINATION LIST OF P21 dist . list USAGE FLAG

DISTRIBUTION DESTINATION STANDARD ID

Jan. 20 , 2022 Sheet 14 of 27

false

S002

false DISTRIBUTION DESTINATION LIST OF P22 dist_list USAGE FLAG

DISTRIBUTION DESTINATION STANDARD ID
S003

false

US 2022/0019462 A1

w

FIG . 15

p21

d31

S001 State

S002

Patent Application Publication

S22

dist ist

state

(2) [
plg 1

parad

S003 state

S004 state

Jan. 20 , 2022 Sheet 15 of 27

d31

S001

523

dist adm tbl

plg 2

S002
plg_3

dist ist

state

state

ww www

[/
plg 1

parao

S003

3
plo ... 3

state

5004
plg_3

state

US 2022/0019462 A1

FIG . 16

copy..ramsg to : 031

copy ... msg02
to : S002

copy msg01
to : 5001

control : set paral
Usage.key : d31

Patent Application Publication

idylist : (s001 S002) Usage key : 031

paral
Usage_key : 031

p21

dist adm tbl

plo ... 2

msg

dist st

001031 S001 (4311)
plo ..
3

state

state @@
plo1

paral

142

]
?

]

Jan. 20 , 2022 Sheet 16 of 27

S002 (d31 2)
plg 3

state

p22

d32

dist adm tbl

paral

plg..2

544

state

para2

S003

plg 1

US 2022/0019462 A1

parao

S004

FIG . 17

BEFORE DISTRIBUTION CONTROL PROCESSING

AFTER DISTRIBUTION CONTROL PROCESSING

Patent Application Publication

DISTRIBUTION CONTROL MANAGEMENT TABLE

DISTRIBUTION CONTROL MANAGEMENT TABLE
dist adm tbt

PROCESSING

PROCESSING

IN - USE STANDARD
DISTRIBUTION PRESENCE

IN - USE

DISTRIBUTION STANDARD PRESENCE LIST

COPY

d31

false

S001 , 002

false

d32

false

Jan. 20 , 2022 Sheet 17 of 27

DISTRIBUTION DESTINATION LIST
dist list

USAGE FLAG

DISTRIBUTION DESTINATION STANDARD ID

DISTRIBUTION DESTINATION LIST
dist list

DISTRIBUTION USAGE FLAG

DESTINATION STANDARD ID

wwwww

COPY RELEASE

5002

false

5002

US 2022/0019462 A1

false

004

false

S004

false

FIG . 18

Patent Application Publication

p21 , p22

copyramsg control dist

msgrov MESSAGE RECEPTION

copy_fl_msg

e msg

Corci (plg 1) DISTRIBUTION CONTROL PROCESSING e prc1

control : flush

speed : 45.2

Jan. 20 , 2022 Sheet 18 of 27

PROCESSING

trgcnt TRIGGER CONTROL

msg

Comprc4 (plg ...) DISTRIBUTION DESTINATION TRANSMISSION PROCESSING

speed : 45.2

US 2022/0019462 A1

FIG . 19

DISTRIBUTION CONTROL PROCESSING

Patent Application Publication

S30

MONITOR RECEIVED MESSAGE AND TRANSMITTED MESSAGE

531

DISTRIBUTION CONTROL IS NEEDED ?
YES TRANSMIT COPY REQUEST MESSAGE TO DISTRIBUTION CONTROL TARGET EVENT PROCESSING THREAD

S32

Jan. 20 , 2022 Sheet 19 of 27

S33

DISTRIBUTION CONTROL IS NOT NEEDED ?
YES

S34

TRANSMIT COPY RELEASE MESSAGE TO COPY EVENT PROCESSING THREAD

US 2022/0019462 A1

END

FIG . 20

d31 , d32

msg CV MESSAGE

copy ... msg01

Copyramsg

control : set paral

cprc2 (plg . 2) COPY REQUEST CONTROL PROCESSING emprc2

Patent Application Publication

control : dist
w

K - V , paral or 2

copy ... msg02 control set paral

e msg

PROCESSING

speed : 45.2

trg_cnt TRIGGER CONTROL S001-8004

Jan. 20 , 2022 Sheet 20 of 27

copy ... msg01 / 02 control : set paral

msg.CV MESSAGE RECEPTION

Cmprc3 (plg ... 3) COPY REQUEST CONTROL PROCESSING euprc2

msg

K - V , parai

speed : 62.3

e msg

PROCESSING

trg.cnt TRIGGER CONTROL

speed : 62.3

copy_fl_msg control
: flush

US 2022/0019462 A1

FIG . 21

copy flmsg
to : S001

control : flush
Usage key : 031

Patent Application Publication

copy ... flmsg
to : S002

control : flush
Usagemkey : 031

d31

p21

dist adm tb .

plg 2

state

e msg

5001 (d31 1)
plg 3

142

parao

Jan. 20 , 2022 Sheet 21 of 27

S002 (031 2) plo3

143

State

d32

p22

dist adm tbl

plo 2

state

dist ist

state

param

S003

US 2022/0019462 A1

parao

FIG . 22

dist list.p21

copy ... ra ... S001 / S002

d31

Patent Application Publication

copy.S001

S002 true

OON (plgi

p21

S001

010

plg

list

copy.S001

plgi parai

para

e msg

in12

e msg

N copy.S002
plgi parai

dist_list_p22

Jan. 20 , 2022 Sheet 22 of 27

d32

5001 true

in13

para2

S002 true

plg1

p22

para2

200S

ZOOS Adoo

@msg

list

ID

e msg

?

copy.ro. $ 002

US 2022/0019462 A1

ID

FIG . 23

distlist.p21
d31

Copyra s001

Patent Application Publication

OSW

d3215002 true

DONpigi
p21

msg

paral

S001

110

e msg

list

Copyra s001

00000

Ibid

@_msg

in12

copy rg 002

dist_list_p22

?

plg.1

Jan. 20 , 2022 Sheet 23 of 27

copy_s002

S001 true

d32

re

in13

para2

32 5002 true

plgi

222

COPY ... S002

msg

plg

0000

e msg

copy ra $ 002

US 2022/0019462 A1

DD

FIG . 24

dist list p21 S002 false

copywrQm5001

Patent Application Publication

d32 5002 false

msg

TOOS Adoo

S001 false

Oos pigi

Izd

eumsg

paral

S001

list

eumsg

in11

DDDDD

1005 b Adoo

plgi parai

dist ist p22

msg

In

d31 9001 true

emsg

Jan. 20 , 2022 Sheet 24 of 27

S002 false

d32

d32 S002 true

n

in13

para2

Ibid

S001 false p22

para2

copy.S002

öld

list

U

0000

Zoosb . Adoo

US 2022/0019462 A1

UU

in15

FIG . 25

dist list 021 S001 true

d31

Patent Application Publication

5002 true

plgi

p21

@msg

paral

S001

In

plg

list

2/5

plgi paral

parao

2005

UU

2/5

plgi paral

S003 true

Jan. 20 , 2022 Sheet 25 of 27

S003

S004 true p22

2/5

plgi parai

plg

list

ID

DDDD

S004

parao

d32

plgi paral

US 2022/0019462 A1

pigi
para2

FIG . 26

dist list 021

coflg

S001 true false

031

Patent Application Publication

S002 true true

plg1

p21

1/4

emsa

paral

S001

in11

msg

plg

2/4

0000

plgi parai

parao
1/4

config
dist list p22

plgi paral

14

Jan. 20 , 2022 Sheet 26 of 27

U

in13

S003

S003 true false
p22

plgi paral

AVAA

plg

emsa

parao

d32

10

US 2022/0019462 A1

pigi
para2

FIG . 27 THREAD

STATE EXAMPLES

Patent Application Publication

wwwwwww

www

INPUT EVENT PROCESSING THREADS ini1 TO inin

EVENT TIME , LATITUDE , LONGITUDE , SPEED

RELAY AND DISTRIBUTION CONTROL THREADS P21
AND p22

car , LATITUDE , LONGITUDE , SPEED , eventTime

DISTRIBUTION AND EVENT PROCESSING THREADS d31
AND 232

car , LATITUDE , LONGITUDE , SPEED , eventTime (FOR EVENT MESSAGE)
control (dist) , oid list ([s001 S002)) (FOR COPY REQUEST MESSAGE)

Jan. 20 , 2022 Sheet 27 of 27

STANDARD THREADS S001

contol (set) , PARAMETER (FOR COPY MESSAGE)

COPY THREADS S001 TO

5004

contol (flush) , PARAMETER (FOR RELEASE MESSAGE)
car , LATITUDE , LONGITUDE , SPEED , eventTime (FOR EVENT MESSAGE

IDENTICAL TO 031 AND d32)

SERVICE EVENT
PROCESSING THREADS 140

US 2022/0019462 A1

count , eventTime

US 2022/0019462 A1 Jan. 20 , 2022
1

EVENT STREAM PROCESSING METHOD
AND EVENT STREAM PROCESSING

PROGRAM

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the
benefit of priority of the prior Japanese Patent Application
No. 2020-122797 , filed on Jul . 17 , 2020 , the entire contents
of which are incorporated herein by reference .

ing thread among a plurality of event processing threads
provided in a certain stage , thereby increasing a load thereof ,
and the throughput of the entire system may decrease . If a
great number of the specific event processing threads are
deployed in anticipation of the concentration of event pro
cessing , the concentration of event processing is able to be
alleviated .
[0009] However , the specific event processing thread
where event processing is concentrated may change over
time or may change differently depending on season . There
fore , it is difficult to alleviate the concentration of event
processing In response to the change of the event processing
thread In which the concentration of event processing

FIELD

occurs . [0002] The present invention relates to an event stream
processing method and an event stream processing program .

BACKGROUND

a

[0003] An event stream processing system has a plurality
of computer nodes (hereinafter , simply referred to as nodes) ,
receives a great number of events generated in real - world
IoT devices such as vehicles and smartphones , and performs
event data processing (event processing) in a streaming
manner . The event processing is , for instance , a processing
operation of executing a program associated with each
event .
[0004] In the event stream processing system , in order to
stream - process the data of a great amount of events in real
time , " objects ” corresponding to loT devices , in which
events occur , are allocated to event processing threads of a
plurality of nodes and registered therein in advance accord
ing to predetermined rules . The objects are associated with
program called a plug - in that is executed when event data
arrives from a device (an IoT device) where the event
occurs , and play a role of defining the content of stream
processing on various event data arriving from the IoT
device .
[0005] The event stream processing system distributes
event messages arriving from IoT devices to event process
ing threads in which the corresponding objects are registered
and has the event processing threads execute a plug - in
associated with the event included in the event message . In
this way , the event stream processing system receives the
stream of a great number of events transmitted from a
plurality of IoT devices and stream - processes the plug - in
corresponding to the event in real time .
[0006] The background technology of event stream pro
cessing is disclosed in Japanese Patent Application Publi
cation No. 2019-133579 , Japanese Translation of PCT
Application No. 2017-514216 , Japanese Translation of PCT
Application No. 2016-536690 , and Japanese Patent Appli
cation Publication No. 2015-28679 .

[0010] A first aspect of the embodiment is a method of
event stream processing for an event stream processing
system , the method comprising : wherein the event stream
processing system including processing threads provided in
each of a plurality of stages , the processing threads including
a distribution control thread provided in a first stage , a first
event processing thread and a second event processing
thread provided in a second stage to execute , in response to
a processing message , processing corresponding to the pro
cessing message , and a standard thread that is able to be a
copy of either the first event processing thread or the second
event processing thread , transmitting , by the distribution
control thread , the processing message to either the first
event processing thread or the second event processing
thread , transmitting , by the distribution control thread , when
an event processing thread of either the first event process
ing thread or the second event processing thread is in a
heavy load state , a copy request message that requests
converting the standard thread to the copy to a heavy - load
event processing thread and registers the standard thread in
a distribution destination list , transmitting , by the heavy
load event processing thread , parameters for operating as a
copy of the heavy - load event processing thread to the
standard thread in response to reception of the copy request
message , and executing , by a copy standard thread that has
received the parameters and being converted to the copy , processing corresponding to the processing message
received from the distribution control thread by using the
received parameters .
[0011] The object and advantages of the invention will be
realized and attained by means of the elements and combi
nations particularly pointed out in the claims .
[0012] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory and are not restrictive of the
invention .

SUMMARY

[0007] The event stream processing system includes a
plurality of event processing threads for each of a plurality
of stages , and a plurality of event processing threads in an
input stage process a received event message and transmit
another event message to the event processing thread in a
subsequent stage . The event processing thread in the sub
sequent stage processes the received event message , and
further transmits another event message to the event pro
cessing thread in a further subsequent stage .
[0008] In the event stream processing system above , event
processing may be concentrated on a specific event process

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG . 1 is a diagram illustrating an outline of an
event stream processing system .
[0014] FIG . 2 is a diagram illustrating a logical configu
ration and a physical configuration of the processing of the
event stream processing system .
[0015] FIG . 3 is a diagram illustrating a configuration
example of the event processing thread ev_prc .
[0016] FIG . 4 is a flowchart illustrating the processing of
the event processing thread .
[0017] FIG . 5 is a diagram illustrating an example of an
object state table , parameters , and a plug - in table stored in
the memory memo of the event processing thread .

US 2022/0019462 A1 Jan. 20 , 2022
2

[0018] FIG . 6 is a diagram illustrating a simple configu
ration example of the event stream processing system .
[0019] FIG . 7 is a diagram illustrating a configuration
example of another event stream processing system .
[0020] FIG . 8 is a diagram illustrating a configuration
example of the event stream processing system according to
the present embodiment .
[0021] FIG . 9 is a diagram illustrating a first operation
example of distribution control in an event stream process
ing system .
[0022] FIG . 10 is a diagram illustrating a second operation
example of distribution control in an event stream process
ing system .
[0023] FIG . 11 is a diagram illustrating a flowchart of
processing of the processing distribution setting program .
[0024] FIGS . 12 and 13 are diagrams illustrating detailed
flowcharts of steps S20 to S23 of FIG . 11 .
[0025] FIG . 14 is a diagram illustrating an example of a
standard thread ID list and a distribution destination list .
[0026] FIG . 15 is a diagram illustrating plug - ins and
parameters set by the processing distribution setting pro
gram .
[0027] FIG . 16 is a diagram illustrating an example of
distribution control processing and copy control processing .
[0028] FIG . 17 is a diagram illustrating a distribution
control management table and a distribution destination list
in the distribution control thread p21 before and after the
distribution control processing .
[0029] FIG . 18 is a diagram illustrating a configuration
example of the distribution control thread .
[0030] FIG . 19 is a diagram illustrating a flowchart of the
distribution control processing c_prc1 by the distribution
control thread .
[0031] FIG . 20 is a diagram illustrating a configuration
example of an event processing thread and a standard thread .
[0032] FIG . 21 is a diagram illustrating an example of
copy release , which is one of the distribution control pro
cessing .
[0033] FIG . 22 is a diagram illustrating a first specific
example of the distribution control processing .
[0034] FIG . 23 is a diagram illustrating a second specific
example of the distribution control processing .
[0035] FIG . 24 is a diagram illustrating a third specific
example of the distribution control processing .
[0036] FIG . 25 is a diagram illustrating a first specific
example of the distribution destination transmission pro
cessing .
[0037] FIG . 26 is a diagram illustrating a second specific
example of the distribution destination transmission pro
cessing
[0038] FIG . 27 is a table illustrating a state example of the
object state table .

message (event data) arrives , the event stream processing
system executes pre - registered processing (plug - in) and
provides a service on the basis of the processing . The event
stream processing system executes processing in an event
driven manner at the timing when the value of the state of
the object changes .
[0041] FIG . 1 is a diagram illustrating an outline of an
event stream processing system . An event stream processing
system 1 is a computer system such as a personal computer
or a server . The event stream processing system 1 includes
processors 10 which are a plurality of central processing
units (CPUs) , a main memory 12 which is able to be
accessed by the processors , an interface IF between an
external network NW and peripheral devices (not illus
trated) , and a bus 28 connecting these components .
[0042] The event stream processing system 1 is accessed
from event generating devices EVD_1 and EVD_2 , which
are the event generating sources , via the network NW .
Further , the event stream processing system 1 has a program
storage PRG_STRG in which various programs are stored
and a data storage DATA_STRG in which various pieces of
data are stored . A plurality of computer systems 1 or a
plurality of processors 10 correspond to computer nodes .
[0043] The program storage PRG_STRG stores an event
stream processing program ev_prc_prg including a process
ing distribution setting program . In addition , the data storage
DATA_STRG stores an object table ob_tbl , plug - ins plg ,
parameters para , and the like . The object table ob_tbl
includes , for instance , an object state table , a plug - in table ,
and the like . The parameters are referred to when a plug - in
is executed . These programs and tables will be described in
detail later .
[0044] FIG . 2 is a diagram illustrating a logical configu
ration and a physical configuration of the processing of the
event stream processing system . In the logical configuration
of processing , a pipeline configuration of each multi - stage
processing stage Is provided In each of nodes PM1 to PM4 .
Event messages e_msg transmitted from a plurality of IoT
devices of an event generating source are distributed to
predetermined processing stages , and each processing stage
executes , in response to the update of the state of the object
included in the event message , the plug - in corresponding to
the state .
[0045] As illustrated in the logical configuration of pro
cessing in FIG . 2 , the processing stage of each node has , for
instance , input event processing threads in11 to inln , event
processing threads ev21 to ev2n , and service event process
ing threads r31 to r3n . The incoming event message e_msg
is transmitted to the input event processing thread of an
arbitrary node . A transmission - destination input event pro
cessing thread performs verification or the like of the event
message and transmits the information included in the event
message , an object identifier , a state name , and its state value
to the allocated event processing threads ev21 to ev2n based
on the object identifier and the stage number included in the
event message . The data (a state name and a plug - in ID) of
the object to be handled is registered in the event processing
threads ev21 to ev2n . When the state value is updated in the
received event data , the event processing thread executes a
predetermined plug - in for the updated state value .
[0046] The object of each event processing thread corre
sponds to a car or the like in the real world and is also
correlated with a service or the like . That is , the object is
correlated with a specific thing (a person or a car) that is an

a

a

DESCRIPTION OF EMBODIMENTS

[0039] Outline of Event Stream Processing System
[0040] An event stream processing system is an event
stream processing system in which a plurality of computer
nodes process events transmitted from IoT devices of a
plurality of event generating devices (for instance , con
nected cars) in the real world that generate events . Event
data is , for instance , the value (state value) of an internal
state such as the speed , the position , and the like of the
connected car . Event data is collected in an event stream
processing system in a data center . Then , each time an event a

US 2022/0019462 A1 Jan. 20 , 2022
3

2

a

event generating source or is correlated with a service
provided by aggregating and processing the event data . The
event is an update of the state of the object .
[0047] Here , a thread is a program that performs certain
processing , and is generally an activated program . However ,
threads also include programs written in a binary in a storage
so as to be activatable .
[0048] The event processing threads ev21 to ev2n execute
plug - ins with respect to an update of the state (for instance ,
the internal state of a car) of a real - world object (for
instance , a car) and transmit an event message including an
update of the state (movement of a car) of a service object
(for instance , car congestion in a region) to the service event
processing threads r31 to r3n . In the subsequent stage . The
service event processing threads execute plug - ins corre
sponding to the state of the service object .
[0049] As illustrated in the physical configuration of pro
cessing in FIG . 2 , the plurality of physical machines PM of
the event stream processing system generate a plurality of
subtasks SUB_TASK in task slots TASK_SL generated by a
plurality of processor cores CORE . The plurality of subtasks
correspond to the input event processing thread , the event
processing thread , and the service event processing thread of
the logical configuration , respectively . For instance , a sub
task SUB_TASK21 processes the events of a plurality of
objects (for instance , cars) registered in the event processing
thread ev21 of the logical configuration .
[0050] For instance , when four physical machines PM1 to
PM4 each have forty processor cores CORE , 160 processor
cores CORE1 to COREm generate task slots TASK_SL1 to
TASK_SLm (m = 160) . Then , the plurality of input event
processing threads , event processing threads , and service
event processing threads configured in the pipeline are
correlated with stage numbers in the pipeline direction (right
direction in the drawing) , respectively .
[0051] The event message e_msg has an object identifier
(id) , a message type , a stage number , a state name , a state
value , and the like , as will be described later . The input event
processing threads in11 to inln calculate a hash value of an
object identifier of the event message , and transmits the
event message to the event processing threads ev21 to ev2n
of a subtask SUB_TASK identified by a stage number , in a
task slot TASK_SL identified by the hash value .
[0052] The input event processing thread , the event pro
cessing thread , and the service event processing thread
illustrated in the logical configuration of processing in FIG .
2 are all event processing threads that execute event pro
cessing in response to reception of an event message . When
the processor core CORE of each of the plurality of pro
cessors 10 illustrated in FIG . 1 executes the event stream
processing program ev_prc_prg , various functions of the
event processing thread illustrated in the logical configura
tion of processing are realized .
[0053] FIG . 3 is a diagram Illustrating a configuration
example of the event processing thread ev_prc . The input
event processing thread and the service event processing
thread in FIG . 2 are all a type of this event processing thread
ev_prc . FIG . 4 is a flowchart illustrating the processing of
the event processing thread . The processor 10 executes an
event processing program to realize the function of the event
processing thread of FIG . 3 , and executes the event process
ing by the event processing thread of FIG . 4. In the follow

ing description , the description of the processor executing
the event processing program to execute various processing
operations will be omitted .
[0054] In the event processing thread ev_prc , a message
receiver msg_rcv responds to the reception of a key - value
format message msg (S10) and stores the data in the message
(S11) . The message msg has , for instance , an object identi
fier (id) of a destination , an event time e T which is an event
occurrence time , and state data k - v of which the state and the
value is key and value . The event processing thread ev_pro
stores the state data k - v and the parameter para of the plug - in
described later in a memory memo . The state name (state)
and the value (value) of the state data k - v are stored in the
object state table in the object table ob_tbl described above .
[0055] In the event processing thread , a trigger control
unit trg_cnt further responds to the update or new writing of
the state value in the object state table in the memory memo
(S12) , and causes the processor 10 to execute the processing
operations prel and prc2 corresponding to the state (S13) .
The processing operations prc1 and prc2 are plug - ins that
are executed when the state value is changed or newly
written . In the example of FIG . 3 , the processing prc2 is
executed in response to the change of the state value by a
message msg01 , and a new message msg02 is transmitted to
the event processing thread in the subsequent stage . The
processing operations prel and prc2 also include event
processing for processing an event of changing the state
value and control processing for performing distribution
control processing described later . The control process is
also executed triggered by the change of the corresponding
state value .
[0056] The messages msg Include , for Instance , an event
message having a sensor value of a real - world car as a state
value and a control message having a control processing
content as a state value . Correspondingly , the plug - ins
include an event processing plug - in that is executed in
response to a change of the state value of an event message
and a control processing plug - in that is executed in response
to a change of the state value of a control message .
[0057] The object identifier (id) in the message is an
identifier that uniquely indicates the object that is the
processing content of an event processing thread . This object
identifier (id) is allocated to each event processing thread .
[0058] FIG . 5 is a diagram illustrating an example of an
object state table , parameters , and a plug - in table stored in
the memory memo of the event processing thread . The
object state table ob_st tbl is a table having an object
identifier id , for instance , “ bulldozer_4325 ” (corresponding
to an IoT device of a real - world bulldozer) , and stores a state
name st nm and its state value st vl .
[0059] In the example illustrated in FIG . 5 , the state name
st_nm is “ speed ” , “ latitude ” , and “ longitude ” , and an
example of the state value st_vl is illustrated .
[0060] On the other hand , the plug - in table plg_tbl is a
table in which plug - in identifiers plg_id1 to plg_id3 corre
sponding to the state names are stored . For instance , the data
storage DATA_STRG illustrated in FIG . 1 stores a program
code of an executable plug - in corresponding to the plug - in
identifiers plg_id1 to plg_id3 . Upon detecting a change or
the like of the state value in the object state table , the trigger
control unit trg_cnt refers to the plug - in table and causes the
processor to execute the plug - in code of the plug - in identi
fier corresponding to the state of the changed state value .

a

2

US 2022/0019462 A1 Jan. 20 , 2022
4

a

[0061] The parameter para is , for instance , parameter data
that is referred to when the plug - in is executed . An example
of the parameter is the object identifier of the event pro
cessing thread in the subsequent stage to which a message is
transmitted according to the event time .
[0062] In the example illustrated in FIG . 5 , the parameter
para0 has object identifiers id1 and id2 corresponding to the
timeframes T1 and T2 , respectively . The parameter paral
has object identifiers idli , d12 , and id13 corresponding to
three timeframes of 0 to 9 minutes , 10 to 19 minutes , and 20
to 29 minutes , respectively . The parameter para2 has object
identifiers id21 , d22 , and id23 corresponding to another
three timeframes 30 to 39 minutes , 40 to 49 minutes , and 50
to 59 minutes , respectively .
[0063] FIG . 27 is a table illustrating a state example of the
object state table . FIG . 27 illustrates state examples of an
object state table provided in input event processing threads
in11 to inín , relay and distribution control threads p21 and
p22 , distribution and event processing threads d31 and d32 ,
standard threads s001 to s004 , copy threads s001 to s004 ,
and service event processing threads r40 to r43 which will
be described later .
[0064] The object state tables of the input event processing
threads in11 to inln contain values of the states illustrated in
FIG . 27 , and the received event message contains these state
values . The same applies to the object state tables of the
distribution control threads p21 and p22 that also relay event
messages , the event processing threads d31 and d32 that also
distributes event messages to the subsequent stages , the
standard threads s001 to s004 , the copy threads s001 to s004 ,
and the service event processing threads r40 to r43 .
[0065] Specific Example of Event Stream Processing Sys
tem

[0066] In order to understand the outline of the event
stream processing system , the event stream processing will
be described on the basis of a specific example . In the
following , the event stream processing will be described by
way of a specific example of stream processing that executes
a service that calculates the average speed of a plurality of
cars present in the real world in respective timeframes T1
and T2 (T1 : 0 to 29 minutes , T2 : 30 to 59 minutes) .
[0067] FIG . 6 is a diagram illustrating a simple configu
ration example of the event stream processing system . The
configuration of the event stream processing system 1
includes a plurality of input event processing threads in 11 to
inln and event processing threads d31 and d32 .
[0068] In the above specific example , an event message
e_msg_1 is transmitted from a plurality of cars present in the
real world , and is received by any one of the input event
processing threads in11 to inín . The event message e_msg_1
Includes an object Identifier (id) of a destination Input event ?
processing thread , a current time (event time) eT , a state
value (example : speed) k - v , and the like . Input control
processing (not illustrated) delivers an event message to the
input event processing thread of the object identifier on the
basis of the object identifier (id) of the event message
e_msg_1 .
[0069] The input event processing threads in11 to inin
calculate whether the current timeframe is the timeframe T1
or 12 from the event time eT of the received event message
and transmits an event message e_msg_2 to the event
processing threads d31 and d32 that execute the processing
corresponding to the timeframe T1 or T2 . That is , the input
event processing thread executes a plug - in that calculates

whether the event time eT is the timeframe T1 or T2 in
response to the update of the state value (example : speed)
included in the received event message . This plug - in
executes the above - described calculation by referring to the
parameter (para) in FIG . 5) having , for instance , the time
frames T1 and T2 and the object identifiers of the event
processing threads 031 and d32 in the subsequent stage
corresponding to the timeframes T1 and T2 , respectively .
[0070] Then , for instance , this plug - in transmits an event
message e_msg_2 having the object identifier (id) corre
sponding to the timeframe T1 or T2 acquired by calculation
and a state value (example : speed) to the thread correspond
ing to the timeframes T1 and T2 among the event processing
threads d31 and d32 in the subsequent stage .
[0071] The event processing threads d31 and d32 receive
a plurality of event messages e_msg_2 addressed thereto and
calculate , for instance , the average speeds in the timeframes
T1 and T2 , respectively . In other words , the plug - in executed
by the event processing threads d31 and d32 is a program
that calculates the average of the state values (speeds) in the
plurality of event messages in each of the timeframes T1 and
T2 .
[0072] In the above specific example , when the event time
eT is the timeframe T1 of 0 to 29 minutes , a plurality of
event messages e_msg_2 transmitted by the plurality of
input event processing threads in11 to inln is concentrated
on the event processing thread d31 that calculates the
average speed in the timeframe T1 . On the other hand , when
the time elapses and the event time et transitions to the
timeframe T2 of 30 to 59 minutes , a plurality of event
messages e_msg_2 is concentrated on the event processing
thread d32 that calculates the average speed of the time
frame 17 .
[0073] The input event processing threads in11 to inin are
correlated with real - world cars , and receive the event mes
sages e_msg_1 transmitted from the corresponding cars .
Therefore , not all of the plurality of input event processing
threads always transmit the event message , but a plurality of
some input event processing threads receive the event mes
sage e_msg_1 and execute the processing of selecting the
destination of the event message e_msg_2 .
[0074] In an actual event stream processing system , the
number of input event processing threads in11 to inln is , for
instance , 10,000 , and the number of event processing
threads d31 and d32 is , for instance , 1,000 . In such a case ,
it is inefficient that all ten thousand input event processing
threads have resources (plug - ins and parameters) for select
ing the destination of the event message e_msg_2 .
[0075] FIG . 7 is a diagram illustrating a configuration
example of another event stream processing system . In FIG .
7 , the event message e_msg that arrives at each processing
thread is simply illustrated by a block having the character
m . Unlike FIG . 6 , the event stream processing system 1 of
FIG . 7 has relay processing threads p21 and p22 that
perform relay processing between the input event processing
threads in11 to in14 and the event processing threads d31
and d32 . Further , a plurality of service event processing
threads r41 to r44 are provided in the subsequent stage of the
event processing threads d31 and d32 . Each of the service
event processing threads r41 to r44 executes service event
processing of aggregating the number of cars in different
timeframes on the basis of the number of event messages
transmitted from the event processing threads d31 and d32 ,
for instance . The event processing threads d31 and d32 refer

e

US 2022/0019462 A1 Jan. 20 , 2022
5

to the respective parameters (for instance , the parameters
paral and para2 in FIG . 5) to select a destination service
event processing thread r41 - r44 of the event message .
[0076] For instance , one hundred relay processing threads
p21 and p22 are provided , which are lower than ten thousand
input event processing threads in11 - in14 . The destination of
the event message e_msg_2 is selected by the relay process
ing threads p21 and p22 in FIG . 7 , not by the input event
processing threads in11 to inín as FIG . 6. Therefore , the
input event processing thread only needs to transmit the
event message to the relay processing thread selected in
advance on the basis of the hash value calculated from the
object identifier (id) , and does not need to select the desti
nation among the event processing threads d31 - d32 . As a
result , it is possible to eliminate the burden of the input event
processing thread for selecting the destination of the mes
sage . Further , even when some input event processing
threads receive the event message , the plurality of relay
processing threads p21 - p22 evenly share the load of the
event message destination selection processing .
[0077] In the case of FIG . 7 , as described with reference
to FIG . 6 , in the timeframe T1 , the event message e_msg_2
having the speed of the timeframe T1 is concentrated on the
event processing thread d31 , and the processing load of the
event processing thread d32 is low during that time . To the
contrary , in the timeframe T2 , the event message e_msg_2
having the speed of the timeframe 12 is concentrated on the
event processing thread d32 . The event processing threads
d31 and d32 transmit the event message to any one of the
plurality of service event processing threads r41 to r44 in the
subsequent stage . Therefore , if many event messages are
concentrated on any one of the event processing threads d31
and d32 , the efficiency of the entire event stream processing
is lowered . In addition , since the event processing thread
d31 or d32 in which event messages are concentrated change
over time , providing a great number of event processing
threads d31 and d32 for alleviation of concentration causes
a decrease in resource efficiency .
[0078] Event Stream Processing System of Present
Embodiment
[0079] In the event stream processing system , since events
are stream - processed , messages between event processing
threads are one - way messages from a preceding stage to a
subsequent stage . Moreover , messages are not transmitted
between event processing threads in the same stage . There
fore , a plurality of event processing threads in the same stage
do not perform control processing and event processing in a
coordinated manner . The event stream processing system
stream - processes events arriving from the real world under
the above constraints .
[0080) FIG . 8 is a diagram illustrating a configuration
example of the event stream processing system according to
the present embodiment . The event stream processing sys
tem 1 has input event processing threads in11 to inln and
service event processing threads r41 to r44 as in FIG . 7 .
[0081] On the other hand , unlike FIG . 7 , the relay pro
cessing threads p21 and p22 in FIG . 8 are relay and
distribution control processing threads (hereinafter , referred
to simply as distribution control threads) that perform dis
tribution control processing . The distribution control pro
cessing is processing of distributing the concentration of
processing in the event processing threads d31 and d32 .
Further , standard threads s001 to s004 that are able to be
converted into the copy thread of any one of the event

processing threads d31 and d32 or both copy threads are
provided in the subsequent stage of the event processing
threads d31 and d32 . Then , the event processing threads d31
and d32 are distribution and event processing threads (here
inafter , referred to simply as event processing threads) that
perform distribution processing of distributing their own
event processing to the standard thread and converting the
standard thread into the copy event processing thread .
[0082] In the present embodiment , as described above ,
when the processor 10 executes the event processing stream
program ev_prc_prg including the processing distribution
setting program , the processing of each thread in the event
stream processing system of FIG . 8 is executed , and the
function of each thread is realized .
[0083] The event processing plug - ins (or plug - in identifi
ers) of the event processing threads d31 and d32 are also
preset in the standard threads s001 to s004 . However , the
parameters for event processing included in the event pro
cessing threads d31 and d32 are not set In the standard
thread . This is because the event processing thread in which
processing is concentrated changes , setting the parameters
held by each event processing thread in advance in the
standard thread causes a decrease in resource efficiency
[0084] FIG . 9 is a diagram illustrating a first operation
example of distribution control in an event stream process
ing system . The input event processing thread in11 - in14
stores the state value of the event message in the object table
in response to reception of the event message addressed
thereto , and executes the event processing in response to the
event such as the update of the state value . Then , another
event message is transmitted to any one of the distribution
control threads p21 and p22 in the subsequent stage . The
destination of this event message is determined in advance
on the basis of the hash value of the object identifier of the
input event processing thread .
[0085] The distribution control threads p21 and p22 trans
mit an event message to either the event processing thread
d31 that performs processing in the timeframe T1 or the
event processing thread d32 that performs processing in the
timeframe T2 based on the event time of the received event
message . In addition , the distribution control threads p21
and p22 monitor or predict the degree of concentration of
event messages in the event processing threads d31 and d32 ,
and determine whether a copy of the event processing thread
has to be generated in the standard thread .
(0086] In the example of FIG . 9 , the distribution control
thread p21 detects or predicts the concentration in the event
processing thread d31 , and transmits a copy request message
copy_rq_s001 / s002 to the event processing thread d31 .
[0087] The copy request message copy_rq_s001 / s002 is a
message requesting that the standard threads s001 and s002
be converted into a copy of the event processing thread d31
of the message destination . Along with the transmission of
the copy request message , the distribution control thread p21
records “ in use " in the standard threads s001 and s002 in a
distribution destination list of the event processing thread
d31 , and records “ s001 , s002 ” in an in - use standard list of
the event processing thread d31 in a distribution control
management table . Specifically , see FIG . 17 .
[0088] In response to the reception of the copy request
message copy_rq_s001 / s002 , the event processing thread
d31 transmits the copy message copy_s001 to the standard
thread s001 and the copy message copy_s002 to the standard
thread s002 . These copy messages contain the parameters

2

US 2022/0019462 A1 Jan. 20 , 2022
6

included in the event processing thread d31 . In response to
the reception of the copy messages , the standard threads
s001 and s002 set the parameters in the copy messages ,
respectively , and convert themselves into the copy of the
event processing thread d31 . That is , the standard threads
s001 and s002 are converted into copied event processing
threads (or copy event processing threads) d31_1 and d31_2 ,
respectively .
[0089] FIG . 10 is a diagram illustrating a second operation
example of distribution control in an event stream process
ing system . FIG . 10 illustrates an operation example after
the standard threads s001 and s002 are converted into the
copies of the event processing thread d31 in FIG . 9 .
[0090] As illustrated in FIG . 10 , upon receiving the event
message e_msg_1 from the real - world car , the input event
processing thread in11 executes needed processing and
transmits the event message e_msg_la to the distribution
control thread p21 . The distribution control thread p21
distributes and transmits the event message e_msg_2 to any
one of the event processing thread d31 and the copy event
processing threads d31_1 and d31_2 based on the fact that
the event time eT of the received event message is the
timeframe T1 . hen the above - mentioned distribution con
trol processing is executed , the distribution control thread
p21 knows that the event message e_msg_2 has to be
distributed and transmitted to three threads d31 , s001 and
s002 on the basis of s001 and s002 recorded in the in - use
standard list of the event processing thread d31 in the
distribution control management table . After that , the three
threads 01 , s001 , and s002 execute event processing for the
received event message e_msg_2 , and transmit an event
message e_msg_3 to the destination service event process
ing threads r41 to r44 in the subsequent stage .
[0091] In this way , the copy event processing threads s001
and s002 are added to the event processing thread d31 which
is determined to be heavily loaded due to the concentration
of a great amount of event messages e_msg_2 , and the
distribution control thread p21 distributes and transmits the
event message e_msg_2 to the three threads d31 , s001 and
s002 . As a result , the heavy load on the event processing
thread d31 is able to be suppressed .
[0092] Although not illustrated in FIG . 10 , when the
concentration of the event message e_msg_2 in the event
processing thread d31 is alleviated , the copy event process
ing threads s001 and s002 are no longer needed . Therefore ,
the distribution control thread p21 transmits a release mes
sage requesting the release of copy to the copy event
processing threads s001 and s002 , and causes them to delete
(flush) the parameters , thereby returning the copy event
processing threads to the standard threads . At the same time ,
the distribution control thread p21 restores the distribution
destination list and the distribution control management
table . As a result , the standard threads s001 and s002 are able
to be used as the copy event processing threads of the
distribution destination by another distribution control
thread p22 or the like .
[0093] Processing Distribution Setting
[0094] Next , the processing distribution setting by the
processing distribution setting program will be described .
The processing distribution setting program is a subroutine
program of the event stream processing program or an
independent program . As a premise , as illustrated in FIG . 8 ,
a predetermined number of standard threads are generated in
advance in the event stream processing system in the sub

sequent stage of the event processing threads d31 and d32
where it is detected or predicted that processing distribution
is needed .
[0095] Then , the processor executes the processing distri
bution setting program , and performs the needed settings in
the event processing threads d31 and d32 and the standard
threads s001 to 5004 so that the distribution control of FIGS .
9 and 10 becomes possible .
[0096] FIG . 11 is a diagram illustrating a flowchart of
processing of the processing distribution setting program .
FIGS . 12 and 13 are diagrams illustrating detailed flow
charts of steps S20 to S23 of FIG . 11. FIG . 14 is a diagram
illustrating an example of a standard thread ID list and a
distribution destination list . FIG . 15 is a diagram illustrating
plug - ins and parameters set by the processing distribution
setting program .
[0097] The processor executes the processing distribution
setting program , and first , generates an ID list (standard ID
list) of standard threads that are candidates for distribution
destination (S20) . As illustrated in the flowchart on the left
side of FIG . 12 , in the standard ID list generation step S20 ,
the processor calculates a needed number of standard
threads serving as distribution destination candidates for an
event processing thread that is expected to be in a concen
trated or heavy - load state (S201) . Then , the processor gen
erates the needed number of identifiers (IDs) of the standard
threads by universally unique identifier (UUID) or the like
(S202) . In addition , the processor stores the generated
identifiers (IDs) in the standard ID list . In the standard ID list
s_id_list illustrated in FIGS . 14 , s001 to s004 are stored as
standard IDs .
[0098] Subsequently , the processor generates a distribu
tion destination list (S21) . In this step , a distribution desti
nation list set for each of the distribution control threads p21
and p22 is generated . As illustrated in the flowchart on the
right side of FIG . 12 , in the distribution destination list
generation step S21 , the processor acquires the needed
number of identifiers (IDs) from the standard ID list as the
processing distribution destination for any one of the distri
bution control threads p21 or p22 (S211) and lists the
acquired standard IDs with the usage flag set to false (S212) .
Then , the processor stores the generated list in the distribu
tion destination list of the distribution control threads p21
and p22 (S213) . Steps 5211 to S213 are executed for all
distribution control threads p21 and p22 . In the distribution
destination list dist_list of each of the distribution control
threads p21 and p22 illustrated in FIGS . 14 , s001 , s002 and
s003 , s004 are stored in the distribution destination standard
ID , respectively , and the usage flags are all set to false .
[0099] Subsequently , the processor executes the distribu
tion control setting
[0100] (S22) . In this step , the distribution control plug - in
is set in the distribution control threads p21 and p22 . As
illustrated in the flowchart on the left side of FIG . 13 , In step
S22 , the processor acquires the distribution control plug - in
plg_1 (S221) , acquires the distribution destination list dist_
list of the distribution control thread (S222) , acquires the
distribution control management table dist_adm_tbl (S223) ,
and store the distribution control plug - in , the distribution
destination list , and the distribution control management
table dist_adm_tbl in the distribution control thread (S224) .
Steps S221 to S224 are performed on all distribution control
threads .

US 2022/0019462 A1 Jan. 20 , 2022
7

C

[0101] As illustrated in FIG . 15 , in step S22 , the distribu
tion control management table dist_adm_tbl , the distribution
destination list dist_list , and the distribution control plug - in
plg_1 are set in the distribution control thread p21 . The
distribution control management table is used to manage a
copied standard thread when the distribution control thread
generates the copies of the event processing threads d31 and
d32 in the standard thread . This will be described in detail
later .
[0102] Subsequently , the processor executes the copy con
trol setting (S23) . In this step , the copy request control
processing plug - in is set in the event processing threads d31
and d32 , and the copy control processing plug - in is set in the
standard threads s001 to s004 , respectively . In step S23 , as
illustrated in the flowchart on the right side of FIG . 13 , the
processor sets a copy request control processing plug - in
plg_2 , which operates in response to a copy request mes
sage , in the event processing threads d31 and d32 (S231) . In
addition , the processor sets a copy control processing plug
in plg_3 , which operates in response to a copy message , in
the standard threads s001 to s004 (S232) .
[0103] As illustrated in FIG . 15 , in step 523 , the copy
request control processing plug - in plg_2 is set in the event
processing thread d31 , and the copy control processing
plug - in plg_3 is set in the standard threads s001 to s004 .
[0104] Distribution Control Processing and Copy Control Processing
[0105] As illustrated in FIG . 15 , when the processing
distribution setting program is executed , the lists and plug
ins needed for the distribution control threads p21 and p22 ,
the event processing threads d31 and d32 , and the standard
threads s001 to s004 are set in the event stream processing
system . Then , the event stream processing system receives
event messages from IoT terminals such as real - world cars ,
and executes the event processing in a streaming manner .
[0106] FIG . 16 is a diagram illustrating an example of
distribution control processing and copy control processing .
FIG . 17 is a diagram illustrating a distribution control
management table and a distribution destination list in the
distribution control thread p21 before and after the distri
bution control processing . As an example , an example will
be described in which the distribution control thread p21
generates a copy of the event processing thread d31 in the
standard threads s001 and s002 in order to distribute the
concentration of event messages arriving at the event pro
cessing thread d31 .
[0107] In FIG . 16 , the distribution control thread p21
detects or predicts the concentration of event processing on
the event processing thread d31 that processes event mes
sages in the timeframe T1 , and transmits a copy request
message copy_rq_msg to the event processing thread d31 .
The copy request message copy_rq_msg includes , for
instance , a destination object identifier " d31 ” , the state value
“ dist ” (distribution) of the state name “ control ” , the distri
bution destination standard thread identifiers " s001 , s002 ” ,
and the key Usage_key “ d31 ” indicating the distribution
control source .
[0108] In the state before the distribution control process
ing in FIG . 17 , in the distribution control management table
dist_adm_tbl , the event processing threads d31 and d32 are
registered in the field of “ event processing ID (processing
ID) ” which is the distribution control target , the “ load
distribution presence ” field is set to false , and the “ in - use
standard list ” field is blank .

[0109] FIG . 18 is a diagram illustrating a configuration
example of the distribution control thread . The configuration
of the distribution control threads p21 and p22 has a message
receiver msg_rev , a memory memo , and a trigger control
unit trg_cnt , as in the configuration example of the event
processing thread illustrated in FIG . 3. The distribution
control threads p21 and p22 are configured to be able to
execute processing including the distribution control pro
cessing c_prc1 , the event processing e_prc1 , and the distri
bution destination transmission processing c_prc4 . The dis
tribution control processing c_prc1 is executed by the
distribution control plug - in plg_1 , and the event processing
e_prc1 is executed by the event processing plug - in . The
distribution destination transmission processing c_prc4 is
processing included in the distribution control processing
and is executed by the distribution control plug - in plg_1 .
[0110] As illustrated in FIG . 18 , when the distribution
control threads p21 and p22 receive the event message
e_msg , the message receiver records the state value or the
like in the message in the memory memo , and the trigger
control unit appropriately executes the distribution control
processing c_prc1 , the event processing e_prc1 , and the
distribution destination transmission processing c_prc4 in
response to the change or newly - writing of the state value .
[0111] FIG . 19 is a diagram illustrating a flowchart of the
distribution control processing c_prc1 by the distribution
control thread . The distribution control threads p21 and p22
execute the following processing by executing the distribu
tion control plug - in plg 1. That is , the distribution control
thread monitors the received message and the transmitted
message (S30) , and determines that distribution control is
needed when the concentration of event messages on the
event processing threads d31 and d32 is detected or pre
dicted (YES in S31) . When it is determined that the distri
bution control is needed , the distribution control thread
transmits a copy request message to the distribution control
target event processing thread d31 (S32) . On the other hand ,
when the concentration of event messages on the event
processing thread d31 is resolved and it is determined that
distribution control is not needed (YES in S33) , the distri
bution control thread transmits a copy release message to the
copied standard thread (S34) .
[0112] When the event processing e_prc1 is executed and
an event message e_msg is distributed and transmitted to the
event processing thread d31 and the distribution destination
copy event processing threads d31_1 and d31_2 , the distri
bution control thread executes the distribution destination
transmission processing c_prct . The distribution control
threads p21 and p22 control transmission so that event
messages are distributed to the event processing thread and
the copy event processing thread by the distribution desti
nation transmission processing . A specific transmission con
trol method will be described later .
[0113] FIG . 20 is a diagram illustrating a configuration
example of an event processing thread and a standard thread .
The event processing threads d31 and d32 are configured so
that the copy request control processing plug - in plg_2 that is
executed using the state value “ dist ” of the state name
" control ” of the copy request message copy_rq_msg as a
trigger is able to be executed . In addition , the event pro
cessing plug - in e_prc2 is also configured to be executable ,
and the parameters paral and para2 needed for executing
this plug - in are configured to be stored or referred to .

2

a

US 2022/0019462 A1 Jan. 20 , 2022
8

2

[0114] On the other hand , the standard threads s001 to
s004 are configured so that the copy control processing
plug - in plg_3 , which is executed using the state value " set "
of the state name “ control ” of the copy message copy_msg
as a trigger , is able to be executed . In addition , the event
processing plug - in e_prc2 is also configured to be execut
able .
[0115] As illustrated in FIGS . 16 and 20 , the event pro
cessing thread d31 receives the copy request message copy ,
rq_msg and stores the state value “ dist ” of the state name
" control ” in the copy request message in the memory memo .
Then , the event processing thread d31 executes the copy
request control processing plug - in plg_2 according to the
change of the state value as a trigger to generate the copy
messages copy_msg01 and copy_msg02 corresponding to
the state value “ dist ” . Then , the copy messages are trans
mitted to the distribution destination standard threads s001
and s002 described in the copy request message . The copy
messages copy_msg01 and copy_msg02 have the state value
“ set ” of the state name “ control ” and include the parameter
paral needed for the event processing plug - in of the event
processing thread d31 .
[0116] In response to the reception of the copy messages
copy_msg01 and copy_msg02 , each of the standard threads
s001 and s002 stores the state value " set ” of the state name
" control ” in the copy message in the memory memo .
[0117] Then , the standard threads s001 and s002 execute
the copy control processing plug - in plg_3 according to the
change of the state value as a trigger to store the parameter
paral included In the copy message in the memory memo in
correlation with the identifier d31 of the distribution control
thread of the usage key Usage_key .
[0118] Although not illustrated in FIG . 16 , as illustrated in
FIG . 20 , the event processing plug - in eprc2 of the event
messages d31 and d32 is configured to be executable in
advance in the standard threads s001 to s004 . Then , in
response to reception of the copy message , the distribution
destination standard threads s001 and s002 store the param
eter paral of the copy source event processing thread d31 .
As a result , the standard threads s001 and s002 are converted
to the copy event processing threads d31_1 and d31_2 , and
are able to execute the plug - in e_prc2 for the event message
in the timeframe T1 in the same manner as the distribution
control target event processing thread d31 .
[0119] As illustrated after the distribution control of the
distribution control management table dist adm_tbl and the
distribution destination list of the distribution control thread
p21 in FIG . 17 , when the copy request message is transmit
ted to the event processing thread d31 , the distribution
control thread p21 changes the load distribution presence of
the event processing thread d31 to “ true ” , and writes “ s001 ,
s002 ” to the in - use standard list in the distribution control
management table dist_adm_tbl . The usage flag of the
distribution destination standard IDs s001 and s002 in the
distribution destination list dist_list is changed to “ true ” .
[0120] In this way , the distribution control processing
plg_1 by the distribution control thread p21 , the copy
request control processing plg_2 for the copy request mes
sage by the event processing thread d31 , and the copy
control processing plg_3 for the copy message by the
standard threads s001 and s002 are completed . After that , as
described with reference to FIG . 10 , the distribution control
thread p21 distributes and transmits the event message
e_msg_2 , which is the original relay processing , to the event

processing thread d31 and its copy event processing threads
d31_1 (s001) and d31_2 (s002) .
[0121] After executing the event processing plug - in
e_prc1 illustrated in FIG . 18 to determine to which event
processing thread d31 or d32 , the event message e_msg has
to be transmitted , the distribution destination transmission
processing plug - in c_prc4 (plg_1) is executed to perform the
event message transmission control . The distribution desti
nation transmission processing plug - in c_prc4 (plg_1) refers
to the distribution control management table dist_adm_tbl in
FIG . 17 , and distributes and transmits the event message to
the event processing thread d31 and the copy event process
ing thread d31_1 (s001) and d31_2 (s002) in the in - use
standard list if the destination event processing thread d31 is
a distribution processing target (the load distribution is
" true ") .
[0122] As illustrated in FIG . 16 , the distribution control
thread p21 includes d31 as the usage key Usage_key in the
event message transmitted to the standard threads s001 and
s002 being copied . According to the usage_key " d31 " , the
standard threads s001 and s001 being copied execute the
event processing plug - in by referring to the parameter paral
stored in correlation with the usage key “ d31 ” when the copy
message is received . In this way , the standard thread is able
to properly execute the event processing plug - in using
parameter paral of the distribution target event processing
thread d31 .
[0123] FIG . 21 is a diagram illustrating an example of
copy release , which is one of the distribution control pro
cessing . The operation of copy release will be described with
reference to FIGS . 18 , 20 , and 21. The distribution control
thread p21 executes the distribution control plug - in plg_1 to
determine or predict whether distribution control is not
needed , generates a copy release message copy_fl_msg that
releases the copy state by distribution control , and transmits
the copy release message to the standard threads s001 and
s002 in the in - use standard list of the distribution control
management table . As described in FIG .
[0124] 21 , in the copy release message copy_fl_msg , the
state value of the state name control is “ flush ” meaning copy
release .
[0125] Upon receiving the copy release message , the stan
dard threads s001 and s002 in the copy state write the state
value “ flush ” to the object table in the memory , execute the
copy control processing plg_3 according to the writing as a
trigger , and deletes (flushes) the parameter paral in the
memory . As a result , the standard threads s001 and s002 are
converted from the copy event processing thread to the
standard thread , and then are able to be converted to the copy
event processing thread in response to another copy mes
sage . The copy release message copy_fl_msg in FIG . 21
includes d31 as the usage key Usage_key , which means that
the parameter paral correlated with the usage key d31 is
deleted in the memory memo . For instance , if the standard
threads s001 and s001 are also used as a copy event
processing thread of the event processing thread d32 by the
distribution control thread p22 , the parameters are also
stored in correlation with the usage key d32 , and one
standard thread operates as a plurality of copy event pro
cessing threads . By deleting only the parameters correlated
with d31 , the parameters correlated with d32 remain , and the
standard thread operates as the copy event processing thread
of d32 . When the standard thread operates as the copy event
processing threads of the same event processing thread d31 ,

a

2

US 2022/0019462 A1 Jan. 20 , 2022
9

a

a reference count or the like is provided in the parameter
paral correlated with d31 and the parameter is deleted only
when the reference counter becomes 0 .
[0126] Furthermore , upon receiving the copy release mes
sage , the standard threads s001 and s002 in the copy state
transmit data , which is transmitted to the service event
processing threads in the subsequent stage periodically (for
instance , every minute) , such as the average speed calcu
lated by the event processing plug - in executed during copy ,
to the service event processing threads .
[0127] On the other hand , when the copy release message
is transmitted , as illustrated in FIG . 17 , the distribution
control thread p21 changes the distribution control manage
ment table dist_adm_tbl and the distribution destination list
disc list to the state before the distribution control on the left
side .
[0128] In FIG . 10 , as described above , as an example ,
when there are one hundred distribution control threads p21 ,
p22 and one thousand event processing threads d31 , d32 ,
even if event messages are concentrated in some threads of
the event processing threads , and a heavy load state occurs ,
a number of standard threads needed to alleviate the con
centration and the heavy load are able to be converted into
copy event processing threads of the event processing
threads d31 , d32 so that the concentrated and heavy load
state are able to be alleviated . In addition , since a number of
standard threads needed to alleviate the concentrated and
heavy load state of some threads of the one thousand event
processing threads may be deployed as the copy candidate
threads , the number of standard threads is able to be sup
pressed and the resource efficiency is able to be increased .
[0129] First Specific Example of Distribution Control Pro
cessing c_prc1
[0130] FIG . 22 is a diagram illustrating a first specific
example of the distribution control processing . In the first
specific example of FIG . 22 , two standard threads s001 and
s002 that are able to be converted into copies of the event
processing threads d31 and d32 are provided . And the
distribution control threads p21 and p22 share the two
standard threads s001 and s002 and use them as copy
threads . Furthermore , the distribution control threads p21
and p22 simultaneously use the standard threads s001 and
s002 as copy threads of the event processing threads d31 and
d32 . Therefore , the distribution control threads p21 and p22
both hold the same distribution destination lists dist_list_
p21 and dist_list_p22 in which the two standard threads
s001 and s002 are registered . As a result , the distribution
control threads p21 and p22 are able to efficiently use two
standard threads s001 and s002 .
[0131] In the first specific example of FIG . 22 , the distri
bution control thread p21 transmits a copy request message
copy_rq_s001 / s002 to the event processing thread d31 , and
in response to this , the event processing thread d31 transmits
the copy messages copy_s001 and copy_s002 to the stan
dard threads s001 and s002 , respectively . In response to this ,
the standard threads s001 and s002 store the parameter paral
of the event processing thread d31 .
[0132] On the other hand , the distribution control thread
p22 transmits a copy request message copy_rq_s001 to the
event processing thread d31 , and in response to this , the
event processing thread d31 transmits a copy message
copy_s001 to the standard thread s001 . In this case , the
standard thread s001 has already stored the parameter paral
of the event processing thread d31 . At this point , the

distribution control threads p21 and p22 share the standard
thread s001 as a copy thread of the event processing thread
d31 .
[0133] Further , the distribution control thread p22 trans
mits a copy request message copy_rq_002 to the event
processing thread d32 , and in response to this , the event
processing thread d32 transmits a copy message copy_s002
to the standard thread s002 to deliver the parameter para2 .
In response to this , standard thread s002 stores the parameter
para2 held by event processing thread d32 . At this time
point , in the distribution destination list dist list held by the
distribution control threads p21 and p22 , both standard
threads s001 and s002 are set to " true ” . In addition , the
standard thread s001 holds the parameter paral , and the
standard thread s002 holds both parameters paral and para2 .
The usage key in the message copy_rq_s001 from the
distribution control thread p21 is d31 , and the usage key in
the message copy_s001 from the event processing thread
d31 is also d31 . The use key in the message copy_rq_s001
from the distribution control thread p22 is also d31 , and the
use key in the message copy_s001 from the event processing
thread d31 is also d31 .
[0134] As a result , the paral is stored in s001 in correla
tion with the usage key d31 . At this time , a reference counter
is provided for the usage key d31 to enable control that s001
is returned to the standard thread when the release request
comes twice . On the other hand , in s002 , paral is stored in
correlation with d31 , and para2 is stored in correlation with
d32 .
[0135] When the above distribution control processing is
performed , the distribution control thread p21 distributes
and transmits the event message to the event processing
thread d31 and the copied standard threads s001 and s002 for
the event message of the event time in the timeframe T1 . On
the other hand , the distribution control thread p22 distributes
and transmits the event message to the event processing
thread d31 and the copied standard thread s001 .
[0136] Then , the distribution control thread p21 transmits
the event message to the event processing thread d32 for the
event message in the timeframe T2 . On the other hand , the
distribution control thread p22 distributes and transmits the
event message to the event processing thread d32 and the
copied standard thread s002 .
[0137] Second Specific Example of Distribution Control
Processing c_prc1
[0138] FIG . 23 is a diagram Illustrating a second specific
example of the distribution control processing . In the second
specific example of FIG . 23 , two standard threads s001 and
s002 are provided . In addition , the distribution control
threads p21 and p22 share two standard threads . However ,
the distribution control threads p21 and p22 hold the distri
bution destination lists dist list p21 and dist_list_p22 for the
event processing threads d31 and d32 , which are the copy
sources , respectively . Further , the standard thread s001 is
registered in the distribution destination list of the event
processing thread d31 , and the standard thread s002 is
registered in the distribution destination list of the event
processing thread d32 . By setting such a distribution desti
nation list , a certain standard thread will not be a copy thread
of two event processing threads d31 and d32 and will not
hold two parameters paral and para2 .
(0139] By doing so , a standard thread is shared by a
plurality of distribution control threads p21 and p22 , but a
standard thread is shared only as a copy of the same event

US 2022/0019462 A1 Jan. 20 , 2022
10

processing thread d31 or d32 . As a result , the standard thread
is avoided from holding two parameters paral and para2 ,
and resource efficiency is improved .
[0140] As illustrated in FIG . 23 , the distribution control
threads p21 and p22 generate the copy thread of the event
processing thread d31 only in the standard thread s001 and
generate the copy thread of the event processing thread d32
only in the standard thread s002 . That is , both the distribu
tion control threads p21 and p22 refer to the distribution
destination list to transmit a copy request message copy
rq_s001 to the event processing thread d31 so that the
standard thread s001 is used as a copy of d31 . In a same
manner , the distribution control threads p21 and p22 both
refer to the distribution destination list to transmit a copy
request message copy_rq_s002 to the event processing
thread d32 so that the standard thread s002 is used as a copy
of d32 .
[0141] If the distribution control thread p21 generates a
copy of the event processing thread d31 in the standard
thread s001 and a copy of the event processing thread d32
in the standard thread s002 , and the distribution control
thread p22 generates a copy of the event processing thread
d31 in the standard thread s002 and a copy of the event
processing thread d32 In the standard thread s001 , the
standard threads s001 and s002 both hold two parameters
paral and para2 . Although the processing distribution effect
in this case is the same as that of the example of FIG . 23 ,
only the number of parameters in the standard thread
increases and the resource efficiency decreases .
[0142] Third Specific Example of Distribution Control
Processing c_prc1
[0143] FIG . 24 is a diagram illustrating a third specific
example of the distribution control processing . In the third
specific example of FIG . 24 , two standard threads s001 and
s002 are provided . In addition , the distribution control
threads p21 and p22 share two standard threads . However ,
the distribution control threads p21 and p22 hold the distri
bution destination lists dist_list_p21 and dist_list_p22 for
the event processing threads d31 and d32 , which are the
copy sources , respectively . Up to this point , it is the same as
the second specific example of FIG . 23 .
[0144] Unlike the second specific example , in the third
specific example of FIG . 24 , in the distribution destination
lists dist_list_p21 and dist_list_p22 , the standard threads are
registered in the distribution destination list for the event
processing thread d31 in ascending order of IDs (s001 ,
s002) , and the standard threads s001 , s002 are registered in
the distribution destination list for the event processing
thread d32 in descending order of IDs (s002 , s001) . Then ,
the distribution control thread selects the copy target stan
dard thread based on the order of the standard threads
registered in the distribution destination list .
[0145] That is , the copy thread of the event processing
thread d31 is selected in ascending order of the IDs of the
standard threads , and the copy thread of the event processing
thread d32 is selected in the descending order of the IDs of
the standard threads . By making the priority of selecting the
standard thread as the copy destination different for respec
tive event processing threads d31 , d32 in this way , the
probability that each of the standard threads holds only a
single parameter is increased , and the amount of parameter
resources held by each standard thread is decreased .
[0146] When there are more than two event processing
threads , the number of standard threads is set to be equal to

or greater than the number of event processing threads , and
the IDs of the standard threads in the distribution destination
list of each event processing thread are circulated so that the
first IDs are different . For instance , when there are three
event processing threads and nine standard threads , the
distribution destination lists of the three event processing
threads held by the three distribution control threads are set
as follows . event processing thread d31 : s001 to s009 event
processing thread d32 : s004 to s009 , s001 to s003 event
processing thread d33 : s007 to s009 , s001 to s006
[0147] As a result , the probability that the standard threads
s001 to s003 hold only the parameter of d31 , the standard
threads s004 to 5006 hold only the parameter of d32 , and the
standard threads s007 to s009 hold only the parameter of d32
increases , and the possibility of holding a plurality of
parameters is able to be decreased .
[0148] In FIG . 24 , the distribution control threads p21 and
p22 transmit a copy request message copy_rq_s001 to the
event processing thread d31 , and sets the standard thread
s001 as a copy thread of the event processing thread d31 . On
the other hand , the distribution control thread p22 transmits
a copy request message copy_rq_s002 to the event process
ing thread d32 , and sets the standard thread s002 as a copy
thread of the event processing thread d32 . (However , the
distribution control thread p21 may transmit a copy request
message copy_rq_s002 to the event processing thread d32 .)
As a result , the standard thread s001 holds only the param
eter paral and the standard thread s002 holds only the
parameter para2 .
[0149] As described in the first to third specific examples
of the distribution processing , if a plurality of distribution
control threads shares the standard threads , the standard
threads are able to be efficiently used as the copy thread . On
the other hand , if the standard threads are used as a copy
thread of a single event processing thread or as few event
processing threads as possible , the types of parameters held
by the copy thread are able to be single or reduced .
[0150] Next , apart from the distribution control process
that improves the utilization efficiency of the standard thread
described above , the distribution destination transmission
process that improves the processing speed will be
described .
[0151] First Specific Example of Distribution Destination
Transmission Processing c_prc4
[0152] FIG . 25 is a diagram illustrating a first specific
example of the distribution destination transmission pro
cessing . In the example of FIG . 25 , four standard threads
s001 - s004 are provided . While the number of standard
threads is increased , a plurality of distribution control
threads p21 , p22 are prevented from using the standard
threads redundantly as the distribution destination . In the
example of FIG . 25 , the distribution destination lists dist_
list_p21 and dist_list_p22 of the distribution control threads
p21 and p22 have standard threads s001 and s002 , and s003
and s004 , respectively , and the redundancy of the standard
threads used by the distribution control threads p21 and p22
as distribution destinations is avoided .
[0153] As a premise , the distribution control threads p21
and p22 are informed that the number of distribution control
threads in the same stage is 2. However , since it is stream
processing , a plurality of distribution control threads are not
informed of information that another distribution control
thread has performed distribution control to generate a copy
thread .

US 2022/0019462 A1 Jan. 20 , 2022
11

2

[0154] In FIG . 25 , the distribution control thread p21
converts the standard threads s001 and s002 into copy
threads of the event processing thread d31 , and the distri
bution control thread p22 converts the standard threads s003
and s004 into copy threads of the event processing thread
d31 . That is , the distribution control threads p21 and p22
have generated copy threads in all standard threads of the
respective distribution destination lists .
[0155] The distribution control thread p21 sets the ratio of
the transmission amount of event messages to the event
processing thread d31 shared with another distribution con
trol thread p22 to “ 1 ” , and sets the ratio of the transmission
amount of the standard threads s001 and s002 converted into
the copy threads to “ 2 ” which is same as a number of
distribution control threads . This is because there are two
distribution control threads p21 and p22 , it is considered that
the same amount of event messages are transmitted from the
distribution control thread p22 to the event processing thread
d31 , and the ratio of the event processing thread d31 to the
standard thread s001 or s002 is 1 : 2 . The distribution control
thread p22 also transmits event messages at an identical
transmission amount ratio to d31 , s001 , s002 . According to
this , the ratio of the amount of event messages transmitted
from the distribution control thread p21 to the event pro
cessing thread d31 and the standard threads s001 and s002
is d31 : 5001 : s002 = 1 : 2 : 2 . In a same manner , the ratio for the
distribution control thread p22 is set to d31 : s003 : s004 = 1 : 2 :
2. Each distribution destination transmission processing
c_prc4 distributes the destinations of event messages so that
the transmission amount of each destination has the set ratio .
As a result , the ratio of the transmission amount is approxi
mately set to d31 : s001 : s002 : s003 : s004 = 2 : 2 : 2 : 2 : 2 .
[0156] As illustrated in FIG . 25 , when the ratio of the
transmission amount from p21 to d31 , s001 , and s002 is set
to 1/5 : 2/5 : 2/5 , and the ratio of the transmission amount from
p22 to d31 , s003 , and s004 is set to 1/5 : 2/5 : 2/5 , the message
amount and load of the five event processing threads d31 and
s001 to 5004 become uniform .
[0157] In the above , the ratio of the message transmission
amount is set on the assumption that all the standard threads
that all distribution control threads p21 and p22 are able to
use are converted into copy threads . It is assumed that event
messages are not concentrated on the event processing
thread d31 and so the distribution control thread p22 does
not perform distribution control . In this case , the amount of
messages from the distribution control thread s22 to the
event processing thread d31 is low . Therefore , as a rough
estimate , the ratio of the transmission amount from p21 to
d31 , s001 , and s002 is 1/5 : 2/5 : 2/5 , and the ratio of the
transmission amount from p22 to d31 is 1/5 , and the amount
of communication addressed to d31 , s001 , and s002 ,
becomes almost uniform at 2 : 2 : 2 .
[0158] Second Specific Example of Distribution Destina
tion Transmission Processing c_prc4
[0159] FIG . 26 is a diagram illustrating a second specific
example of the distribution destination transmission pro
cessing . In the example of FIG . 26 , three standard threads
s001 - s003 are provided . The distribution control threads p21
and p22 share the standard thread s002 as a copy thread , and
exclusively use the standard threads s001 and s003 , respec
tively . In this case , the distribution destination lists dist_
list_p21 and dist_list_p22 of the distribution control threads
p21 and p22 have standard threads s001 and s002 , and s002
and s003 , respectively . A share flag co_flg is provided in the

distribution destination list , and the standard thread s002
sets the share flag co_flg to “ true ” in both dist_list_p21 and
dist_list_p22 .
[0160] In FIG . 26 , the distribution control threads p21 and
p22 convert all the standard threads s001 and s002 , and s002
and s003 registered in the respective distribution destination
lists into copy threads , respectively . Therefore , all standard
threads s001 to s003 hold the parameter paral of the event
processing thread d31 .
[0161] In this case , the ratio of the amount of event
messages transmitted from the distribution control thread
p21 to the event processing threads d31 and the standard
threads s001 and s002 is set to d31 : 5001 : 5002 = 1 : 2 : 1 with the
same logic as in the first specific example . Since d31 and
s002 are shared , the ratio is 1 , and only the exclusive
standard thread s001 has a ratio of 2 which is the number of
distribution control threads d31 , d32 . In a same manner , the
ratio for the distribution control thread p22 is set to d31 :
s002 : s003 = 1 : 1 : 2 . As illustrated in FIG . 26 , when the ratio of
the transmission amount from p21 to d31 , s001 , and s002 is
set to 1/4 : 2/4 : 1/4 , and the ratio of the transmission amount
from p22 to d31 , s002 , s003 is set to 1/4 : 1/4 : 2/4 , the message
amount and the load of the four event processing threads d31
and s001 to s003 become uniform .
[0162] It is assumed that the distribution control thread
p22 does not perform distribution control . In this case , the
amount of messages transmitted from the distribution con
trol thread p22 to the event processing thread d31 is low .
Therefore , as a rough estimate , the ratio of the transmission
amount from p21 to d31 , s001 , and s002 is approximately
1/4 : 2/4 : 1/4 , and the ratio of the transmission amount from
p22 to 031 is 1/4 , and the amount of communication
addressed to d31 , s001 , and s002 becomes almost uniform at
2 : 2 : 1 .
[0163] In the second specific example , the standard
threads are partially shared and partially unshared to avoid
concentration of messages . Therefore , the purpose of avoid
ing the concentration of messages in the event processing
thread d31 is achieved while improving the utilization
efficiency of standard threads .
[0164] As described above , according to the present
embodiment , in the event stream processing system , a
standard thread is provided in advance in the subsequent
stage of an event processing thread in which messages are
likely to be concentrated . Then , a copy of some of the event
processing threads on which messages are temporarily con
centrated is generated in the standard thread , and the copy is
released when the message concentration is alleviated . As a
result , it is possible to suppress the concentration of mes
sages in the event processing thread while efficiently deploy
ing the resources of the standard thread .
[0165] According to the first aspect of the present embodi
ment , it is possible to provide an event stream processing
method and an event stream processing program that alle
viate , with a low amount of resources , the concentration and
heavy load of event processing .
[0166] All examples and conditional language provided
herein are intended for the pedagogical purposes of aiding
the reader in understanding the invention and the concepts
contributed by the inventor to further the art , and are not to
be construed as limitations to such specifically recited
examples and conditions , nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention . Although one or

2

US 2022/0019462 A1 Jan. 20 , 2022
12

the first event processing thread and the second event
processing thread hold a first parameter and a second
parameter , respectively ,

the method further comprising :
transmitting , by the heavy - load event processing thread ,

in response to reception of the copy request message ,
the parameters , held by the heavy - load event process
ing thread , to the standard thread that is converted to
the copy .

more embodiments of the present invention have been
described in detail , it should be understood that the various
changes , substitutions , and alterations could be made hereto
without departing from the spirit and scope of the invention .

1. A method of event stream processing for an event
stream processing system , the method comprising :

wherein the event stream processing system including
processing threads provided in each of a plurality of
stages , the processing threads including a distribution
control thread provided in a first stage , a first event
processing thread and a second event processing thread
provided in a second stage to execute , in response to a
processing message , processing corresponding to the
processing message , and a standard thread that is able
to be a copy of either the first event processing thread
or the second event processing thread ,

transmitting , by the distribution control thread , the pro
cessing message to either the first event processing
thread or the second event processing thread ,

transmitting , by the distribution control thread , when an
event processing thread of either the first event pro
cessing thread or the second event processing thread is
in a heavy load state , a copy request message that
requests converting the standard thread to the copy to
a heavy - load event processing thread and registers the
standard thread in a distribution destination list ,

transmitting , by the heavy - load event processing thread ,
parameters for operating as a copy of the heavy - load
event processing thread to the standard thread in
response to reception of the copy request message , and

executing , by a copy standard thread that has received the
parameters and being converted to the copy , processing
corresponding to the processing message received from
the distribution control thread by using the received
parameters .

2. The method of event stream processing according to
claim 1 , the method further comprising :

distributing , by the distribution control thread , the pro
cessing message to be transmitted to the heavy - load
event processing thread and the copy standard thread
based on the distribution destination list .

3. The method of event stream processing according to
claim 1 , the method further comprising :

transmitting , by the distribution control thread , a copy
release message to the copy standard thread to convert
the copy standard thread into a standard thread that is
not the copy when the heavy - load event processing
thread is no longer in a heavy load state .

4. The method of event stream processing according to
claim 1 , wherein

the event stream processing system has a plurality of the
standard threads ,

the method further comprising :
including , by the distribution control thread , identification

information of a standard thread that is converted to the
copy among the plurality of standard threads in the
copy request message and transmitting the copy request
message to the heavy - load event processing thread , and

transmitting , by the heavy - load event processing thread ,
the parameters to the standard thread that is converted
to the copy .

5. The method of event stream processing according to
claim 4 , wherein

6. The method of event stream processing according to
claim 4 , wherein the event stream processing system has a
plurality of the distribution control threads ,

the method further comprising :
holding , by each of the plurality of distribution control

threads , in the respective distribution destination list ,
identification information of copy candidate standard
threads and usage information relating to whether the
standard thread is converted to the copy ,

holding , by the first distribution control thread and the
second distribution control thread among the plurality
of distribution control threads , the identification infor
mation of common copy candidate standard thread in
the respective distribution destination lists , and

sharing , by the first distribution control thread and the
second distribution control thread , the common copy
candidate standard thread as a copy of the heavy - load
event processing thread .

7. The method of event stream processing according to
claim 4 , the method further comprising :

transmitting , by the distribution control thread , when the
first event processing thread is in the heavy load state ,
a copy request message , which requests converting the
first standard thread among the plurality of standard
threads to a copy standard thread , to the first event
processing thread ,

distributing , by the distribution control thread , the pro
cessing message to be transmitted to the first event
processing thread and the first standard thread ,

transmitting , by the distribution control thread , when the
second event processing thread is in the heavy load
state , the copy request message , which request convert
ing the second standard thread among the plurality of
standard threads to a copy standard thread , to the
second event processing thread , and

distributing , by the distribution control thread , the pro
cessing message to be transmitted to the second event
processing thread and the second standard thread .

8. The method of event stream processing according to
claim 4 , wherein

the event stream processing system has a plurality of the
distribution control threads ,

the method further comprising :
holding , by each of the plurality of distribution control

threads , identification information of copy candidate
standard threads and usage information relating to
whether the standard thread is converted to the copy in
the respective distribution destination list ,

holding , by each of the plurality of distribution control
threads , identification information of different copy
candidate standard threads respectively in the respec
tive distribution list ,

transmitting , by the first distribution control thread among
the plurality of distribution control threads , the copy
request message , which requests converting the copy

US 2022/0019462 A1 Jan. 20 , 2022
13

candidate standard thread in the distribution destination
list to the copy standard thread , to the heavy - load event
processing thread and transmitting the processing mes
sage at a transmission amount ratio of 1for the heavy
load event processing thread relative to N for the copy
standard thread , with the N being a number of the
plurality of distribution control threads .

9. A non - transitory computer readable storage medium
that stores therein an event stream processing program
causing a computer to execute an event stream processing
comprising :

wherein the event stream processing system including
processing threads provided in each of a plurality of
stages , the processing threads including a distribution
control thread provided in a first stage , a first event
processing thread and a second event processing thread
provided in a second stage to execute , in response to a
processing message , processing corresponding to the
processing message , and a standard thread that is able
to be a copy of either the first event processing thread
or the second event processing thread ,

transmitting , by the distribution control thread , the pro
cessing message to either the first event processing
thread or the second event processing thread ,

transmitting , by the distribution control thread , when an
event processing thread of either the first event pro
cessing thread or the second event processing thread is
in a heavy load state , a copy request message that
requests converting the standard thread to the copy to
a heavy - load event processing thread and registers the
standard thread in a distribution destination list ,

transmitting , by the heavy - load event processing thread ,
parameters for operating as a copy of the heavy - load
event processing thread to the standard thread in
response to reception of the copy request message , and

executing , by a copy standard thread that has received the
parameters and being converted to the copy , processing
corresponding to the processing message received from
the distribution control thread by using the received
parameters .

* *

