
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Processed by Luminess, 75001 PARIS (FR)

(19)
EP

3
76

2
84

2
B

1
EP003762842B1

(11) EP 3 762 842 B1
(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
10.08.2022 Bulletin 2022/32

(21) Application number: 19710946.5

(22) Date of filing: 01.03.2019

(51) International Patent Classification (IPC):
G06F 21/10 (2013.01) G06F 9/455 (2018.01)

(52) Cooperative Patent Classification (CPC):
G06F 21/105; G06F 9/455; H04L 2463/103

(86) International application number:
PCT/US2019/020174

(87) International publication number:
WO 2019/173114 (12.09.2019 Gazette 2019/37)

(54) ACTIVATION OF AN APPLICATION BASED ON PRIOR ACTIVATION OF AN ISOLATED
COUNTERPART APPLICATION

AKTIVIERUNG EINER ANWENDUNG AUF BASIS DER VORHERIGEN AKTIVIERUNG EINER
ISOLIERTEN GEGENANWENDUNG

ACTIVATION D’UNE APPLICATION BASÉE SUR L’ACTIVATION PRÉALABLE D’UNE APPLICATION
HOMOLOGUE ISOLÉE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 08.03.2018 US 201815916146

(43) Date of publication of application:
13.01.2021 Bulletin 2021/02

(73) Proprietor: Microsoft Technology Licensing, LLC
Redmond, WA 98052-6399 (US)

(72) Inventors:
• RAMANUJAM, Sinduja

Redmond, Washington 98052-6399 (US)
• GUTIERREZ OLIVO, Axel Alejandro

Redmond, Washington 98052-6399 (US)

• PEZA RAMIREZ, Carlos E.
Redmond, Washington 98052-6399 (US)

• JAIN, Amit
Redmond, Washington 98052-6399 (US)

• SCRIPNICIUC, Andrei
Redmond, Washington 98052-6399 (US)

• RISCUTIA, Vlad
Redmond, Washington 98052-6399 (US)

(74) Representative: Grünecker Patent- und
Rechtsanwälte
PartG mbB
Leopoldstraße 4
80802 München (DE)

(56) References cited:
US-A1- 2005 132 347 US-B1- 8 763 159

EP 3 762 842 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] Some computing systems are designed to run
an application in a manner so as to isolate the application
from one or more counterpart applications. For example,
the application may be designed to run within a container
that is initiated by an operating system (OS) when a user
instructs the OS to launch the application. Although a
container may be a useful tool to ensure that the appli-
cation operates reliably on any given computing platform,
the container can present challenges in relation to per-
mitting the application to securely communicate with oth-
er applications that are running outside of the container.
In particular, the OS will typically impose numerous lim-
itations on how an application that is running within a
particular container is permitted to communicate with oth-
er applications that are designed to run external to the
particular container.
[0002] Unfortunately, communication barriers that are
imposed with respect to containers may prevent even
some desirable communications from being securely
transmitted between an application that is running within
the container and a counterpart application(s) that is de-
signed to run external to the container. For example, un-
der many circumstances an application that is running
within a container may be unable to directly communicate
with, or even securely write information to, a storage lo-
cation that is accessible by the counterpart application.
Thus, the counterpart application(s) may remain unap-
prised as to when certain activities are performed with
respect to an application while it is running within the
container, even when those activities are directly ger-
mane to the governance of certain behaviors and/or func-
tionalities of the counterpart application(s).
[0003] It is with respect to these and other considera-
tions that the disclosure made herein is presented.
[0004] US 8 763 159 B1 relates to a system and a
method for managing licensing of virtual environment ap-
plications. US 8 763 159 B1 describes that a licensing
module of a first installed container application detects
installation of affiliated applications and gives them a
group licensing key for passing it to the licensing server.
The licensing server then derives licensing parameters
of the affiliated applications from the group key and gives
the licenses to the affiliated applications in case of suc-
cessful validation. Like this, the licensing system pro-
vides protection from unauthorized copying of the appli-
cations.
[0005] It is the object of the present invention to provide
systems and methods for jointly activating isolated coun-
terpart applications in a secure and efficient manner and
thus avoiding computationally burdensome redundant
activation prompts.
[0006] This object is solved by the subject matter of
the independent claims.
[0007] Preferred embodiments are defined in the de-

pendent claims.

SUMMARY

[0008] Technologies described herein enable a sys-
tem to securely activate an application on a computing
device based on a prior activation of an isolated (e.g.,
containerized) counterpart application on the computing
device. Embodiments disclosed herein enable an appli-
cation that is restricted from directly communicating with
a counterpart application (e.g., due to containerization)
to share license data locally to communicate instead with
an application license manager (that is external to the
computing device) to manage license data correspond-
ing to the counterpart application. For example, in a sce-
nario where a container application and a native appli-
cation are installed on a particular computing device, an
operating system (OS) of the computing device may re-
strict communications to and from the container applica-
tion so that a license that is obtained by the container
application cannot be directly shared with the native ap-
plication. According to the techniques described herein,
when a license is obtained at the computing device for
the container application, the application license manag-
er is caused to update license data in association with
the native application so that a counterpart license can
be obtained automatically by the native application, and
vice versa. In this way, once a user has positively re-
sponded to an activation prompt that is presented by ei-
ther one of the container application or the native appli-
cation, whichever application the user has not manually
activated by providing user input will be automatically
activated at the computing device based on communica-
tions with the application license manager.
[0009] The disclosed technologies represent a sub-
stantial advantage over existing application activation
systems which can jointly activate counterpart applica-
tions only under circumstances where the counterpart
applications can directly communicate with one another.
For example, some modern application suites are con-
figured to locally store a license to share licensing sta-
tuses between multiple applications. When a particular
application is activated on a computing device, a license
obtained during that activation is locally stored in a shared
location (e.g., Registry Keys) to activate all of the coun-
terpart applications of the application suite. However, un-
der circumstances where a counterpart application is iso-
lated (e.g., containerized) from the particular application
through which the license was obtained, existing appli-
cation activation systems lack functionality for securely
sharing the license with the "isolated" counterpart appli-
cation. The unfortunate result of this limitation is that re-
dundant activation prompts may be exposed via coun-
terpart application(s) even after a user has responded to
a previous activation prompt. It can be appreciated that
redundant computing processes (e.g., exposing redun-
dant activation prompts) result in exorbitant consumption
of computing resources. For example, by causing a user

1 2

EP 3 762 842 B1

3

5

10

15

20

25

30

35

40

45

50

55

to progress through redundant activation sequences for
counterpart products, the processing units of a comput-
ing device are caused to undergo unnecessarily high
numbers of processing cycles. Additionally, due to the
user having to re-enter much of the same information
(e.g., credentials, user names, passwords, etc.) in a re-
dundant activation prompt as was previously entered in
an initial activation prompt, it can further be appreciated
that redundant activation prompts also unnecessarily in-
crease networking traffic.
[0010] In an exemplary implementation, a computing
device has installed thereon a native application and a
container application that an operating system (OS) of
the computing device at least partially restricts commu-
nications between. In particular, when the container ap-
plication is launched, the OS initiates the container ap-
plication within a container that restricts communications
between it and other applications that are designed to
run natively on the computing device. Exemplary con-
tainers include, but are not limited to, LINUX containers,
MICROSOFT HYPER-V containers, WINDOWS SERV-
ER containers, and/or any other operating-system-level
virtualization method. The native application may be con-
figured to be run by an operating system (OS) without
containerization layers that are associated with the con-
tainer application. By virtue of the container, the container
application may be restricted from passing information
to the native application, and vice versa. For example, if
either one of the native application or the container ap-
plication have been activated on the computing device
by storing a license locally thereon, the container may
prevent that license from being shared locally for use by
both the container application and the native application.
[0011] In this exemplary implementation, the native ap-
plication is a counterpart to the container application in
the sense that an activation of either one of these appli-
cations on the computing device is also applicable to the
other application. For example, the container application
and the native application may be commonly associated
with an application suite for which a single license is us-
able by multiple applications. As a specific but non-lim-
iting example, the container application may be an ap-
plication management portal (e.g., MY OFFICE by MI-
CROSOFT) for managing subscriptions for and/or view-
ing recent activity of a plurality of different native appli-
cations (e.g., MICROSOFT VISIO, MICROSOFT
WORD, MICROSOFT POWERPOINT, etc.) that are in-
stalled and/or are available for installation on the com-
puting device. However, due to the container restricting
communications between the native application and the
container application, it may not be feasible to locally
pass a license that is received by the container applica-
tion to the native application(s) for activation on the com-
puting device.
[0012] For example, upon a user launching the con-
tainer application, the container application determines
that it is not currently activated on the computing device
and responds by exposing an activation prompt. The ac-

tivation prompt may, for example, be designed to inform
the user that the container application is not currently
activated and to prompt the user to enter user credentials
and/or a product key to activate the container application.
Based on user input received via the activation prompt,
the container application transmits an activation request
to an application license manager with which both the
container application and the native application can com-
municate. In this example, the activation request includes
a machine identifier (ID) that uniquely identifies the com-
puting device. The activation request may further include
an activation scope that indicates whether the activation
request applies to the native application.
[0013] As a specific but non-limiting example, the com-
puting device may have installed thereon the container
application as well as a first native application through
an Nth native application. In this example, the activation
request may define a subset of these applications as, for
example, the first native application, a second native ap-
plication, and the container application, to enable activa-
tion of this subset of applications on the computing de-
vice. Based on the machine ID and the activation scope
that are provided in the activation request, the application
license manager may update license data for the subset
of applications in association with the machine ID. Thus,
in this specific example, the application license manager
will update the license data to designate all of the first
application, the second native application, and the con-
tainer application for activation on the computing device.
[0014] In some embodiments, the application license
manager may provide, to the container application, prod-
uct activation data that includes a container license for
activation of the container application on the computing
device. Then, the container application may store the
container license in a "container available" portion of the
local storage that is available to the container application
but is not available to the native application(s). The con-
tainer available portion of the local storage may be a vir-
tual registry that is accessible only by the container ap-
plication and/or other applications that are designed to
run within the container. Accordingly, upon a user closing
down and then re-launching the container application,
the container license can be obtained by the container
application (e.g., to unlock various functionalities of the
container application). In contrast, when the native ap-
plication is launched it will not be able to obtain the con-
tainer license despite the container license being stored
locally on the computing device.
[0015] Rather than exposing a redundant activation
prompt to the user due to the local unavailability of a
license, the native application may transmit an activation
inquiry to the application license manager to determine
whether it has been designated for activation on the com-
puting device. For example, after having already de-
ployed the container application to transmit the activation
request, the user may instruct the OS to launch the native
application. Then, the native application may determine
that a native license is not locally available and, based

3 4

EP 3 762 842 B1

4

5

10

15

20

25

30

35

40

45

50

55

thereon, transmit the activation inquiry to the application
license manager. Responsive to the activation inquiry,
the application license manager examines the license
data and determines that the native application has been
designated for activation on the computing device. Ac-
cordingly, the application license manager returns coun-
terpart product activation data for activation of the native
application on the computing device. The counterpart
product activation data may include a native license for
the native application to store in a "native available" por-
tion of the local storage that is available to the native
application(s) but is not available to the container appli-
cation.
[0016] Thus, once the counterpart product activation
data is received by the native application, both of the
container application and the native application(s) may
be activated on the computing device based on the single
activation request that is sent via the container applica-
tion despite the communication barriers presented by the
container. In this way, a user can seamlessly cause ac-
tivation of both container application(s) and native appli-
cation(s) by positively responding to a single activation
prompt. It can be appreciated that the techniques dis-
closed herein provide benefits over existing application
activation techniques which would require the user to re-
spond to separate activation prompts in association with
each of the container application and at least one native
application since the container prevents these applica-
tions from securely sharing license information locally on
the computing device.
[0017] It should be appreciated that any reference to
"first," "second," etc. items and/or abstract concepts with-
in the description is not intended to and should not be
construed to necessarily correspond to any reference of
"first," "second," etc. elements of the claims. In particular,
within this Summary and/or the following Detailed De-
scription, items and/or abstract concepts such as, for ex-
ample, individual applications and/or activation inquiries
and/or licenses may be distinguished by numerical des-
ignations without such designations corresponding to the
claims or even other paragraphs of the Summary and/or
Detailed Description. For example, any designation of a
"first activation inquiry" and "second activation inquiry"
within a paragraph of this disclosure is used solely to
distinguish two different activation inquiries within that
specific paragraph - not any other paragraph and partic-
ularly not the claims.
[0018] It should be appreciated that the above-de-
scribed subject matter may also be implemented as a
computer-controlled apparatus, a computer process, a
computing system, or as an article of manufacture such
as a computer-readable medium. These and various oth-
er features will be apparent from a reading of the following
Detailed Description and a review of the associated draw-
ings.
[0019] This Summary is provided to introduce a selec-
tion of concepts in a simplified form that are further de-
scribed below in the Detailed Description. This Summary

is not intended to identify key features or essential fea-
tures of the claimed subject matter, nor is it intended that
this Summary be used to limit the scope of the claimed
subject matter. Furthermore, the claimed subject matter
is not limited to implementations that solve any or all dis-
advantages noted in any part of this disclosure.

DRAWINGS

[0020] The Detailed Description is described with ref-
erence to the accompanying figures. In the figures, the
left-most digit(s) of a reference number identifies the fig-
ure in which the reference number first appears. The
same reference numbers in different figures indicate sim-
ilar or identical items. References made to individual
items of a plurality of items can use a reference number
with another number included within a parenthetical to
refer to each individual item. Generic references to the
items may use the specific reference number without the
sequence of letters.

FIG. 1 illustrates an exemplary system for activating
an application on a computing device based on a
prior activation of an at least partially isolated coun-
terpart application on the computing device.
FIG. 2 illustrates an exemplary system in which a
user instructs the OS to launch a first application
which then responds by checking for a license both
at the local storage and with the application license
manager prior to exposing an activation prompt.
FIG. 3 illustrates an exemplary system in which a
user activates the first application which causes the
application license manager to provide a license to
the first application and also to update the license
data to designate a second application for automatic
activation at the computing device.
FIG. 4 illustrates an exemplary system in which a
user instructs the OS to launch the second applica-
tion after the license data has been updated as de-
scried in FIG. 3 which results in the second applica-
tion being automatically activated at the computing
device.
FIG. 5 is a flow diagram of an example method for
an application to perform upon being launched to
check both locally for an existing license and remote-
ly for an available license prior to exposing an acti-
vation prompt to a user.
FIG. 6 is a flow diagram of an example method for
an application license manager to perform to activate
multiple applications on a computing device based
on an activation request received from an individual
one of the multiple applications.
FIG. 7 shows additional details of an example com-
puter architecture for a computer capable of execut-
ing the systems and methods described herein.

5 6

EP 3 762 842 B1

5

5

10

15

20

25

30

35

40

45

50

55

DETAILED DESCRIPTION

[0021] The following Detailed Description describes
technologies that enable a system to securely activate
one or more applications on a computing device based
on a prior activation of an isolated (e.g., containerized)
counterpart application on the computing device. An ex-
emplary embodiment of the system described herein en-
ables a user to provide user input in association with an
activation prompt of a container application that is in-
stalled on a computing device. Aspects of the user input
are used by the container application to generate an ac-
tivation request that is sent from the computing device
to an application license manager. The activation request
may include a machine identifier (ID) that uniquely iden-
tifies the computing device. The activation request may
also include an activation scope which indicates which
application(s) on the computing device the activation re-
quest applies to. For example, the activation scope might
indicate that the activation request is applicable to both
the container application as well as a native application
that is a counterpart to the container application. Respon-
sive to the activation request, the application license
manager may return, to the container application, product
activation data that includes a license that is usable for
activating the container application on the computing de-
vice. Upon receipt of the license, the container applica-
tion may store the license locally so that each time a user
closes and re-launches the container application the li-
cense can be read to determine the activation status of
the container application.
[0022] Subsequent to having activated the container
application, the user may launch the native application
that the activation request which was previously sent by
the container application is also applicable to. For exam-
ple, the container application and the native application
may be "counterparts" in the sense that an activation of
either one is also applicable to the other. However, by
virtue of the container application being designed to run
within a container, an operating system (OS) of the com-
puting device may impose restrictions on communica-
tions between the container application and the native
application. Thus, even though the container application
may have already received the license at the computing
device, it may be impractical for this license to be locally
shared between the container application and the native
application.
[0023] Notwithstanding the native application being
unable to locally communicate with the container appli-
cation so as to obtain the license, the native application
may refrain from exposing an activation prompt to the
user. Rather, the native application may transmit to the
application license manager an activation inquiry that in-
cludes the machine ID to cause the application license
manager to determine whether the native application has
been designated for activation on the computing device.
For example, upon receipt of the activation request from
the container application, the application licensing man-

ager may update license data to indicate which applica-
tion(s) on the computing device are to be automatically
activated upon request. Because in the current example
the activation scope indicated that the activation request
was also applicable to the native application, the appli-
cation license manager responds to the activation inquiry
received from the native application with a license that
is usable to activate the native application on the com-
puting device. In this way, once a user has positively
responded to an activation prompt that is presented by
the container application, the native application (which
the user has not manually activated by providing user
input) will be automatically activated at the computing
device based on communications with the application li-
cense manager.
[0024] The present disclosure is believed to be appli-
cable to a variety of systems and approaches involving
jointly licensing and/or activating two or more applica-
tions which are at least partially isolated from one another
on a computing device. Aspects of the present disclosure
are predominantly described in the context of an exem-
plary implementation in which an activation request is
sent by a container application and wherein the activation
request defines an activation scope that covers a native
application that is installed on the same computing device
as the container application. While the present disclosure
is not necessarily limited to this exemplary implementa-
tion, an appreciation of various aspects of the disclosed
techniques is best gained through a discussion of such
an exemplary implementation. It can be appreciated that
the disclosed techniques are also applicable to other im-
plementations in which a native application sends an ac-
tivation request defining an activation scope as including
a container application. For example, a user manually
activating a native application may result in an automatic
activation of a container application, and vice versa.
[0025] Turning now to FIG. 1, illustrated is an exem-
plary system 100 for activating an application on a com-
puting device 106 based on a prior activation of an at
least partially isolated counterpart application on the
computing device 106. More specifically, in the illustrated
example, one or more of native applications 108 are au-
tomatically activated on the computing device 106 based
on an activation request 126 that is generated by a con-
tainer application 112 with which the one or more native
applications 108 are at least partially restricted from com-
municating.
[0026] In the illustrated example, the computing device
106 is shown to include a first native application 108(1)
through an Nth native application 108(N). As used herein,
the term "native application" may refer generally to any
computing application that is configured to run by access-
ing one or more native features of an operating system
(OS) 116 of the computing device 106. Exemplary native
applications include, but are not limited to, WIN32 appli-
cations that are capable of accessing a full set of WIN-
DOWS application programing interfaces (APIs). It can
be appreciated, therefore, that under various exemplary

7 8

EP 3 762 842 B1

6

5

10

15

20

25

30

35

40

45

50

55

circumstances desktop versions of MICROSOFT VISIO,
MICROSOFT WORD, MICROSOFT POWERPOINT,
ADOBE ACROBAT, and/or ABOBE PHOTOSHOP may
aptly be described as native applications.
[0027] As further illustrated, the computing device 106
includes a container application 112 that is designed to
be run by the OS 116 in a container 110. As used herein,
the term "container application" may refer generally to
any computing application that is configured to be run
within an isolated (e.g., contained) computing environ-
ment such as, for example, a LINUX container, a MICRO-
SOFT HYPER-V container, a WINDOWS SERVER con-
tainer, and/or any other isolated computing environment
that is facilitated via operating-system-level virtualization
methods. The computing device 106 may further include
a communication channel 114 that enables at least some
communications between the OS 116 and the container
application 112. In some embodiments, the communica-
tion channel 114 may be a virtual socket channel such
as, for example, a HYPERVISOR socket channel.
[0028] In the illustrated example, the computing device
106 further includes a local storage 118. Exemplary local
storage 118 may include, but is not limited to, SATA-type
solid-state hard drives, SATA-type hard disks, PATA-
type solid-state hard drives, PATA-type hard disks, USB
"flash" drives, SD non-volatile memory cards, and/or any
other suitable component for providing non-volatile com-
puter-readable media. As illustrated, the local storage
118 may include a "native available" portion that is ac-
cessible by the native applications 108 but is inaccessible
to the container application 112. As further illustrated,
the local storage 118 may include a "container available"
portion that is accessible by the container application 112
but is inaccessible to the native application 108. In some
instances, the local storage 118 may further include a
"commonly available" portion that is accessible by both
of the native applications 108 and the container applica-
tion 112.
[0029] The local storage 118 may include a machine
ID 120 that uniquely identifies the computing device 106.
In some implementations, the machine ID 120 may be
stored in the "commonly available" portion of the local
storage 118. Additionally, or alternatively, the machine
ID may be stored in one or both of the "natively available"
portion and/or the "container available" portion of the lo-
cal storage 118.
[0030] With respect to the data flow scenario of FIG.
1, upon a user instructing the OS 116 to launch the con-
tainer application 112, a first activation inquiry 122(1)
may be generated and transmitted from the container
110 to an application license manager 102. As illustrated,
the container 110 and the container application 112
therein reside in a local data layer in the sense that the
container 110 is locally executed at the computing device
106. As further illustrated, the application license man-
ager 102 resides in a cloud data layer in the sense that
the application license manager 102 is implemented as
a web service and is executed externally from the com-

puting device 106.
[0031] In some implementations, prior to sending the
first activation inquiry 122, the container application 112
is configured to check the local storage 118 to determine
whether a container license 132 has been stored locally
in order to activate the container application 112 on the
computing device 106. Then, if the container license 132
is available on the local storage 118, the container ap-
plication 112 may recognize that it has been activated
on the computing device 106 and operate in a standard
"activated" mode (e.g., by enabling a user to utilize var-
ious functionalities of the container application). Howev-
er, if the container license 132 is not available on the
local storage 118, then the container application 112 may
recognize that it is not currently activated on the comput-
ing device 106.
[0032] It can be appreciated that according to conven-
tional application activation techniques, upon a user in-
structing an OS to launch an application that is not cur-
rently activated on a computing device 106 due to a li-
cense not being available to the application, that appli-
cation would typically launch an activation prompt user
interface (UI) to inform the user that the application has
not been activated and/or to prompt the user to activate
the application. According to implementations of the tech-
niques disclosed herein, such an application will instead
transmit an activation inquiry 122 to the application li-
cense manager 102 to inquire as to whether the applica-
tion has been designated for automatic activation (e.g.,
activation without exposure of an activation prompt).
[0033] In the illustrated implementation, upon deter-
mining that there is no container license 132 available
on the local storage 118, the container application 112
responds by transmitting the first activation inquiry 122(1)
to the application license manager 102. The first activa-
tion inquiry 122(1) includes the machine ID 120 to enable
the activation license manager 102 to determine whether
the container application 112 has been designated to be
provided with a license at the computing device 106. For
example, the application license manager 102 may ex-
amine license data 104 and determine that the container
application 104 has been designated to receive a license.
It is worth noting that the specific details of the license
data 104 shown in FIG. 1 do not reflect the container
application 112 not being designated to receive a license;
rather, the specific details shown reflect the license data
104 as updated based on the activation request 126 dis-
cussed below. Therefore, in response to the first activa-
tion inquiry 122(1), the application license manager 102
transmits license status data 124 to the container appli-
cation 112 which indicates that a license is not currently
available for the container application 112.
[0034] The container application 112 may then trans-
mit to the application license manager 102 an activation
request 126 that includes the machine ID 120 and/or an
activation scope 128 that indicates various details of what
type of activation is being requested. Based on the acti-
vation request 126, the application license manager 102

9 10

EP 3 762 842 B1

7

5

10

15

20

25

30

35

40

45

50

55

may be caused to update the license data 104. For ex-
ample, in the illustrated scenario, the activation request
126 causes the application license manager 102 to up-
date the license data 104 in association with the machine
ID 120 to specifically indicate that the license status for
the machine ID is "Activated" in accordance with a license
type of "Enterprise Class 1" and a license term that "Ex-
pires 1/1/2020." As further illustrated, the license data
104 has been updated to indicate that the activation
scope 128 includes the first native application 108(1), the
second native application 108(2), and the container ap-
plication 112 but excludes the Nth native application
108(N).
[0035] In response to the activation request 126, the
application license manager 102 provides product acti-
vation data 130 to the container application 112. As in-
dicated by the lock symbol of the container application
being toggled from "locked" to "unlocked," the product
activation data 130 is usable to activate the container
application 112 on the computing device 106. For exam-
ple, the product activation data 130 may include a con-
tainer license 132 that is stored by the container appli-
cation 112 within the container available portion of the
local storage 118. The container available portion of the
local storage 118 may be a virtual registry and/or virtual
storage that is accessible only by the container applica-
tion 112 but not the native applications 108. Accordingly,
upon a user closing down and then re-launching the con-
tainer application 112, the container license 132 can be
re-obtained by the container application 112 to determine
whether it is appropriate to unlock various functionalities
of the container application 112.
[0036] As described above, the OS 116 may impose
strict limitations on an ability of the native application 108
to communicate with the container application 112, and
vice versa. Accordingly, the native application(s) 108
may be unable to obtain the container license 132 locally
or otherwise locally communicate with the container ap-
plication 112 to determine that an activation has occurred
which is applicable to the native application(s) 108. Thus,
in the illustrated scenario, a second activation inquiry
122(2) may be transmitted to the application license man-
ager 102 for determining whether the second native ap-
plication 108(2) (and/or other native applications 108 for
that matter) have been designated within the license data
104 for automatic activation. For example, responsive to
a user instructing the OS 116 to launch the second native
application 108(2), the second native application 108(2)
may examine the local storage 118 and determine that
a native license 136 is not locally available. Based on
this determination, the second native application 108(2)
may transmit the second activation inquiry 122(2) to the
application license manager 102. Similar to the first ac-
tivation inquiry 122(1), the second activation inquiry
122(2) also includes the machine ID 120 to enable the
application license manager 102 to identify which partic-
ular computing device the second activation inquiry
122(2) corresponds to.

[0037] Upon receipt of the second activation inquiry
122(2), the application license manager 102 examines
the license data 104 to determine whether the second
native application 108(2) has been designated for auto-
matic activation at the computing device 106. As illus-
trated, following receipt of the activation request 126, the
application license manager 102 has updated the license
data 104 to indicate that a license has been activated
with respect to the computing device 106 as identified by
the machine ID 120. The "updated" license data 104 fur-
ther indicates that the license is applicable to second
native application 108(2). Therefore, the application li-
cense manager 102 responds to the second activation
inquiry 122(2) with counterpart product activation data
134.
[0038] As indicated by the lock symbol of the first native
application 108(1) and the second native application
108(2) being toggled from "locked" to "unlocked," the
counterpart product activation data 134 is usable to ac-
tivate these two native applications 108 on the computing
device 106. For example, the counterpart product acti-
vation data 134 may include a native license 136 which
may be stored by the second native application 108(2)
within the native available portion of the local storage
118. In some implementations, the native license 136 is
a duplicate instance of the container license 132. Stated
plainly, the native license 136 may be identical or sub-
stantially identical to the container license 132. The na-
tive available portion of the local storage 118 may corre-
spond to Registry Keys and/or other configuration data-
bases that are suitable for storing encrypted and/or un-
encrypted product licenses.
[0039] Once the counterpart product activation data
134 is obtained by the second native application 108(2),
any native application(s) 108 for which the counterpart
product activation data 134 is applicable may be activat-
ed on the computing device 106 without any subsequent
activation prompt being shown to the user in association
with these native application(s) 108. In this way, one or
more processing units of the computing device 106 may
be spared from having to perform redundant processing
cycles which would otherwise be required to re-collect
user credentials, and/or any other data collected in as-
sociation with the activation prompt presented by the con-
tainer application 112.
[0040] To illustrate aspects of the techniques disclosed
herein, FIGS. 2 - 4 illustrate exemplary data flow scenar-
ios in which various operations and/or functionalities oc-
cur in a specific order. For example, FIG. 2 describes
various operations and/or functionalities occurring at five
sequential times that are individually labeled T1 through
T5. However, the order in which these operations and/or
functionalities are described and/or illustrated herein is
not intended to be construed as a limitation. Rather, any
number of the operations and/or functionalities described
with respect to FIGS. 2 - 4 may be combined in any order
and/or in parallel in accordance with the present disclo-
sure. Other processes and/or operations and/or function-

11 12

EP 3 762 842 B1

8

5

10

15

20

25

30

35

40

45

50

55

alities described throughout this disclosure shall be in-
terpreted accordingly.
[0041] Turning now to FIG. 2, illustrated is an exem-
plary system 200 in which a user 210 instructs the OS
116 to launch a first application 204(1) which then re-
sponds by checking for a license both at the local storage
118 and with the application license manager 102 prior
to exposing an activation prompt 212.
[0042] At time T1, the user 210 provides first user input
202(1) to the computing device 106 via an input device
208. As illustrated, the first user input 202(1) is a "Launch
App" instruction that corresponds to the first application
204(1). Upon receipt of the first user input 202(1), the OS
116 may begin to execute the first application 204(1). In
some implementations, the OS 116 further initializes the
container 110 and/or the communication channel 114 to
isolate the first application 204(1) from a second appli-
cation 204(2).
[0043] At time T2, the first application 204(1) analyzes
the local storage 118 to check for a corresponding li-
cense. As shown, the first application 204(1) is shown to
be checking for the container license 132 which is cur-
rently not present at the local storage 118. It can be ap-
preciated that the presence or absence of a correspond-
ing license may inform the first application 204(1) as to
various operations to subsequently perform. For exam-
ple, if a corresponding license is present in the local stor-
age 118, this may inform the first application 204(1) to
make certain functionalities available to the user 210.
Moreover, according to conventional application activa-
tion techniques, if a corresponding license is not present,
this may inform the first application 204(1) to perform
alternative operations such as, for example, exposing
the activation prompt 212.
[0044] In contrast to the aforementioned conventional
application activation techniques, at time T3, the first ap-
plication 204(1) may respond to a corresponding license
being absent from the local drive 118 by transmitting the
first activation inquiry 122(1) to the application license
manager 102. As shown in the license data 104 of FIG.
2, the License Status associated with the computing de-
vice 106 at the time when the first activation inquiry 122(1)
is transmitted is "Not Activated."
[0045] At time T4, therefore, the application license
manager 102 responds to the first activation inquiry
122(1) with license status data 124 to inform the first ap-
plication 204(1) that no license is currently available for
the first application 204(1) at the computing device 106
(as identified by the machine ID 120).
[0046] At time T5, the first application 204(1) responds
to receiving the license status data 124 by causing an
output device 206 to expose an activation prompt 212.
As indicated by the lock symbol of the container applica-
tion remaining "locked," the first application 204(1) re-
mains locked throughout the exemplary data flow sce-
nario of FIG. 2.
[0047] Turning now to FIG. 3, illustrated is an exem-
plary system 300 in which a user 210 activates the first

application 204(1) which causes the application license
manager 102 to provide a license to the first application
204(1) and also to update the license data 104 to desig-
nate a second application 204(2) for automatic activation
at the computing device 106. For illustrative purposes,
FIG. 3 is discussed with respect to an exemplary data
flow scenario that begins at time T6 which is subsequent
to T5 as discussed in relation to FIG. 2.
[0048] At time T6, the user 210 provides second user
input 202(2) to the computing device 106 via the input
device 208. As illustrated, the second user input 202(2)
is an "Activate App" instruction that corresponds to the
first application 204(1). The "Activate App" instruction
may include any information that is relevant to activation
of the first application 204(1) and/or the second applica-
tion 204(2). For purposes of the present discussion, as-
sume that the "Activate App" instruction includes the ma-
chine ID 120 and indicates a type of license being re-
quested and a term of the license being requested. In
various implementations, the license type may indicate
which applications on the computing device 106 the "Ac-
tivate App" instruction is requesting activation for.
[0049] At time T7, the first application 204(1) transmits
an activation request 126 to the application license man-
ager 102 to request a corresponding license to unlock
certain functionalities of the first application 204(1) on
the computing device 106. Responsive to the activation
request 126, the application license manager 102 up-
dates license data 104 to designate the second applica-
tion 204(2) for automatic activation at the computing de-
vice 106. For example, the "updated" license data 104
indicates that a license that is issued to the first applica-
tion 204(1) based on the activation request 126 is equally
applicable to the second application 204(2).
[0050] At time T8, the application license manager 102
responds to the activation request 126 with product ac-
tivation data 130. As indicated by the lock symbol of the
first application 204(1) being toggled from "locked" to "un-
locked," the product activation data 130 is usable to ac-
tivate the first application 204(1) on the computing device
106. For example, the product activation data 130 may
include the container license 132.
[0051] At time T9, the first application 204(1) saves at
least some of the product activation data 130 into the
local storage 118 for subsequent use in unlocking one
or more application functionalities 302.
[0052] At time T10, the first application 204(1) may ex-
pose the one or more application functionalities 302 to
the user 210 via the output device 206.
[0053] Turning now to FIG. 4, illustrated is an exem-
plary system 400 in which a user 210 instructs the OS
116 to launch the second application 204(2) after the
license data 104 has been updated as described in FIG.
3 to designate the second application 204(2) for auto-
matic activation at the computing device 106. For illus-
trative purposes, FIG. 4 is discussed with respect to an
exemplary data flow scenario that begins at time T11
which is subsequent to T10 as discussed in relation to

13 14

EP 3 762 842 B1

9

5

10

15

20

25

30

35

40

45

50

55

FIG. 3. Furthermore, as indicated by the strike-through
text and the "X" symbol over the container 110 and the
communication channel 114, the operations described
in FIG. 4 may occur after the first application 204(1)
and/or a container 110 corresponding thereto have been
terminated.
[0054] At time T11, the user 210 provides third user
input 202(3) to the computing device 106 via an input
device 208. As illustrated, the third user input 202(3) is
a "Launch App" instruction that corresponds to the sec-
ond application 204(2). Upon receipt of the third user
input 202(3), the OS 116 may begin to execute the sec-
ond application 204(2).
[0055] At time T12, the second application 204(2) an-
alyzes the local storage 118 to check for a corresponding
license. It can be appreciated that the presence or ab-
sence of a corresponding license may inform the second
application 204(2) as to various operations to subse-
quently perform. For example, if a corresponding license
is present in the local storage 118, the second application
204(2) may unlock certain functionalities for use by the
user 210. As illustrated, however, a corresponding li-
cense is not present at time T12. For example, although
a license does exist on the local storage 118, that license
is not obtainable by the second application 204(2) for one
or more reasons. For example, by virtue of one or both
of the first application 204(1) or the second application
204(2) being designated to be run within a container 110,
the container license 132 may be stored in association
with a particular namespace and/or partition that is inac-
cessible to the second application 204(2).
[0056] At time T13, therefore, the second application
204(2) responds to a corresponding license being absent
from the local drive 118 by transmitting a second activa-
tion inquiry 122(2) to the application license manager
102. As shown in the license data 104 of FIG.4, the Li-
cense Status associated with the computing device 106
at the time when the second activation inquiry 122(2) is
transmitted is "Activated." Furthermore, the license
scope of this activation includes the second application
204(2).
[0057] At time T14, therefore, the application license
manager 102 responds to the second activation inquiry
122(2) with counterpart product activation data 134 to
automatically activate the second application 204(2) on
the computing device 106 without the user 210 being
exposed to any subsequent activation prompt as was
previously exposed at time T5 in FIG. 2.
[0058] At time T15, the second application 204(2)
saves at least some of the counterpart product activation
data 134 to the local storage 118. For example, as illus-
trated, the second application 204(2) is shown to store
the native license 136 as obtained within and/or con-
structed from the counterpart product activation data 134.
[0059] At time T16, the second application 204(2) ex-
poses the one or more application functionalities 402 to
the user 210 via the output device 206. In this way, de-
spite the second application 204(2) being launched by

the user 210 prior to being activated on the computing
device 106, and the computing device 106 being config-
ured such that the first application 204(1) cannot share
its license with the second application 204(2), the second
application 204(2) refrains from re-prompting the user
210 to activate the second application 204(2) as would
occur according to existing application activation sys-
tems.
[0060] Accordingly, the disclosed technologies repre-
sent a substantial advantage over existing application
activation systems which can jointly activate counterpart
applications only under circumstances where the coun-
terpart applications can directly communicate with one
another. For example, despite the second application
204(2) being provided with the container license 132, it
may be limited in terms of where it is permitted to store
this container license 132 (e.g., since it is designed to be
containerized). Thus, it may be unable store the container
license 132 in a location that is accessible to the first
application 204(1) such as, for example, in Registry Keys
of the OS 116. Accordingly, the techniques described
herein provide for a secure and efficient manner of jointly
activating isolated counterpart applications and avoiding
obnoxious and computationally burdensome redundant
activation prompts.
[0061] It can be appreciated that redundant computing
processes (e.g., exposing redundant activation prompts)
result in exorbitant consumption of computing resources.
For example, by causing a user to progress through re-
dundant activation sequences for counterpart products,
the processing units of a computing device are caused
to undergo unnecessarily high numbers of processing
cycles. Additionally, due to the user having to re-enter
much of the same information (e.g., credentials, user
names, passwords, etc.) in a redundant activation prompt
as was previously entered in an initial activation prompt,
it can further be appreciated that redundant activation
prompts also unnecessarily increase networking traffic.
[0062] FIG. 5 is a flow diagram of an example method
500 for an application to perform upon being launched
to check both locally for an existing license and remotely
for an available license prior to exposing an activation
prompt to a user. It should be understood by those of
ordinary skill in the art that the operations of the methods
disclosed herein are not necessarily presented in any
particular order and that performance of some or all of
the operations in an alternative order(s) is possible and
is contemplated. The operations have been presented in
the demonstrated order for ease of description and illus-
tration. Operations may be added, omitted, performed
together, and/or performed simultaneously, without de-
parting from the scope of the appended claims.
[0063] At block 501, the OS 116 of the computing de-
vice 106 may receive an instruction to launch an appli-
cation such as, for example, the container application
112 or a native application 108. For example, first user
input 202(1) may be received via an input device 208
such as a user double-clicking an icon for the application.

15 16

EP 3 762 842 B1

10

5

10

15

20

25

30

35

40

45

50

55

[0064] At block 503, the application checks a local stor-
age 118 for an existing license to determine whether the
application has been activated on the computing device
106. For example, the application may examine Registry
Key values, a virtual registry, and/or any other suitable
location for securely storing a license in association with
the application.
[0065] If an existing license exists on the local storage
118, the process 500 may advance from block 503 to
block 505 at which the application is launched with full
functionality being provisioned to the user. Thus, similar
to existing application licensing techniques, according to
the techniques described herein, when a license exists
locally for an application a user may launch that applica-
tion to access functionality without being prompted to ac-
tivate the application.
[0066] If an existing license is not available to the ap-
plication from the local storage 118, the process 500 may
advance from block 503 to block 507 at which an activa-
tion inquiry is transmitted to a remote resource to check
whether a license is available to the application due to
having been remotely designated for automatic activa-
tion at the computing device. For example, the activation
inquiry 122 may be transmitted to the application license
manager 102 which maintains license data 104 in the
cloud (e.g., one or more remote and/or distributed serv-
ers) for multiple applications of the computing device 106.
[0067] At block 509, the application determines wheth-
er a license is available from the remote resource. For
example, the application may receive license status data
124 indicating that the application has not been desig-
nated for automatic activation and, therefore, that an
available license cannot be obtained from the remote re-
source. In contrast, the application may receive counter-
part product activation data which includes a license for
activating the application on the computing device.
[0068] If a license is available from the remote re-
source, the process 500 may advance from block 509 to
block 511 at which the available license is obtained by,
for example, extracting the license from the counterpart
product activation data. Then, the application is launched
with full functionality being provisioned to the user without
the user being prompted to activate the application at the
computing device. Thus, in contrast to existing applica-
tion licensing techniques, according to the techniques
described herein, when a license does not exist locally
for an application but is available from a remote resource,
a user may launch that application to access functionality
without being prompted to activate the application. More
specifically, existing application licensing techniques,
would typically prompt the user to activate the product
when no license exists locally without regard to whether
a license may be available from a remote resource.
[0069] If a license is not available from the remote re-
source, the process 500 may advance from block 509 to
block 513 at which the user is prompted to activate the
application on the computing device. For example, the
application may expose the activation prompt 212 to in-

form the user that the product is not activated and to
provide one or more activation options to the user.
[0070] At block 515, the application may transmit an
activation request to the remote resource based on user
input that is received via the activation prompt exposed
at block 513. Then, upon receiving product activation da-
ta in response to the activation request, the process 500
may advance to block 511 as described above.
[0071] FIG. 6 is a flow diagram of an example method
600 for an application license manager to perform to ac-
tivate multiple applications on a computing device based
on an activation request received from an individual one
of the multiple applications.
[0072] At block 601, the application license manager
102 receives an activation request from a first application
204(1) that is installed on a computing device 106. For
example, a user may launch the first application 204(1)
which then determines that no license exists locally and
furthermore that no license is available from the applica-
tion license manager. Accordingly, the user may be
prompted to activate the first application 204(1) at the
computing device.
[0073] At block 603, the application license manager
102 updates license data 104 to designate both the first
application 204(1) and a second application 204(2) on
the client device 106 for activation. For example, the ac-
tivation request may define an activation scope to include
both applications.
[0074] At block 605, the application license manager
102 may respond to the activation request by transmitting
to the client device product activation data that is ad-
dressed to the first application. The product activation
data may include a license to activate the first application
204(1).
[0075] At block 607, the application license manager
102 receives an activation inquiry from the second ap-
plication 204(2) that is installed on the computing device
106. For example, a user may launch the second appli-
cation 204(2), which then determines that no license ex-
ists locally; then, rather than immediately exposing an
activation prompt to the user, transmits the activation in-
quiry to inquire as to whether any counterpart products
have performed an activation that is applicable to the
second application 204(2).
[0076] At block 609, the application license manager
102 may respond to the activation inquiry by transmitting
to the client device counterpart product activation data
that is addressed to the second application. The coun-
terpart product activation data may include a license to
activate the second application 204(2). In this way, if a
user has already activated a counterpart application
which is also installed on the computing device, but which
is restricted from locally sharing a license, the user will
not be prompted to perform another activation which is
redundant to that performed with respect to the counter-
part product.
[0077] FIG. 7 shows additional details of an example
computer architecture 700 for a computer capable of ex-

17 18

EP 3 762 842 B1

11

5

10

15

20

25

30

35

40

45

50

55

ecuting the systems and methods described herein. In
particular, the example computing architecture 700 is ca-
pable of executing functions described in relation to the
OS 116, the container application 112, the native appli-
cation 108, the application license manager 102, and/or
any other program components thereof as described
herein. Thus, the computer architecture 700 illustrated
in FIG. 7 illustrates an architecture for a server computer,
network of server computers, or any other types of com-
puting devices suitable for implementing the functionality
described herein. The computer architecture 700 may be
utilized to execute any aspects of the software compo-
nents presented herein.
[0078] The computer architecture 700 illustrated in
FIG. 7 includes a central processing unit 702 ("CPU"), a
system memory 704, including a random-access mem-
ory 706 ("RAM") and a read-only memory ("ROM") 708,
and a system bus 710 that couples the memory 704 to
the CPU 702. A basic input/output system containing the
basic routines that help to transfer information between
elements within the computer architecture 700, such as
during startup, is stored in the ROM 708. The computer
architecture 700 further includes a mass storage device
712 for storing the host OS that supports the containers
110, other data, and one or more application programs.
The mass storage device 712 may further include one or
more of the OS 116, the local storage 118, the native
application(s) 108, and/or the container application 112.
[0079] The mass storage device 712 is connected to
the CPU 702 through a mass storage controller (not
shown) connected to the bus 710. The mass storage de-
vice 712 and its associated computer-readable media
provide non-volatile storage for the computer architec-
ture 700. Although the description of computer-readable
media contained herein refers to a mass storage device,
such as a solid-state drive, a hard disk or CD-ROM drive,
it should be appreciated by those skilled in the art that
computer-readable media can be any available computer
storage media or communication media that can be ac-
cessed by the computer architecture 700.
[0080] Communication media includes computer read-
able instructions, data structures, program modules, or
other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any de-
livery media. The term "modulated data signal" means a
signal that has one or more of its characteristics changed
or set in a manner as to encode information in the signal.
By way of example, and not limitation, communication
media includes wired media such as a wired network or
direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combi-
nations of the any of the above should also be included
within the scope of computer-readable media.
[0081] By way of example, and not limitation, computer
storage media may include volatile and non-volatile, re-
movable and non-removable media implemented in any
method or technology for storage of information such as
computer-readable instructions, data structures, pro-

gram modules or other data. For example, computer me-
dia includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory or other solid-state memory
technology, CD-ROM, digital versatile disks ("DVD"),
HD-DVD, BLU-RAY, or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which
can be used to store the desired information and which
can be accessed by the computer architecture 700. For
purposes of the claims, the phrase "computer storage
medium," "computer-readable storage medium" and var-
iations thereof, does not include waves, signals, and/or
other transitory and/or intangible communication media,
per se.
[0082] According to various techniques, the computer
architecture 700 may operate in a networked environ-
ment using logical connections to remote computers
through a network 750 and/or another network (not
shown). The computer architecture 700 may connect to
the network 750 through one or more network interface
units 716 connected to the bus 710 and/or the container
application 112. In the illustrated embodiment, container
application 112 is connected to a first network interface
unit 716(A) that provides container application 112 with
access to the application license manager 102. The com-
puter architecture 700 further includes a communications
channel 114 that isolates container application 112 from
various components of the computer architecture 700
such as, for example, the OS 116 and/or certain native
available portions of the local storage 118.
[0083] The illustrated computer architecture 700 fur-
ther includes a second network interface unit 716(B) that
connects various native applications 108 to the one or
more networks 750 via a firewall 720. As illustrated, the
networks 750 and firewall 720 enable communications
to be passed through to the application license manager
102. The firewall 720 is configured to provide the com-
puter architecture 700 with an inability to perform at least
some outward communications while blocking unauthor-
ized access from the networks 750. It should be appre-
ciated that the network interface unit(s) 716 also may be
utilized to connect to other types of networks and remote
computer systems. The computer architecture 700 also
may include an input/output controller 718 for receiving
and processing input from a number of other devices,
including a keyboard, mouse, or electronic stylus (not
shown in FIG. 7). Similarly, the input/output controller
718 may provide output to a display screen, a printer, or
other type of output device (also not shown in FIG. 7). It
should also be appreciated that via a connection to the
network 750 through a network interface unit 716, the
computing architecture may enable communication be-
tween the functional components described herein.
[0084] It should be appreciated that the software com-
ponents described herein may, when loaded into the
CPU 702 and executed, transform the CPU 702 and the
overall computer architecture 700 from a general-pur-
pose computing system into a special-purpose comput-

19 20

EP 3 762 842 B1

12

5

10

15

20

25

30

35

40

45

50

55

ing system customized to facilitate the functionality pre-
sented herein. The CPU 702 may be constructed from
any number of transistors or other discrete circuit ele-
ments, which may individually or collectively assume any
number of states. More specifically, the CPU 702 may
operate as a finite-state machine, in response to execut-
able instructions contained within the software modules
disclosed herein. These computer-executable instruc-
tions may transform the CPU 702 by specifying how the
CPU 702 transitions between states, thereby transform-
ing the transistors or other discrete hardware elements
constituting the CPU 702.
[0085] Encoding the software modules presented
herein also may transform the physical structure of the
computer-readable media presented herein. The specific
transformation of physical structure may depend on var-
ious factors, in different implementations of this descrip-
tion. Examples of such factors may include, but are not
limited to, the technology used to implement the compu-
ter-readable media, whether the computer-readable me-
dia is characterized as primary or secondary storage,
and the like. For example, if the computer-readable me-
dia is implemented as semiconductor-based memory,
the software disclosed herein may be encoded on the
computer-readable media by transforming the physical
state of the semiconductor memory. For example, the
software may transform the state of transistors, capaci-
tors, or other discrete circuit elements constituting the
semiconductor memory. The software also may trans-
form the physical state of such components in order to
store data thereupon.
[0086] As another example, the computer-readable
media disclosed herein may be implemented using mag-
netic or optical technology. In such implementations, the
software presented herein may transform the physical
state of magnetic or optical media, when the software is
encoded therein. These transformations may include al-
tering the magnetic characteristics of particular locations
within given magnetic media. These transformations also
may include altering the physical features or character-
istics of particular locations within given optical media,
to change the optical characteristics of those locations.
Other transformations of physical media are possible
without departing from the scope and spirit of the present
description, with the foregoing examples provided only
to facilitate this discussion.
[0087] In light of the above, it should be appreciated
that many types of physical transformations take place
in the computer architecture 700 in order to store and
execute the software components presented herein. It
also should be appreciated that the computer architec-
ture 700 may include other types of computing devices,
including hand-held computers, embedded computer
systems, personal digital assistants, and other types of
computing devices known to those skilled in the art. It is
also contemplated that the computer architecture 700
may not include all of the components shown in FIG. 7,
may include other components that are not explicitly

shown in FIG. 7, or may utilize an architecture completely
different than that shown in FIG. 7.

CONCLUSION

[0088] In closing, although the various techniques
have been described in language specific to structural
features and/or methodological acts, it is to be under-
stood that the subject matter defined in the appended
representations is not necessarily limited to the specific
features or acts described. Rather, the specific features
and acts are disclosed as example forms of implementing
the claimed subject matter.

Claims

1. A computing device (106), comprising:

one or more processors (702);
a memory (704) in communication with the one
or more processors (702), the memory (704)
having computer-readable instructions stored
thereupon which, when executed by the one or
more processors (702), implement a native ap-
plication (108) and a container application (112),
that is restricted from communicating with the
native application (108), the container applica-
tion (112) configured to:

based on a first user input (202(1)), cause
an output device (206) to expose an activa-
tion prompt (212);based on a second user
input (202(2)) being provided in response
to the activation prompt, transmit, from the
container application (112), an activation re-
quest (126) that includes at least a machine
identification, ID (120) to cause an applica-
tion license manager (102) to update li-
cense data (104) for the native application
(108) in association with the machine ID
(120);
the native application (108) configured to:

based on a third user input (202(3)),
subsequent to transmitting the activa-
tion request (126) from the container
application (112), transmit an activation
inquiry (122) from the native application
(108) to the application license manag-
er (102), wherein the activation inquiry
(122) includes at least the machine ID
(120) to query whether the native ap-
plication (108) is licensed with respect
to the machine ID (120);
receive, from the application license
manager (102), in response to the ac-
tivation inquiry (122), counterpart prod-

21 22

EP 3 762 842 B1

13

5

10

15

20

25

30

35

40

45

50

55

uct activation data (134) that includes
a native license (136) corresponding to
the native application (108); and
store the native license (136) in asso-
ciation with the native application (108)
to activate the native application (108)
on the computing device (106).

2. The computing device (106) of claim 1, wherein ac-
tivating the native application (108) on the computing
device (106) includes storing the native license
(136), that is received from the application license
manager (102), in a native available portion of a local
storage (118) that is available to the native applica-
tion (108) and is unavailable to the container appli-
cation (110).

3. The computing device (106) of claim 2, wherein the
computer-readable instructions further cause the
container application (112) to:

receive, from the application license manager
(102), product activation data (130) that includes
a container license (132) corresponding to the
container application (112); and
store the container license (132) in a container
available portion of the local storage (118) that
is available to the container application (112)
and is unavailable to the native application
(108).

4. The computing device (106) of claim 1, wherein the
computer-readable instructions further cause the na-
tive application (108)to:
determine, in response to the third user input
(202(3)), whether the native license (136) is stored
on a local storage in association with the native ap-
plication (108), wherein the activation inquiry (122)
is transmitted to the application license manager
(102) in response to a determination that the native
license (136) is not stored on the local storage in
association with the native application (108).

5. The computing device (106) of claim 1, wherein the
computer-readable instructions further cause the
container application (112) to:

prior to transmitting the activation request (126),
transmit a second activation inquiry (122(2)) to
the application license manager (102), wherein
the second activation inquiry (122(2) includes at
least the machine ID (120) to query whether the
container application (112) is licensed with re-
spect to the machine ID (120); and
cause an output device (206) to expose an ac-
tivation prompt (212) in response to a determi-
nation that the container application (112) is not
licensed with respect to the machine ID (120).

6. The computing device (106) of claim 1, wherein the
activation request (126) that causes the application
license manager (102) to update the license data
(104) for the native application (108) is generated
based on user input (202) that is received via the
container application (112) that the OS (116) is run-
ning within the container (110) that at least partially
restricts communications with the native application
(108).

7. The computing device (106) of claim 1, wherein the
native license (136) is a substantially duplicative in-
stance of a container license that is usable for acti-
vation of the container application (112) on the com-
puting device (106).

8. The computing device (106) of claim 1, wherein the
activation request (126) that is transmitted by the
container application (112) indicates a license term
that is applicable to the native application (108).

9. The computing device (106) of claim 1, wherein the
activation request (126) that is transmitted from the
container application (112) indicates an activation
scope that defines a subset of a plurality of native
applications (108(1), 108(2), ... 108(N)) for activation
on the computing device (106).

10. The computing device (106) of claim 1, wherein the
container application (112) is further configured to:

determine, in response to the first user input
(202(1)), whether a corresponding license is
stored in a local storage (118);
transmit a second activation inquiry (122(2)) to
the application license manager (102) based on
a determination that a corresponding license is
absent from the local storage (118); and
receive license status data (124) from the appli-
cation license manager (102) in response to the
second activation inquiry (122(2)), wherein ex-
posing the activation prompt (212) is further
based on the license status data (124).

11. A computer-implemented method, comprising:

based on a first user input (202(1)), causing an
output device (206) to expose an activation
prompt (212);
based on a second user input (202(2)), trans-
mitting, from a container application (112) on a
computing device (106), an activation request
(126) that includes at least a machine identifica-
tion, ID (120), wherein the computing device
(106) is configured to restrict the container ap-
plication (112) from communicating with a native
application (108), and wherein the second user
input is provided in response to the activation

23 24

EP 3 762 842 B1

14

5

10

15

20

25

30

35

40

45

50

55

prompt;
based at least in part on the activation request
(126) being transmitted from the container ap-
plication (112), updating license data (104) for
the native application (108) in association with
the machine ID (120);
based on a third user input (202(3)), subsequent
to transmitting the activation request (126) from
the container application (112), transmitting an
activation inquiry (122) from the native applica-
tion (108) to an application license manager
(102), wherein the activation inquiry (122) in-
cludes at least the machine ID (120) to query
whether the native application (108) is licensed
with respect to the machine ID (120);
receiving, from the application license manager
(102), in response to the activation inquiry (122),
counterpart product activation data that includes
a native license (136) corresponding to the na-
tive application (108); and
storing the native license (136) in association
with the native application (108) to activate the
native application (108) on the computing device
(106).

12. The computer-implemented method of claim 11, fur-
ther comprising transmitting, to the computing de-
vice (106), product activation data (130) that is ad-
dressed to the container application (112) and that
includes first license data that is usable to activate
the container application (112) on the computing de-
vice (106) responsive to the activation request (126)
that is transmitted from the container application
(112).

Patentansprüche

1. Rechenvorrichtung (106), umfassend:

einen oder mehrere Prozessoren (702);
einen Speicher (704), der mit dem einen oder
den mehreren Prozessoren (702) kommuni-
ziert, wobei in dem Speicher (704) computerles-
bare Anweisungen gespeichert sind, die, wenn
sie von dem einen oder den mehreren Prozes-
soren (702) ausgeführt werden, eine native An-
wendung (108) und eine Containeranwendung
(112) implementieren, die von der Kommunika-
tion mit der nativen Anwendung (108) abgehal-
ten wird, wobei die Containeranwendung (112)
so konfiguriert ist, dass sie:

basierend auf einer ersten Benutzereinga-
be (202(1)) eine Ausgabevorrichtung (206)
veranlasst, eine Aktivierungsaufforderung
(212) freizulegen; basierend auf einer zwei-
ten Benutzereingabe (202(2)), die als Re-

aktion auf die Aktivierungsaufforderung be-
reitgestellt wird, von der Containeranwen-
dung (112) eine Aktivierungsanforderung
(126) überträgt, die mindestens eine Ma-
schinenkennung, ID(120) enthält, um einen
Anwendungslizenzmanager (102) zu ver-
anlassen, Lizenzdaten (104) für die native
Anwendung (108) in Verbindung mit der
Maschinenkennung (120) zu aktualisieren;
wobei die native Anwendung (108) so kon-
figuriert ist, dass sie:

basierend auf einer dritten Benutzer-
eingabe (202(3)), im Anschluss an das
Übertragen der Aktivierungsanforde-
rung (126) von der Containeranwen-
dung (112) eine Aktivierungsanfrage
(122) von der nativen Anwendung
(108) an den Anwendungslizenzmana-
ger (102) übertragt, wobei die Aktivie-
rungsanfrage (122) mindestens die
Maschinenkennung (120) enthält, um
abzufragen, ob die native Anwendung
(108) in Bezug auf die Maschinenken-
nung (120) lizenziert ist;
von dem Anwendungslizenzmanager
(102) als Reaktion auf die Aktivierungs-
anfrage (122) Gegenstück-Produktak-
tivierungsdaten (134) empfängt, die ei-
ne native Lizenz (136) enthalten, die
der nativen Anwendung (108) ent-
spricht; und
die native Lizenz (136) in Verbindung
mit der nativen Anwendung (108) spei-
chert, um die native Anwendung (108)
auf der Rechenvorrichtung (106) zu ak-
tivieren.

2. Rechenvorrichtung (106) nach Anspruch 1, wobei
das Aktivieren der nativen Anwendung (108) auf der
Rechenvorrichtung (106) das Speichern der nativen
Lizenz (136), die von dem Anwendungslizenzmana-
ger (102) empfangen wird,
in einem nativen verfügbaren Abschnitt eines loka-
len Speichers (118) umfasst, der für die native An-
wendung (108) verfügbar und für die Containeran-
wendung (110) nicht verfügbar ist.

3. Rechenvorrichtung (106) nach Anspruch 2, wobei
die computerlesbaren Anweisungen weiter die Con-
taineranwendung (112) veranlassen zum:

Empfangen, von dem Anwendungslizenzmana-
ger (102), von Produktaktivierungsdaten (130),
die eine der Containeranwendung (112) ent-
sprechende Containerlizenz (132) enthalten;
und
Speichern der die Containerlizenz (132) in ei-

25 26

EP 3 762 842 B1

15

5

10

15

20

25

30

35

40

45

50

55

nem für Container verfügbaren Abschnitt des lo-
kalen Speichers (118) speichern, der für die
Containeranwendung (112) verfügbar ist und für
die native Anwendung (108) nicht verfügbar ist.

4. Rechenvorrichtung (106) nach Anspruch 1, wobei
die computerlesbaren Anweisungen weiter die nati-
ve Anwendung (108) veranlassen zum:
Bestimmen, als Reaktion auf die dritte Benutzerein-
gabe (202(3)), ob die native Lizenz (136) auf einem
lokalen Speicher in Verbindung mit der nativen An-
wendung (108) gespeichert ist, wobei die Aktivie-
rungsanfrage (122) an den Anwendungslizenzma-
nager (102) als Reaktion auf eine Bestimmung, dass
die native Lizenz (136) nicht auf dem lokalen Spei-
cher in Verbindung mit der nativen Anwendung (108)
gespeichert ist, übertragen wird.

5. Rechenvorrichtung (106) nach Anspruch 1, wobei
die computerlesbaren Anweisungen weiter die Con-
taineranwendung (112) veranlassen zum:

Übertragen, vor dem Übertragen der Aktivie-
rungsanforderung (126), einer zweiten Aktivie-
rungsanfrage (122(2)) an den Anwendungsli-
zenzmanager (102), wobei die zweite Aktivie-
rungsanfrage (122(2)) zumindest die Maschi-
nenkennung (120) enthält, um abzufragen, ob
die Containeranwendung (112) in Bezug auf die
Maschinenkennung (120) lizenziert ist; und
Veranlassen einer Ausgabevorrichtung (206),
eine Aktivierungsaufforderung (212) als Reakti-
on auf die Bestimmung freizulegen, dass die
Containeranwendung (112) in Bezug auf die
Maschinenkennung (120) nicht lizenziert ist.

6. Rechenvorrichtung (106) nach Anspruch 1, wobei
die Aktivierungsanforderung (126), die den Anwen-
dungslizenzmanager (102) veranlasst, die Lizenz-
daten (104) für die native Anwendung (108) zu ak-
tualisieren, basierend auf einer Benutzereingabe
(202) erzeugt wird, die über die Containeranwen-
dung (112) empfangen wird, die das Betriebssystem
(116) innerhalb des Containers (110) ausführt, der
die Kommunikation mit der nativen Anwendung
(108) zumindest teilweise einschränkt.

7. Rechenvorrichtung (106) nach Anspruch 1, wobei
die native Lizenz (136) eine im Wesentlichen dop-
pelte Instanz einer Containerlizenz ist, die für die Ak-
tivierung der Containeranwendung (112) auf der Re-
chenvorrichtung (106) verwendbar ist.

8. Rechenvorrichtung (106) nach Anspruch 1, wobei
die Aktivierungsanforderung (126), die durch die
Containeranwendung (112) übertragen wird, eine Li-
zenzbedingung angibt, die für die native Anwendung
(108) gilt.

9. Rechenvorrichtung (106) nach Anspruch 1, wobei
die Aktivierungsanforderung (126), die von der Con-
taineranwendung (112) übertragen wird, einen Akti-
vierungsbereich angibt, der eine Teilmenge einer
Vielzahl von nativen Anwendungen (108(1),
108(2), ... 108(N)) zur Aktivierung auf der Rechen-
vorrichtung (106) definiert.

10. Rechenvorrichtung (106) nach Anspruch 1, wobei
die Containeranwendung (112) weiter konfiguriert ist
zum:

Bestimmen, als Reaktion auf die erste Benutze-
reingabe (202(1)), ob eine entsprechende Li-
zenz in einem lokalen Speicher (118) gespei-
chert ist;
Übertragen einer zweiten Aktivierungsanfrage
(122(2)) an den Anwendungslizenzmanager
(102) basierend auf einer Bestimmung, dass ei-
ne entsprechende Lizenz im lokalen Speicher
(118) fehlt; und
Empfangen von Lizenzstatusdaten (124) von
dem Anwendungslizenzmanager (102) als Re-
aktion auf die zweite Aktivierungsanfrage
(122(2)), wobei das Freilegen der Aktivierungs-
aufforderung (212) weiterhin auf den Lizenzsta-
tusdaten (124) basiert.

11. Computerimplementiertes Verfahren, umfassend:

basierend auf einer ersten Benutzereingabe
(202(1), Veranlassen einer Ausgabevorrichtung
(206), eine Aktivierungsaufforderung (212) frei-
zulegen;
basierend auf einer zweiten Benutzereingabe
(202(2)), Übertragen, von einer Containeran-
wendung (112) auf einer Rechenvorrichtung
(106), einer Aktivierungsanforderung (126), die
mindestens eine Maschinenkennung, ID (120)
enthält, wobei die Rechenvorrichtung (106) so
konfiguriert ist, dass sie die Containeranwen-
dung (112) von der Kommunikation mit einer na-
tiven Anwendung (108) abhält, und wobei die
zweite Benutzereingabe als Reaktion auf die
Aktivierungsaufforderung bereitgestellt wird;
basierend zumindest teilweise auf der Aktivie-
rungsanforderung (126), die von der Containe-
ranwendung (112) übertragen wird, Aktualisie-
rung der Lizenzdaten (104) für die native An-
wendung (108) in Verbindung mit der Maschi-
nenkennung (120);
basierend auf einer dritten Benutzereingabe
(202(3)), im Anschluss an das Übertragen der
Aktivierungsanforderung (126) von der Contai-
neranwendung (112), Übertragen einer Aktivie-
rungsanfrage (122) von der nativen Anwendung
(108) an einen Anwendungslizenzmanager
(102), wobei die Aktivierungsanfrage (122) min-

27 28

EP 3 762 842 B1

16

5

10

15

20

25

30

35

40

45

50

55

destens die Maschinenkennung (120) enthält,
um abzufragen, ob die native Anwendung (108)
in Bezug auf die Maschinenkennung (120) lizen-
ziert ist;
Empfangen, von dem Anwendungslizenzmana-
ger (102) als Reaktion auf die Aktivierungsan-
frage (122), von Gegenstück-Produktaktivie-
rungsdaten, die eine native Lizenz (136) enthal-
ten, die der nativen Anwendung (108) ent-
spricht, und
Speichern der nativen Lizenz (136) in Verbin-
dung mit der nativen Anwendung (108), um die
native Anwendung (108) auf der Rechenvorrich-
tung (106) zu aktivieren.

12. Computerimplementierte Verfahren nach Anspruch
11, weiter umfassend das Übertragen, an die Re-
chenvorrichtung (106), von Produktaktivierungsda-
ten (130), die an die Containeranwendung (112)
adressiert sind und erste Lizenzdaten enthalten, die
zur Aktivierung der Containeranwendung (112) auf
der Rechenvorrichtung (106) als Reaktion auf die
von der Containeranwendung (112) übertragene Ak-
tivierungsanforderung (126) verwendet werden kön-
nen.

Revendications

1. Dispositif de calcul (106), comprenant :

un ou plusieurs processeurs (702) ;
une mémoire (704) en communication avec les
un ou plusieurs processeurs (702), la mémoire
(704) comportant des instructions lisibles par or-
dinateur, stockées dans celle-ci, qui, lorsqu’el-
les sont exécutées par les un ou plusieurs pro-
cesseurs (702), mettent en oeuvre une applica-
tion native (108) et une application de contenant
(112), à laquelle il est interdit de communiquer
avec l’application native (108), l’application de
contenant (112) étant configurée pour :

sur la base d’une première entrée d’utilisa-
teur (202(1)), amener un dispositif de sortie
(206) à exposer une invite d’activation
(212) ; sur la base d’une deuxième entrée
d’utilisateur (202(2)) étant fournie en répon-
se à l’invite d’activation, transmettre, depuis
l’application de contenant (112), une de-
mande d’activation (126) qui inclut au moins
une identification, ID, de machine pour
amener un gestionnaire de licence d’appli-
cation (102) à mettre à jour des données de
licence (104) pour l’application native (108)
en association avec l’ID de machine (120);
l’application native (108) étant configurée
pour :

sur la base d’une troisième entrée d’uti-
lisateur (202(3)), à la suite de la trans-
mission de la demande d’activation
(126) depuis l’application de contenant
(112), transmettre une interrogation
d’activation (122) depuis l’application
native (108) au gestionnaire de licence
d’application (102), dans lequel l’inter-
rogation d’activation (122) inclut au
moins l’ID de machine pour interroger
si l’application native (108) est ou non
sous licence par rapport à l’ID de ma-
chine (120);
recevoir, depuis le gestionnaire de li-
cence d’application (102), en réponse
à l’interrogation d’activation (122), des
données d’activation de produit homo-
logue (134) qui incluent une licence na-
tive (136) correspondant à l’application
native (108) ; et
stocker la licence native (136) en asso-
ciation avec l’application native (108)
pour activer l’application native (108)
sur le dispositif de calcul (106).

2. Dispositif de calcul (106) selon la revendication 1,
dans lequel l’activation de l’application native (108)
sur le dispositif de calcul (106) inclut le stockage de
la licence native (136), qui est reçue depuis
le gestionnaire de licence d’application (102), dans
une portion disponible native d’un stockage local
(118) qui est disponible pour l’application native
(108) et qui est indisponible pour l’application de con-
tenant (110).

3. Dispositif de calcul (106) selon la revendication 2,
dans lequel les instructions lisibles par ordinateur
amènent en outre l’application de contenant (112) à :

recevoir, depuis le gestionnaire de licence d’ap-
plication (102), des données d’activation de pro-
duit (130) qui incluent une licence de contenant
(132) correspondant à l’application de conte-
nant (112) ; et
stocker la licence de contenant (132) dans une
portion disponible de contenant du stockage lo-
cal (118) qui est disponible pour l’application de
contenant (112) et qui est indisponible pour l’ap-
plication native (108).

4. Dispositif de calcul (106) selon la revendication 1,
dans lequel les instructions lisibles par ordinateur
amènent en outre l’application native (108) à :
déterminer, en réponse à la troisième entrée d’utili-
sateur (202(3)), si la licence native (136) est ou non
stockée sur un stockage local en association avec
l’application native (108), dans lequel l’interrogation
d’activation (122) est transmise au gestionnaire de

29 30

EP 3 762 842 B1

17

5

10

15

20

25

30

35

40

45

50

55

licence d’application (102) en réponse à une déter-
mination que la licence native (136) n’est pas stoc-
kée sur le stockage local en association avec l’ap-
plication native (108).

5. Dispositif de calcul (106) selon la revendication 1,
dans lequel les instructions lisibles par ordinateur
amènent en outre l’application de contenant (112) à :

avant la transmission de la demande d’activa-
tion (126), transmettre une deuxième interroga-
tion d’activation (122(2)) au gestionnaire de li-
cence d’application (102), dans lequel la deuxiè-
me interrogation d’activation (122(2)) inclut au
moins l’ID de machine pour interroger si l’appli-
cation de contenant (112) est sous licence par
rapport à l’ID de machine (120); et
amener un dispositif de sortie (206) à exposer
une invite d’activation (212) en réponse à une
détermination que l’application de contenant
(112) n’est pas sous licence par rapport à l’ID
de machine (120).

6. Dispositif de calcul (106) selon la revendication 1,
dans lequel la demande d’activation (126) qui amène
le gestionnaire de licence d’application (102) à met-
tre à jour les données de licence (104) pour l’appli-
cation native (108) est générée sur la base d’une
entrée d’utilisateur (202) qui est reçue par l’intermé-
diaire de l’application de contenant (112) que l’OS
(116) exécute à l’intérieur du contenant (110) qui in-
terdit au moins partiellement des communications
avec l’application native (108).

7. Dispositif de calcul (106) selon la revendication 1,
dans lequel la licence native (136) est une instance
faisant sensiblement double emploi d’une licence de
contenant qui est utilisable pour une activation de
l’application de contenant (112) sur le dispositif de
calcul (106).

8. Dispositif de calcul (106) selon la revendication 1,
dans lequel la demande d’activation (126) qui est
transmise par l’application de contenant (112) indi-
que une période de licence qui est applicable à l’ap-
plication native (108).

9. Dispositif de calcul (106) selon la revendication 1,
dans lequel la demande d’activation (126) qui est
transmise depuis l’application de contenant (112) in-
dique une portée d’activation qui définit un sous-en-
semble d’une pluralité d’applications natives
(108(1), 108(2), ... 108(N)) pour une activation sur
le dispositif de calcul (106).

10. Dispositif de calcul (106) selon la revendication 1,
dans lequel l’application de contenant (112) est en
outre configurée pour :

déterminer, en réponse à la première entrée
d’utilisateur (202(1)), si une licence correspon-
dante est stockée dans un stockage local (118) ;
transmettre une deuxième interrogation d’acti-
vation (122(2)) au gestionnaire de licence d’ap-
plication (102) sur la base d’une détermination
qu’une licence correspondante est absente du
stockage local (118) ; et
recevoir des données de statut de licence (124)
depuis le gestionnaire de licence d’application
(102) en réponse à la deuxième interrogation
d’activation (122(2)), dans lequel l’exposition de
l’invite d’activation (212) est en outre basée sur
les données de statut de licence (124).

11. Procédé mis en oeuvre par ordinateur, comprenant :

sur la base d’une première entrée d’utilisateur
(202(1)), l’acte d’amener un dispositif de sortie
(206) à exposer une invite d’activation (212) ;
sur la base d’une deuxième entrée d’utilisateur
(202(2)), la transmission, depuis une application
de contenant (112) sur un dispositif de calcul
(106), d’une demande d’activation (126) qui in-
clut au moins une identification, ID, de machine
(120), dans lequel le dispositif de calcul (106)
est configuré pour interdire à l’application de
contenant (112) de communiquer avec une ap-
plication native (108), et dans lequel la deuxiè-
me entrée d’utilisateur est fournie en réponse à
l’invite d’activation ;
sur la base au moins en partie de la demande
d’activation (126) qui est transmise depuis l’ap-
plication de contenant (112), la mise à jour de
données de licence (104) pour l’application na-
tive (108) en association avec l’ID de machine
(120);
sur la base d’une troisième entrée d’utilisateur
(202(3)), à la suite de la transmission de la de-
mande d’activation (126) depuis l’application de
contenant (112), la transmission d’une interro-
gation d’activation (122) depuis l’application na-
tive (108) à un gestionnaire de licence d’appli-
cation (102), dans lequel l’interrogation d’acti-
vation (122) inclut au moins l’ID de machine pour
interroger si l’application native (108) est ou non
sous licence par rapport à l’ID de machine (120);
la réception, depuis le gestionnaire de licence
d’application (102), en réponse à l’interrogation
d’activation (122), de données d’activation de
produit homologue qui incluent une licence na-
tive (136) correspondant à l’application native
(108) ; et
le stockage de la licence native (136) en asso-
ciation avec l’application native (108) pour acti-
ver l’application native (108) sur le dispositif de
calcul (106).

31 32

EP 3 762 842 B1

18

5

10

15

20

25

30

35

40

45

50

55

12. Procédé mis en oeuvre par ordinateur selon la re-
vendication 11, comprenant en outre la transmis-
sion, au dispositif de calcul (106), de données d’ac-
tivation de produit (130) qui sont adressées à l’ap-
plication de contenant (112) et qui incluent des pre-
mières données de licence qui sont utilisables pour
activer l’application de contenant (112) sur le dispo-
sitif de calcul (106) en réponse à la demande d’ac-
tivation (126) qui est transmise depuis l’application
de contenant (112).

33 34

EP 3 762 842 B1

19

EP 3 762 842 B1

20

EP 3 762 842 B1

21

EP 3 762 842 B1

22

EP 3 762 842 B1

23

EP 3 762 842 B1

24

EP 3 762 842 B1

25

EP 3 762 842 B1

26

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 8763159 B1 [0004]

	bibliography
	description
	claims
	drawings
	cited references

