
(19) United
IN

US 20200073993A1

States
(12) Patent Application Publication (10) Pub . No .: US 2020/0073993 A1

Mutreja et al . (43) Pub . Date : Mar. 5 , 2020

(54) SYNCHRONIZING IN - USE SOURCE DATA
AND AN UNMODIFIED MIGRATED COPY
THEREOF

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(72) Inventors : Tanu Mutreja , Redmond , WA (US) ;
Gunjan Jain , Seattle , WA (US) ; Jason
Shay , Seattle , WA (US)

(52) U.S. CI .
CPC .. G06F 17/30578 (2013.01) ; G06F 17/30174

(2013.01) ; G06F 17/30368 (2013.01) ; G06F
17/30212 (2013.01) ; G06F 17/30097

(2013.01)
(57) ABSTRACT
Embodiments described herein are directed to enabling a
user to modify data stored locally during a data migration
process in which the user's data is being transferred to the
cloud . For instance , a synchronization service requests the
user's device (e.g. , a client - based server) to provide a hash
value for each data object maintained thereby (including
modified data objects) and compares the hash values to hash
values generated for the data uploaded to the cloud . If a hash
value provided by the server does not match any of the hash
values generated for the uploaded data , this means that the
data object associated with the unmatched hash value has
been modified since the initiation of the data transfer pro
cess . The synchronization service receives the modified data
object from the server and uploads it to the cloud , thereby
synchronizing the data uploaded to the cloud with the data
locally - maintained by the server .

(21) Appl . No .: 16 / 114,884

(22) Filed : Aug. 28 , 2018

Publication Classification
(51) Int . Ci .

GO6F 1730 (2006.01)

202
210

Client - Based Server
206

Data Store (s)

Cloud - based Server (s)
Portal
214

Cloud - Based Synchronization
Service 216

Data Object (s)
224

Hash Engine 232 Application (s)
218 Network

226
212 Browser

220

Data Store (s)
Data Object (s)

224 '

Client - Based Synchronization
Service 222

Hash Engine 228 Portable Storage Unit 204

Data Store (s) 208
Data Object (s)

224
200

102

104

114

Cloud Service Provider

110

Client - Based Server

Portable Storage Unit

Cloud - Based Server (s)

Data Store (s) 106

Data Store (s) 108

Cloud - Based Synchronization Service 116

Patent Application Publication

100A

FIG . 1A

114

Cloud Service Provider

110

118

1042

Cloud - Based Server (s)

Portable Storage Unit

Cloud - Based Synchronization Service 116

Mar. 5 , 2020 Sheet 1 of 8

100B

FIG . 1B

104

110

Portable Storage Unit

Cloud - Based Server (s)

Data Store (s) 108

Data Store (s) 112

Cloud - Based Synchronization Service 116

US 2020/0073993 A1

100C

FIG . 1C

202

210

Client - Based Server

Cloud - based Server (s)

Patent Application Publication

206

Data Store (s)

Portal 214

Data Object (s)
224

Cloud - Based Synchronization
Service 216 Hash Engine 232

Application (s)
218

Network 226

212

Browser 220

Data Store (s) Data Object (s)
224

Client - Based Synchronization
Service 222

Mar. 5 , 2020 Sheet 2 of 8

Hash Engine 228

Portable Storage Unit

204

Data Store (s) 208 Data Object (s)
224 '

200

FIG . 2

US 2020/0073993 A1

Patent Application Publication Mar. 5 , 2020 Sheet 3 of 8 US 2020/0073993 A1

302

Copy a set of data comprising a plurality of data objects from a data store
located at a first location to a portable storage unit

304

Modify a first data object of the plurality of data objects

306

Receive , from a cloud - based synchronization service , a notification that the
set of data copied to the portable storage unit is uploaded to a cloud - based

server located at a second location

-308

Generate a first hash value for the modified first data object

310

Provide the first hash value generated for the modified first data object to the
cloud - based synchronization service in response to receiving the notification

300

FIG . 3

406 Client - Based Server
Data Store (s)

402

402

Client - Based Server

4061

Data Store (s) Data Object (S)
424

Data Object (s)
424

404

Portable Storage Unit

405

Data Object 424 "

Patent Application Publication

Application (s) 418

Application (s) 418

Data Store (s) 408 Data Object (s)
424 '

Browser 420

Browser 420

Client - Based Synchronization Service 422

Client - Based Synchronization Service 422

400A

Hash Engine 428

Hash Engine 432

FIG . 4A

FIG . 4B

402

406

Client - Based Server

410

Mar. 5 , 2020 Sheet 4 of 8

Cloud - Based Server (s)

Data Store (s) Data Object (s)
424 Data Object 424 "

Portal 414

401

401)
403

403

Network 426

Cloud - Based Synchronization Service 416

Application (s) 418

407

-407

Browser 420

1409

1409

412

Data Store (s) Data Object (s)
424 '

Client - Based Synchronization
Service 422

US 2020/0073993 A1

400C

Hash Engine 428

FIG . 4C

Patent Application Publication Mar. 5 , 2020 Sheet 5 of 8 US 2020/0073993 A1

502

Upload a set of data comprising a first instance of a plurality of data objects
from a portable storage unit to a first cloud - based server of a plurality of

cloud - based servers , a second instance of the plurality of data objects being
stored on a client - based server remotely - located from the plurality of cloud

based servers
504

For each data object of the first instance of the plurality of data objects
uploaded to the first cloud - based server , generate a corresponding first hash

value
506

Provide a notification to the client - based server that the first instance of the
plurality of data objects has been uploaded to the first cloud - based server

508

Receive , from the client - based server , second hash values from the client
based server , each of the second hash values individually corresponding to a

data object of the second instance of the plurality of data objects

510

NO YES

For
each second hash

value of the second hash values received ,
does the second hash value match

any of the first hash
values ?

512 514

Send an indication to the client
based server that specifies that the
second hash value is different than

each of the first hash values

Maintain the first instance of the
data object associated with the

matched first hash value

500
FIG . 5

602

Client - Based Server

610

Cloud - Based Server

606

Patent Application Publication

Data Store (s)

601

Portal 614

601

Data Object (s) 624

603

603

Data Object (s) 624 "

Network 626

Cloud - Based Synchronization Service 616

Hash

Hash Map

Hash

Engine 632 638 Checker 636

605

605

Application (s) 618

607)

609 , 607)

612

Browser 620

Data Store (s) Data Object (s)
624 '

609

Client - Based Synchronization
Service 622

611

Hash Engine 628

Mar. 5 , 2020 Sheet 6 of 8

Portable Storage Unit

604

wwwwwwwww

Data Object (s)
624 "

Data Object (s)
624 '

Data Store (s) 608 Data Object (s)
624 '

Data Store (s) 632

634

Cloud - Based Server

600

FIG . 6

US 2020/0073993 A1

702

710

Client - Based Server

706

Cloud - Based Server (s) Portal 714

Data Store (s)

Patent Application Publication

Data Object (s) 724

Cloud - Based Synchronization Service 716

Network 726

Hash Engine 732

Application (s) 718

712

Browser 720

Data Store (s) Data Object (s)
724

Client - Based Synchronization
Service 722 Hash Engine 728

Mar. 5 , 2020 Sheet 7 of 8

734

Server

708

Data Store (s) Data Object (s)
724 '

700

US 2020/0073993 A1

FIG . 7

800

844

804

System Memory

802

(ROM)

Patent Application Publication

808

846

Processing Unit

Video Adapter

812

BIOS
(RAM)

810

806

830

Operating System Application Programs
832 834

Other Program Modules

Hard Disk Drive I / F

Magnetic Disk Drive I / F

Optical Drive Interface
Serial Port Interface

Network Interface

Mar. 5 , 2020 Sheet 8 of 8

836

824

826

Program Data

828

842

850

814

816

820

852

Network

830

832

834

840

818

Operating Application System Programs

Other Program Modules
Program Data
836

822

838

848

US 2020/0073993 A1

FIG . 8

US 2020/0073993 Al Mar. 5 , 2020
1

SYNCHRONIZING IN - USE SOURCE DATA
AND AN UNMODIFIED MIGRATED COPY

THEREOF

to the accompanying drawings . It is noted that the invention
is not limited to the specific embodiments described herein .
Such embodiments are presented herein for illustrative pur
poses only . Additional embodiments will be apparent to
persons skilled in the relevant art (s) based on the teachings
contained herein .

BACKGROUND

BRIEF DESCRIPTION OF THE
DRAWINGS / FIGURES

[0001] Cloud computing platforms offer higher efficiency ,
greater flexibility , lower costs , and better performance for
applications and services . Accordingly , users are shifting
away from locally maintaining applications , services , and
data and migrating to cloud computing platforms . However ,
data migration can be quite cumbersome given that the
amount of data to be migrated can be terabytes or even
petabytes of data . Conventional network - based data transfer
techniques struggle to facilitate migration of such large
amounts of data due to the amount of network bandwidth
utilized by such transfers .

SUMMARY

[0002] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used to limit
the scope of the claimed subject matter .
[0003] Embodiments described herein are directed to
enabling a user to modify source data stored in first storage
(e.g. , in “ local ” storage) during a process of transporting a
copy of the data (e.g. , migrating the data) to second storage
(e.g. , " cloud ” storage) through the use of an intermediate
portable storage device . After the copy of the data is stored
in the second storage , the copy of the data stored in the
second storage may be synchronized with the source data
stored in the first storage , such that the copy of the data in
the second storage is updated with any changes made to the
source data during a time interval of the data transport .
[0004] For instance , in an aspect , data stored in storage
local to a user's device (e.g. , a client - based server) may be
migrated to cloud storage . A cloud - based synchronization
service may request the client - based rver to provide a hash
value for each data object maintained thereby (including
modified data objects) , and may compare the hash values to
hash values generated for the data stored in the cloud . If a
particular hash value of the hash values provided by the
client - based server does not match any of the hash values
generated for the cloud - based data , this means that the data
object associated with the unmatched hash value has been
modified (or newly - created) since the initiation of the data
transfer process , and therefore , is not up - to - date in the cloud .
Consequently , the cloud - based synchronization service
receives the modified (or newly - created) data object from
the client - based server and uploads the data object to the
cloud storage upon receiving it from the client - based server ,
thereby synchronizing the data uploaded to the cloud with
the data locally - maintained by the client - based server . If a
particular hash value of the hash values provided by the
client - based server matches one of the hash values generated
for the uploaded data , this means that cloud - based server
already has an up - to - date copy of the data object associated
with the matched hash value , and therefore , need not request
the data object from the client - based server .
[0005] Further features and advantages of the invention , as
well as the structure and operation of various embodiments
of the invention , are described in detail below with reference

[0006] The accompanying drawings , which are incorpo
rated herein and form a part of the specification , illustrate
embodiments and , together with the description , further
serve to explain the principles of the embodiments and to
enable a person skilled in the pertinent art to make and use
the embodiments .
[0007] FIG . 1A is a block diagram of a computing system
that includes a client - based server and a portable storage unit
in accordance with an example embodiment .
[0008] FIG . 1B is a block diagram depicting a portable
storage unit being transported to a cloud service provider in
accordance with an example embodiment .
[0009] FIG . 1C is a block diagram of a system that
includes a portable storage unit and a cloud - based server (s)
in accordance with an embodiment .
[0010] FIG . 2 is a block diagram of a data migration
system for enabling a user to modify locally - maintained data
during a data transfer process and synchronizing the modi
fied data with data uploaded to the cloud in accordance with
an embodiment .
[0011] FIG . 3 depicts a flowchart of an example method
performed by a client - based synchronization process that
enables a user to modify locally - maintained data during a
data transfer process and synchronizes the modified data
with cloud - based data in accordance with an example
embodiment .
[0012] FIG . 4A is a block diagram of a portion of a data
migration system for copying data maintained by a client
based server to a portable storage unit in accordance with an
example embodiment .
[0013] FIG . 4B is a block diagram of a client - based server ,
which is enabled to modify locally - maintained data during a
data transfer process , in accordance with an example
embodiment .
[0014] FIG . 4C is a block diagram of a portion of a data
migration system for synchronizing changes made locally by
the user with data stored on a client - based server to cloud
based server (s) in accordance with an example embodiment .
[0015] FIG . 5 depicts a flowchart of an example method
performed by a cloud - based synchronization service for
synchronizing data locally modified by the user with data
maintained by cloud - based server (s) in accordance with an
example embodiment .
[0016] FIG . 6 is a block diagram of a data migration
system for synchronizing data locally modified by the user
with data maintained by cloud - based server (s) in accordance
with an example embodiment .
[0017] FIG . 7 is a block diagram of a data migration
system for enabling a user to modify locally - maintained data
during a data transfer process that utilizes a dedicated server
in accordance with an embodiment .
[0018] FIG . 8 is a block diagram of an example computing
device that may be used to implement embodiments .
[0019] The features and advantages of the present inven
tion will become more apparent from the detailed descrip

US 2020/0073993 A1 Mar. 5 , 2020
2

tion set forth below when taken in conjunction with the
drawings , in which like reference characters identify corre
sponding elements throughout . In the drawings , like refer
ence numbers generally indicate identical , functionally simi
lar , and / or structurally similar elements . The drawing in
which an element first appears is indicated by the leftmost
digit (s) in the corresponding reference number .

DETAILED DESCRIPTION

I. Introduction

[0020] The present specification and accompanying draw
ings disclose one or more embodiments that incorporate the
features of the present invention . The scope of the present
invention is not limited to the disclosed embodiments . The
disclosed embodiments merely exemplify the present inven
tion , and modified versions of the disclosed embodiments
are also encompassed by the present invention . Embodi
ments of the present invention are defined by the claims
appended hereto .
[0021] References in the specification to “ one embodi
ment , ” “ an embodiment , ” “ an example embodiment , ” etc. ,
indicate that the embodiment described may include a
particular feature , structure , or characteristic , but every
embodiment may not necessarily include the particular
feature , structure , or characteristic . Moreover , such phrases
are not necessarily referring to the same embodiment . Fur
ther , when a particular feature , structure , or characteristic is
described in connection with an embodiment , it is submitted
that it is within the knowledge of one skilled in the art to
effect such feature , structure , or characteristic in connection
with other embodiments whether or not explicitly described .
[0022] Numerous exemplary embodiments are described
as follows . It is noted that any section / subsection headings
provided herein are not intended to be limiting . Embodi
ments are described throughout this document , and any type
of embodiment may be included under any section / subsec
tion . Furthermore , embodiments disclosed in any section /
subsection may be combined with any other embodiments
described in the same section / subsection and / or a different
section / subsection in any manner .

Once the data is copied (“ uploaded ”) to the cloud - based
server , a cloud - based synchronization service synchronizes
the data maintained locally on the user's device to the data
stored at the cloud - based server .
[0024] For instance , the cloud - based synchronization ser
vice may request the user's device (e.g. , a client - based
server) to provide a hash value for each data object main
tained thereby (regardless if the data object has been modi
fied since initiation of the data transfer process) and may
compare the hash values to hash values generated for the
data copied to the cloud - based server . If a particular hash
value of the hash values provided by the client - based server
does not match any of the hash values generated for the
uploaded data , this means that the data object associated
with the unmatched hash value has been modified (or
newly - created) since the initiation of the data transfer pro
cess , and therefore , its present version has not been uploaded
to the cloud - based server . In response , the cloud - based
synchronization service requests the modified (or newly
created) data object from the client - based server and uploads
the current (modified) version of the data object to the
cloud - based server upon receiving it from the client - based
server , thereby synchronizing the data uploaded to the cloud
with the data locally - maintained by the client - based server .
If a particular hash value of the hash values provided by the
client - based server matches one of the hash values generated
for the uploaded data , this means that cloud - based server
already has an up - to - date copy of the data object associated
with the matched hash value , and therefore , does not request
the data object from the client - based server .
[0025] The foregoing techniques advantageously remove
the requirement to lock the user's data during the data
transfer process , which can prevent access to the data for
days or even weeks , depending on the time it takes for the
cloud service provider to receive the user's data and upload
the data to the cloud . Moreover , because the user's data is
being provided to the cloud service provider via a portable
storage unit (and not via a network connection) , network
traffic across the user's network is advantageously reduced ,
thereby freeing up network bandwidth , as well as the pro
cessing power used to facilitate the data transfers .
[0026] FIGS . 1A - 1C describe a data transfer process
between a client - based server and a cloud service provider
in accordance with an example embodiment . For instance ,
FIG . 1A is a block diagram of a system 100A that includes
a client - based server 102 and a portable storage unit 104 in
accordance with an example embodiment . In order to trans
fer the user's data to the cloud , the user may first sign up for
a subscription with a cloud service provider 114. The
subscription may grant access to a portal provided by a cloud
service provider 114 that enables the user to perform several
functions . For example , the portal may enable the user to
launch virtual machines and applications , request hardware
resources (e.g. , data storage) , and / or configure cloud - based
server (s) 110 maintained by cloud service provider 114 for
various operations . The portal may also be utilized to initiate
a data transfer process , where the user desires to transfer
data locally maintained by the client - based server to the
cloud . For example , the user , via the portal , may request
cloud service provider 114 to send (e.g. , ship) portable
storage unit 104 to the user's premises . Portable storage unit
104 may comprise one or more data store (s) 108. The user
may communicatively couple portable storage unit 104 to
client - based server 102 , which comprises data store (s) 106

II . Systems and Methods for Enabling the Modification of
Locally - Maintained Data During a Cloud - Based Data
Transfer Process

[0023] Embodiments described herein are directed to
enabling a user to modify data stored in first storage during
a data transfer (e.g. , migration) process in which the user's
data is being transferred to the cloud . For instance , the user
may request a cloud - based provider to provide a portable
storage unit to the user . The user copies the data he / she
would like to transfer to the cloud to the portable storage unit
and ships the portable storage unit to the cloud service
provider . Upon receiving the portable storage unit , the cloud
service provider copies the data from the portable storage
unit to data store (s) maintained by a cloud - based server that
is associated with the user's cloud service account . During
this transfer process (i.e. , between the time that the data is
copied from the user's storage to the portable storage unit
and is then stored in the cloud - based server's data store ,
which includes the time the portable storage unit is under
going shipment to the cloud service provider) , the user may
modify the data maintained locally in the first storage) .

US 2020/0073993 A1 Mar. 5 , 2020
3

that store the user's data . Data store (s) 106 and data store (s)
108 may comprise one or more physical memory and / or
storage device (s) (e.g. , hard disk drives , solid state drives
(SSDs) , etc.) . Data store (s) 106 and data store (s) 108 may be
any type of physical memory and / or storage device that is
described herein , and / or as would be understood by a person
of skill in the relevant art (s) having the benefit of this
disclosure . Portable storage unit 104 and client - based server
102 may be communicatively coupled via a wired connec
tion (e.g. , via a Universal Serial Bus (USB) cable , a IEEE
1394 - based (i.e. , Firewire) cable , an external Serial ATA
cable , an RJ45 cable , etc.) or via a wireless connection (e.g. ,
via a IEEE 802.11 wireless LAN (WLAN) connection) .
[0027] After the user's data has been transferred to data
store (s) 108 of portable storage unit 104 , the user may send
portable storage unit 104 back to cloud service provider 114 .
For example , as shown in FIG . 1B , the user may provide
portable storage unit 104 to a carrier (e.g. , UPS® , USPS® ,
FedEx® , etc.) , and the carrier may physically transport
portable storage unit 104 to cloud service provider 114 via
a delivery vehicle 118. Cloud service provider 114 maintains
one or more cloud - based servers 110 .

[0028] As shown in FIG . 1C , upon receiving portable
storage unit 104 , cloud service provider 114 may commu
nicatively couple portable storage unit 104 to client - based
server (s) 110. Portable storage unit 104 and cloud - based
server (s) 114 may be communicatively coupled via any of
the wired or wireless connections described above . Cloud
service provider 114 may then upload the data stored on
portable storage unit 104 to data store (s) 112 maintained by
cloud - based server (s) 110. Data store (s) 112 may be any type
of physical memory and / or storage device that is described
herein , and / or as would be understood by a person of skill
in the relevant art (s) having the benefit of this disclosure .
[0029] The above - described data transfer process
described above with reference to FIGS . 1A - 1C may take
several days or even weeks depending on the time it takes to
physically transport portable storage unit 104 to cloud
service provider 114 and for cloud service provider 114 to
upload the data to cloud - based server (s) 110. During this
time , it may be desirable for the user to modify the data
locally maintained thereby while the data transfer process
takes places . The embodiments described below describe
various techniques for enabling a user to modify locally
maintained data and synchronizing the modified data with
the data uploaded to cloud - based server (s) 110 using a
cloud - based synchronization service 116 that executes on
cloud - based server (s) 114 .
[0030] For instance , FIG . 2 is a block diagram of a system
200 for enabling a user to modify locally - maintained data
during a data transfer process and synchronizing the modi
fied data with data uploaded to the cloud in accordance with
an embodiment . As shown in FIG . 2 , system 200 includes a
client - based server 202 , cloud - based server (s) 210 and a
portable storage unit 204. Client - based server 202 , cloud
based server (s) 210 , and portable storage unit 204 are
examples above client - based server 102 , cloud - based server
(s) 110 , and portable storage unit 104 , as described above
with reference to FIGS . 1A - 1C . As shown in FIG . 2 ,
client - based server 202 and cloud - based server (s) 210 are
communicatively coupled via a network 226. Network 226
may comprise one or more networks such as local area
networks (LANs) , wide area networks (WANs) , enterprise

networks , the Internet , etc. , and may include one or more of
wired and / or wireless portions .
[0031] As shown in FIG . 2 , client - based server 202 com
prises data store (s) 206 , which store one or more data
object (s) 224. Data object (s) 224 represent the user's locally
maintained data , and may be considered " source " data .
Examples of data object (s) 224 include , but are not limited
to , a data file , a database object (e.g. , a table , a directory ,
etc.) , structured data , unstructured data , semi - structured
data , a data container , etc.
[0032] A user may be enabled to utilize the services
offered by cloud - based server (s) 210. For example , a user
may be enabled to utilize the services offered by cloud - based
server (s) 210 without cost , or by signing - up with a subscrip
tion with a cloud service provider (e.g. , cloud service
provider 114 , as shown in FIG . 1B) of cloud - based servers
(s) 210. The user may be given access to a portal 214
executing on cloud - based server (s) 210 .
[0033] The user may access portal 214 by interacting with
an application executing on client - based server 202 capable
of accessing portal 214. For example , the user may use a
browser 220 to traverse a network address (e.g. , a uniform
resource locator) to portal 214 , which invokes a user inter
face (e.g. , a web page) in a browser window rendered on a
display coupled to client - based server 202. By interacting
with the user interface , the user may utilize portal 214 to
launch virtual machines and applications , request hardware
resources (e.g. , data storage) , and / or configure cloud - based
server (s) 210 for various operations . Portal 214 may also be
utilized to initiate a data transfer process , where the user
desires to transfer data object (s) 224 to cloud - based server (s)
210. For example , the user , via portal 214 , may request the
cloud service provider to send (e.g. , ship) portable storage
unit 204 to the user's premises . As shown in FIG . 2 , the user
has already requested portable storage unit 204 , copied data
object (s) 224 from client - based server 202 to portable stor
age unit 204 (shown as data object (s) 224 ' , be
referred to as “ copied ” data) and has sent (e.g. , shipped)
portable storage unit 204 back to the cloud - based provider .
[0034] After the user has copied data object (s) 224 to
portable storage unit 204 , the user may modify data object (s)
224 , which may thereafter be referred to as modified source
data . In particular , the user may interact with one or more
applications 218 executing on client - based server 202 ,
which may modify data object (s) 224. Examples of appli
cation (s) 218 include , but are not limited to , email applica
tions , calendars , contact managers , web browsers , messag
ing applications , and any other computing applications (e.g. ,
word processing applications , mapping applications , spread
sheet applications , media player applications , etc.) .
[0035] As further shown in FIG . 2 , cloud - based server (s)
210 are configured to execute a cloud - based synchronization
service 216 , and client - based server is configured to execute
a client - based synchronization service 222. Cloud - based
synchronization service 216 is an example of cloud - based
synchronization service 116 , as shown in FIGS . 1A - 1C .
Cloud - based synchronization service 216 and client - based
synchronization service 222 are configured to synchronize
data object (s) 224 ' maintained by cloud - based server (s) 210
with data object (s) 224 maintained by client - based server . In
particular , cloud - based synchronization service 216 may
determine whether any changes were made to data object (s)
224 maintained by client - based server 202 and incorporates
those changes with respect to data objects (s) 224 ' , which

which may

US 2020/0073993 A1 Mar. 5 , 2020
4

may be unmodified . For example , cloud - based synchroni
zation service 216 may comprise a hash engine 232 , which
is configured to map each of data object (s) 224 ' to a bit string
of a fixed size (i.e. , a hash value) . Cloud - based synchroni
zation service 216 may generate a hash value for a particular
data object by applying a hash function (e.g. , a crypto
graphic hash function) on the data object (e.g. , the contents
of the data object) .
[0036] Cloud - based synchronization service 216 may also
provide a notification to client - based synchronization ser
vice 222 via network 226 that indicates that data object (s)
224 ' have been uploaded to cloud - based server (s) 210. Upon
receiving the notification , client - based synchronization ser
vice 222 may provide a respective hash value for each of
data object (s) 224 to cloud - based synchronization service
216. For example , client - based synchronization service 222
may comprise a hash engine 228 that is configured to
generate a hash value for each of data object (s) 224. In
accordance with an embodiment , hash engine 228 generates
the hash value for each of data object (s) 224 responsive to
receiving the notification from cloud - based synchronization
service 216. In accordance with another embodiment , hash
engine 228 generates the hash value for a particular data
object of data object (s) 224 after the data object has been
created and / or modified . Hash engine 228 uses the same
hash function utilized by hash engine 232 to generate the
hash value for each of data object (s) 224. The hash function
utilized by hash engine 228 and hash engine 232 may be in
accordance with a hash algorithm , including , but not limited
to , Secure Hash Algorithm (SHA) -0 , SHA - 1 , SHA2 , SHA - 3
Digital Signature Algorithm (DSA) , and / or the like .
[0037] The hash values generated for data object (s) 224
may be provided to cloud - based synchronization service 216
as metadata via network 226. The metadata for a particular
data object may also comprise one or more attributes asso
ciated with the data object . The attribute (s) include , but are
not limited to , one or more file access attributes (e.g. ,
read / write permissions) , an author of the data object , one or
more time stamps that indicate a time at which the data
object is created and / or modified , a directory or file path
indicative of the location at which each the data object is
located , etc.
[0038] During synchronization , client - based synchroniza
tion service 222 provides the hash values generated for each
of data object (s) 224 to cloud - based synchronization service
216. For example , when synchronizing a particular data
object of data object (s) 224 , client - based synchronization
service 222 provides the hash value generated for that data
object to cloud - based synchronization service 216. For each
hash value received , cloud - based synchronization service
216 may compare the hash values generated for data object
(s) 224 ' to the received hash value . If a different hash value
is detected (i.e. , the received hash value does not match any
of the hash values generated for data object (s) 224 ') , cloud
based synchronization service 216 determines that a data
object of data object (s) 224 ' has been modified locally at
client - based server 202 or that a new data object has been
created at client - based server 202. Responsive to detecting
a different hash value , cloud - based synchronization service
216 may transmit an indicator specifying that the received
hash value does not match the hash values generated by
cloud - based synchronization service 216 for data object (s)
224 ' to client - based synchronization service 222. In
response , client - based synchronization service 222 provides

the modified (or newly - created) data object to cloud - based
synchronization service 216 via network 226 .
[0039] Cloud - based synchronization 216 stores the
received data object (s) into data store (s) 212 , and , as a result ,
cloud - based server (s) 210 stores the same version of the data
object (s) that are maintained by client - based server 202 (i.e. ,
the data object (s) maintained by cloud - based server (s) 210 is
synchronized with the data object (s) maintained by client
based server 202) . In the event that the received hash value
matches at least one of the hash values generated by cloud
based synchronization service 216 , client - based synchroni
zation service 222 may determine that cloud - based server (s)
already has the associated data object and does not send the
data object to cloud - based synchronization service 216 (i.e. ,
data object (s) 224 ') are already stored in data store (s) 212 .
That is , cloud - based synchronization service maintains such
data object (s) . The foregoing process may be performed for
each data object to be synchronized in an iterative manner ,
where after cloud - based synchronization service 216 pro
vides a notification to client - based synchronization service
222 indicating that data object (s) 224 ' have been uploaded to
cloud - based server (s) 210 , client - based synchronization ser
vice 222 may iteratively provide each hash value for a data
object to be synchronized and cloud - based synchronization
service 216 may provide an indicator for that data object
specifying whether the received hash value matches the hash
values generated by cloud - based synchronization service
216 .
[0040] It is noted that the received hash value may match
a hash value generated by cloud - based synchronization
service 216 for a completely different data object . For
example , a first data object that was originally transferred to
cloud - based server (s) 210 via portable storage unit 204 may
have been modified locally at client - based server 202 such
that its contents are now identical to a second data object that
was already transferred to cloud - based server (s) 210 .
Because the contents are identical , the hash value generated
for the modified first data object may match the hash value
generated for the second data object . During synchroniza
tion , when client - based synchronization service 222 sends
the hash value for the first modified data object , cloud - based
synchronization service 216 may determine that the hash
value matches the hash value generated by cloud - based
synchronization service 216 for the second data object , and
therefore , sends an indication to client - based synchroniza
tion service 222 specifying that the received hash value
matches a hash value generated by cloud - based synchroni
zation service 216. Consequently , client - based synchroniza
tion service 222 does not send the first modified data object
to cloud - based synchronization service 216 , as cloud - based
server (s) 210 already maintains a data object corresponding
thereto .
[0041] When receiving a modified data object or main
taining a data object that has already been copied to cloud
based server 210 , the attribute (s) received for the data object
via the metadata are applied to the data object . For example ,
cloud - based synchronization service 216 may set the file
access permissions for the data object , the date on which the
data object was created and / or modified , the author of the
data object , and / or other characteristics specified by the
metadata . Cloud - based synchronization service 216 may
also organize each data object in accordance with the file
path (s) and / or directories) specified in the metadata . Cloud
based synchronization service 216 may organize each data

US 2020/0073993 A1 Mar. 5 , 2020
5

object after receiving all the modified and / or newly - created
data object (s) from client - based server 202 .
[0042] It is noted that each of portal 214 and cloud - based
synchronization service 216 may be executed on the same or
a different cloud - based server of cloud - based server (s) 210 .
It is also noted that each of data store (s) 212 may located
and / or maintained on the same or a different cloud - based
server of cloud - based server (s) 210. It is further noted that
each of data store (s) 212 may be located and / or maintained
on the same cloud - based server on which portal 214 and / or
cloud - based synchronization server 216 execute or on a
different cloud - based server of cloud - based server (s) 212 .
[0043] Accordingly , a user is enabled to modify locally
maintained data during a data transfer process in many ways .
For example , FIG . 3 depicts a flowchart 300 of an example
method performed by a client - based synchronization pro
cess that enables the user to modify locally - maintained data
during a data transfer process and synchronizes the modified
data with cloud - based data in accordance with an example
embodiment . The method of flowchart 300 will now be
described with reference to FIGS . 4A - 4C , although the
method is not limited to the implementation depicted
therein . FIG . 4A is a block diagram of system 400A for
copying data maintained by a client - based server 402 to a
portable storage unit 404 in accordance with an example
embodiment . FIG . 4B is a block diagram of client - based
server 402 , which is enabled to modify locally - maintained
data during a data transfer process , in accordance with an
example embodiment . FIG . 4C is a block diagram of a
system 400C for synchronizing changes made locally by the
user with data stored on client - based server 402 to cloud
based server (s) 410 in accordance with an example embodi
ment . As shown in FIG . 4A , system 400A includes client
based server 402 and portable storage unit 404. Client - based
server 402 , portable storage unit 404 , and cloud - based
server (s) 410 are examples of client - based server 202 ,
portable storage unit 204 , and cloud - based server (s) 210 , as
described above with reference to FIG . 2. As further shown
in FIGS . 4A - 4C , client - based server 402 comprises data
store (s) 406 , application (s) 418 , browser 420 , and client
based synchronization service 422 , each of which are
examples of data store (s) 206 , application (s) 218 , browser
220 , and client - based synchronization service 222 , as
described above with reference to FIG . 2. Client - based
synchronization 422 comprises a hash engine 428 , which is
an example of hash engine 228 , as described above with
reference to FIG . 2. As shown in FIG . 4A , portable storage
unit 404 comprises data store (s) 408 , which is an example of
data store (s) 208 , as described above with reference to FIG .
2. As shown in FIG . 4C , cloud - based server (s) 410 comprise
a portal 414 , a cloud - based synchronization service 416 , and
data store (s) 412 , each of which is an example of portal 214 ,
cloud - based synchronization service 216 , and data store (s)
212 , as described above with reference to FIG . 2. As further
shown in FIG . 4C , cloud - based server (s) 410 are commu
nicatively coupled to client - based server 402 via network
426 , which is an example of network 226 , as described
above with reference to FIG . 2. Other structural and opera
tional embodiments will be apparent to persons skilled in the
relevant art (s) based on the discussion regarding flowchart
300 and FIGS . 4A - 4C .
[0044] As shown in FIG . 3 , the method of flowchart 300
begins at step 302 , in which a set of data comprising a
plurality of data objects is copied from a data store located

at a first location to a portable storage unit . For example ,
with reference to FIG . 4A , data object (s) 424 stored in data
store (s) 406 of client - based server 402 (which is located at
the user's premises) are copied to portable storage unit 404 .
The data object (s) copied to portable storage unit are shown
as data object (s) 424 ' . After data object (s) 424 are copied to
portable storage unit 404 , the user may send portable storage
unit 404 to the cloud service provider .
[0045] At step 304 , a first data object of the plurality of
data objects is modified . For example , as shown in FIG . 4B ,
application (s) 418 may modify a data object of data object (s)
424 via an input / output (I / O) operation 405 (e.g. , a write
operation) to the data object . The modified data object is
shown as data object 424 " .
[0046] In accordance with one or more embodiments , the
first data object of the plurality of data objects is modified
while the portable storage unit is being physically trans
ported to the second location comprising the plurality of
cloud - based servers . For example , with reference to FIGS .
4A - 4C , data object (s) 424 may be modified while portable
storage unit 404 is being physically transported to the
second location (e.g. , the cloud service provider's location)
comprising cloud - based server (s) 410 .
[0047] At step 306 , a notification is received from a
cloud - based synchronization service that the set of data
copied to the portable storage unit is uploaded to a cloud
based server located at a second location . For example , with
reference to 4C , after data objects (s) 424 ' are uploaded to
data store (s) 412 maintained by cloud - based server (s) 410 ,
cloud - based synchronization service 416 may provide a
notification 401 to client - based synchronization service 422
via network 426 .
[0048] At step 308 , a first hash value for the modified first
data object is generated . For example , with reference to FIG .
4C , hash engine 428 generates a first hash value for modified
data object 424 " .
[0049] In accordance with one or more embodiments , the
first hash value for the modified first data object is generated
in response to receiving the notification . For example , with
reference to FIG . 4C , hash engine 428 generates the first
hash value in response to receiving notification 401 .
[0050] In accordance with one or more embodiments , the
first hash value for the modified first data object is generated
responsive to the first data object being modified . For
example , with reference to FIG . 4B , hash engine 428 gen
erates the first hash value in response to application (s) 418
modifying data object (s) 424 via I / O command 405 .
[0051] At step 310 , the first hash value generated for the
modified first data object is provided to the cloud - based
synchronization service in response to receiving the notifi
cation . The cloud - based synchronization service is config
ured to compare the first hash value to a second hash value
generated for a second data object uploaded to the cloud
based server that corresponds to the first data object to
determine whether a difference exits between the first data
object and the corresponding second data object . For
example , with reference to FIG . 4C , responsive to client
based synchronization service 422 receiving notification
401 , client - based synchronization provides a notification
403 that comprises the first hash value generated by hash
engine 428 for modified data object 424 " to cloud - based
synchronization service 416 via network 426. Cloud - based
synchronization service 416 is configured to compare the
first hash value to a second hash value generated for a data

US 2020/0073993 A1 Mar. 5 , 2020
6

object of data object (s) 424 " that corresponds to modified
data object 424 " to determine whether a difference exists
between modified data object 424 " and the corresponding
data object copied to cloud - based server 410 .
[0052] In accordance with one or more embodiments , an
indicator specifying whether the first hash value is different
than the second hash value is received from the cloud - based
synchronization service . The modified first data object is
provided to the cloud - based synchronization service in
response to the indicator specifying that the first hash value
is different than the second hash value . For example , with
reference to FIG . 4C , cloud - based synchronization service
416 may provide an indicator 407 that specifies whether the
first hash value provided via notification 403 is different than
the second hash value (s) generated for data object (s) 424 ' . In
response to indicator 403 specifying that the first hash value
is different than the second hash value (s) , client - based
synchronization service 422 provides modified data object
424 " to cloud - based synchronization service 416 via a
response 409 .
[0053] In accordance with one or more embodiments ,
metadata associated with the modified first data object is
provided . The metadata comprises the first hash value and at
least one of a file access attribute of the modified first data
object , a time stamp that indicates a time at which the
modified first data object was modified , a directory in which
the modified first data object is located , or the name of the
modified first data object .
[0054] In accordance with one or more embodiments , a
third hash value for each of the other data objects of the
plurality of data objects and the third hash values are
provided to the cloud - based synchronization service in
response to receiving the notification , the cloud - based syn
chronization service being configured to compare the third
hash values to fourth hash values generated for data objects
uploaded to the cloud - based server that correspond to the
other data objects of the data store to determine whether a
difference exits between the data objects uploaded to the
cloud - based server and the other data objects . For example ,
with reference to FIG . 4C , client - based nchronization
service 422 may generate a third hash value for data object
(s) 424 and provides the third hash values to cloud - based
synchronization service 416 , for example , via respective
notification (s) 403. Cloud - based synchronization service
416 compares the third hash values to fourth hash values
generated for the other data objects uploaded to cloud - based
server 410 to determine whether a difference exists between
data object (s) 424 ' and the data object (s) 424. For example ,
cloud - based synchronization service 416 may provide an
indicator 407 for each notification 403 received specifying
whether a corresponding first hash value of a particular data
object to be synchronized is different than the second hash
value (s) generated for data object (s) 424 ' . Client - based
synchronization service 422 may provide a response (i.e. ,
response 409) including a modified data object for each
indicator 407 specifying that a corresponding first hash
value is different than the second hash value (s) .
[0055] In accordance with an embodiment , cloud - based
synchronization service 416 copies data object (s) 424 ' from
portable storage unit 404 to a temporary location maintained
by the cloud service provider . While data object (s) 424 ' are
stored at the temporary location , cloud - based synchroniza
tion service 416 determines whether client - based server 402
stores modified instances of data object (s) 424 (e.g. , data

object 424 ") . Data object (s) that have not been modified are
copied to a primary location , and data object (s) that have
been modified are retrieved from client - based server 402 and
subsequently stored at the primary location . Once all the
data object (s) have been synchronized and stored at the
primary location , the data object (s) are made available for
the user to use . Such an embodiment is described below with
reference to FIGS . 5 and 6 .
[0056] For example , FIG . 5 depicts a flowchart 500 of an
example method performed by a cloud - based synchroniza
tion service for synchronizing data locally modified by the
user with data maintained by cloud - based server (s) in accor
dance with an example embodiment . The method of flow
chart 500 will now be described with reference to system
600 of FIG . 6 , although the method is not limited to that
implementation . FIG . 6 is a block diagram of a system 600
for synchronizing data locally modified by the user with data
maintained by cloud - based server (s) 610 in accordance with
an example embodiment . As shown in FIG . 6 , system 600
includes a client - based server 602 , a first cloud - based server
610 , a second cloud - based server 634 , and a portable storage
unit 604 , which comprises data store (s) 608. Client - based
server 602 , portable storage unit 604 , and data store (s) 608
are example of client - based server 402 , portable storage unit
404 , and data store (s) 408 , as respectively described above
with reference to FIGS . 4A - 4C . First cloud - based server 610
and second cloud - based server 634 are examples of cloud
based server (s) 610 , as described above with reference to
FIG . 4C . Client - based server 602 , first cloud - based server
610 and second cloud - based server 634 are communica
tively coupled via a network 626 , which is an example of
network 426. As further shown in FIG . 6 , client - based server
602 comprises data store (s) 606 , application (s) 618 , browser
620 , and client - based synchronization service 622 , each of
which are examples of data store (s) 406 , application (s) 418 ,
browser 420 , and client - based synchronization service 422 ,
as described above with reference to FIGS . 4A - 4C . As also
shown in FIG . 6 , cloud - based server (s) 610 comprise a
portal 614 , a cloud - based synchronization service 616 and
data store (s) 612 , each of which is an example of portal 414 ,
cloud - based synchronization service 416 and data store (s)
412 , as described above with reference to FIG . 4C . Client
based synchronization service 622 comprises a hash engine
628 , which is an example of hash engine 428 , as described
above with reference to FIGS . 4A - 4C . Cloud - based syn
chronization service 616 comprises a hash engine 632 , a
hash map 638 , and a hash checker 636. Hash engine 632 is
an example of hash engine 232 , as described above with
reference to FIG . 2. Other structural and operational
embodiments will be apparent to persons skilled in the
relevant art (s) based on the discussion regarding flowchart
500 and system 600 of FIG . 6 .
[0057] As shown in FIG . 5 , the method of flowchart 500
begins at step 502 , in which a set of data comprising a first
instance of a plurality of data objects is uploaded from a
portable storage unit to a first cloud - based server of a
plurality of cloud - based servers . A second instance of the
plurality of data objects is stored on a client - based server
remotely - located from the plurality of cloud - based servers .
For example , with reference to FIG . 6 , cloud - based syn
chronization service 616 uploads data object (s) 624 ' from
portable storage unit 604 to data store (s) 612. As shown in
FIG . 6 , data store (s) 612 are maintained by cloud - based
server 610 , although the embodiments described herein are

US 2020/0073993 A1 Mar. 5 , 2020
7

not so limited . For example , data store (s) 612 may be
maintained by and / or included in another cloud - based
server . The original instance of data object (s) 624 ' is locally
maintained in data store (s) 606 of client - based server 602
(shown as data object (s) 624) . Data store (s) 612 represent a
temporary location at which cloud - based server 616 stores
data object (s) 624 ' during the data synchronization process .
[0058] In accordance with one or more embodiments , each
of the first instance of the plurality of data objects and each
of the second instance of the plurality of data objects
comprise one of a data file , a database object , structured
data , unstructured data , semi - structured data , or a data
container .

[0059] At step 504 , for each data object of the first
instance of the plurality of data objects uploaded to the first
cloud - based server , a corresponding first hash value is
generated . For example , with reference to FIG . 6 , hash
engine 632 of cloud - based synchronization service 616
generates a corresponding first hash value for each of data
object (s) 624 ' stored in data store (s) 612 .
[0060] At step 506 , a notification that the first instance of
the plurality of data objects has been uploaded to the first
cloud - based server is provided to the client - based server . For
example , with reference to FIG . 6 , cloud - based synchroni
zation service 616 provides a notification 601 that data
object (s) 624 ' have been uploaded to cloud - based server to
client - based server 602 via network 626 .

[0061] At step 508 , a second hash value for each of the
second instance of the plurality of data objects stored on the
client - based server is received from the client - based server .
For example , with reference to FIG . 6 , hash engine 628 of
client - based synchronization service 622 generates a corre
sponding second hash value for each of data object (s) 624
and data object (s) 624 " and provides a response 603 that
specifies the second hash values to cloud - based synchroni
zation service 616 via network 626. Cloud - based synchro
nization service 616 of first client - based server 610 receives
response 603 .
[0062] In accordance with one or more embodiments ,
metadata associated with each of the second instances of the
plurality of data objects is received . The metadata comprises
the second hash value and at least one of a file access
attribute each of the second instance of the plurality of data
objects , a time stamp that indicates a time at which each of
the second instance of the plurality of data objects was
created or modified , or a directory in which each of the
second instance of the plurality of data objects is located .
[0063] At step 510 , for each second hash value of the
second hash values receives , a determination is made as to
whether the second hash value matches any of the first hash
values . For example , with reference to FIG . 6 , for each
second hash value received , hash checker 636 compares the
second hash value to the first hash values generated by hash
engine 632. If a determination is made that the second hash
value is different from each of the first hash values , this
means that the instance of the data object associated with the
second hash value , which is maintained locally by client
based server 602 , was modified (or the data object has been
newly - created) sometime after data object (s) 624 were cop
ied to portable storage unit 604 and sent to the cloud - based
service provider , and flow continues at step 512. If a match
exists , this means that the data object associated with the

second hash value was not modified and has already been
copied to first cloud - based server , and flow continues at step
514 .
[0064] At step 512 , an indication is sent to the client - based
server that specifies that the second hash value is different
than each of the first hash values . For example , with refer
ence to FIG . 6 , cloud - based synchronization service 616
sends an indication 605 to cloud - based synchronization
service 622 via network 626 .
[0065] In accordance with one or more embodiments , in
response to the determination that the second hash value is
different from each of the first hash values , the second
instance of the data object from the client - based server is
received , and the second instance of the data object is stored
at the second cloud - based server . For example , with refer
ence to FIG . 6 , responsive to indication 605 , client - based
synchronization service 622 retrieves the associated data
object of data object (s) 624 " from data store (s) 606 and
provides a response 607 that includes the retrieved data
object to cloud - based synchronization service 616 via net
work 626. Cloud - based synchronization service 616
receives response 607 from client - based synchronization
service 622 and performs a write operation 609 to second
cloud - based server 624 that causes the received data object
of data object (s) 624 " to be stored in data store (s) 632. Data
store (s) 632 of cloud - based server 634 represents the pri
mary location at which the client's synchronized data is
available for use .
[0066] At step 514 , the first instance of the data object
associated with the matched first hash value is maintained .
For example , with reference to FIG . 6 , cloud - based syn
chronization service 616 maintains the data object in data
store (s) 612. For instance , cloud - based synchronization ser
vice 616 may provide an indicator that specifies that the
second hash value matches each of the first hash values . In
response , client - based synchronization service 622 does not
send a response 607 including the data object because
cloud - based server 610 already has a copy of the data object .
[0067] In accordance with one or more embodiments ,
cloud - based synchronization service 616 maintains the data
object by copying the first instance of the data object a
second cloud - based server . For example , with reference to
FIG . 6 , cloud - based synchronization service 616 may per
form a write operation 611 to cloud - based server 634 that
causes the data object of data object (s) 624 ' associated with
the matched first hash value to be copied to data store (s) 632
maintained by second cloud - based server 634 .
[0068] In accordance with an embodiment , for each of the
first instance of the plurality of data objects , a location at
which the first instance of the data object is stored in the first
cloud - based server is associated to the first hash value of the
first instance of the data object in a hash map . For example ,
with reference to FIG . 6 , cloud - based synchronization ser
vice 616 may generate a hash map 638 that associates each
first hash value to the location at which the associated data
object of data object (s) 624 ' is stored in data store (s) 612 .
[0069] The cloud - based synchronization service is config
ured to copy the first instance of the data object to the
second - based server by retrieving the first instance of the
data object from the location specified in the hash map and
storing the first instance of the data object in the second
cloud - based server . For example , with reference to FIG . 6 ,
for each of data object (s) 624 ' to be copied to data store (s)
632 , cloud - based synchronization service 616 provides the

US 2020/0073993 A1 Mar. 5 , 2020
8

first hash value of the data object to hash map 638 , and hash
map 638 outputs the location of the data object to cloud
based synchronization service 616. Cloud - based synchroni
zation service 616 retrieves the data object from the location
provided by hash map 634 and copies the data object to data
store (s) 632. Once all the data object (s) have been synchro
nized and stored at the primary location (i.e. , data stores)
632 of second cloud - based server 634) , the data object (s) are
made available for the user to use .

III . Additional Embodiments

[0070] While the foregoing embodiments describe data
transfer techniques that utilize a portable storage unit , it is
noted that other data transfer techniques may be utilized . For
example , FIG . 7 is a block diagram of a system 700 for
enabling a user to modify locally - maintained data during a
data transfer process that utilizes a dedicated server 734 in
accordance with an embodiment . As shown in FIG . 7 ,
system 700 includes a client - based server 702 , cloud - based
server (s) 710 and server 734. Client - based server 702 and
cloud - based server (s) 710 are examples of client - based
server 602 and cloud - based server 610 , as respectively
described above with reference to FIG . 6. As shown in FIG .
7 , client - based server 702 includes data store (s) 706 , appli
cation (s) 718 , a browser 720 , and a client - based synchroni
zation service 722 , which comprises a hash engine 728. Data
store (s) 706 , application (s) 718 , browser 720 , client - based
synchronization service 722 , and hash engine 728 , are
examples of data store (s) 606 , application (s) 618 , browser
620 , client - based synchronization service 622 , and hash
engine 628 , as respectively described above with reference
to FIG . 6. As further shown in FIG . 7 , cloud - based server (s)
710 comprise data store (s) 712 , portal 714 , and a cloud
based synchronization service 716 , which comprises a hash
engine 732. Data store (s) 712 , portal 714 , cloud - based
synchronization service 716 , and hash engine 732 are
examples of data store (s) 612 , portal 614 , cloud - based
synchronization service 616 , and hash engine 632 , as respec
tively described above with reference to FIG . 6. Client
based server 702 , cloud - based server (s) 710 , and server 734
are communicatively coupled via a network 726 , which is an
example of network 626 .
[0071] Server 734 may be a computing device (e.g. , an
edge appliance) that is dedicated to transferring the user's
data to cloud - based server (s) 710. Data object (s) 724 stored
in data store (s) 706 of client - based server 702 may be copied
to data store (s) 708 of server 734. The copied instance of
data object (s) 724 is shown as data object (s) 724 ' . Thereaf
ter , server 734 transfers data object (s) 724 ' to cloud - based
server (s) 710 via network 726. In accordance with an
embodiment , data object (s) 724 ' are uploaded to cloud - based
server (s) 6 via a dedicated , high bandwidth channel For
example , the cloud - based provider may offer , as an option to
the user , a private , high bandwidth connection to cloud
based server (s) 710. Using the high bandwidth channel ,
server 734 provides data object (s) 624 ' to cloud - based
server (s) 710 .
[0072] Cloud - based server (s) 710 receive and store data
object (s) 724 ' in data store (s) 712 maintained thereby .
Cloud - based synchronization service 716 and client - based
synchronization service 722 synchronize data objects (s) 724 '
maintained by cloud - based server (s) 710 with data object (s)
724 maintained by client - based server 702 in a similar
manner as described above with reference to FIGS . 1-6 . For

example , cloud - based synchronization service 716 may
determine whether any changes were made to data object (s)
724 maintained by client - based server 702 and incorporates
those changes with respect to data objects (s) 724 ' .
[0073] For instance , hash engine 732 may generate a hash
value for each of data object (s) 724 ' . Cloud - based synchro
nization service 716 also provides a notification to client
based synchronization service 722 via network 726 that
indicates that data object (s) 724 ' have been uploaded to
cloud - based server (s) 710. Upon receiving the notification ,
client - based synchronization service 722 may provide a
respective hash value for each of data object (s) 724 (which
are generated by hash engine 728) to cloud - based synchro
nization service 716 .
[0074] After receiving the hash values from client - based
synchronization service 722 , cloud - based synchronization
service 716 may compare the hash values generated for data
object (s) 724 ' to the hash values generated for data object (s)
724. For each data object , cloud - based synchronization
service 722 may provide an indication specifying whether
the associated hash value is different than the hash values
generated for data object (s) 724 ' . If a different hash value is
detected , cloud - based synchronization service 716 deter
mines that a corresponding data object of data object (s) 724
has been modified locally at client - based server 702 or that
a new data object has been created at client - based server
702. In response to the indication specifying that the hash
value provided to cloud - based synchronization service 716
does not match the hash values generated by cloud - based
synchronization service 716 , client - based synchronization
service 722 provides the associated data object of data
object (s) 724 to cloud - based synchronization service 716 via
network 726 .
[0075] Cloud - based synchronization 716 stores the
received data object (s) into data store (s) 712 , and , as a result ,
cloud - based server (s) 710 stores the same version of the data
object (s) that are maintained by client - based server 702 (i.e. ,
the data object (s) maintained by cloud - based server (s) 710 is
synchronized with the data object (s) maintained by client
based server 702) . Client - based synchronization service 722
does not send data object (s) for indication (s) received from
cloud - based synchronization service 716 that specify that
the corresponding hash values match because such data
object (s) are already stored in data store (s) 712 .
IV . Example Computer System Implementation
[0076] Client - based server 102 , cloud - based server (s) 110 ,
client - based server 202 , cloud - based server (s) 210 , client
based server 402 , cloud - based server (s) 410 , client - based
server 602 , cloud - based server 610 , cloud - based server 634 ,
client - based server 702 , cloud - based server (s) 710 , server
734 , client - based synchronization service 222 , hash engine
228 , cloud - based synchronization service 216 , hash engine
232 , client - based synchronization service 422 , hash engine
428 , cloud - based synchronization service 416 , cloud - based
synchronization service 622 , hash engine 628 , cloud - based
synchronization service 616 , hash engine 632 , hash map
638 , hash checker 636 , client - based synchronization service
722 , hash engine 728 , cloud - based synchronization service
716 , hash engine 732 , flowchart 300 of FIG . 3 , and / or
flowchart 500 of FIG . 5 , may be implemented in hardware ,
or hardware with any combination of software and / or firm
ware , including being implemented as computer program
code configured to be executed in one or more processors

US 2020/0073993 A1 Mar. 5 , 2020
9

and stored in a computer readable storage medium , or being
implemented as hardware logic / electrical circuitry , such as
being implemented together in a system - on - chip (SOC) . The
SoC may include an integrated circuit chip that includes one
or more of a processor (e.g. , a microcontroller , micropro
cessor , digital signal processor (DSP) , etc.) , memory , one or
more communication interfaces , and / or further circuits and /
or embedded firmware to perform its functions .
[0077] FIG . 8 depicts an example processor - based com
puter system 800 that may be used to implement various
embodiments described herein . For example , system 800
may be used to implement client - based server 102 , cloud
based server (s) 110 , client - based server 202 , cloud - based
server (s) 210 , client - based server 402 , cloud - based server (s)
410 , client - based server 602 , cloud - based server 610 , cloud
based server 634 , portable storage unit 604 , client - based
server 702 , cloud - based server (s) 710 , and server 734 .
System 800 may also be used to implement any of the steps
of any of the flowcharts of FIGS . 3 and 5 , as described
above . The description of system 800 provided herein is
provided for purposes of illustration , and is not intended to
be limiting . Embodiments may be implemented in further
types of computer systems , as would be known to persons
skilled in the relevant art (s) .
[0078] As shown in FIG . 8 , system 800 includes a pro
cessing unit 802 , a system memory 804 , and a bus 806 that
couples various system components including system
memory 804 to processing unit 802. Processing unit 802
may comprise one or more circuits (e.g. processor circuits) ,
microprocessors or microprocessor cores . Bus 806 repre
sents one or more of any of several types of bus structures ,
including a memory bus or memory controller , a peripheral
bus , an accelerated graphics port , and a processor or local
bus using any of a variety of bus architectures . System
memory 804 includes read only memory (ROM) 808 and
random access memory (RAM) 810. A basic input / output
system 812 (BIOS) is stored in ROM 808 .
[0079] System 800 also has one or more of the following
drives : a hard disk drive 814 for reading from and writing to
a hard disk , a magnetic disk drive 816 for reading from or
writing to a removable magnetic disk 818 , and an optical
disk drive 820 for reading from or writing to a removable
optical disk 822 such as a CD ROM , DVD ROM , BLU
RAYTM disk or other optical media . Hard disk drive 814 ,
magnetic disk drive 816 , and optical disk drive 820 are
connected to bus 806 by a hard disk drive interface 824 , a
magnetic disk drive interface 826 , and an optical drive
interface 828 , respectively . The drives and their associated
computer - readable media provide nonvolatile storage of
computer - readable instructions , data structures , program
modules and other data for the computer . Although a hard
disk , a removable magnetic disk and a removable optical
disk are described , other types of computer - readable
memory devices and storage structures can be used to store
data , such as flash memory cards , digital video disks ,
random access memories (RAMs) , read only memories
(ROM) , and the like .
[0080] A number of program modules may be stored on
the hard disk , magnetic disk , optical disk , ROM , or RAM .
These program modules include an operating system 830 ,
one or more application programs 832 , other program mod
ules 834 , and program data 836. In accordance with various
embodiments , the program modules may include computer
program logic that is executable by processing unit 802 to

perform any or all of the functions and features of Client
based server 102 , cloud - based server (s) 110 , client - based
server 202 , cloud - based server (s) 210 , client - based server
402 , cloud - based server (s) 410 , client - based server 602 ,
cloud - based server 610 , cloud - based server 634 , portable
storage unit 604 , client - based server 702 , cloud - based server
(s) 710 , and server 734. The program modules may also
include computer program logic that , when executed by
processing unit 802 , causes processing unit 802 to perform
any of the steps of any of the flowcharts of FIGS . 3 and 5 ,
as described above .
[0081] A user may enter commands and information into
system 800 through input devices such as a keyboard 838
and a pointing device 840 (e.g. , a mouse) . Other input
devices (not shown) may include a microphone , joystick ,
game controller , scanner , or the like . In one embodiment , a
touch screen is provided in conjunction with a display 844
to allow a user to provide user input via the application of
a touch (as by a finger or stylus for example) to one or more
points on the touch screen . These and other input devices are
often connected to processing unit 802 through a serial port
interface 842 that is coupled to bus 806 , but may be
connected by other interfaces , such as a parallel port , game
port , or a universal serial bus (USB) . Such interfaces may be
wired or wireless interfaces .
[0082] Display 844 is connected to bus 806 via an inter
face , such as a video adapter 846. In addition to display 844 ,
system 600 may include other peripheral output devices (not
shown) such as speakers and printers .
[0083] System 800 is connected to a network 848 (e.g. , a
local area network or wide area network such as the Internet)
through a network interface 850 , a modem 852 , or other
suitable means for establishing communications over the
network . Modem 852 , which may be internal or external , is
connected to bus 806 via serial port interface 842 .
[0084] As used herein , the terms “ computer program
medium , " " computer - readable medium , ” and “ computer
readable storage medium ” are used to generally refer to
memory devices or storage structures such as the hard disk
associated with hard disk drive 814 , removable magnetic
disk 818 , removable optical disk 822 , as well as other
memory devices or storage structures such as flash memory
cards , digital video disks , random access memories (RAM) ,
read only memories (ROM) , and the like . Such computer
readable storage media are distinguished from and non
overlapping with communication media (do not include
communication media) . Communication media typically
embodies computer - readable instructions , data structures ,
program modules or other data in a modulated data signal
such as a carrier wave . The term “ modulated data signal ”
means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the
signal . By way of example , and not limitation , communi
cation media includes wireless media such as acoustic , RF ,
infrared and other wireless media . Embodiments are also
directed to such communication media .
[0085] As noted above , computer programs and modules
(including application programs 832 and other program
modules 834) may be stored on the hard disk , magnetic disk ,
optical disk , ROM , or RAM . Such computer programs may
also be received via network interface 850 , serial port
interface 842 , or any other interface type . Such computer
programs , when executed or loaded by an application ,
enable system 800 to implement features of embodiments

US 2020/0073993 A1 Mar. 5 , 2020
10

discussed herein . Accordingly , such computer programs
represent controllers of the system 800. Embodiments are
also directed to computer program products comprising
software stored on any computer useable medium . Such
software , when executed in one or more data processing
devices , causes a data processing device (s) to operate as
described herein . Embodiments may employ any computer
useable or computer - readable medium , known now or in the
future . Examples of computer - readable mediums include ,
but are not limited to memory devices and storage structures
such as RAM , hard drives , floppy disks , CD ROMs , DVD
ROMs , zip disks , tapes , magnetic storage devices , optical
storage devices , MEMs , nanotechnology - based storage
devices , and the like .
[0086] Embodiments are also directed to computer pro
gram products comprising computer code or instructions
stored on any computer - readable medium or computer
readable storage medium . Such computer program products
include hard disk drives , optical disk drives , memory device
packages , portable memory sticks , memory cards , and other
types of physical storage hardware .
V. Additional Exemplary Embodiments
[0087] A method is described herein . The method
includes : copying a set of data comprising a plurality of data
objects from a data store located at a first location to a
portable storage unit ; modifying a first data object of the
plurality of data objects in the data store ; receiving , from a
cloud - based synchronization service , a notification that the
set of data copied to the portable storage unit is uploaded to
a cloud - based server located at a second location ; generating
a first hash value for the modified first data object ; and
providing the first hash value generated for the modified first
data object to the cloud - based synchronization service in
response to receiving the notification , the cloud - based syn
chronization service being configured to compare the first
hash value to a second hash value generated for a second
data object uploaded to the cloud - based server that corre
sponds to the first data object to determine whether a
difference exits between the first data object and the corre
sponding second data object .
[0088] In an embodiment of the method , generating the
first hash value comprises : generating the first hash value for
the modified first data object in response to receiving the
notification .
[0089] In an embodiment of the method , generating the
first hash value comprises : generating the hash for the
modified first data object responsive to the first data object
being modified
[0090] In an embodiment of the method , the method
further comprises : receiving an indicator from the cloud
based synchronization service specifying whether the first
hash value is different than the second hash value generated
for the second data object uploaded to the cloud - based
server ; and providing the modified first data object to the
cloud - based synchronization service in response to the indi
cator specifying that the first hash value is different than the
second hash value .
[0091] In an embodiment of the method , providing the
first hash value comprises : providing metadata associated
with the modified first data object , the metadata comprising
the first hash value and at least one of : a file access attribute
of the modified first data object ; a time stamp that indicates
a time at which the modified first data object was modified ;

a directory in which the modified first data object is located ;
or a name of the modified first data object .
[0092] In an embodiment of the method , modifying the
first data object of the plurality of data objects in the data
store comprises : modifying the first data object of the
plurality of data objects in the data store while the portable
storage unit is being physically transported to the second
location comprising the plurality of cloud - based servers .
[0093] In an embodiment of the method , the method
further includes : generating a third hash value for each of the
other data objects of the plurality of data objects ; and
providing the third hash values to the cloud - based synchro
nization service in response to receiving the notification , the
cloud - based synchronization service being configured to
compare the third hash values to fourth hash values gener
ated for data objects uploaded to the cloud - based server that
correspond to the other data objects of the data store to
determine whether a difference exits between the data
objects uploaded to the cloud - based server and the other data
objects .
[0094] A computer - readable storage medium having pro
gram instructions recorded thereon that , when executed by
at least one processor , perform a method is also described
herein . The method includes : copying a set of data compris
ing a plurality of data objects from a data store located at a
first location to a portable storage unit ; modifying a first data
object of the plurality of data objects in the data store ;
receiving , from a cloud - based synchronization service , a
notification that the set of data copied to the portable storage
unit is uploaded to a cloud - based server located at a second
location ; generating a first hash value for the modified first
data object ; and providing the first hash value generated for
the modified first data object to the cloud - based synchroni
zation service in response to receiving the notification , the
cloud - based synchronization service being configured to
compare the first hash value to a second hash value gener
ated for a second data object uploaded to the cloud - based
server that corresponds to the first data object to determine
whether a difference exits between the first data object and
the corresponding second data object .
[0095] In an embodiment of the computer - readable stor
age medium , generating the first hash value comprises :
generating the first hash value for the modified first data
object in response to receiving the notification .
[0096] In an embodiment of the computer - readable stor
age medium , generating the first hash value comprises :
generating the hash for the modified first data object respon
sive to the first data object being modified .
[0097] In an embodiment of the computer - readable stor
age medium , the method further comprises : receiving an
indicator from the cloud - based synchronization service
specifying whether the first hash value is different than the
second hash value generated for the second data object
uploaded to the cloud - based server ; and providing the modi
fied first data object to the cloud - based synchronization
service in response to the indicator specifying that the first
hash value is different than the second hash value .
[0098] In an embodiment of the computer - readable stor
age medium , providing the first hash value comprises :
providing metadata associated with the modified first data
object , the metadata comprising the first hash value and at
least one of : a file access attribute of the modified first data
object ; a time stamp that indicates a time at which the

US 2020/0073993 A1 Mar. 5 , 2020
11

the location specified in the hash map and storing the first
instance of the data object in the second cloud - based server .
[0104] In an embodiment of the server , the cloud - based
synchronization service is further configured to , in response
to the determination that the second hash value is different
from each of the first hash values : receive the second
instance of the data object from the client - based server ; and
store the second instance of the data object at the second
cloud - based server .
[0105] In an embodiment of the server , the cloud - based
synchronization service is configured to receive , from the
client - based server , the second hash value for each of the
second instance of the plurality of data objects by : receiving
metadata associated with each of the second instance of the
plurality of data objects , the metadata comprising the second
hash value and at least one of : a file access attribute of each
of the second instance of the plurality of data objects ; a time
stamp that indicates a time at which each of the second
instance of the plurality of data objects was created or
modified ; a directory in which each of the second instance
of the plurality of data objects is located ; or a name of each
of the second instance of the plurality of data objects .
[0106] In an embodiment of the server , each of the first
instance of the plurality of data objects and each of the
second instance of the plurality of data objects comprise one
of : a data file ; a database object ; structured data ; unstruc
tured data ; semi - structured data ; or a data container .
VI . Conclusion

modified first data object was modified ; a directory in which
the modified first data object is located ; or a name of the
modified first data object .
[0099] In an embodiment of the computer - readable stor
age medium , modifying the first data object of the plurality
of data objects in the data store comprises : modifying the
first data object of the plurality of data objects in the data
store while the portable storage unit is being physically
transported to the second location comprising the plurality
of cloud - based servers .
[0100] In an embodiment of the computer - readable stor
age medium , the method further includes : generating a third
hash value for each of the other data objects of the plurality
of data objects , and providing the third hash values to the
cloud - based synchronization service in response to receiv
ing the notification , the cloud - based synchronization service
being configured to compare the third hash values to fourth
hash values generated for data objects uploaded to the
cloud - based server that correspond to the other data objects
of the data store to determine whether a difference exits
between the data objects uploaded to the cloud - based server
and the other data objects .
[0101] A server is further described herein . The includes at
least one processor circuit ; and at least one memory that
stores program code configured to be executed by the at least
one processor circuit , the program code comprising : a cloud
based synchronization service configured to : upload a set of
data comprising a first instance of a plurality of data objects
from a portable storage unit to a first cloud - based server of
a plurality of cloud - based servers , a second instance of the
plurality of data objects being stored on a client - based server
remotely - located from the plurality of cloud - based servers ;
for each data object of the first instance of the plurality of
data objects uploaded to the first cloud - based server , gen
erate a corresponding first hash value ; provide a notification
to the client - based server that the first instance of the
plurality of data objects has been uploaded to the first
cloud - based server ; receive , from the client - based server ,
second hash values from the client - based server , each of the
second hash values individually corresponding to a data
object of the second instance of the plurality of data objects ;
and for each second hash value of the second hash values
received : determine whether the second hash value matches
any of the first hash values ; in response to a determination
that the second hash value is different from each of the first
hash values , send an indication to the client - based server that
specifies that the second hash value is different than each of
the first hash values ; and in response to a determination that
the second hash value matches one of the first hash values ,
maintain the first instance of the data object associated with
the matched first hash value .
[0102] In an embodiment of the server . the cloud - based
synchronization service is configured to maintain the first
instance of the data object by : copying the first instance of
the data object to a second cloud - based server .
[0103] In an embodiment of the server , the cloud - based
synchronization service is further configured to : for each of
the first instance of the plurality of data objects : associate , in
a hash map , a location at which the first instance of the data
object is stored in the first cloud - based server to the first hash
value of the first instance of the data object ; wherein the
cloud - based synchronization service is configured to copy
the first instance of the data object to the second cloud - based
server by : retrieving the first instance of the data object from

[0107] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . It will be
apparent to persons skilled in the relevant art that various
changes in form and detail can be made therein without
departing from the spirit and scope of the embodiments .
Thus , the breadth and scope of the embodiments should not
be limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents ,
What is claimed is :
1. A method , comprising :
copying a set of data comprising a plurality of data objects

from a data store located at a first location to a portable
storage unit ;

modifying a first data object of the plurality of data
objects in the data store ;

receiving , from a cloud - based synchronization service , a
notification that the set of data copied to the portable
storage unit is uploaded to a cloud - based server located
at a second location ;

generating a first hash value for the modified first data
object ; and

providing the first hash value generated for the modified
first data object to the cloud - based synchronization
service in response to receiving the notification , the
cloud - based synchronization service being configured
to compare the first hash value to a second hash value
generated for a second data object uploaded to the
cloud - based server that corresponds to the first data
object to determine whether a difference exits between
the first data object and the corresponding second data
object .

2. The method of claim 1 , wherein generating the first
hash value comprises :

US 2020/0073993 A1 Mar. 5 , 2020
12

generating the first hash value for the modified first data
object in response to receiving the notification .

3. The method of claim 1 , wherein generating the first
hash value comprises :

generating the hash for the modified first data object
responsive to the first data object being modified .

4. The method of claim 1 , further comprising :
receiving an indicator from the cloud - based synchroniza

tion service specifying whether the first hash value is
different than the second hash value generated for the
second data object uploaded to the cloud - based server ;
and

providing the modified first data object to the cloud - based
synchronization service in response to the indicator
specifying that the first hash value is different than the
second hash value .

5. The method of claim 1 , wherein providing the first hash
value comprises :

providing metadata associated with the modified first data
object , the metadata comprising the first hash value and
at least one of :
a file access attribute of the modified first data object ;
a time stamp that indicates a time at which the modified

first data object was modified ;
a directory in which the modified first data object is

located ; or
a name of the modified first data object .

6. The method of claim 1 , wherein modifying the first data
object of the plurality of data objects in the data store
comprises :
modifying the first data object of the plurality of data

objects in the data store while the portable storage unit
is being physically transported to the second location
comprising the plurality of cloud - based servers .

7. The method of claim 1 , further comprising :
generating a third hash value for each of the other data

objects of the plurality of data objects ; and
providing the third hash values to the cloud - based syn

chronization service in response to receiving the noti
fication , the cloud - based synchronization service being
configured to compare the third hash values to fourth
hash values generated for data objects uploaded to the
cloud - based server that correspond to the other data
objects of the data store to determine whether a differ
ence exits between the data objects uploaded to the
cloud - based server and the other data objects .

8. A computer - readable storage medium having program
instructions recorded thereon that , when executed by at least
one processor , perform a method , the method comprising :
copying a set of data comprising a plurality of data objects

from a data store located at a first location to a portable
storage unit ;

modifying a first data object of the plurality of data
objects in the data store ;

receiving , from a cloud - based synchronization service , a
notification that the set of data copied to the portable
storage unit is uploaded to a cloud - based server located
at a second location ;

generating a first hash value for the modified first data
object ; and

providing the first hash value generated for the modified
first data object to the cloud - based synchronization
service in response to receiving the notification , the
cloud - based synchronization service being configured

to compare the first hash value to a second hash value
generated for a second data object uploaded to the
cloud - based server that corresponds to the first data
object to determine whether a difference exits between
the first data object and the corresponding second data
object

9. The computer - readable storage medium of claim 8 ,
wherein generating the first hash value comprises :

generating the first hash value for the modified first data
object in response to receiving the notification .

10. The computer - readable storage medium of claim 8 ,
wherein generating the first hash value comprises :

generating the hash for the modified first data object
responsive to the first data object being modified .

11. The computer - readable storage medium of claim 8 ,
wherein the method further comprises :

receiving an indicator from the cloud - based synchroniza
tion service specifying whether the first hash value is
different than the second hash value generated for the
second data object uploaded to the cloud - based server ;
and

providing the modified first data object to the cloud - based
synchronization service in response to the indicator
specifying that the first hash value is different than the
second hash value .

12. The computer - readable storage medium of claim 8 ,
wherein providing the first hash value comprises :

providing metadata associated with the modified first data
object , the metadata comprising the first hash value and
at least one of :
a file access attribute of the modified first data object ;
a time stamp that indicates a time at which the modified

first data object was modified ;
a directory in which the modified first data object is

located ; or
a name of the modified first data object .

13. The computer - readable storage medium of claim 8 ,
wherein modifying the first data object of the plurality of
data objects in the data store comprises :
modifying the first data object of the plurality of data

objects in the data store while the portable storage unit
is being physically transported to a second location
comprising the plurality of cloud - based servers .

14. The computer - readable storage medium of claim 8 ,
the method further comprises :

generating a third hash value for each of the other data
objects of the plurality of data objects ; and

providing the third hash values to the cloud - based syn
chronization service in response to receiving the noti
fication , the cloud - based synchronization service being
configured to compare the third hash values to fourth
hash values generated for data objects uploaded to the
first cloud - based server that correspond to the other
data objects of the data store to determine whether a
difference exits between the data objects uploaded to
the first cloud - based server and the other data objects .

15. A server , comprising :
at least one processor circuit ; and
at least one memory that stores program code configured

to be executed by the at least one processor circuit , the
program code comprising :
a cloud - based synchronization service configured to :
upload a set of data comprising a first instance of a

plurality of data objects from a portable storage

US 2020/0073993 A1 Mar. 5 , 2020
13

unit to a first cloud - based server of a plurality of
cloud - based servers , a second instance of the
plurality of data objects being stored on a client
based server remotely - located from the plurality
of cloud - based servers ;

for each data object of the first instance of the
plurality of data objects uploaded to the first
cloud - based server , generate a corresponding first
hash value ;

provide a notification to the client - based server that
the first instance of the plurality of data objects has
been uploaded to the first cloud - based server ;

receive , from the client - based server , second hash
values from the client - based server , each of the
second hash values individually corresponding to
a data object of the second instance of the plurality
of data objects ; and

for each second hash value of the second hash values
received :
determine whether the second hash value matches
any of the first hash values ;

in response to a determination that the second hash
value is different from each of the first hash
values , send an indication to the client - based
server that specifies that the second hash value
is different than each of the first hash values ;
and

in response to a determination that the second hash
value matches one of the first hash values ,
maintain the first instance of the data object
associated with the matched first hash value .

16. The server of claim 15 , wherein the cloud - based
synchronization service is configured to maintain the first
instance of the data object by :

copying the first instance of the data object to a second
cloud - based server .

17. The server of claim 16 , wherein the cloud - based
synchronization service is further configured to :

for each of the first instance of the plurality of data
objects :
associate , in a hash map , a location at which the first

instance of the data object is stored in the first
cloud - based server to the first hash value of the first
instance of the data object ;

wherein the cloud - based synchronization service is con
figured to copy the first instance of the data object to the
second cloud - based server by :
retrieving the first instance of the data object from the

location specified in the hash map and storing the
first instance of the data object in the second cloud
based server .

18. The server of claim 16 , wherein the cloud - based
synchronization service is further configured to , in response
to the determination that the second hash value is different
from each of the first hash values :

receive the second instance of the data object from the
client - based server ; and

store the second instance of the data object at the second
cloud - based server .

19. The server of claim 15 , wherein the cloud - based
synchronization service is configured to receive , from the
client - based server , the second hash value for each of the
second instance of the plurality of data objects by :

receiving metadata associated with each of the second
instance of the plurality of data objects , the metadata
comprising the second hash value and at least one of :
a file access attribute of each of the second instance of

the plurality of data objects ;
a time stamp that indicates a time at which each of the
second instance of the plurality of data objects was
created or modified ;

a directory in which each of the second instance of the
plurality of data objects is located ; or

a name of each of the second instance of the plurality
of data objects .

20. The server of claim 15 , wherein each of the first
instance of the plurality of data objects and each of the
second instance of the plurality of data objects comprise one
of :

a data file ;
a database object ;
structured data ;
unstructured data ;
semi - structured data ; or
a data container .

