
US 20220342865A1
IN

(19) United States
) (12) Patent Application Publication Publication (10) Pub . No .: US 2022/0342865 A1

Liu et al . (43) Pub . Date : Oct. 27 , 2022

Publication Classification (54) TECHNIQUE OF EFFICIENTLY ,
COMPREHENSIVELY AND
AUTONOMOUSLY SUPPORT NATIVE JSON
DATATYPE IN RDBMS FOR BOTH OLTP &
OLAP

(71) Applicant : Oracle International Corporation ,
Redwood Shores , CA (US)

(51) Int . Ci .
G06F 16/22 (2006.01)
G06F 16/2455 (2006.01)
G06F 16/248 (2006.01)
G06F 11/34 (2006.01)
G06F 16/242 (2006.01)

(52) U.S. Ci .
CPC ... GO6F 16/2282 (2019.01) ; G06F 16/24556

(2019.01) ; G06F 16/248 (2019.01) ; G06F
11/3409 (2013.01) ; G06F 16/221 (2019.01) ;

G06F 16/24552 (2019.01) ; G06F 16/244
(2019.01)

(57) ABSTRACT

(72) Inventors : Zhen Hua Liu , San Mateo , CA (US) ;
Sriram Krishnamurthy , San Francisco ,
CA (US) ; Beda C. Hammerschmidt ,
Los Gatos , CA (US) ; Douglas J.
McMahon , Redwood City , CA (US) ;
Hui Joe Chang , San Jose , CA (US) ;
Ying Lu , Sunnyvale , CA (US) ; Joshua
Spiegel , St. Louis , MO (US) ;
Srikrishnan Suresh , Belmont , CA
(US) ; Vikas Arora , Burlingame , CA
(US) ; Geeta Arora , Union City , CA
(US) ; Sundeep Abraham , Redwood
City , CA (US) ; Hui Zhang , San
Ramon , CA (US) ; Alfonso Colunga
Sosa , Redwood City , CA (US)

(21) Appl . No .: 17 / 860,192

Herein is a self - tuning database management system
(DBMS) storing JavaScript object notation (JSON) docu
ments and operating a JSON datatype as native to the
DBMS . In an embodiment , a computer hosts a DBMS that
executes a data definition language (DDL) statement that
defines , in a database dictionary of the DBMS , a JSON
document column of a database table that stores JSON
documents as instances of the JSON datatype that is native
in the DBMS . The DBMS may autonomously set or adjust
configuration settings that control behaviors such as a
default width of a JSON document column , in lining or not
of the JSON document column , kind and scope and duration
of indexing of the JSON document column , and / or caching
of the JSON document column such as in an in memory
columnar unit (IMCU) . The DBMS may use the various
configuration settings to control how JSON documents and
the native JSON datatype are stored and / or processed .

(22) Filed : Jul . 8 , 2022
a

Related U.S. Application Data
(62) Division of application No. 16 / 904,417 , filed on Jun .

17 , 2020 , now Pat . No. 11,423,001 .
(60) Provisional application No. 62 / 900,410 , filed on Sep.

13 , 2019 .

DATABASE MANAGEMENT SYSTEM 100
T1

DATABASE DICTIONARY 120 DATA DEFINITION LANGUAGE STATEMENT 110

DATABASE TABLE 130

JAVASCRIPT OBJECT NOTATION
DOCUMENT COLUMN 142 JAVASCRIPT OBJECT

NOTATION DATATYPE
160

JAVASCRIPT OBJECT
NOTATION DOCUMENT 151 ADJUSTABLE

SETTING 165

JAVASCRIPT OBJECT
NOTATION DOCUMENT 152 SCALAR

COLUMN
141

JAVASCRIPT OBJECT
NOTATION DOCUMENT 153 FIELD

NAME
190

T2 DOT
NOTATION 180

STRUCTURED QUERY
LANGUAGE

STATEMENT 170

FIG . 1

DATABASE MANAGEMENT SYSTEM 100

T1

DATABASE DICTIONARY 120

DATA DEFINITION LANGUAGE STATEMENT 110

DATABASE TABLE 130

Patent Application Publication

JAVASCRIPT OBJECT NOTATION DOCUMENT COLUMN 142

JAVASCRIPT OBJECT NOTATION DATATYPE 160

JAVASCRIPT OBJECT NOTATION DOCUMENT 151

ADJUSTABLE SETTING 165

JAVASCRIPT OBJECT NOTATION DOCUMENT 152

SCALAR COLUMN 141

Oct. 27 , 2022 Sheet 1 of 14

JAVASCRIPT OBJECT NOTATION DOCUMENT 153

FIELD NAME 190

T2

DOT NOTATION 180

US 2022/0342865 A1

STRUCTURED QUERY LANGUAGE STATEMENT 170

FIG . 2

202 Execute DDL statement that defines , in database dictionary , JSON document column of database table that stores JSON documents as instances of JSON datatype that is native in DBMS

Patent Application Publication

204 Receive SQL statement that contains dot notation that contains field name that is not defined in database dictionary

Oct. 27 , 2022 Sheet 2 of 14

206A Access scalar column of database table that is defined in database dictionary

206B Execute dot notation by using field name and JSON datatype that is native in DBMS to access at
least portion of at least one of JSON documents

US 2022/0342865 A1

FIG . 3

DATABASE TABLE 300

LOGICAL 308

STORAGE 306

Patent Application Publication

JSON DOCUMENT COLUMN 331

VIRTUAL COLUMN 332

VOLATILE DATA UNITS 341

PERSISTENCE DATA UNITS 342

TABLE ROW 310

JSON DOCUMENT 350

DATABASE BLOCK 371

TABLE ROW 311

JSON DOCUMENT 351

TABLE ROW 312

JSON DOCUMENT 352

DATABASE BLOCK 372

TABLE ROW 313

JSON DOCUMENT 353

Oct. 27 , 2022 Sheet 3 of 14

TABLE ROW 314

JSON DOCUMENT 354

INDEX 391

IN MEMORY COMPRESSION UNIT 381

DATABASE BLOCK 373

TABLE ROW 315

JSON DOCUMENT 355

BUFFER
CACHE MEMORY 304

302

TABLE ROW 316

JSON DOCUMENT 356

DATABASE BLOCK 374

TABLE ROW 317

JSON DOCUMENT 357

INDEX 392

IN MEMORY COMPRESSION UNIT 382

TABLE ROW 318

JSON DOCUMENT 358

DATABASE BLOCK 375

US 2022/0342865 A1

TABLE ROW 319

JSON DOCUMENT 359

Patent Application Publication

FIG . 4

402 DBMS stores JSON documents in JSON document column of database table

Oct. 27 , 2022 Sheet 4 of 14

404 Use virtual column of database table to access index of JSON documents

US 2022/0342865 A1

FIG . 5

502A Receive SQL query

502B Analyze access statistics for JSON documents

502C Detect available memory exceeds threshold

Patent Application Publication

502D Asynchronously or synchronously generate index 504A Invoke UDF

Oct. 27 , 2022 Sheet 5 of 14

504B Evaluate expression that is compound and / or references multiple fields of JSON document (s)
5040 Return sorted values

US 2022/0342865 A1

506 Spontaneously discard index based on dynamic conditions .

FIG . 6

DATABASE MANAGEMENT SYSTEM 600

ROW 660

ZERO WIDTH

WIDTH A

WIDTH B

Patent Application Publication

VIRTUAL COLUMN 611

JSON

LOB COLUMN

DOCUMENT
613

COLUMN 612 JSON DOCUMENT 621 JSON DOCUMENT 622

MEMORY 640

INDEX 630

JSON DOCUMENT 623

Oct. 27 , 2022 Sheet 6 of 14

JSON DOCUMENT 624 DATABASE BLOCK 670

US 2022/0342865 A1

FIG . 7

702A Receive JSON document in binary format

Patent Application Publication

702B Verify that JSON document in binary format does not contain cycle and / or dangling indirection
702C Each of JSON documents is individually persisted with : compression , encryption , and / or i - nodes that do not store multiple

JSON documents

Oct. 27 , 2022 Sheet 7 of 14

704 Generating database view that contains table column that is based on field that is common to JSON documents
706A Do not entirely replace JSON document

706B Copy on write

US 2022/0342865 A1

706C Generate redo data only for portion of JSON document

DATABASE MANAGEMENT SYSTEM 800

FIG . 8

Patent Application Publication

JSON DOCUMENT 811 JSON DOCUMENT 812

Oct. 27 , 2022 Sheet 8 of 14

VALUE A

AGGREGATION FUNCTION 830

AGGREGATE VALUES 840

JSON DOCUMENT 813

VALUE B

JSON DOCUMENT 814

US 2022/0342865 A1

FIG . 9

Patent Application Publication

902 DBMS that stores JSON documents receives SQL statement that specifies aggregation function . 904 Identify subset of JSON documents that satisfy SQL statement

Oct. 27 , 2022 Sheet 9 of 14

906 Apply aggregation function individually to each document of subset to calculate respective aggregate value of set of aggregate values for JSON document subset

US 2022/0342865 A1

908 Generate result set that contains set of aggregate values for JSON document subset

FIG . 10

Patent Application Publication

1002 Verify that function will not cause stack overflow and / or infinite looping

Oct. 27 , 2022 Sheet 10 of 14

1004 Use path index or inverted index during function invocation

US 2022/0342865 A1

FIG . 11

Patent Application Publication

1102 To database management system (DBMS) , client sends structured query language (SQL) statement that references :
a) scalar column that is defined in database dictionary for database table , and b) document column that contains binary

JavaScript object notation (JSON) documents in same database table

Oct. 27 , 2022 Sheet 11 of 14

1104 Client receives binary JSON document that satisfies the SQL statement from the DBMS

US 2022/0342865 A1

1106 Client uses dot notation to access field in binary JSON document without decoding binary JSON document into text

FIG . 12

1202 Client sends indication of how DBMS should cache binary JSON document

Patent Application Publication

1204A Receive binary JSON document entirely in one network transmission consisting of network packet (s)
1204B Receive instance of LOB datatype that is native for DBMS

Oct. 27 , 2022 Sheet 12 of 14

1204C Operate database cursor that automatically manages memory that stores binary JSON document

US 2022/0342865 A1

1204D Prefetch multiple binary JSON documents from DBMS

FIG . 13

Patent Application Publication

ROM

SERVER 1330

DISPLAY
1312

MAIN MEMORY
1306

STORAGE DEVICE
1310

1328

1308

INTERNET ISP

BUS

INPUT DEVICE
1314

1302

1326

Oct. 27 , 2022 Sheet 13 of 14

CURSOR CONTROL
1316

PROCESSOR
1304

COMMUNICATION INTERFACE
1318

NETWORK LINK

LOCAL NETWORK 1322

1300

1320

US 2022/0342865 A1

HOST 1324

SOFTWARE SYSTEM 1400

FIG . 14

Patent Application Publication

- 1402A

1402B

1402C

1402N

APPLICATION PROGRAM 1

APPLICATION PROGRAM 2

APPLICATION PROGRAM 3

] [...]

APPLICATION PROGRAM N

1402

OPERATING SYSTEM (e.g. , WINDOWS , UNIX , LINUX , MAC OS , IOS , ANDROID , OR LIKE)

Oct. 27 , 2022 Sheet 14 of 14

GRAPHICAL USER INTERFACE (GUI)
1415

1410

VIRTUAL MACHINE MONITOR (VMM)

US 2022/0342865 A1

1430

BARE HARDWARE (e.g. , COMPUTING DEVICE 1300)

US 2022/0342865 A1 Oct. 27 , 2022
1

[0011] The following JSON object J is used to illustrate
JSON .

TECHNIQUE OF EFFICIENTLY ,
COMPREHENSIVELY AND

AUTONOMOUSLY SUPPORT NATIVE JSON
DATATYPE IN RDBMS FOR BOTH OLTP &

OLAP {

BENEFIT CLAIM ; RELATED CASES
" CUSTOMER ” : “ EXAMPLE LIMITED ” ,
“ CUSTOMER TYPE " : " BUSINESS ” ,
" ADDRESS " : {

" STREETADDRESS " : " 101 99TH STREET ” ,
" CITY ” : “ NORTH POLE ” ,
“ STATE ” : “ AK ” ,
“ POSTALCODE ” : “ 95110 "

} ,
“ PHONENUMBERS " : [

“ 408 555-1234 " .
“ 408 555-4444 "

]
}

[0001] This application claims the benefit as a divisional
of application Ser . No. 16 / 904,417 , filed Jun . 17 , 2020 , by
Zhen Hua Liu et al . , the entire contents of which is hereby
incorporated by reference , which claims the benefit under 35
U.S.C. $ 119 (e) of provisional application 62 / 900,410 , filed
Sep. 13 , 2019 , the entire contents of which is hereby
incorporated by reference . The following cases are related
and are each incorporated herein by reference in entirety .
[0002] U.S. Pat . No. 10,262,012 , Techniques Related to

Binary Encoding of JSON documents to Support Efficient
Path Navigation of the JSON documents , filed by Zhen
Hua Liu , et al . on Aug. 26 , 2015 ;

[0003] U.S. Pat . No. 10,296,462 , Method To Accelerate
Queries Using Dynamically Generated Alternate Data
Formats In Flash Cache , filed by Juan Loaiza , et al . on
Mar. , 15 , 2013 ;

[0004] U.S. Pat . No. 9,864,816 , Dynamically Updating
Data Guide for JSON documents , filed by Zhen Hua Liu ,
et al . , on Apr. 29 , 2015 ;

[0005] U.S. patent application Ser . No. 16 / 022,465 , Tech
niques for Enabling and Integrating In - Memory Semi
Structured Data and Text Document Searches With In
Memory Columnar Query Processing , filed by Zhen Hua
Liu , et al . on Jun . 28 , 2018 ;

[0006] U.S. patent application Ser . No. 16 / 863,268 , Tech
nique of Supporting Piecewise Update of JSON Docu
ment Efficiently , filed by Zhen Hua Liu , et al . , on Apr. 30 ,
2020 .

The following non - patent literature (NPL) is related and
incorporated herein by reference in entirety .
[0007] Closing the Functional and Performance Gap
Between SQL and NoSQL , by Zhen Hua Liu , et al . ,
SIGMOD '16 Proceedings of the 2016 International Con
ference on Management of Data , pages 227-238 , Jun . 26 ,
2016 .

a

[0012] Object J contains fields CUSTOMER , CUS
TOMER TYPE , ADDRESS , STREETADDRESS , CITY ,
STATE , POSTALCODE , and PHONENUMBERS . CUS
TOMER and CUSTOMER TYPE have string values
“ EXAMPLE LIMITED ” and “ BUSINESS ” , respectively .
ADDRESS is an object containing member fields
STREETADDRESS , CITY , STATE , and POSTALCODE .
PHONENUMBERS is an array comprising string values
“ 408 555-1234 ” and “ 408 555-4444 ” . A field such as POST
ALCODE may be subsequently parsed as another primitive
datatype such as an integer such as for : schematic validation ,
storage that is compact and / or strongly typed , and / or ana
lytics or further processing such as arithmetic .
[0013] Efficient querying is important to accessing JSON
documents . Effective approaches for querying JSON docu
ments include schema - based approaches . One schema - based
approach is the schema - based relational - storage approach .
In this approach , collections of JSON documents are stored
as schema instances within tables of a database managed by
a database management system (DBMS) . That approach
leverages the power of object - relational DBMS's to index
and query data . In general , the schema - based relational
storage approach involves registering a schema with a
DBMS , which generates tables and columns needed to store
the attributes (e.g. elements , fields) defined by the schema .
[0014] Storing a collection of JSON documents as
instances of a schema may require developing a schema that
defines many if not all attributes found in any member of a
collection . Some or many of the attributes defined by the
schema may only occur in a relatively small subset of the
collection members . The number of attributes defined by a
schema may be many times larger than the number of
attributes of many collection members . Many attributes may
be sparsely populated . Managing schemas with a relatively
large number of attributes , some or many of which may be
sparsely populated , can be burdensome to a DBMS and
administrators and users of the DBMS .
[0015] To avoid pitfalls of using schema - based
approaches , schema - less approaches may be used . One
schema - less approach is the partial projection approach .
Under the partial projection approach , a set of commonly
queried attributes of the collection are projected and copied
into columns of additional tables ; these tables exist to
support DBMS indexing of the columns using , for example ,
binary tree or bit map indexing . The approach works most
optimally when the query workload for the collection is
known to follow a pattern , so that commonly queried
attributes can be determined . The approach works less

FIELD OF THE INVENTION

[0008] The present invention relates to a self - tuning data
store of JavaScript object notation (JSON) documents .
Herein are integration and optimization techniques for oper
ating a JSON datatype that is native to a relational database
management system (RDBMS) .

BACKGROUND

a

[0009] JavaScript object notation (JSON) is a lightweight
data specification language . A JSON object comprises a
collection of fields , each of which is a field name / value pair .
A field name is in effect a tag name for a node in a JSON
object . The name of the field is separated by a colon from the
field's value . A JSON value may be :
[0010] An object , which is a list of fields enclosed in
braces “ O ” and separated within the braces by commas . An
array , which is a list of comma separated JSON values
enclosed in square brackets “ [] ” . A field value , which is a
string , number , true , false , or null .

US 2022/0342865 A1 Oct. 27 , 2022
2

a

a

optimally when the workload is ad - hoc and the number of
attributes to project cannot be easily constrained to a rela
tively small number . Also , many of the unprojected attri
butes must be searched using text search or functional
evaluation against collection members . In general , schema
based approaches provide more efficient ad hoc querying
based on structural features .
[0016] Being a minimalist semi - structured data model ,
JSON is a de - facto standard for schema - less development in
database markets . Both RDBMS vendors and No - SQL ven
dors have supported JSON functionality to various degrees .
The current status is that most RDBMS vendors support
JSON text storage in a varchar or character large object
(CLOB) text column and apply structured query language
(SQL) and / or JSON operators over the JSON text , as is
specified by the SQL / JSON standard . For example , an ‘ IS
JSON ' standardized check reveals a pseudo - type approach
that may be difficult to optimize and does not entail a
database native datatype for JSON .
[0017] The approaches described in this section are
approaches that could be pursued , but not necessarily
approaches that have been previously conceived or pursued .
Therefore , unless otherwise indicated , it should not be
assumed that any of the approaches described in this section
qualifies as prior art merely by virtue of their inclusion in
this section .

[0028] FIG . 10 is a flow diagram that depicts an example
process for applying a function that is referenced in a SQL
statement ;
[0029] FIG . 11 is a flow diagram that depicts an example
process for a client to receive and directly interrogate , with
dot notation and without decoding , a binary JSON docu
ment ;
[0030] FIG . 12 is a flow diagram that depicts an example
process of ways in which a client's database driver and
DBMS may collaborate to retrieve binary JSON documents ;
[0031] FIG . 13 is a block diagram that illustrates a com
puter system upon which an embodiment of the invention
may be implemented ;
[0032] FIG . 14 is a block diagram that illustrates a basic
software system that may be employed for controlling the
operation of a computing system .

DETAILED DESCRIPTION

[0033] In the following description , for the purposes of
explanation , numerous specific details are set forth in order
to provide a thorough understanding of the present inven
tion . It will be apparent , however , that the present invention
may be practiced without these specific details . In other
instances , structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention .

BRIEF DESCRIPTION OF THE DRAWINGS
General Overview

a

a

a

[0018] In the drawings :
[0019] FIG . 1 is a block diagram that depicts an example
database management system (DBMS) that uses dot notation
to operate a JavaScript object notation (JSON) document
column and a JSON datatype that is native to the DBMS ;
[0020] FIG . 2 is a flow diagram that depicts an example
index access process for using dot notation to operate a
JSON document column and a JSON datatype that is native
to the DBMS ;
[0021] FIG . 3 is a block diagram that depicts an example
DBMS that uses a virtual column of a database table to
access an index of JSON documents stored in the database
table ;
[0022] FIG . 4 is a flow diagram that depicts an example
index access process for using a virtual column of a database
table to access an index of JSON documents stored in the
database table ;
[0023] FIG . 5 is a flow diagram that depicts an example
process for generating and using an index of JSON docu
ments in various complementary ways ;
[0024] FIG . 6 is a block diagram that depicts an example
DBMS that efficiently arranges data structures in storage
such as memory and / or disk ;
[0025] FIG . 7 is a flow diagram that depicts an example
JSON document storage process for populating and modi
fying a JSON document datastore ;
[0026] FIG . 8 is a block diagram that depicts an example
DBMS that executes a structured query language (SQL)
statement by applying an aggregate function to array (s) in
JSON document (s) ;
[0027] FIG . 9 is a flow diagram that depicts an example
aggregation process for executing a SQL statement by
applying an aggregate function to array (s) in JSON docu
ment (s) ;

[0034] Described herein are approaches and techniques to
efficiently and autonomously support a native JavaScript
object notation (JSON) datatype in a relational database
management system (RDBMS) , such as with an object
relational database , for diverse workloads , including online
transaction processing (OLTP) and online analytical pro
cessing (OLAP) . The native JSON datatype is binary and
self contained (i.e. schema less) . Aspects of the native JSON
datatype are comprehensively incorporated into an RDBMS
ecosystem that may include : an RDBMS server , various
clients coded in variety of programming languages , various
database access tools (e.g. database programs for import ,
export , and replication) that together form an operationally
complete stack with JSON as a built - in first - class datatype .
The JSON datatype is designed to be easy to use , as
autonomous as possible , and to integrate and collaborate
well with many latest advanced RDBMS features . Herein
are high performance techniques for the JSON datatype in
the RDBMS with a focus on efficiency and autonomy so that
users do not need to tune to take advantage of latest
advanced performance enhancements of the RDBMS for
both OLTP and OLAP , deployed in cloud or on premise .
[0035] The JSON datatype herein is implemented in a way
to be able to integrate and leverage advanced and latest
RDBMS features , including : in - memory data and indices ,
mem - optimized write , parallel query , sharding , multi - tenant ,
transactional / statement refreshable materialized view ,
autonomous indexing , and full text and spatial search / query
in JSON documents . The JSON datatype implementation
herein autonomously self - tunes to avoid hand tuning for
important but very different usages such as OLTP and
OLAP , as explained later herein . In an embodiment , a single
binary JSON storage model , based on the RDBMS's native
JSON datatype , provides both jump query navigation and

a

a

US 2022/0342865 A1 Oct. 27 , 2022
3

physical piecewise partial update performance capabilities
that state of the art relational databases and document
datastores lack .
[0036] In an embodiment , a computer hosts a database
management system (DBMS) that executes a data definition
language (DDL) statement that defines , in a database dic
tionary of the DBMS , a JSON document column of a
database table that stores JSON documents as instances of a
JSON datatype that is native in the DBMS . A structured
query language (SQL) statement is received that contains
dot notation that contains a field name that is not defined in
the database dictionary . Execution of the SQL statement
accesses a scalar column of the database table that is defined
in the database dictionary . The dot notation executes by
using the field name and the JSON datatype that is native in
the DBMS to access at least a portion of at least one of the
JSON

DOCUMENTS

on at least one computer (not shown) such as a rack server
such as a blade , a personal computer , a mainframe , a virtual
computer , or other computing device . Such computer (s) may
be interconnected by a communication network (not shown) .
In an embodiment , DBMS 100 is a relational DBMS
(RDBMS) .
[0041] DBMS 100 contains at least one database (not
shown) , such as a relational database and / or an object
relational database . The database may contain database
table (s) such as database table 130 , such as a relational table .
In an embodiment as shown , database table 130 is defined in
database dictionary 120 of DBMS 100. DBMS 100 may
operate database dictionary 120 as a namespace that con
tains definitions of (e.g. named) database objects .
[0042] For example , database dictionary 120 may com
prise an associative structure , such as a lookup table or hash
table , that maps keys (e.g. unique names) to values that are
defined database objects . Database dictionary 120 may store
metadata such as schematic details such as definitions of
database tables , table columns , and datatypes . DBMS 100
may refer to database dictionary 120 during command (e.g.
query) execution to retrieve definitions of database objects
that participate in or otherwise contribute to the command
execution . For example , a query planner may use database
dictionary 120 for semantic analysis and / or optimization of
a structured query language (SQL) statement .
[0043] Database dictionary 120 may be modified by
executing a data definition language (DDL) statement , such
as DDL statement 110. For example , a DDL statement may
define a new database object and , in database dictionary 120 ,
bind the object to a key that may subsequently be used as a
lookup key to retrieve the object .
[0044] Database table 130 contains (e.g. many) rows and
at least table columns 141-142 . JSON document column 142
may store a JSON document , such as JSON documents
151-153 , in each row of database table 130. In operation at
time T1 , DDL statement 110 defines JSON document col
umn 142 in database dictionary 120. In one example , DDL
statement 110 is an ALTER statement that adds new JSON
document column 142 to already defined database table 130 .
In another example , DDL statement 110 is a CREATE
statement that defines both of new database table 130 and
JSON document column 142. In either case , DDL statement
110 specifies that JSON document column 142 has , as its
column type , JSON datatype 160 that is discussed later
herein .
[0045] Depending on the embodiment , JSON documents
151-153 may be an entirely or somewhat self - contained
dataset that is hierarchical and structured or semi - structured .
Each of JSON documents 151-153 may have a multipurpose
internet mail extensions (MIME) type and / or be capable of
transfer (e.g. serialization) as text . A JSON document is self
contained because it can be fully interpreted without exter
nal data references and without external metadata , such as an
external data dictionary or schema , where external here
means outside of the JSON document , not necessarily out
side of DBMS 100. Each of JSON documents 151-153 may
be stored as a self - contained unit and managed (e.g.
exchanged with clients and / or durably stored) in a binary
encoding , such as a data structure , such as JSON datatype
160. In an embodiment , JSON datatype 160 is Oracle's
OSON that is an optimized binary JSON format that is
discussed later herein .

[0037] Each JSON document may be stored in a separate
row of the database table . In an embodiment , at least the
JSON document column of a subset of the table rows are
loaded into volatile memory . Content index (s) are generated
in memory for the JSON documents of the loaded rows . The
index is generated when the row subset is loaded into
memory . The JSON documents and their index are stored
together in an in memory columnar unit (IMCU) , which may
operate as a unit of JSON document caching . JSON docu
ments are stored as instances of the native JSON datatype ,
regardless of storage in an IMCU (i.e. column major) or in
a database block (i.e. row major) . As instances of the binary
native JSON datatype , JSON documents may be copied as
binary large objects (BLOBs) from the database block into
the IMCU . In an embodiment , the IMCU also stores other
column (s) of the loaded rows . In an embodiment , the index
is conditionally created , such as when memory is not low
and / or when a subset of JSON documents is in high demand .
In an embodiment , a virtual column of the database table is
used to access indices of multiple subsets of loaded rows of
the database table .
[0038] In an embodiment , the DBMS receives a SQL
statement that specifies an aggregation function . The DBMS
identifies a subset of stored JSON documents that satisfy the
SQL statement . An aggregation function is individually
applied to each JSON document of the subset of JSON
documents to calculate a respective aggregate value of a set
of aggregate values for the subset of JSON documents . A
result set is generated that contains the set of aggregate
values for the subset of JSON documents .
[0039] In an embodiment , a computer hosts a client that
sends , to the DBMS , a SQL statement that references : a) a
scalar column that is defined in a database dictionary of the
DBMS for the database table , and b) the JSON document
column in the database table . The client receives a binary
JSON document from the DBMS . After receiving the binary
JSON document , the client uses dot notation to access a field
in the binary JSON document without unpacking or decod
ing the binary JSON document .
1.0 Example Computer with Database Management System
[0040] FIG . 1 is a block diagram that depicts an example
database management system (DBMS) 100 , in an embodi
ment . DBMS 100 uses dot notation to operate a JavaScript
object notation (JSON) document column and a JSON
datatype that is native to DBMS 100. DBMS 100 is hosted

a

a

?

US 2022/0342865 A1 Oct. 27 , 2022
4

[0046] Each of JSON documents 151-153 is an instance of
JSON datatype 160 that is a binary datatype . JSON datatype
160 is not raw text , such as with conventional JSON . JSON
datatype 160 is native to DBMS 100 , which means that
JSON datatype 160 is a built in datatype and not a user
defined datatype (UDT) . In an embodiment not shown ,
JSON datatype 160 is defined in database dictionary 120 .
[0047] In various embodiments , a client's database driver
(not shown) and / or DBMS 100 may (e.g. bidirectionally)
transcode between OSON and JSON , and / or between OSON
and a (e.g. custom or specialized) document object model
(DOM) . In an embodiment , the client's database driver
and / or DBMS 100 can detect a datatype mismatch and
automatically and implicitly convert in either direction
between JSON datatype 160 and a non - document datatype .
For example , a binary JSON document may be automati
cally converted or cast to a binary large object (BLOB) .
Automatic decoding (i.e. conversion of JSON datatype 160
to text such as raw JSON or a character large object , CLOB)
may entail automatic rendering as text . Automatic encoding
(i.e. conversion into binary JSON datatype 160) may entail
any of : a) verification that a BLOB is properly formatted ,
such as OSON , orb) more or less strict parsing of text .
Format verification is further discussed later herein .
[0048] When scalar datatypes within JSON datatype 160
and DBMS 100 are identical , then DBMS 100 may directly
use document field values without conversion and with
increased efficiency . Even when scalar datatypes within
JSON datatype 160 and DBMS 100 differ , automatic con
version may occur that does not entail intermediate conver
sions to and from text as an intermediate form . That is ,
DBMS 100 may more or less avoid text entirely when
processing binary values in instances of JSON datatype 160 .
[0049] OSON enables more efficient query execution and
partial updating of JSON documents . Specifically , OSON
enables fast storage - side index maintenance during : a)
execution of data manipulation language (DML) such as a
SQL query , b) making partial JSON document update fea
sible by , among other things , reducing re - do logging over
head , and c) accelerating path queries because the OSON
format itself is a DOM tree .
[0050] OSON accelerates JSON as follows . With OSON ,
efficient storage and navigation of JSON may be achieved
based on encoding a tree node structure that enables skip
ping irrelevant child nodes . Each parent node may include a
first mapping that indicates a byte offset for each of its child
nodes . If a parent node has one or more child nodes that each
correspond to a field name , the parent node may also include
a second mapping that maps a field name to each child node
of the parent node . Thus , if a path expression includes a
particular field name , the tree node that corresponds to the
particular field name may be identified without scanning any
tree nodes unrelated to the path expression .
[0051] Further efficiency in storage and navigation of
JSON may be achieved based on field - name identifiers that
numerically represent field names so as to enable a binary
search to be performed on the second mapping for a par
ticular field name . Even further efficiency may be achieved
when field - name identifiers are binary numbers . A third
mapping may be used to store the relationship between field
names and field - name identifiers .
[0052] The algorithmic complexity of navigating JSON
may also be reduced by consolidating duplicate field names .
A hash function may be used to assign a hash code to each

unique field name . Each hash code may be associated with
field names in the third mapping based on a fourth mapping
that stores the relationship between hash codes and field
name identifiers .
[0053] In the above ways , OSON saves execution time
and / or storage space of DBMS 100. The many savings by
OSON accrue without imposing a shared schema upon
JSON documents 151-153 . That is , like JSON , OSON is
schema - less . Example implementations of OSON are
described in :

[0054] U.S. Pat . No. 10,262,012 , Techniques Related to
Binary Encoding of JSON documents to Support Effi
cient Path Navigation of the JSON documents , and

[0055] Closing the Functional and Performance Gap
Between SQL and NoSQL , SIGMOD ’16 .

[0056] DBMS 100 may have clients (not shown) that
submit database commands such as SQL statements to
access JSON documents 151-153 and / or database table 130 .
In various embodiments , database commands may be
expressed as data manipulation language (DML) , such as
SQL , as query by example (QBE) , as create read update
delete (CRUD) , JSON , JavaScript , or other request format .
[0057] At time T2 , execution of SQL statement 170
accesses table columns 141-142 . Scalar column 141 is a
typical table column that has a scalar datatype that may be
built in or user defined , such as text or numeric . In various
examples , SQL statement 170 uses column 141 and / or 142
for filtration and / or projection . For example within SQL
statement 170 , a WHERE clause may use scalar column 141
for filtration to identify a subset of JSON documents 151
153 , and a SELECT clause may use JSON document column
142 for projection (i.e. retrieval) of portions of documents of
that subset . In other examples , both columns 141-142 are
used for filtration , and / or both columns 141-142 are used for
projection .
[0058] SQL statement 170 contains dot notation 180 that
is an operable expression . Dot notation 180 may operate as
a selector or projector that can hierarchically navigate inter
nals of one , some , or all of JSON documents 151-153 .
Typically , dot notation 180 contains a sequence of (e.g.
period separated) terms such as field names for JSON such
as may occur in none , some , or all of JSON documents
151-153 .
[0059] In a predicate and / or an assignment , dot notation
180 may conform to an expression language such as JSON ,
a subset of JavaScript , extensible markup language (XML)
path (XPath) , or a regular expression . The expression lan
guage may navigate , select , filter , and / or assign content
within one or many persistent JSON documents such as
JSON documents 151-153 .
[0060) DBMSs herein may be polyglot with a JSON
expression language embedded into a native DML language
such as SQL . A Turing complete example JSON expression
language that is embedded within SQL for finding , navigat
ing , reading , and writing sets and portions of JSON docu
ments stored in relational tables is presented in related U.S.
patent application Ser . No. 16 / 863,268 , Technique of Sup
porting Piecewise Update of JSON Document Efficiently .
Sufficient integration of JSON into SQL is provided by the
SQL : 2016 standard and related non - patent literature (NPL)
“ Technical Report ISO / IEC TR 19075-6 ” , both of which
define and standardize built in functions that convert JSON
into relational data or otherwise access JSON data from

9

US 2022/0342865 A1 Oct. 27 , 2022
5

a a

a

SQL , including functions such as JSON_TABLE and
JSON_EXISTS as explained therein .
[0061] Dot notation 180 may conform to some subset of
JavaScript itself . In one embodiment , (e.g. inside DBMS
100) a JavaScript interpreter or compiler may parse and / or
execute dot notation 180. For example , dot notation 180 may
be a JavaScript expression or XPath - like expression . In
another embodiment , a regular expression (regex) parser or
other lexer may tokenize dot notation 180 into a sequence of
meaningful tokens . In various examples , dot notation 180
filters and / or projects JSON data . For example , dot notation
180 may occur in a WHERE clause and / or a SELECT clause
of SQL statement 170. In another example , SQL statement
170 contains other JavaScript dot notation expression (s) , in
addition to dot notation 180. For example , multiple projec
tion columns (e.g. of a result set as discussed later herein)
may be defined by respective dot notation expressions , such
as 180. Likewise , a compound predicate (i.e. filtration) may
combine multiple dot notation filters , such as 180 .
[0062] Dot notation 180 may specify a path into JSON
document (s) that is interpreted from left to right . For
example , dot notation 180 may be :
[0063] Scar [2-6) .axle [1] .tire [*] . pressure < 25
[0064] The dollar sign indicates an absolute path into a
current JSON object , which may be a top - level object , such
as a JSON document , or a nested JSON object , such as a
JSON field value or a JSON array element . Without the
dollar sign , the path is relative and may begin matching at
the current JSON object or any JSON object nested within
the current JSON object at any nesting depth .
[0065] Brackets index into a JSON array , and the offset is
1 - based . For example , axle [1] species a first element , which
may be a front axle . Likewise , car [2-6] is a slice (i.e. subset)
of five cars within a (e.g. larger) JSON array . The asterisk in
tire [*] is a wildcard that matches all array elements which ,
in this example , is the same as tire [1-4] because each car has
four tires .
[0066] All of the field names within dot notation 180 must
match the names of nested JSON objects in that ordering
during a descent into the internal hierarchy of a JSON
object . Thus , a dot notation of car.axle by itself specifies
navigation that may also achieve some filtration . For
example a car that has no axles does not match . Likewise ,
pressure < 25 imposes additional filtration which , in this
example , matches underinflated tires .
[0067] Thus , dot notation 180 may be used for filtration .
Dot notation 180 may instead be used for projection . For
example , car.licensePlate reports the license plate of any
matching car which , in this example , have a flat tire .
[0068] Because JSON may lack a schema (i.e. schema
less) , internal structure (e.g. names and types of fields) of
JSON documents 151-153 need not be defined in database
dictionary 120. Thus JSON document field name (s) , such as
field name 190 , that occur in dot notation 180 are not defined
in database dictionary 120. For example , execution of dot
notation 180 need not use database dictionary 120. In some
examples , execution of SQL statement 170 generates a result
set (not shown) that may contain values from one or both of
columns 141-142 . For example as discussed later herein , the
result set may contain whole JSON document (s) , portion (s)
of JSON document (s) , and / or (e.g. scalar) field values
extracted from JSON document (s) .
[0069] Accessing fields of a schema - less JSON document
by dot notation 180 is in stark contrast to use of dot notation

to access schematically rigid objects such as instances of a
user - defined type (UDT) or object class defined in DBMS
100. Only member attributes of a UDT or object that are
defined in database dictionary 120 may be accessed by SQL
statements . Attempting to access a member undefined in
database dictionary 120 causes a semantic error when
DBMS 100 compiles the SQL statement . However , such an
error is not generated when compiling a SQL statement that
refers to a JSON field even though that field is undefined in
a database dictionary .
[0070] JSON datatype 160 integrates and leverages
advanced and latest RDBMS features , including : in - memory
data and indices , mem - optimized write , parallel query ,
sharding , multi - tenant , transactional / statement refreshable
materialized view , autonomous indexing , and full text and
spatial search / query in JSON documents . JSON datatype
160 autonomously self tunes to avoid hand tuning for
important but very different , or even antagonistic , usages
such as OLTP and OLAP , as explained later herein . Various
configuration settings , such as adjustable stetting 165 , for
JSON datatype 160 are autonomously initialized and / or
adjusted by DBMS 100 as discussed later herein . For
example as explained later herein , DBMS 100 may autono
mously set or adjust adjustable stetting 165 that control
behaviors such as a default width of JSON document
column 142 , in lining or not of JSON document column 142 ,
kind and scope and duration of indexing of JSON document
column 142 , and / or caching of JSON document column 142
such as in an in memory columnar unit (IMCU) . DBMS 100
may use the adjustable stetting 165 to control how JSON
documents are stored and / or processed as discussed herein .
The various configuration settings , such as adjustable
stetting 165 , may control how JSON datatype 160 and / or
JSON document column 142 operate as discussed herein .
DBMS 100 , JSON datatype 160 , and JSON document
column 142 may autonomously self - tune for concerns such
as efficiency by intelligently initializing and / or adjusting
those configuration settings without needing manual inter
vention such as by a database administrator (DBA) .
[0071] DBMS 100 is internally scalable beyond what is
shown . For example , DBMS 100 may have other table (s)
that also have a JSON document column and / or a scalar
column . Database table 130 may have multiple JSON docu
ment columns and / or multiple scalar columns .

a

a a

a

2.0 Example Native JSON Datatype Processing
[0072] FIG . 2 is a flow diagram that depicts DBMS 100
using dot notation to operate a JSON document column and
a JSON datatype that is native to DBMS 100 , in an embodi
ment . FIG . 2 is discussed with reference to FIG . 1 .
[0073] Step 202 is preparatory and occurs during time T1 .
In step 202 , DBMS 100 executes DDL statement 110 , such
as an ALTER or CREATE statement , to define , in database
dictionary 120 , JSON document column 142 in database
table 130. DDL statement 110 specifies using JSON datatype
160 for JSON document column 142 , which may be initially
empty (i.e. no JSON documents) or populated with a default
JSON document , which may be implied or expressly speci
fied by DDL statement 110 .
[0074] Between steps 202 and 204 , JSON documents such
as JSON documents 151-153 may be added into JSON
document column 142 as instances of JSON datatype 160 , as
discussed later herein . Step 204 receives SQL statement 170

a

US 2022/0342865 A1 Oct. 27 , 2022
6

that contains dot notation 180 that contains field name 190
that is not defined in database dictionary 120 .
[0075] After step 204 , DBMS 100 executes SQL statement
170 at time T2 , which entails both of steps 206A - B that may
occur concurrently or sequentially in any ordering . Step
206A accesses scalar column 141 that is defined in database
dictionary 120. For example , SQL statement 170 may con
tain the name of scalar column 141 , which a query planner
may use as a lookup key to retrieve from database dictionary
120 a definition of scalar column 141 , such as to discover
what is the datatype of scalar column 141 .
[0076] In one example , step 206A filters rows of database
table 130 based on values in scalar column 141. Thus as
shown , JSON documents 152-153 are relevant to SQL
statement 170 , but JSON document 151 is not , such as when
JSON document 151 is the only document that does not
contain “ 2020 ” as a text string . In another example , step
206A uses scalar column 141 for projection , such as when
scalar column 141 contributes values to a result set for SQL
statement 170 .
[0077] Step 206B executes dot notation 180 by using field
name 190 and JSON datatype 160 to access at least portion
(s) of at least one of JSON documents 151-153 . Because
JSON documents 151-153 may be schema - less , step 206B
need not use database dictionary 120 , such as for interpret
ing field name 190 or any other part of dot notation 180 .
[0078] In one example , step 206B filters rows of database
table 130 based on field values inside JSON documents
151-153 . Thus as shown , JSON documents 152-153 are
relevant to SQL statement 170 , but JSON document 151 is
not . In another example , dot notation 180 instead filters
portions of JSON document (s) . For example , JSON docu
ment 152 may contain an array of elements , but only some
of those elements contain a JSON field with name 190. In
another example , dot notation 180 is used for projection ,
such as when a JSON field with name 190 in relevant JSON
documents 152-153 contributes values and / or JSON docu
ment fragments to a result set for SQL statement 170 .

[0082] For example , database block 371 persists table
rows 310-311 , respectively including JSON documents 350
351 stored as instances of the binary JSON datatype that is
native to the DBMS . As shown , database block 371 does not
reside in memory 304. Thus , table rows 310-311 and JSON
documents 350-351 do not reside in memory 304 as shown .
[0083] In addition to residing on disk , database blocks
372-375 , table rows 312-319 , and JSON documents 352-359
reside in memory 304 as shown . Within memory 304 and as
shown , database blocks 372-375 reside in buffer cache 302
that can transfer database block (s) to / from disk . Thus , table
rows 312-321 , and JSON documents 352-359 reside in
buffer cache 302 as shown . In this example , buffer cache 302
has an eviction policy such as least recently used (LRU) .
[0084] When operating conditions are sufficient , such as
according to free memory capacity and data usage patterns ,
the DBMS may autonomously generate an in memory
columnar unit (IMCU) based on content of one or more
database blocks in buffer cache 302. IMCUS 381-382 reside
in memory 304 , but not in buffer cache 302 because the
format of an IMCU is not the same as a database block .
Volatile data units 341 , including IMCUS 381-382 , need not
be persisted to disk .
[0085] In an embodiment , volatile data units 341 operates
as an LRU cache that is separate from buffer cache 302. In
an embodiment , the size of a cache for volatile data units 341
may grow when free memory is plentiful and shrink when
free memory is scarce .
[0086] An IMCU may store content , including JSON
documents , from database block (s) . IMCU 381 is generated
from a single database block 373. IMCU 382 is generated
from multiple database blocks 374-375 . Because the binary
JSON datatype that is native to the DBMS is used in
database blocks and IMCUs , each JSON document 354-355
may be individually directly copied from database block 373
into IMCU 381 .
[0087] Depending on the scenario , lifespans of an IMCU
and a cached database block may be somewhat coupled
and / or somewhat decoupled . IMCU generation may occur
while loading database block (s) into buffer cache 302 , or
may be deferred , such as according to autonomous deci
sions .
[0088] In one example as shown , database block 372 is
cached but still has no IMCU , which may be generated later
so long as database block 372 remains cached . In another
example , database block 372 remains cached , even after its
IMCU is discarded as shown .
[0089] In one example as shown , database block 371 and
its IMCU are both evicted from memory 304 at a same time .
In another example not shown , an IMCU is not discarded
when its database block is evicted from buffer cache 302 .
[0090] An IMCU may store metadata that database blocks
do not store . IMCU internal metadata may provide com
pression , such as an encoding dictionary (not shown) , or
may provide acceleration , such as JSON content indices
391-392 that respectively reside in IMCUs 381-382 as
shown . Such an index is generated when its IMCU is
generated . For example as shown , index 391 may accelerate
accessing JSON documents 354-355 within IMCU 381 .
Although not shown , an IMCU may contain multiple indices
of different kinds for all of the IMCU's JSON documents , or
for different (e.g. disjoint or not) subsets of JSON documents
in the IMCU . For example , different subsets of JSON

a

3.0 Example Json Document Index
[0079] FIG . 3 is a block diagram that depicts an example
database table 300 , in an embodiment . Database table 300
uses a virtual column of a database table to access an
autonomous index of JSON documents stored in the data
base table . Database table 300 is hosted by a DBMS such as
DBMS 100 .
[0080] Within the DBMS (not shown) , database table 300
operates as both a physical collection of bulk data , shown as
storage 306 , and a logical collection of semantically defined
database objects , shown as logical 308. For example in
logical 308 , database table 300 is composed of table rows
(e.g. 310-319) and table columns (e.g. 331-332) . Whereas in
storage 306 , database table 300 is composed of bulk data
units (e.g. 341-342) that are physically stored on disk (not
shown) and / or in memory 304. In an embodiment , memory
304 comprises dynamic random access memory (DRAM)
that is volatile and faster than disk .
[0081] The DBMS persists data on disk as persistence data
units 342 that include database blocks 371-375 that contain
row major data (i.e. table rows 310-319) of database table
300. On disk , database blocks 371-375 durably contain
JSON documents 350-359 of JSON document column 331
and content of other durable columns (not shown) of data
base table 300 .

US 2022/0342865 A1 Oct. 27 , 2022
7

a a

documents may correspond to different filter expressions ,
such as dot notation filters , such as from most frequent SQL
statements .
[0091] In an embodiment , an IMCU may be an in memory
expression unit (IMEU) that stores results of an evaluated
expression , such as from a SQL statement , so that the
expression results only have to be calculated once , not each
time they are accessed . An IMEU can be scanned , filtered ,
and indexed in similar ways to those of an IMCU . For
example , processing of IMEUs and other IMCUs may entail
single instruction multiple data (SIMD) vector processing .
In an embodiment , IMCU 381 is an IMEU for an expression
and index 391 is a path and value index that indicates which
of JSON documents 354-355 or locations or portions within
JSON documents 354-355 satisfy the expression .
[0092] Depending on the embodiment , index 391 may be
an instance of various kinds of document indices . In one
example , index 391 does not depend on content of JSON
documents 354-355 . For example , IMCU 381 may contain
a vector that contains JSON documents 354-355 .
[0093] In that case , index 391 may be an identifier map
that maps offsets of documents in that vector to identifiers of
JSON documents 354-355 or identifiers of table rows 314
315. For example , the identifier map may itself be a vector
of identifiers . The identifier vector and the JSON document
vector may have parallel offsets , such that if a JSON
document's offset into the JSON document vector is known ,
then that offset can be used in the identifier vector to find the
identifier of the table row that stores that JSON document .
[0094] Index 391 may be an instance of a kind that
depends on content within JSON documents 354-355 . For
example , index 391 may be a posting index that combines a
dictionary with a posting list . A dictionary contains key
value pairs and operates as a lookup table . Dictionary keys
are distinct JSON tokens that occur in JSON documents
354-355 . A dictionary value is a posting list for a dictionary
key (i.e. JSON token) .
[0095] For example , JSON document 354 may be token
ized into a sequence of tokens that excludes some characters
such as JSON whitespace , JSON separators such as commas
and colons , quotes around JSON string literals , and closing
(but not opening) braces and brackets . JSON fields are
enclosed within matching braces for a JSON object . A JSON
array's elements are enclosed within matching brackets . For
example , JSON document 354 may be :
{ " nickname ” : “ Joe Lunchbox ” ,
[0096] " colors " : [“ green ” , “ light green "] }
[0097] Thus , JSON document 354 has a sequence A of
nine tokens at nine offsets :
[0098] 1.1
[0099] 2. nickname
(0100] 3. Joe
[0101] 4. Lunchbox
[0102] 5. colors
[0103] 6. [
(0104] 7. green
[0105] 8. light
[0106] 9. green
[0107] For example , green occurs at offsets 7 and 9 in
JSON document 354 , but green may occur at different (e.g.
more , fewer) offsets in other JSON documents .
[0108] The dictionary keys exclude braces , brackets , and
duplicates . Thus , JSON document 354 has only six distinct
keys . A posting list indicates which token offsets into which

JSON documents 354-355 contain a same JSON token (i.e.
the dictionary key) . For example , JSON document 355 may
be :
{ “ friend ” : “ nickname ” : “ friendly " } ,
[0109] " nickname " : " unknown " }
[0110) Thus when the dictionary key is nickname , the
dictionary value is posting list B that contains entries 0-1
respectively for JSON documents 354-355 :
[0111] 0. 2-4
[0112] 1. 4-5 , 6-7
[0113] Posting list B is interpreted as follows . IMCU has
a vector that contains JSON documents 354-355 at respec
tive offsets 0-1 , which are also offsets into posting list B.
Entry O indicates that JSON document 354 contains field
nickname that spans tokens 2-4 , which are nickname , Joe ,
and Lunchbox . Entry 1 indicates that JSON document 355
contains field nickname twice , at tokens 4-5 and tokens 6-7 .
[0114] To detect which of JSON documents 354-355
match nickname = " Joe Lunchbox ” as dot notation , posting
list B is used . Only the 2-4 token range in entry 0 for JSON
document 354 matches because token 2 is field nickname
and tokens 3-4 are Joe Lunchbox .
[0115] The posting index may also indicate which keys are
field names and which keys occur in field values . For
example , " color " : " color unknown ” , may contribute two
separate keys that are a color name key that spans three
tokens and a color value key that spans only one token .
[0116] An element count of a JSON array occurs in a dot
notation such as COUNT (colors) , such as for the colors
array in JSON documents 354. Above is sequence that
indicates that JSON document 354 has a colors array , but
neither sequence A nor a posting list (not shown) for colors
as a dictionary key indicates that the colors array has exactly
two elements : green and light green . The posting list would
only indicate that the colors array value has three tokens ,
which does not suggest two array elements .
[0117] A child mapping index is a vector whose length is
a count of JSON children of a JSON object , such as a JSON
array . Each vector element may identify a token offset of a
child . For example in sequence A above , tokens 7 , 8 , 9
respectively are green , light , green . The child mapping
index's offset vector for the colors array of JSON document
354 should contain only offsets 7-8 that respectively indicate
green and light green , which are exactly the two elements of
the colors array .
[0118] A posting index may be used to quickly detect
which JSON documents in an IMCU contain a particular
JSON field or contain a particular word in a JSON value .
Depending on its kind , index 391 may be : a forward index
that maps JSON document identifiers to content items (e.g.
words , element names) , or an inverted (a.k.a. postings)
index that maps content items to JSON document identifiers
and / or locations within JSON documents as explained
above .
[0119] Various kinds of index 391 may accelerate : navi
gation to a particular substructure (e.g. array) or element
within JSON document (s) , and / or retrieval of particular
fragment (s) of JSON document (s) such as an element or
array . Index 391 may accelerate calculations such as count
ing elements in an array or deriving statistics (e.g. of an
array) such as a minimum , maximum , or mean .
[0120] Likewise , an OSON document itself contains a
dictionary of field names . For example , JSON document
column 331 may store OSON documents , and JSON docu

9

US 2022/0342865 A1 Oct. 27 , 2022
8

indices 391-392 and virtual column 332 to be invisible or
otherwise inaccessible to clients .
[0127] The DBMS is internally scalable beyond what is
shown . For example , the DBMS may have other table (s) that
also have a JSON document column and a virtual column .
Database table 300 may have multiple JSON document
columns , each having its own virtual column .

a

ments 350-359 may be OSON documents . Thus , even
without an IMCU and its index , the DBMS can detect
whether or not JSON document 352 in buffer cache 302
contains a particular named field without scanning much of
JSON document 352 .
[0121] In an example not shown , IMCU 381 contains a
separate index , such as 391 , for each of JSON documents
354-355 . That is , each of JSON documents 354-355 has its
own index in IMCU 381. Likewise , each of JSON docu
ments 354-355 has its own instance of the binary (e.g.
OSON) native JSON datatype in IMCU 381 .
[0122] The field dictionary of OSON can be directly
copied from JSON document 354 to generate a posting
index in IMCU 381 for JSON document 354. Only in this
case , index 391 , or at least part of it , actually is persistent ,
because it is also part of OSON . That has implications for
modifying JSON document 354 as discussed later herein .
[0123] Various kinds of index 391 may be used to ran
domly access a particular named field in JSON document
354 without scanning on demand the content of JSON
document 354. Advanced approaches for implementing and
operating an IMCU for JSON , such as bitmap operations for
compound query predicates , and IMCU internals , such as a
delta posting index or a hashed posting index , are presented
in U.S. patent application Ser . No. 16 / 022,465 , Techniques
for Enabling and Integrating In Memory Semi - Structured
Data and Text Document Searches with In - Memory Colum nar Query Processing .
[0124] Similarly some , but not all , binary JSON document
formats may accelerate internal navigation (e.g. random
access) within a JSON document as follows . For example ,
MongoDB's BSON binary document format , like text
JSON , is a stream format potentially requiring that much of
a document be read to resolve a JSON path or , in a worst
case requiring scanning the entire document , to determine
that the path is absent in the document . OSON facilitates : a)
jumping (i.e. random access) quickly to named fields and
array locations in a JSON document , and b) detecting
presence or absence of a path in a JSON document without
even scanning much of the JSON document , including not
scanning the portion of the JSON document that contains the
path . In other words , OSON can provide increased perfor
mance and functionality of a DOM before a whole DOM is
received , which is beyond the capability of a state of the art
DOM .

[0125] In an embodiment as shown and unlike ordinary
table indices of the DBMS , JSON indices 391-392 for same
JSON document column 331 may be integrated into the
DBMS as virtual column 332 as shown . Virtual column 332
is not actually persisted and instead uses IMCUs 381-382 as
a backing store that provides indices 391-392 as content for
virtual column 332 .
[0126] Virtual column 332 is materialized , to the extent
that only some table rows 314-319 currently have indices .
The DBMS may request an index from virtual column 332
by identifying a table row . For example , specifying table row
314 causes virtual column 332 to return index 391. Whereas ,
specifying table row 313 causes virtual column 332 to return
no index , because table row 313 does not reside in an IMCU ,
even though table row 313 does reside in buffer cache 302 .
In an embodiment and because the lifecycle and availability
of indices 391-392 may be unpredictable to clients , virtual
column 332 may be a hidden column , which may cause

4.0 Example Index Access Process
[0128] FIG . 4 is a flow diagram that depicts the DBMS
using a virtual column of a database table to access an index
of JSON documents stored in database table 300 , in an
embodiment . FIG . 4 is discussed with reference to FIG . 3 .
[0129] In step 402 , the DBMS stores at least JSON docu
ments 350-359 into JSON document column 331. For
example , a client may send JSON documents 350-359 to the
DBMS , which may append a table row into database table
300 for each of JSON documents 350-359 . Each such table
row may store a respective one of JSON documents 350-359
into JSON document column 331. All of those activities of
step 402 may occur solely with JSON documents 350-359
being instances of the binary native JSON datatype and
without ever encountering JSON documents that are raw
text .

[0130] Between steps 402 and 404 , some workload may
be processed , which autonomously fills buffer cache 302
with database blocks 372-375 . The workload also autono
mously generates IMCUS 381-382 and their respective indi
ces 391-392 . Again , only the binary native JSON datatype is
needed for JSON documents . Eventually , a SQL statement is
received that refers to JSON document column 331. The
execution of that SQL statement includes step 404 .
[0131] In step 404 , virtual column 332 is used to access
one , some , or all of indices in volatile data units 341. For
example , a full scan of JSON document column 331 for all
JSON documents containing a particular field may entail the
following (e.g. concurrent) activities .
[0132] As explained earlier herein , JSON document col
umn 331 may store OSON documents , and JSON docu
ments 350-359 may be OSON documents . For example ,
database block 371 is the only one that must be fetched from
disk (e.g. into buffer cache 302) , and the field dictionary of
each JSON document 350-351 is searched for the sought
field name , which entails inspecting metadata within OSON ,
but not scanning OSON content . Database block 372 already
resides in buffer cache 302 , but otherwise is processed
similar to database block 371. Database blocks 373-375 are
not accessed during step 404 , because (e.g. posting) indices
391-392 in respective IMCUS 381-382 are used instead .

a a

2

.

5.0 JSON Document Indexing Process
[0133] FIG . 5 is a flow diagram that depicts the DBMS of
database table 300 generating and using an index of JSON
documents in various complementary ways , in an embodi
ment . FIG . 5 is discussed with reference to FIG . 3 .
[0134] Steps 502A - C entail various conditions that may
cause generating index 391. Step 502A causes generating
index 391 in response to receiving a SQL statement . For
example , parsing , semantic analyzing , or planning for
execution of the SQL statement may cause generation of
IMCU 381 and index 391 for JSON documents 354-355 .
[0135] Step 502B causes generating index 391 based on
access statistics for JSON documents 354-355 . For example ,

US 2022/0342865 A1 Oct. 27 , 2022
9

generation of IMCU 381 and index 391 may be conditioned
upon JSON documents 354-355 being frequently and / or
recently accessed . In some cases , content of index 391 may
depend on access statistics . For example , which of JSON
documents 354-355 and / or which portions of them are
covered by index 391 may depend on frequency or recency
of access of those JSON documents individually and / or
access of their portions .
[0136] Step 502C causes generating index 391 when avail
able memory of the DBMS exceeds a threshold . In an
example not shown when sufficient spare memory is lacking ,
IMCU 381 and index 391 need not be generated . Likewise
when sufficient memory is later freed , deferred generation of
IMCU 381 and index 391 may occur .
[0137] Step 502D synchronously or asynchronously gen
erates index 391 , which may occur in various scenarios . For
example according to schedule and / or dynamic conditions ,
the DBMS may decide to generate index 391 , such as when
index 391 is autonomous . For example , the DBMS may
synchronously or asynchronously decide to generate index
391 , but then defers such generation until later , such as
according to schedule , workload , or with a (e.g. low priority
or single threaded) backlog queue . In examples not involv
ing deferral , asynchrony of generating may arise by gener
ating index 391 in the background , such as with a thread or
processor core that is separate from processing of a current
SQL statement that instigates the generating . In that case ,
asynchrony entails concurrency . Foreground generation of
index 391 is synchronous , such as within the call path of
execution of a query that uses index 391 .
[0138] Subsequent use of index 391 is the reason to
generate index 391. Steps 504A - C perform various comple
mentary activities that are associated with using index 391 .
[0139] Index 391 may be available for repeated and / or
concurrent use . Likewise , generation and use of index 391
may be decoupled . For example , one SQL statement may
cause generation of index 391 without use , and a subsequent
SQL statement may eventually use index 391 that is already
generated
[0140] For example , background generation of index 391
may still be ongoing such that the first SQL statement
finishes executing before index 391 is ready to use . In an
embodiment , execution of the first SQL statement initially
proceeds without using index 391 , and if background gen
eration of index 391 finishes while the first SQL statement
is still running , then the first SQL statement may dynami
cally switch to using index 391. For example , some rows of
a result set for the first SQL statement may be generated
without using index 391 , and other similar rows of the same
result set may instead be generated next by using index 391 .
[0141] Step 504A invokes a user defined function (UDF) .
For example , index 391 may group JSON documents or
JSON document fragments according to a custom hash
function that is provided as a UDF . The UDF may be used
during generation and use of index 391 .
[0142] Step 504B evaluates an expression that is com
pound and / or references multiple fields of JSON document
(s) . For example , index 391 may be based on a filtration
expression that occurs in one or different SQL statements .
That filtration expression may have multiple terms and
operators , such as with a value range filter of a single field ,
or with a filter that regards a compound key or other multiple
fields .

[0143] Index 391 may be forward or inverted , both of
which map a key to value (s) , although semantics of key and
values are reversed based on index 391 being forward or
inverted . In any case , index 391 may store keys as sorted or
store a key's mapped values as sorted , with sorting latency
during index generation or updating being a cost that may be
amortized across (e.g. many) repeated uses of index 391 .
Thus when used , index 391 may immediately return already
sorted values , shown as step 504C .
[0144] For example , finding a particular value in the
returned sorted values may be accelerated by binary search
or linear search . For example when index 391 reports that
JSON document 331 contains alphabetically sorted color
field values of blue , green , and red , then subsequent detec
tion that the first returned value is blue is sufficient to infer
that JSON document 331 does not have a color field value
of azure , which would have alphabetically occurred before
blue but did not .
(0145] Step 506 autonomously discards index 391 based
on dynamic conditions . Conditions such as : a) high memory
demand , b) eviction (e.g. of an IMCU) from cache of some
or all JSON documents covered by index 391 , c) SQL
statement execution completion , d) index staleness due to
JSON document creation or updating , d) or idleness of index
391 , may cause the DBMS to autonomously discard index
391. Because some conditions are antagonistic , such as high
demand for both of memory and in - memory index 391 , the
DBMS may have intelligently designed thresholds and heu
ristics to balance competing forces .
[0146] Autonomous index history may influence autono
mous index administration . For example when index 391 is
frequently discarded and more or less identically and repeat
edly recreated , automatic history analysis may suggest pin
ning index 391 in memory , such as by indefinite or tempo
rary exemption from eviction decisions . In an embodiment ,
the DBMS delegates some or all autonomous index deci
sions to a rules engine , such as for flexible and / or sophis
ticated administration . For example , patching or tuning a
ruleset may be less cumbersome than patching the DBMS ,
and / or the DBMS may need and lack sufficient manual
tuning configurability for optimal autonomous indexing
without rules .

a

6.0 JSON Document Storage
[0147] FIG . 6 is a block diagram that depicts an example
DBMS 600 that efficiently arranges data structures in stor
age such as memory and / or disk , in an embodiment . DBMS
600 may be an implementation of DBMS 100 .
[0148] JSON document column 612 or row subset (s)
thereof may each have index (es) of various kinds . For
example , index 630 indexes a subset of rows of JSON
document column 612 that includes JSON documents 622
623 , but not JSON document 621 in same JSON document
column 612 For example , index 630 may be a path and value
index or a raw text index as presented herein . Index 630 may
be forward or inverted , both of which map a key to value (s) ,
and both of which may have increased density when mul
tiple values are encoded into a bitmap . Thus , index 630 may
map a key to a bitmap , which may or may not exceed a
density of multiple dictionary encoded values for a same
key , depending on the amount of possible values indexed
and the average amount of actual values per key . For
example if index 630 is autonomous as explained earlier

US 2022/0342865 A1 Oct. 27 , 2022
10

a

a

herein , then index 630 may be spontaneously replaced with
an index of bitmaps or an index of dictionary codes .
[0149] DBMS 600 may have table columns that store large
(e.g. tens of megabytes) objects (LOBs) , such as with LOB
column 613 , that may be a character LOB (CLOB) or a
binary LOB (BLOB) . In an embodiment , JSON document
column 612 stores values of a JSON datatype that is a
variant of a LOB type . For example in some lower imple
mentation layers in DBMS 600 , table columns 612-613 may
have more or less indistinguishable datatypes , such that both
columns may be processed in a same way . Whereas , at
higher implementation layers in DBMS 600 , where seman
tics are important , table columns 612-613 may be processed
differently because only JSON document column 612 entails
a native JSON datatype . In an embodiment , the JSON
datatype is a variant of a LOB type , but many or nearly all
LOB operations are forbidden to clients on the JSON
datatype .
[0150] Most datatypes of DBMS 600 may have a respec
tive fixed size (i.e. width) , such as scalars . In some cases ,
scalar width may be naturally or conventionally fixed , such
as according to an industry standard such as IEEE for real
numbers . In other cases , an application may impose a fixed
width of a data field . For example , a Boolean may need one
byte or one bit , and strings and numbers may have widths
designated by an application .
[0151] Some datatypes have a naturally variable width ,
such as more or less unbounded text strings and LOBs . A
variable width field may be variously configured to store
data in ways such as : in line within a record (i.e. table row)
such as in database block 670 , out of line in a different
database block , or externally such as in a file . For in - lining ,
a variable width field may have a default width , which may
waste some space but achieve some acceleration due to data
locality . Storage of LOBs and other fields , in and out of line ,
is detailed in related U.S. patent application Ser . No. 16/863 ,
268 , Technique of Supporting Piecewise Update of JSON
Document Efficiently .
[0152] In line columns have either a fixed width or a
default width . For example , a table (not shown) may have
multiple columns , such as 612-613 , having respective
default widths . For example , variable width columns 612
613 have respective default widths A - B as shown . Virtual
columns (e.g. 611) do not need default widths and do not
contribute to the sum of default widths of columns of a table .
In an embodiment , variable width columns have default
widths . In an embodiment , a table may have a default row
width instead of or in addition to default column width (s) .
[0153] Widths of columns and rows may affect efficiency
in various ways , including density (i.e. spatial locality) and
thrashing (i.e. input / output , I / O) of cache (s) and / or virtual
memory . For example , an actual value of a field that exceeds
a default width of the field's column may cause overflow . In
another example , the default width of row 660 may be
exceeded , such that row 660 overflows .
[0154] In any case , overflow may be accommodated with
row chaining , such that values data may spill over into
another row , such that a logical row is more or less a
concatenation of multiple physical rows . In a best case , the
multiple physical rows are contiguous and are contained in
a same database block 670. In a worst case , a logical row
spans multiple non - adjacent database blocks .
[0155] Thus , setting default widths may affect efficiency ,
which may be improved with intelligent heuristics such as

follows . In an embodiment , default width A of JSON docu
ment column 612 is greater than default width B of LOB
column 613. In an embodiment , default width A of JSON
document column 612 is less than a size of database block
670. Sizes / widths may be measured in bytes or multiples of
bytes , such as kilobytes .
[0156] In an embodiment , DBMS 600 automatically
decides : a) a default width of JSON document column 612 ,
b) whether or not JSON document column 612 (or a par
ticular one of its JSON documents) is in lined or not , such
as according to a threshold size , and / or c) when to adjust
default widths . Such decisions may be autonomous and
depend on various dynamic conditions discussed elsewhere
herein .
[0157] In an embodiment , DBMS 600 has a storage area
network (SAN) (not shown) composed of intelligent storage
computers , such as Oracle Exadata , to which some database
operations may be offloaded . For example on behalf of
DBMS 600 , a storage computer may apply filtration criteria
during a table scan , such as a smart scan . For example , the
smart scan may return only database blocks that contain
row (s) or JSON document (s) or JSON document fragment
(s) that satisfy the filtration criteria . Thus , DBMS 600 may
retrieve and process fewer blocks to accomplish a full scan .
In an embodiment , a default width or in line threshold size
may reflect block or buffer sizes of : the storage computer ,
DBMS 600 , and / or the computer hosting DBMS 600. A
smart scan that offloads query operations from a DBMS is
presented in U.S. Pat . No. 10,296,462 , Method To Acceler
ate Queries Using Dynamically Generated Alternate Data
Formats In Flash Cache .
[0158] In an embodiment , DBMS 600 contains a multi
instance (i.e. distributed) database . With multiple database
servers and / or multiple storage computers such as with an
Exadata SAN , stored JSON documents may be distributed
and / or replicated . For example , a database table that con
tains JSON document column 612 may have its table rows
partitioned into shards (i.e. subsets of rows) , and each shard
may be a unit of bulk data distribution . For example , JSON
documents 621-624 need not be durably stored and / or
subsequently manipulated on a same computer .
[0159] OSON internal metadata as described elsewhere
herein and / or index 630 such as a path and value index may
accelerate value - based partition assignment such as by hash
ing . In an embodiment some or all database operators can
exploit shards . For example , a global search for JSON
documents that contain a given phrase may be dispatched as
a respective local search to each shard computer , and local
results from the shards may be (e.g. centrally) combined to
generate global results .

a

a

7.0 Example JSON Document Storage Process
[0160] FIG . 7 is a flow diagram that depicts populating
and modifying a JSON document database , in an embodi
ment . FIG . 7 is discussed with reference to FIG . 6 .
[0161] FIG . 7 presents preparation and modification of a
JSON document database as two independent use cases .
Each use case shows various complementary activities . Thus
any activities in a use case , which are shown as separate
steps , may be combined into a single step that combines
techniques to fulfil the use case . Thus , while each of the
steps shown in a use case may be individually capable of
fulfilling the use case , when steps are combined , still only
one occurrence of the use case is fulfilled .

US 2022/0342865 A1 Oct. 27 , 2022
11

a

[0162] To pursue both use cases or multiple occurrences of
a same use case , a same or different combination of shown
steps may be repeated . As shown , the first use case entails
JSON document storage in steps 702A - C , and the second
use case entails JSON document modification in steps
706A - C . As a complicated example scenario , DBMS 600
may store some JSON documents , then modify some JSON
documents , and then store some more JSON documents , in
rapid succession or with much querying occurring between
use cases .

a

a

[0163] Populating DBMS 600 with JSON documents may
entail one , some , or all of steps 702A - C , variously for each
JSON document . In an embodiment , JSON documents are
received individually or in bulk as sparse text or , as shown
in step 702A , in a dense binary format such as OSON as
discussed earlier herein . JSON document integrity need not
be presumed , especially if JSON documents come from an
untrusted or experimental source or a client in the wild , such
as an uncontrolled external environment where client iden
tity or client agent software can be spoofed (i.e. intentionally
misrepresented perhaps maliciously) .
[0164] Step 702B integrity checks a received JSON docu
ment , the manner of which may depend on document
encoding . A text document should be well formed , such as
with matched pairs of delimiter characters and / or tags . A
binary JSON document should have referential integrity ,
such as forbidding cycles and / or dangling pointers .
[0165] For example , internal indirection specified within a
binary JSON document may treat the JSON document as an
array of bytes or elements that can be addressed by offset . A
dangling (i.e. non - existent) offset or , depending on the
implementation , a backward or forward offset (i.e. suggest
ing a cycle) may be forbidden . Other integrity checks may
entail character set enforcement , proper character escaping ,
encoding dictionary validity , and such .
[0166] There may be two intensities of verification , with
out always needing to perform both . For example , less
verification may entail ensuring that a JSON document will
not crash DBMS 600. Heavier verification may ensure that
a JSON document conforms to additional expectations , such
as application specific requirements , or string literal char
acter validation .
[0167] For example , step 702B may apply less verifica
tion , with other verification occurring during querying ,
which may cause some queries of bad JSON document (s) to
abort entirely or have incomplete results . Metadata may flag
which JSON documents have already passed which verifi
cation (s) to avoid redundant verification . Some implemen
tation layers of DBMS 600 may be guaranteed to operate
only with JSON documents that were sufficiently verified by
other layer (s) .
[0168] Step 702C effectively ensures that each JSON
document is individually persisted in various ways , even if
JSON documents are actually persisted in bulk . For
example , each JSON document may be individually (e.g.
dictionary) compressed and / or encrypted . Concurrency of
subsequent reads and / or writes (e.g. by different clients) of
different JSON documents may be facilitated by providing
each JSON document with its own i - nodes in a disk file
system , such that no i - node is shared by multiple JSON
documents .
[0169] Either before or after storing JSON documents ,
step 704 generates a database view that synthesizes table
column (s) from field (s) of JSON document (s) . For example ,

elements of JSON documents may be logically shredded
into columns of a tabular database view . For example , JSON
documents with a color field may contribute values to a color
column of a view .
[0170] The database view may be materialized , non - ma
terialized , and / or refreshable : expressly by client command ,
or automatically at transaction boundaries . From the stored
JSON documents , a strongly typed tabular schema for JSON
document fields may be automatically inferred and used to
generate the database view , such as with data guide tech
nology . An example of a data guide is described in U.S. Pat .
No. 9,864,816 , Dynamically Updating Data Guide for JSON
documents .
[0171] Schema inference may be based on all content of
all JSON documents in a same JSON document column ,
which may change whenever a JSON document is added ,
removed , or modified . Thus , a JSON document column's
inferred schema may evolve . Thus , the database view's
definition may be automatically and dynamically altered , in
an embodiment .
[0172] Selectively modifying portions of JSON document
(s) may entail one , some , or all of steps 706A - C , variously
for each JSON document . For example , step 706A can
modify a portion of a JSON document without replacing the
whole JSON document . Such modification may be in or out
of place . For example , there might not be enough room to
overwrite a short string value with a long string in place .
Likewise , all updates are out of place for a write - once
datastore . Out of place writing may be facilitated by a copy
on write operation , shown as step 706B .
[0173] For example , OSON’s tree model (i.e. DOM) pro
vides native tree offset based jump navigation such as for
partial update of physical OSON bytes . Furthermore , an
OSON partial update requires only a standard UNIX / POSIX
file system application programing interface (API) that is
able to : a) seek to an offset within a file for byte - length
preserved content replacement , and / or b) append bytes to the
end of a growing file . OSON modification does not require
the underlying file system to delete bytes in the middle of a
file to cause holes or insert extra bytes into the middle of the
file to cause interior growth .
[0174] Redo logging facilitates various scenarios such as
replication . Naïve redo logging may unnecessarily reflect
whole JSON documents , even when only portions were
modified . Step 706C optimizes by generating redo data only
for JSON document portions that were modified .
[0175] In a redo example not involving replication , OSON
supports as many piecewise updates at a physical level as
possible so that the redo log size is usually proportional to
the actual required piecewise change of the JSON document .
DBMS 600 may detect sufficient (e.g. threshold) accumu
lated past changes and changes from the execution of the
current updating operations , so that DBMS 600 autono
mously (e.g. in background) regenerates the JSON docu
ment anew by consuming and applying the redo log . JSON
document modification is presented in related U.S. patent
application Ser . No. 16 / 863,268 , Technique of Supporting
Piecewise Update of JSON Document Efficiently .

a

8.0 Aggregation Function
a [0176] FIG . 8 is a block diagram that depicts an example

DBMS 800 , in an embodiment . DBMS 800 executes a SQL

US 2022/0342865 A1 Oct. 27 , 2022
12

may be returned as a synthesized (i.e. temporary) JSON
document or an element in a synthesized JSON document .

a
a

2

statement by applying an aggregate function to array (s) in
JSON document (s) . DBMS 800 may be an implementation
of DBMS 100 .
[0177] Within any of JSON documents 811-814 may be
repetition of a field or nested substructure . For example , a
JSON document may contain an array . Conventional data
base aggregation functions , unlike aggregation function 830 ,
operate on sets of records , such as multiple rows or JSON
documents . Whereas , aggregation function 830 innovates by
operating on multiple elements (e.g. of an array) within each
of relevant JSON document (s) , such as JSON documents
812-813 as shown .
[0178] For example , JSON documents 811-814 may be
purchase orders . Only purchase orders 812-813 that already
shipped may be relevant to a SQL statement that seeks a
largest purchase order that already shipped and contains the
most line items . Thus , the SQL statement may specify
aggregation function 830 as counting line items in each
purchase order 812-813 . Aggregation function 830 may
instead specify another statistic such as maximum , mini
mum , mean , or sum .
[0179] For example , aggregation function 830 may be
respectively applied to each of purchase order 812-813 to
calculate respective counts of line items , shown as respec
tive values A - B of aggregate values 840. Either or both of
values A - B may be returned in a result set (not shown) for
a SQL statement .
[0180] In an embodiment , aggregation function 830 may
be elided such that aggregation function 830 may be a
member (i.e. method) of an aggregate type such as an array .
For example when aggregation function 830 is a summation
without elision , then summation is expressed as “ sum (docu
ment.numericArrayField) ” . Whereas with elision , then sum
mation is instead expressed as “ document.numericArray
Field.sum (" .

a

10.0 Example Process for Applying a Function
[0185] FIG . 10 is a flow diagram that depicts DBMS 800
applying a function that is referenced in a SQL statement , in
an embodiment . FIG . 10 is discussed with reference to FIG .
8 .
[0186] DBMS 800 may receive a SQL statement that
contains call site (s) to same or different function (s) . For
example , a SQL expression foo (bar (1) , bar (2)) has two call
sites of bar and one call site of foo . Such an invocable
function may be built into DBMS 800 or implemented as a
UDF . The function may evaluate to a scalar or , in the case
of aggregation function 830 , may evaluate to an aggregate
such as a set of values such as values A - B as shown .
[0187] If the function is a UDF , then its definition may
contain an accidental or malicious control flow defect ,
which step 1002 may detect and reject such as by aborting
the SQL statement . For example , step 1002 may detect that
the UDF does not contain an infinite loop , which may
instead be detected when the UDF is initially defined .
Recursion , especially non - tail recursion , in the UDF may
cause stack overflow , especially when the UDF can visit
many elements , such as for : a) a graph statement or a context
free statement , or b) the UDF is an aggregate function
applied to a huge set of very many elements .
[0188] Step 1002 may verify that recursion cannot exceed
a threshold depth , which may or may not depend on actual
argument values for the UDF . For example , different call
sites of a same function in a same statement may need
separate validation . An embodiment may skip stack over
flow verification during step 1002 and instead dynamically
check stack depth while the UDF operates .
[0189] To some extent , document path depth and call stack
recursion depth may be related such that they may be
somewhat interchangeable concepts . Thus , merely validat
ing one or the other depth may effectively serve as a
validation of both . Thus , which of the two depths is actually
validated may depend on the embodiment . For example , an
embodiment may perform depth validation directly on a
JSON document , perhaps without any UDF .
[0190] If the function passes verification step 1002 , then
the function is invoked . If the function is aggregate , such as
830 , then it may be accelerated by step 1004 that uses an
index , such as a path and value index and / or an inverted
index , to process array elements in an efficient way , such as
when the index stores and returns multiple sorted values . For
example , if : a) values are sorted descending , and b) aggre
gate function 830 returns a maximum value , then aggregate
function 830 need only return the first of the sorted values .

a

9.0 Example Aggregation Process

a

[0181] FIG . 9 is a flow diagram that depicts DBMS 800
executing a SQL statement by applying an aggregate func
tion to array (s) in JSON document (s) , in an embodiment .
FIG . 9 is discussed with reference to FIG . 8 .
[0182] In step 902 , DBMS 800 receives a SQL statement
that specifies aggregation function 830 , as discussed above .
Step 904 identifies a subset of JSON documents that satisfy
the SQL statement . For example as shown , only JSON
documents 812-813 match filter criteria (not shown) of the
SQL statement .
[0183] Step 906 applies aggregation function 830 indi
vidually to each of selected JSON documents 812-813 to
calculate respective aggregate values A - B of set of aggregate
values 840. For example , if each of selected JSON docu
ments 812-813 contains a respective selected array , then
aggregate function 830 is individually applied to each array
to calculate respective aggregate values A - B . For example ,
if : a) JSON document 812's array has three elements , b)
JSON document 813's array has four elements , and c)
aggregation function 830 counts array elements , then values
A - B are respectively three and four . Thus , aggregate values
840 would contain integer values of three and four .
[0184] Step 908 generates a result set that contains at least
one value of aggregate values 840. For example , the result
set may contain a first row that contains a three , and a second
row that contains a four . Alternatively , the results may
comprise an array that contains three and four . That array

11.0 Client's Example Database Driver
[0191] FIG . 11 is a flow diagram that depicts a client
receiving and directly interrogating , with dot notation and
without decoding , a binary JSON document , in an embodi
ment . FIG . 11 entails a client innovation and need not
correspond to earlier FIGs . herein . However , mechanisms
and techniques for dot notation processing and acceleration
as discussed earlier herein may be applied at the client to the
process of FIG . 11 .
[0192] A (e.g. ad hoc) client application may contain a
database driver that may provide (e.g. remote) integration

US 2022/0342865 A1 Oct. 27 , 2022
13

2

a

a

a

with any of the DBMSs presented elsewhere herein . All of
the steps in FIG . 11 may be performed by a same client . The
client may retrieve binary JSON document (s) from the
DBMS .
[0193] In step 1102 , the client sends to the DBMS a SQL
statement that references in a database table : a) a scalar
column that is defined in a database dictionary , and b) a
JSON document column that contains binary JSON docu
ments .
[0194] In step 1104 , binary JSON document (s) may be
received as instances of a JSON datatype that is native (i.e.
built in , not user defined) to the DBMS , which may be a
dense and / or optimized format such as OSON as discussed
earlier herein .
[0195] A state of the art client's database driver may
eagerly or lazily decode the JSON documents from dense
binary to sparse text , such as raw JSON , which the client
application may then process such as by parsing and / or
inspecting . Whereas , clients ' database drivers herein may be
innovative and may , without decoding and without disas
sembly (e.g. unpacking) , facilitate client applications to
directly interrogate (e.g. inspect) the JSON document such
as with dot notation , shown as step 1106 .
[0196] In an embodiment , the client's database driver
exposes (i.e. wraps) the binary JSON document as a docu
ment object model (DOM) that can be interrogated with
JavaScript or other dot notation selectors or expressions of
any depth (i.e. amount of dots) to reach leaves or interme
diate nodes of the binary JSON document . In other words ,
the client's database driver may endow the binary JSON
document with additional (e.g. navigational) behavior with
out decoding or otherwise disturbing the self contained
contiguous dense binary encoded data of the JSON docu
ment . For example , the client's database driver may provide
a fully operational DOM directly with the (e.g. OSON) data
as originally received (e.g. wire format) from the DBMS .
[0197] Such interrogation may return fragments such as
arrays or subtrees that may also be instances of the JSON
datatype and / or subjected to subsequent interrogation as
JSON documents themselves . In an embodiment , such frag
ments are returned by reference , such as without copying ,
extracting , or decoding data . In an embodiment where the
JSON datatype is not OSON , a binary JSON document may
be treated as a composite of nested smaller binary JSON
documents that may be individually referenced and interro
gated , such as a recursive data structure . Such nested objects
need not be entirely self contained . For example , metadata
such as an encoding dictionary may be : a) specified at a top
level of a received binary JSON document , and b) implicitly
shared with nested substructures , even after those nested
substructures are returned by reference from the database
driver to the client application . Thus , a client may seem to
unpack , dissect , and inspect portions of a received binary
JSON document , but all data access still delegates back to
the monolithic binary data as originally received (i.e. still
binary encoded and contiguous) .

a

many lean values , such as small datatypes , that are inex
pensive for the DBMS to load , marshal , and send to the
client and for the client to receive , buffer , and unmarshal . It
may be tolerable for the client to fetch more lean values from
the DBMS than the client actually needs , and / or for the
client to repeatedly fetch same lean values with repeated
queries .
[0200] Whereas , bulky values (e.g. LOBs) may be too
expensive to retrieve so casually . For example , the DBMS
may instead send placeholders (i.e. handles) of LOBs in
results , and the client can later use such a handle to (e.g.
lazily) expressly fetch a LOB from the DBMS or never fetch
that LOB if not actually needed . Mere loading of the LOB
into the DBMS may be expensive , with or without sending
the LOB to the client .
[0201] Thus , the DBMS may cache loaded LOBs such as
for repeated or deferred transmission and / or querying . For
example , a client may sequentially as follows : a) obtain a
handle of a LOB in a result set , b) close the result set without
having used the handle , fetch other result sets , and d)
much later use the handle to fetch the LOB from the DBMS ,
hopefully from a DBMS cache , though not necessarily . The
DBMS cache may be autonomous , such as with least
recently used (LRU) eviction policy . However , a LOB may
be huge (e.g. multiple database blocks) , which may some
what frustrate a cache policy .
[0202] For example a huge LOB might not be evicted until
after many small LOBs are evicted , even if the huge LOB
will not be needed again and the small LOBs will be . Thus
for LOBs , caching need not be autonomous and may instead
be more or less client driven . For example , a client may
know exactly when a LOB is no longer needed and may tell
the DBMS at that time by expressly releasing the LOB .
[0203] In an embodiment , a native JSON datatype may be
implemented within a DBMS as a LOB datatype variant , as
explained earlier herein . Thus , all of the techniques dis
cussed above for FIG . 12 may directly apply to JSON
documents . For example , a DBMS's JSON document cache
and LOB cache may be a same (i.e. polymorphic) cache . For
example , any of those above techniques may be imple
mented by DBMS logic that neither knows nor cares which
objects are binary JSON documents and which are plain
LOBs .
[0204] In some cases , a client may indicate in step 1202 a
usage pattern , such as in a SQL statement , and the DBMS
may manage JSON document caching according to the
client's indication . For example one client may indicate
sequential (e.g. OLAP or scan) access for a SQL statement
or database session , and another client may indicate random
(e.g. OLTP) access for another query or database session .
The DBMS may recognize that random access should fill
cache , and sequential access should not .
[0205] Whereas , any access may read (i.e. but not neces
sarily fill) cache . Likewise , step 1202 may instead indicate
that any access can retrieve data from the cache , but that
only reads and not writes may fill the cache . Also instead ,
step 1202 may indicate that a particular JSON document is
or is not cacheable .
[0206] Steps 1204A - D entail various complementary
ways for a client's database driver to receive binary JSON
document (s) . Thus any of steps 1204A - D , which are shown
as separate steps , may be combined into a single step that
combines techniques to receive JSON document (s) . Thus ,
while each of steps 1204A - D are individually capable of

a

a

12.0 Example Client Server Cooperation Process
[0198] FIG . 12 is a flow diagram that depicts ways in
which a client's database driver and DBMS may collaborate
to retrieve binary JSON documents , in an embodiment . FIG .
12 is discussed with reference to FIG . 11 .
[0199] A DBMS may send results to a client without the
DBMS caching any of the results . The results may contain

US 2022/0342865 A1 Oct. 27 , 2022
14

database driver may aggressively prefetch such that the
client application almost never waits for a next JSON
document . With or without prefetching , and with or without
a database cursor , the database driver may automatically
manage client memory to buffer or otherwise cache JSON
documents . For example , the database driver may automati
cally evict a JSON document from client memory , such as
according to : a) client iteration of a result set past the JSON
document , b) express release by client application , c) simple
garbage collection such as reference counting , and / or d)
sophisticated garbage collection such as mark / sweep , such
as with reified referencing semantics such as weak and
strong reference mechanisms .

a

Hardware Overview

receiving JSON documents , when steps are combined , still
only one JSON document or batch of JSON documents is
received . To receive more JSON documents , a same or
different combination of steps 1204A - D may be repeated for
each additional JSON document or batch of JSON docu
ments , such as with different or repeated SQL statement (s) .
[0207] In addition to having a database driver , the client
may also have a network driver needed to communicate with
the DBMS . In step 1204A the client's network driver
receives exactly one or multiple binary JSON document (s)
entirely in one network transmission consisting of network
packet (s) . For example and according to the transport layer
(i.e. layer 4) of the open systems interconnection (OSI)
network stack , the DBMS may send exactly one or multiple
JSON documents in one service data unit (SDU) , which
OSI's lower levels may or may not split into multiple
underlying protocol data units (PDUs) during transport for
eventual reassembly back into one SDU for receipt by the
client's network driver . For example , the client's network
driver may reassemble the one SDU , which was received by
the client computer as one or more (e.g. internet protocol ,
IP) packets or frames .
[0208] With such reassembly , the transmission appears
monolithic as observed by the operating systems (OS) of the
client and DBMS . For example , the client's database driver
may treat the SDU payload as exactly one (or multiple)
complete JSON document or LOB . In an embodiment : a) the
transport protocol is user datagram protocol (UDP) , b) there
is exactly one JSON document per packet , c) the client's
database driver can immediately process each JSON docu
ment when received , even when multiple JSON documents
are expected such as in a result set , and d) the client's
database driver is responsible for handling (e.g. reordering if
significant) JSON documents received out of order , and for
requesting retransmission of lost or garbled JSON docu
ments .
[0209] In step 1204B , the client's database driver receives
a JSON document as an instance of a LOB datatype variant
that is native to the DBMS . Thus , both the client's database
driver and the DBMS may exchange JSON documents more
or less exactly as native LOBs , including polymorphic
ancillary mechanisms such as caching as explained earlier
herein .
[0210] In step 1204C , the client's database driver (e.g.
remotely) operates a database cursor in the DBMS that
automatically manages memory that stores binary JSON
document (s) . For example , the cursor may iterate over a
result set of JSON documents , and advancing the cursor to
a next JSON document in the results may : a) release (i.e.
discard) a previous JSON document from memory of the
DBMS , and b) load a next JSON document into memory of
the DBMS . Cursor logic in the DBMS may polymorphically
handle both of JSON documents and LOBs .
[0211] In step 1204D , the client prefetches multiple binary
JSON documents from the DBMS . For example , such as
with or without a database cursor in the DBMS , the client
application may iterate over a result set , one JSON docu
ment at a time . Whereas , the client's database driver may
prefetch multiple JSON documents from the DBMS as a
batch .
[0212] Client prefetching may : a) reduce network round
trips needed to iterate over a result set , and b) thus , often
reduce latency for the database driver to provide a next
JSON document to the client application . For example , a

[0213] According to one embodiment , the techniques
described herein are implemented by one or more special
purpose computing devices . The special - purpose computing
devices may be hard - wired to perform the techniques , or
may include digital electronic devices such as one or more
application - specific integrated circuits (ASICs) or field pro
grammable gate arrays (FPGAs) that are persistently pro
grammed to perform the techniques , or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware , memory , other storage , or a combination . Such
special - purpose computing devices may also combine cus
tom hard - wired logic , ASICs , or FPGAs with custom pro
gramming to accomplish the techniques . The special - pur
pose computing devices may be desktop computer systems ,
portable computer systems , handheld devices , networking
devices or any other device that incorporates hard - wired
and / or program logic to implement the techniques .
[0214] For example , FIG . 13 is a block diagram that
illustrates a computer system 1300 upon which an embodi
ment of the invention may be implemented . Computer
system 1300 includes a bus 1302 or other communication
mechanism for communicating information , and a hardware
processor 1304 coupled with bus 1302 for processing infor
mation . Hardware processor 1304 may be , for example ,
general purpose microprocessor .
[0215] Computer system 1300 also includes a main
memory 1306 , such as a random access memory (RAM) or
other dynamic storage device , coupled to bus 1302 for
storing information and instructions to be executed by
processor 1304. Main memory 1306 also may be used for
storing temporary variables or other intermediate informa
tion during execution of instructions to be executed by
processor 1304. Such instructions , when stored in non
transitory storage media accessible to processor 1304 , ren
der computer system 1300 into a special - purpose machine
that is customized to perform the operations specified in the
instructions .
[0216] Computer system 1300 further includes a read only
memory (ROM) 1308 or other static storage device coupled
to bus 1302 for storing static information and instructions
for processor 1304. A storage device 1310 , such as a
magnetic disk , optical disk , or solid - state drive is provided
and coupled to bus 1302 for storing information and instruc
tions .
[0217] Computer system 1300 may be coupled via bus
1302 to a display 1312 , such as a cathode ray tube (CRT) ,
for displaying information to a computer user . An input
device 1314 , including alphanumeric and other keys , is

a

a

US 2022/0342865 A1 Oct. 27 , 2022
15

a

coupled to bus 1302 for communicating information and
command selections to processor 1304. Another type of user
input device is cursor control 1316 , such as a mouse , a
trackball , or cursor direction keys for communicating direc
tion information and command selections to processor 1304
and for controlling cursor movement on display 1312. This
input device typically has two degrees of freedom in two
axes , a first axis (e.g. , x) and a second axis (e.g. , y) , that
allows the device to specify positions in a plane .
[0218] Computer system 1300 may implement the tech
niques described herein using customized hard - wired logic ,
one or more ASICs or FPGAs , firmware and / or program
logic which in combination with the computer system causes
or programs computer system 1300 to be a special - purpose
machine . According to one embodiment , the techniques
herein are performed by computer system 1300 in response
to processor 1304 executing one or more sequences of one
or more instructions contained in main memory 1306. Such
instructions may be read into main memory 1306 from
another storage medium , such as storage device 1310 .
Execution of the sequences of instructions contained in main
memory 1306 causes processor 1304 to perform the process
steps described herein . In alternative embodiments , hard
wired circuitry may be used in place of or in combination
with software instructions .
[0219] The term “ storage media ” as used herein refers to
any non - transitory media that store data and / or instructions
that cause a machine to operate in a specific fashion . Such
storage media may comprise non - volatile media and / or
volatile media . Non - volatile media includes , for example ,
optical disks , magnetic disks , or solid - state drives , such as
storage device 1310. Volatile media includes dynamic
memory , such as main memory 1306. Common forms of
storage media include , for example , a floppy disk , a flexible
disk , hard disk , solid - state drive , magnetic tape , or any other
magnetic data storage medium , a CD - ROM , any other
optical data storage medium , any physical medium with
patterns of holes , a RAM , a PROM , and EPROM , a FLASH
EPROM , NVRAM , any other memory chip or cartridge .
[0220] Storage media is distinct from but may be used in
conjunction with transmission media . Transmission media
participates in transferring information between storage
media . For example , transmission media includes coaxial
cables , copper wire and fiber optics , including the wires that
comprise bus 1302. Transmission media can also take the
form of acoustic or light waves , such as those generated
during radio - wave and infra - red data communications .
[0221] Various forms of media may be involved in carry
ing one or more sequences of one or more instructions to
processor 1304 for execution . For example , the instructions
may initially be carried on a magnetic disk or solid - state
drive of a remote computer . The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem . A modem
local to computer system 1300 can receive the data on the
telephone line and use an infra - red transmitter to convert the
data to an infra - red signal . An infra - red detector can receive
the data carried in the infra - red signal and appropriate
circuitry can place the data on bus 1302. Bus 1302 carries
the data to main memory 1306 , from which processor 1304
retrieves and executes the instructions . The instructions
received by main memory 1306 may optionally be stored on
storage device 1310 either before or after execution by
processor 1304 .

[0222] Computer system 1300 also includes a communi
cation interface 1318 coupled to bus 1302. Communication
interface 1318 provides a two - way data communication
coupling to a network link 1320 that is connected to a local
network 1322. For example , communication interface 1318
may be an integrated services digital network (ISDN) card ,
cable modem , satellite modem , or a modem to provide a data
communication connection to a corresponding type of tele
phone line . As another example , communication interface
1318 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN . Wire
less links may also be implemented . In any such implemen
tation , communication interface 1318 sends and receives
electrical , electromagnetic or optical signals that carry digi
tal data streams representing various types of information .
[0223] Network link 1320 typically provides data com
munication through one or more networks to other data
devices . For example , network link 1320 may provide a
connection through local network 1322 to a host computer
1324 or to data equipment operated by an Internet Service
Provider (ISP) 1326. ISP 1326 in turn provides data com
munication services through the world wide packet data
communication network now commonly referred to as the
“ Internet ” 1328. Local network 1322 and Internet 1328 both
use electrical , electromagnetic or optical signals that carry
digital data streams . The signals through the various net
works and the signals on network link 1320 and through
communication interface 1318 , which carry the digital data
to and from computer system 1300 , are example forms of
transmission media .
[0224] Computer system 1300 can send messages and
receive data , including program code , through the network
(s) , network link 1320 and communication interface 1318. In
the Internet example , a server 1330 might transmit a
requested code for an application program through Internet
1328 , ISP 1326 , local network 1322 and communication
interface 1318 .
[0225] The received code may be executed by processor
1304 as it is received , and / or stored in storage device 1310 ,
or other non - volatile storage for later execution .

a

a

a

Software Overview

[0226] FIG . 14 is a block diagram of a basic software
system 1400 that may be employed for controlling the
operation of computing system 1300. Software system 1400
and its components , including their connections , relation
ships , and functions , is meant to be exemplary only , and not
meant to limit implementations of the example embodiment
(s) . Other software systems suitable for implementing the
example embodiment (s) may have different components ,
including components with different connections , relation
ships , and functions .
[0227] Software system 1400 is provided for directing the
operation of computing system 1300. Software system 1400 ,
which may be stored in system memory (RAM) 1306 and on
fixed storage (e.g. , hard disk or flash memory) 1310 ,
includes a kernel or operating system (OS) 1410 .
[0228] The OS 1410 manages low - level aspects of com
puter operation , including managing execution of processes ,
memory allocation , file input and output (I / O) , and device
1/0 . One or more application programs , represented as
1402A , 1402B , 1402C ... 1402N , may be “ loaded ” (e.g. ,
transferred from fixed storage 1310 into memory 1306) for
execution by the system 1400. The applications or other

US 2022/0342865 A1 Oct. 27 , 2022
16

a

software intended for use on computer system 1300 may
also be stored as a set of downloadable computer - executable
instructions , for example , for downloading and installation
from an Internet location (e.g. , a Web server , an app store ,
or other online service) .
[0229] Software system 1400 includes a graphical user
interface (GUI) 1415 , for receiving user commands and data
in a graphical (e.g. , “ point - and - click ” or “ touch gesture ”)
fashion . These inputs , in turn , may be acted upon by the
system 1400 in accordance with instructions from operating
system 1410 and / or application (s) 1402. The GUI 1415 also
serves to display the results of operation from the OS 1410
and application (s) 1402 , whereupon the user may supply
additional inputs or terminate the session (e.g. , log off) .
[0230] OS 1410 can execute directly on the bare hardware
1420 (e.g. , processor (s) 1304) of computer system 1300 .
Alternatively , a hypervisor or virtual machine monitor
(VMM) 1430 may be interposed between the bare hardware
1420 and the OS 1410. In this configuration , VMM 1430
acts as a software “ cushion ” or virtualization layer between
the OS 1410 and the bare hardware 1420 of the computer
system 1300 .
[0231] VMM 1430 instantiates and runs one or more
virtual machine instances (" guest machines ”) . Each guest
machine comprises a " guest " operating system , such as OS
1410 , and one or more applications , such as application (s)
1402 , designed to execute on the guest operating system .
The VMM 1430 presents the guest operating systems with
a virtual operating platform and manages the execution of
the guest operating systems .
[0232] In some instances , the VMM 1430 may allow a
guest operating system to run as if it is running on the bare
hardware 1420 of computer system 1400 directly . In these
instances , the same version of the guest operating system
configured to execute on the bare hardware 1420 directly
may also execute on VMM 1430 without modification or
reconfiguration . In other words , VMM 1430 may provide
full hardware and CPU virtualization to a guest operating
system in some instances .
[0233] In other instances , a guest operating system may be
specially designed or configured to execute on VMM 1430
for efficiency . In these instances , the guest operating system
is “ aware ” that it executes on a virtual machine monitor . In
other words , VMM 1430 may provide para - virtualization to
a guest operating system in some instances .
[0234] A computer system process comprises an allotment
of hardware processor time , and an allotment of memory
(physical and / or virtual) , the allotment of memory being for
storing instructions executed by the hardware processor , for
storing data generated by the hardware processor executing
the instructions , and / or for storing the hardware processor
state (e.g. content of registers) between allotments of the
hardware processor time when the computer system process
is not running . Computer system processes run under the
control of an operating system , and may run under the
control of other programs being executed on the computer
system .

and services , and which allows for rapid provisioning and
release of resources with minimal management effort or
service provider interaction .
[0236] A cloud computing environment (sometimes
referred to as a cloud environment , or a cloud) can be
implemented in a variety of different ways to best suit
different requirements . For example , in a public cloud
environment , the underlying computing infrastructure is
owned by an organization that makes its cloud services
available to other organizations or to the general public . In
contrast , a private cloud environment is generally intended
solely for use by , or within , a single organization . A com
munity cloud is intended to be shared by several organiza
tions within a community ; while a hybrid cloud comprise
two or more types of cloud (e.g. , private , community , or
public) that are bound together by data and application
portability .
[0237] Generally , a cloud computing model enables some
of those responsibilities which previously may have been
provided by an organization's own information technology
department , to instead be delivered as service layers within
a cloud environment , for use by consumers (either within or
external to the organization , according to the cloud's public /
private nature) . Depending on the particular implementa
tion , the precise definition of components or features pro
vided by or within each cloud service layer can vary , but
common examples include : Software as a Service (SaaS) , in
which consumers use software applications that are running
upon a cloud infrastructure , while a SaaS provider manages
or controls the underlying cloud infrastructure and applica
tions . Platform as a Service (PaaS) , in which consumers can
use software programming languages and development tools
supported by a PaaS provider to develop , deploy , and
otherwise control their own applications , while the PaaS
provider manages or controls other aspects of the cloud
environment (i.e. , everything below the run - time execution
environment) . Infrastructure as a Service (IaaS) , in which
consumers can deploy and run arbitrary software applica
tions , and / or provision processing , storage , networks , and
other fundamental computing resources , while an IaaS pro
vider manages or controls the underlying physical cloud
infrastructure (i.e. , everything below the operating system
layer) . Database as a Service (DBaaS) in which consumers
use a database server or Database Management System that
is running upon a cloud infrastructure , while a DbaaS
provider manages or controls the underlying cloud infra
structure and applications .
[0238] The above - described basic computer hardware and
software and cloud computing environment presented for
purpose of illustrating the basic underlying computer com
ponents that may be employed for implementing the
example embodiment (s) . The example embodiment (s) , how
ever , are not necessarily limited to any particular computing
environment or computing device configuration . Instead , the
example embodiment (s) may be implemented in any type of
system architecture or processing environment that one
skilled in the art , in light of this disclosure , would under
stand as capable of supporting the features and functions of
the example embodiment (s) presented herein . Cloud Computing
Database Overview [0235] The term “ cloud computing ” is generally used

herein to describe a computing model which enables on
demand access to a shared pool of computing resources ,
such as computer networks , servers , software applications ,

[0239] Embodiments of the present invention are used in
the context of database management systems (DBMSs) .
Therefore , a description of an example DBMS is provided .

US 2022/0342865 A1 Oct. 27 , 2022
17

[0240) Generally , a server , such as a database server , is a
combination of integrated software components and an
allocation of computational resources , such as memory , a
node , and processes on the node for executing the integrated
software components , where the combination of the soft
ware and computational resources are dedicated to providing
a particular type of function on behalf of clients of the server .
A database server governs and facilitates access to a par
ticular database , processing requests by clients to access the
database .
[0241] Users interact with a database server of a DBMS by
submitting to the database server commands that cause the
database server to perform operations on data stored in a
database . A user may be one or more applications running on
a client computer that interact with a database server .
Multiple users may also be referred to herein collectively as

a

a user .

Database Dictionary

a DBMS . Database commands can access the database
objects that are defined by the dictionary . A database com
mand may be in the form of a database statement . For the
database server to process the database statements , the
database statements must conform to a database language
supported by the database server . One non - limiting example
of a database language that is supported by many database
servers is SQL , including proprietary forms of SQL sup
ported by such database servers as Oracle , (e.g. Oracle
Database 11g) . SQL data definition language (“ DDL ”)
instructions are issued to a database server to create or
configure database objects , such as tables , views , or com
plex types . Data manipulation language (“ DML ”) instruc
tions are issued to a DBMS to manage data stored within a
database structure . For instance , SELECT , INSERT ,
UPDATE , and DELETE are common examples of DML
instructions found in some SQL implementations . SQL /
XML is a common extension of SQL used when manipu
lating XML data in an object - relational database .
[0247] A multi - node database management system is
made up of interconnected nodes that share access to the
same database . Typically , the nodes are interconnected via a
network and share access , in varying degrees , to shared
storage , e.g. shared access to a set of disk drives and data
blocks stored thereon . The nodes in a multi - node database
system may be in the form of a group of computers (e.g.
work stations , personal computers) that are interconnected
via a network . Alternately , the nodes may be the nodes of a
grid , which is composed of nodes in the form of server
blades interconnected with other server blades on a rack .
[0248] Each node in a multi - node database system hosts a
database server . A server , such as a database server , is a
combination of integrated software components and an
allocation of computational resources , such as memory , a
node , and processes on the node for executing the integrated
software components on a processor , the combination of the
software and computational resources being dedicated to
performing a particular function on behalf of one or more
clients .

[0249] Resources from multiple nodes in a multi - node
database system can be allocated to running a particular
database server's software . Each combination of the soft
ware and allocation of resources from a node is a server that
is referred to herein as a “ server instance " or " instance ” . A
database server may comprise multiple database instances ,
some or all of which are running on separate computers ,
including separate server blades .

a
a

a

[0242] A database comprises data and a database diction
ary that is stored on a persistent memory mechanism , such
as a set of hard disks . A database is defined by its own
separate database dictionary . A database dictionary may
comprise multiple data structures that store database meta
data . A database dictionary may for example , comprise
multiple files and tables . Portions of the data structures may
be cached in main memory of a database server .
[0243] A database dictionary comprises metadata that
defines database objects contained in a database . In effect , a
database dictionary defines much of a database . When a
database object is said to be defined by a database dictionary ,
the database dictionary contains metadata that defines prop
erties of the database object . For example , metadata in a
database dictionary defining a database table may specify
the column names and datatypes of the columns , and one or
more files or portions thereof that store data for the table .
Metadata in the database dictionary defining a procedure
may specify a name of the procedure , the procedure's
arguments and the return datatype and the datatypes of the
arguments , and may include source code and a compiled
version thereof .
[0244] Database objects include tables , table columns , and
tablespaces . A tablespace is a set of one or more files that are
used to store the data for various types of database objects ,
such as a table . If data for a database object is stored in a
tablespace , a database dictionary maps a database object to
one or more tablespaces that hold the data for the database
object .
[0245] A database object may be defined by the database
dictionary , but the metadata in the database dictionary itself
may only partly specify the properties of the database object .
Other properties may be defined by data structures that may
not be considered part of the database dictionary . For
example , a user defined function implemented in a JAVA
class may be defined in part by the database dictionary by
specifying the name of the users defined function and by
specifying a reference to a file containing the source code of
the Java class (i.e. , java file) and the compiled version of the
class (i.e. , class file) .

a

a

Query Processing

[0250] A query is an expression , command , or set of
commands that , when executed , causes a server to perform
one or more operations on a set of data . A query may specify
source data object (s) , such as table (s) , column (s) , view (s) , or
snapshot (s) , from which result set (s) are to be determined .
For example , the source data object (s) may appear in a
FROM clause of a Structured Query Language (“ SQL ”)
query . SQL is a well - known example language for querying
database objects . As used herein , the term “ query ” is used to
refer to any form of representing a query , including a query
in the form of a database statement and any data structure
used for internal query representation . The term “ table ”
refers to any source object that is referenced or defined by

a

Database Operation
[0246] A database dictionary is referred to by a DBMS to
determine how to execute database commands submitted to

US 2022/0342865 A1 Oct. 27 , 2022
18

a query and that represents a set of rows , such as a database
table , view , or an inline query block , such as an inline view
or subquery .
[0251] The query may perform operations on data from
the source data object (s) on a row by - row basis as the
object (s) are loaded or on the entire source data object (s)
after the object (s) have been loaded . A result set generated
by some operation (s) may be made available to other
operation (s) , and , in this manner , the result set may be
filtered out or narrowed based on some criteria , and / or
joined or combined with other result set (s) and / or other
source data object (s) .
[0252] A subquery is a portion or component of a query
that is distinct from other portion (s) or component (s) of the
query and that may be evaluated separately (i.e. , as a
separate query) from the other portion (s) or component (s) of
the query . The other portion (s) or component (s) of the query
may form an outer query , which may or may not include
other subqueries . A subquery nested in the outer query may
be separately evaluated one or more times while a result is
computed for the outer query .
[0253] Generally , a query parser receives a query state
ment and generates an internal query representation of the
query statement . Typically , the internal query representation
is a set of interlinked data structures that represent various
components and structures of a query statement .
[0254] The internal query representation may be in the
form of a graph of nodes , each interlinked data structure
corresponding to a node and to a component of the repre
sented query statement . The internal representation is typi
cally generated in memory for evaluation , manipulation , and
transformation .
[0255] In the foregoing specification , embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation . The specification and drawings are , accordingly ,
to be regarded in an illustrative rather than a restrictive
sense . The sole and exclusive indicator of the scope of the
invention , and what is intended by the applicants to be the
scope of the invention , is the literal and equivalent scope of
the set of claims that issue from this application , in the
specific form in which such claims issue , including any
subsequent correction .
What is claimed is :
1. A method comprising :
sending , to a database management system (DBMS) , a

structured query language (SQL) statement that refer
ences : a) a scalar column that is defined in a database
dictionary of the DBMS for a database table , and b) a
document column in same said database table that
contains binary JavaScript object notation (JSON)
documents ;

receiving , by a client , a binary JSON document that
satisfies the SQL statement from the DBMS , wherein
the binary JSON document comprises a plurality of
content values ;

using , by the client after said receiving the binary JSON
document , dot notation to access a field in the binary
JSON document without extracting the plurality of
content values from the binary JSON document .

2. The method of claim 1 wherein said access the field in
the binary JSON document without extracting the plurality

of content values from the binary JSON document occurs
without generating a text JSON document that represents the
binary JSON document .

3. The method of claim 1 wherein :
the binary JSON document is compressed ;
said access the field in the binary JSON document does

not comprise decompressing the entire binary JSON
document .

4. The method of claim 1 wherein said access the field in
the binary JSON document comprises using a document
object model (DOM) .

5. The method of claim 1 wherein said using said DOT
notation to access the field in the binary JSON document
comprises extracting , from the binary JSON document , at
least one selected from the group consisting of : an array and
a subtree of content of the binary JSON document .

6. The method of claim 1 wherein said access the field in
the binary JSON document comprises returning a reference
into the binary JSON document .

7. The method of claim 1 performed by a database driver
of the client .

8. The method of claim 7 further comprising the database
driver of the client remotely operating a database cursor in
the DBMS that automatically manages memory that stores
binary JSON documents .

9. The method of claim 7 further comprising the database
driver of the client caching a plurality of JSON documents .

10. The method of claim 1 wherein the binary JSON
document contains a second binary JSON document .

11. The method of claim 10 further comprising based on
metadata in the binary JSON document , decoding the sec
ond binary JSON document .

12. The method of claim 1 further comprising the client
indicating whether the DBMS should cache JSON docu
ments .

13. The method of claim 12 wherein the client indicating
whether the DBMS should cache JSON documents com
prises indicating an access pattern , wherein at least one
selected from the group consisting of :

the access pattern indicates random access or sequential
access ,

the access pattern indicates that writes should not be
cached , and

the access pattern is specified for a database session or the
SQL statement .

14. The method of claim 12 wherein the client indicating
whether the DBMS should cache JSON documents com
prises indicating one selected from the group consisting of :

a particular JSON document should be cached , and
a particular JSON document should not be cached .
15. One or more non - transitory computer - readable media

storing instructions that , when executed by one or more
processors , cause :

sending , to a database management system (DBMS) , a
structured query language (SQL) statement that refer
ences : a) a scalar column that is defined in a database
dictionary of the DBMS for a database table , and b) a
document column in same said database table that
contains binary JavaScript object notation (JSON)
documents ;

receiving , by a client , a binary JSON document that
satisfies the SQL statement from the DBMS , wherein
the binary JSON document comprises a plurality of
content values ;

a

US 2022/0342865 A1 Oct. 27 , 2022
19

using , by the client after said receiving the binary JSON
document , dot notation to access a field in the binary
JSON document without extracting the plurality of
content values from the binary JSON document .

16. The one or more non - transitory computer - readable
media of claim 15 wherein said access the field in the binary
JSON document comprises using a document object model
(DOM) .

17. The one or more non - transitory computer - readable
media of claim 15 wherein said access the field in the binary
JSON document comprises returning a reference into the
binary JSON document .

18. The one or more non - transitory computer - readable
media of claim 15 wherein said instructions are for a
database driver of the client .

19. The one or more non - transitory computer - readable
media of claim 15 wherein the binary JSON document
contains a second binary JSON document .

20. The one or more non - transitory computer - readable
media of claim 15 wherein the instructions further cause the
client indicating whether the DBMS should cache JSON
documents .

