
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3
83

9
73

9
A

1
EP003839739A1

(11) EP 3 839 739 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
23.06.2021 Bulletin 2021/25

(21) Application number: 21155467.0

(22) Date of filing: 14.03.2018

(51) Int Cl.:
G06F 9/50 (2006.01) G06F 12/0862 (2016.01)

G06N 3/04 (2006.01) G06N 3/063 (2006.01)

G06N 3/08 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 28.04.2017 US 201715581080

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
18161836.4 / 3 399 414

(71) Applicant: Intel Corporation
Santa Clara, CA 95054 (US)

(72) Inventors:
• CHEN, Feng

Pudong District, Shanghai 200135 (CN)
• SRINIVASA, Narayan

Portland, OR Oregon 97229 (US)
• APPU, Abhishek R.

El Dorado Hills, CA California 95762 (US)
• KOKER, Altug

El Dorado Hills, CA California 95762 (US)
• SINHA, Kamal

Rancho Cordova, CA California 95742 (US)

• VEMBU, Balaji
Folsom, CA California 95630 (US)

• RAY, Joydeep
Folsom, CA California 95630 (US)

• GALOPPO VON BORRIES, Nicolas C.
Portland, OR Oregon 97212 (US)

• SURTI, Prasoonkumar
Folsom, CA California 95630 (US)

• ASHBAUGH, Ben J.
Folsom, CA California 95630 (US)

• JAHAGIRDAR, Sanjeev
Folsom, CA California 95630 (US)

• RANGANATHAN, Vasanth
El Dorado Hills, CA California 95762 (US)

(74) Representative: Goddar, Heinz J. et al
Boehmert & Boehmert
Anwaltspartnerschaft mbB
Pettenkoferstrasse 22
80336 München (DE)

Remarks:
This application was filed on 05-02-2021 as a
divisional application to the application mentioned
under INID code 62.

(54) INTELLIGENT THREAD DISPATCH AND VECTORIZATION OF ATOMIC OPERATIONS

(57) A mechanism is described for facilitating intelli-
gent dispatching and vectorizing at autonomous ma-
chines. A method of embodiments, as described herein,
includes detecting a plurality of threads corresponding
to a plurality of workloads associated with tasks relating
to a graphics processor. The method may further include
determining a first set of threads of the plurality of threads
that are similar to each other or have adjacent surfaces,
and physically clustering the first set of threads close
together using a first set of adjacent compute blocks.

EP 3 839 739 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD

[0001] Embodiments described herein relate generally to data processing and more particularly to facilitate a tool for
facilitating intelligent thread dispatch and vectorization of atomic operations.

BACKGROUND

[0002] Current parallel graphics data processing includes systems and methods developed to perform specific oper-
ations on graphics data such as, for example, linear interpolation, tessellation, rasterization, texture mapping, depth
testing, etc. Traditionally, graphics processors used fixed function computational units to process graphics data; however,
more recently, portions of graphics processors have been made programmable, enabling such processors to support a
wider variety of operations for processing vertex and fragment data.
[0003] To further increase performance, graphics processors typically implement processing techniques such as
pipelining that attempt to process, in parallel, as much graphics data as possible throughout the different parts of the
graphics pipeline. Parallel graphics processors with single instruction, multiple thread (SIMT) architectures are designed
to maximize the amount of parallel processing in the graphics pipeline. In an SIMT architecture, groups of parallel threads
attempt to execute program instructions synchronously together as often as possible to increase processing efficiency.
A general overview of software and hardware for SIMT architectures can be found in Shane Cook, CUDA Programming,
Chapter 3, pages 37-51 (2013) and/or Nicholas Wilt, CUDA Handbook, A Comprehensive Guide to GPU Programming,
Sections 2.6.2 to 3.1.2 (June 2013).
[0004] Machine learning has been successful at solving many kinds of tasks. The computations that arise when training
and using machine learning algorithms (e.g., neural networks) lend themselves naturally to efficient parallel implemen-
tations. Accordingly, parallel processors such as general-purpose graphic processing units (GPGPUs) have played a
significant role in the practical implementation of deep neural networks. Parallel graphics processors with single instruc-
tion, multiple thread (SIMT) architectures are designed to maximize the amount of parallel processing in the graphics
pipeline. In an SIMT architecture, groups of parallel threads attempt to execute program instructions synchronously
together as often as possible to increase processing efficiency. The efficiency provided by parallel machine learning
algorithm implementations allows the use of high capacity networks and enables those networks to be trained on larger
datasets.
[0005] Conventional techniques for thread dispatch are known for causing data disruption across compute clusters.
Such conventional techniques are also known for scalarization of atomics.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying
drawings in which like reference numerals refer to similar elements. So that the manner in which the above recited
features can be understood in detail, a more particular description, briefly summarized above, may be had by reference
to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended
drawings illustrate only typical embodiments and are therefore not to be considered limiting of its scope, for the drawings
may illustrate other equally effective embodiments.

Figure 1 is a block diagram illustrating a computer system configured to implement one or more aspects of the
embodiments described herein.
Figure 2A-2D illustrate a parallel processor components, according to an embodiment.
Figure 3A-3B are block diagrams of graphics multiprocessors, according to embodiments.
Figure 4A-4F illustrate an exemplary architecture in which a plurality of graphics processing units are communica-
tively coupled to a plurality of multi-core processors.
Figure 5 illustrates a graphics processing pipeline, according to an embodiment.
Figure 6 illustrates a computing device hosting an intelligent thread dispatch and vectorization mechanism according
to one embodiment.
Figure 7 illustrates an intelligent thread dispatch and vectorization mechanism according to one embodiment.
Figure 8A illustrates a novel framework for intelligent thread dispatching according to one embodiment.
Figure 8B illustrates a novel framework of lock and data according to one embodiment.
Figure 9A illustrates a transaction sequence for intelligent thread dispatching according to one embodiment.
Figure 9B illustrates a method for vectorization of atomics according to one embodiment.
Figure 10 illustrates a machine learning software stack, according to an embodiment.

EP 3 839 739 A1

3

5

10

15

20

25

30

35

40

45

50

55

Figure 11 illustrates a highly-parallel general-purpose graphics processing unit, according to an embodiment.
Figure 12 illustrates a multi-GPU computing system, according to an embodiment.
Figure 13A-13B illustrate layers of exemplary deep neural networks.
Figure 14 illustrates training and deployment of a deep neural network.
Figure 15 illustrates training and deployment of a deep neural network
Figures 16 is a block diagram illustrating distributed learning.
Figure 17 illustrates an exemplary inferencing system on a chip (SOC) suitable for performing inferencing using a
trained model.
Figure 18 is a block diagram of an embodiment of a computer system with a processor having one or more processor
cores and graphics processors.
Figure 19 is a block diagram of one embodiment of a processor having one or more processor cores, an integrated
memory controller, and an integrated graphics processor.
Figure 20 is a block diagram of one embodiment of a graphics processor which may be a discreet graphics processing
unit, or may be graphics processor integrated with a plurality of processing cores.
Figure 21 is a block diagram of an embodiment of a graphics processing engine for a graphics processor.
Figure 22 is a block diagram of another embodiment of a graphics processor.
Figure 23 is a block diagram of thread execution logic including an array of processing elements.
Figure 24 illustrates a graphics processor execution unit instruction format according to an embodiment.
Figure 25 is a block diagram of another embodiment of a graphics processor which includes a graphics pipeline, a
media pipeline, a display engine, thread execution logic, and a render output pipeline.
Figure 26A is a block diagram illustrating a graphics processor command format according to an embodiment.
Figure 26B is a block diagram illustrating a graphics processor command sequence according to an embodiment.
Figure 27 illustrates exemplary graphics software architecture for a data processing system according to an em-
bodiment.
Figure 28 is a block diagram illustrating an IP core development system that may be used to manufacture an
integrated circuit to perform operations according to an embodiment.
Figure 29 is a block diagram illustrating an exemplary system on a chip integrated circuit that may be fabricated
using one or more IP cores, according to an embodiment.
Figure 30 is a block diagram illustrating an exemplary graphics processor of a system on a chip integrated circuit.
Figure 31 is a block diagram illustrating an additional exemplary graphics processor of a system on a chip integrated
circuit.

DETAILED DESCRIPTION

[0007] Embodiments provide for a novel technique for employing and using an intelligent thread dispatch mechanism
to reduce data disruption across compute clusters. Embodiments further provide for prefetching of thread group input
data for caches as threads are loaded along with vectorization of atomic operations.
[0008] It is to be noted that terms or acronyms like "convolutional neural network", "CNN", "neural network", "NN",
"deep neural network", "DNN", "recurrent neural network", "RNN", and/or the like may be interchangeably referenced
throughout this document. Further, terms like "autonomous machine" or simply "machine", "autonomous vehicle" or
simply "vehicle", "autonomous agent" or simply "agent", "autonomous device" or "computing device", "robot", and/or the
like, may be interchangeably referenced throughout this document.
[0009] In some embodiments, a graphics processing unit (GPU) is communicatively coupled to host/processor cores
to accelerate graphics operations, machine-learning operations, pattern analysis operations, and various general purpose
GPU (GPGPU) functions. The GPU may be communicatively coupled to the host processor/cores over a bus or another
interconnect (e.g., a high-speed interconnect such as PCIe or NVLink). In other embodiments, the GPU may be integrated
on the same package or chip as the cores and communicatively coupled to the cores over an internal processor bus/in-
terconnect (i.e., internal to the package or chip). Regardless of the manner in which the GPU is connected, the processor
cores may allocate work to the GPU in the form of sequences of commands/instructions contained in a work descriptor.
The GPU then uses dedicated circuitry/logic for efficiently processing these commands/instructions.
[0010] In the following description, numerous specific details are set forth. However, embodiments, as described
herein, may be practiced without these specific details. In other instances, well-known circuits, structures and techniques
have not been shown in detail in order not to obscure the understanding of this description.

System Overview I

[0011] Figure 1 is a block diagram illustrating a computing system 100 configured to implement one or more aspects
of the embodiments described herein. The computing system 100 includes a processing subsystem 101 having one or

EP 3 839 739 A1

4

5

10

15

20

25

30

35

40

45

50

55

more processor(s) 102 and a system memory 104 communicating via an interconnection path that may include a memory
hub 105. The memory hub 105 may be a separate component within a chipset component or may be integrated within
the one or more processor(s) 102. The memory hub 105 couples with an I/O subsystem 111 via a communication link
106. The I/O subsystem 111 includes an I/O hub 107 that can enable the computing system 100 to receive input from
one or more input device(s) 108. Additionally, the I/O hub 107 can enable a display controller, which may be included
in the one or more processor(s) 102, to provide outputs to one or more display device(s) 110A. In one embodiment, the
one or more display device(s) 110A coupled with the I/O hub 107 can include a local, internal, or embedded display device.
[0012] In one embodiment, the processing subsystem 101 includes one or more parallel processor(s) 112 coupled to
memory hub 105 via a bus or other communication link 113. The communication link 113 may be one of any number of
standards based communication link technologies or protocols, such as, but not limited to PCI Express, or may be a
vendor specific communications interface or communications fabric. In one embodiment, the one or more parallel proc-
essor(s) 112 form a computationally focused parallel or vector processing system that an include a large number of
processing cores and/or processing clusters, such as a many integrated core (MIC) processor. In one embodiment, the
one or more parallel processor(s) 112 form a graphics processing subsystem that can output pixels to one of the one
or more display device(s) 110A coupled via the I/O Hub 107. The one or more parallel processor(s) 112 can also include
a display controller and display interface (not shown) to enable a direct connection to one or more display device(s) 110B.
[0013] Within the I/O subsystem 111, a system storage unit 114 can connect to the I/O hub 107 to provide a storage
mechanism for the computing system 100. An I/O switch 116 can be used to provide an interface mechanism to enable
connections between the I/O hub 107 and other components, such as a network adapter 118 and/or wireless network
adapter 119 that may be integrated into the platform, and various other devices that can be added via one or more add-
in device(s) 120. The network adapter 118 can be an Ethernet adapter or another wired network adapter. The wireless
network adapter 119 can include one or more of a Wi-Fi, Bluetooth, near field communication (NFC), or other network
device that includes one or more wireless radios.
[0014] The computing system 100 can include other components not explicitly shown, including USB or other port
connections, optical storage drives, video capture devices, and the like, may also be connected to the I/O hub 107.
Communication paths interconnecting the various components in Figure 1 may be implemented using any suitable
protocols, such as PCI (Peripheral Component Interconnect) based protocols (e.g., PCI-Express), or any other bus or
point-to-point communication interfaces and/or protocol(s), such as the NV-Link high-speed interconnect, or interconnect
protocols known in the art.
[0015] In one embodiment, the one or more parallel processor(s) 112 incorporate circuitry optimized for graphics and
video processing, including, for example, video output circuitry, and constitutes a graphics processing unit (GPU). In
another embodiment, the one or more parallel processor(s) 112 incorporate circuitry optimized for general purpose
processing, while preserving the underlying computational architecture, described in greater detail herein. In yet another
embodiment, components of the computing system 100 may be integrated with one or more other system elements on
a single integrated circuit. For example, the one or more parallel processor(s), 112 memory hub 105, processor(s) 102,
and I/O hub 107 can be integrated into a system on chip (SoC) integrated circuit. Alternatively, the components of the
computing system 100 can be integrated into a single package to form a system in package (SIP) configuration. In one
embodiment, at least a portion of the components of the computing system 100 can be integrated into a multi-chip
module (MCM), which can be interconnected with other multi-chip modules into a modular computing system.
[0016] It will be appreciated that the computing system 100 shown herein is illustrative and that variations and modi-
fications are possible. The connection topology, including the number and arrangement of bridges, the number of proc-
essor(s) 102, and the number of parallel processor(s) 112, may be modified as desired. For instance, in some embod-
iments, system memory 104 is connected to the processor(s) 102 directly rather than through a bridge, while other
devices communicate with system memory 104 via the memory hub 105 and the processor(s) 102. In other alternative
topologies, the parallel processor(s) 112 are connected to the I/O hub 107 or directly to one of the one or more processor(s)
102, rather than to the memory hub 105. In other embodiments, the I/O hub 107 and memory hub 105 may be integrated
into a single chip. Some embodiments may include two or more sets of processor(s) 102 attached via multiple sockets,
which can couple with two or more instances of the parallel processor(s) 112.
[0017] Some of the particular components shown herein are optional and may not be included in all implementations
of the computing system 100. For example, any number of add-in cards or peripherals may be supported, or some
components may be eliminated. Furthermore, some architectures may use different terminology for components similar
to those illustrated in Figure 1. For example, the memory hub 105 may be referred to as a Northbridge in some archi-
tectures, while the I/O hub 107 may be referred to as a Southbridge.
[0018] Figure 2A illustrates a parallel processor 200, according to an embodiment. The various components of the
parallel processor 200 may be implemented using one or more integrated circuit devices, such as programmable proc-
essors, application specific integrated circuits (ASICs), or field programmable gate arrays (FPGA). The illustrated parallel
processor 200 is a variant of the one or more parallel processor(s) 112 shown in Figure 1, according to an embodiment.
[0019] In one embodiment, the parallel processor 200 includes a parallel processing unit 202. The parallel processing

EP 3 839 739 A1

5

5

10

15

20

25

30

35

40

45

50

55

unit includes an I/O unit 204 that enables communication with other devices, including other instances of the parallel
processing unit 202. The I/O unit 204 may be directly connected to other devices. In one embodiment, the I/O unit 204
connects with other devices via the use of a hub or switch interface, such as memory hub 105. The connections between
the memory hub 105 and the I/O unit 204 form a communication link 113. Within the parallel processing unit 202, the
I/O unit 204 connects with a host interface 206 and a memory crossbar 216, where the host interface 206 receives
commands directed to performing processing operations and the memory crossbar 216 receives commands directed
to performing memory operations.
[0020] When the host interface 206 receives a command buffer via the I/O unit 204, the host interface 206 can direct
work operations to perform those commands to a front end 208. In one embodiment, the front end 208 couples with a
scheduler 210, which is configured to distribute commands or other work items to a processing cluster array 212. In one
embodiment, the scheduler 210 ensures that the processing cluster array 212 is properly configured and in a valid state
before tasks are distributed to the processing clusters of the processing cluster array 212.
[0021] The processing cluster array 212 can include up to "N" processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the processing cluster array 212 can execute a large number of
concurrent threads. The scheduler 210 can allocate work to the clusters 214A-214N of the processing cluster array 212
using various scheduling and/or work distribution algorithms, which may vary depending on the workload arising for
each type of program or computation. The scheduling can be handled dynamically by the scheduler 210, or can be
assisted in part by compiler logic during compilation of program logic configured for execution by the processing cluster
array 212.
[0022] In one embodiment, different clusters 214A-214N of processing cluster array 212 can be allocated for processing
different types of programs or for performing different types of computations.
[0023] The processing cluster array 212 can be configured to perform various types of parallel processing operations.
In one embodiment, the processing cluster array 212 is configured to perform general-purpose parallel compute oper-
ations. For example, the processing cluster array 212 can include logic to execute processing tasks including filtering
of video and/or audio data, performing modeling operations, including physics operations, and performing data trans-
formations.
[0024] In one embodiment, the processing cluster array 212 is configured to perform parallel graphics processing
operations. In embodiments in which the parallel processor 200 is configured to perform graphics processing operations,
the processing cluster array 212 can include additional logic to support the execution of such graphics processing
operations, including, but not limited to texture sampling logic to perform texture operations, as well as tessellation logic
and other vertex processing logic. Additionally, the processing cluster array 212 can be configured to execute graphics
processing related shader programs such as, but not limited to vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. The parallel processing unit 202 can transfer data from system memory via the I/O unit 204 for
processing. During processing the transferred data can be stored to on-chip memory (e.g., parallel processor memory
222) during processing, then written back to system memory.
[0025] In one embodiment, when the parallel processing unit 202 is used to perform graphics processing, the scheduler
210 can be configured to divide the processing workload into approximately equal sized tasks, to better enable distribution
of the graphics processing operations to multiple clusters 214A-214N of the processing cluster array 212. In some
embodiments, portions of the processing cluster array 212 can be configured to perform different types of processing.
For example, a first portion may be configured to perform vertex shading and topology generation, a second portion
may be configured to perform tessellation and geometry shading, and a third portion may be configured to perform pixel
shading or other screen space operations, to produce a rendered image for display. Intermediate data produced by one
or more of the clusters 214A-214N may be stored in buffers to allow the intermediate data to be transmitted between
clusters 214A-214N for further processing.
[0026] During operation, the processing cluster array 212 can receive processing tasks to be executed via the scheduler
210, which receives commands defining processing tasks from front end 208. For graphics processing operations,
processing tasks can include indices of data to be processed, e.g., surface (patch) data, primitive data, vertex data,
and/or pixel data, as well as state parameters and commands defining how the data is to be processed (e.g., what
program is to be executed). The scheduler 210 may be configured to fetch the indices corresponding to the tasks or
may receive the indices from the front end 208. The front end 208 can be configured to ensure the processing cluster
array 212 is configured to a valid state before the workload specified by incoming command buffers (e.g., batch-buffers,
push buffers, etc.) is initiated.
[0027] Each of the one or more instances of the parallel processing unit 202 can couple with parallel processor memory
222. The parallel processor memory 222 can be accessed via the memory crossbar 216, which can receive memory
requests from the processing cluster array 212 as well as the I/O unit 204. The memory crossbar 216 can access the
parallel processor memory 222 via a memory interface 218. The memory interface 218 can include multiple partition
units (e.g., partition unit 220A, partition unit 220B, through partition unit 220N) that can each couple to a portion (e.g.,
memory unit) of parallel processor memory 222. In one implementation, the number of partition units 220A-220N is

EP 3 839 739 A1

6

5

10

15

20

25

30

35

40

45

50

55

configured to be equal to the number of memory units, such that a first partition unit 220A has a corresponding first
memory unit 224A, a second partition unit 220B has a corresponding memory unit 224B, and an Nth partition unit 220N
has a corresponding Nth memory unit 224N. In other embodiments, the number of partition units 220A-220N may not
be equal to the number of memory devices.
[0028] In various embodiments, the memory units 224A-224N can include various types of memory devices, including
dynamic random access memory (DRAM) or graphics random access memory, such as synchronous graphics random
access memory (SGRAM), including graphics double data rate (GDDR) memory. In one embodiment, the memory units
224A-224N may also include 3D stacked memory, including but not limited to high bandwidth memory (HBM). Persons
skilled in the art will appreciate that the specific implementation of the memory units 224A-224N can vary, and can be
selected from one of various conventional designs. Render targets, such as frame buffers or texture maps may be stored
across the memory units 224A-224N, allowing partition units 220A-220N to write portions of each render target in parallel
to efficiently use the available bandwidth of parallel processor memory 222. In some embodiments, a local instance of
the parallel processor memory 222 may be excluded in favor of a unified memory design that utilizes system memory
in conjunction with local cache memory.
[0029] In one embodiment, any one of the clusters 214A-214N of the processing cluster array 212 can process data
that will be written to any of the memory units 224A-224N within parallel processor memory 222. The memory crossbar
216 can be configured to transfer the output of each cluster 214A-214N to any partition unit 220A-220N or to another
cluster 214A-214N, which can perform additional processing operations on the output. Each cluster 214A-214N can
communicate with the memory interface 218 through the memory crossbar 216 to read from or write to various external
memory devices. In one embodiment, the memory crossbar 216 has a connection to the memory interface 218 to
communicate with the I/O unit 204, as well as a connection to a local instance of the parallel processor memory 222,
enabling the processing units within the different processing clusters 214A-214N to communicate with system memory
or other memory that is not local to the parallel processing unit 202. In one embodiment, the memory crossbar 216 can
use virtual channels to separate traffic streams between the clusters 214A-214N and the partition units 220A-220N.
[0030] While a single instance of the parallel processing unit 202 is illustrated within the parallel processor 200, any
number of instances of the parallel processing unit 202 can be included. For example, multiple instances of the parallel
processing unit 202 can be provided on a single add-in card, or multiple add-in cards can be interconnected. The different
instances of the parallel processing unit 202 can be configured to inter-operate even if the different instances have
different numbers of processing cores, different amounts of local parallel processor memory, and/or other configuration
differences. For example, and in one embodiment, some instances of the parallel processing unit 202 can include higher
precision floating point units relative to other instances. Systems incorporating one or more instances of the parallel
processing unit 202 or the parallel processor 200 can be implemented in a variety of configurations and form factors,
including but not limited to desktop, laptop, or handheld personal computers, servers, workstations, game consoles,
and/or embedded systems.
[0031] Figure 2B is a block diagram of a partition unit 220, according to an embodiment. In one embodiment, the
partition unit 220 is an instance of one of the partition units 220A-220N of Figure 2A. As illustrated, the partition unit
220 includes an L2 cache 221, a frame buffer interface 225, and a ROP 226 (raster operations unit). The L2 cache 221
is a read/write cache that is configured to perform load and store operations received from the memory crossbar 216
and ROP 226. Read misses and urgent write-back requests are output by L2 cache 221 to frame buffer interface 225
for processing. Dirty updates can also be sent to the frame buffer via the frame buffer interface 225 for opportunistic
processing. In one embodiment, the frame buffer interface 225 interfaces with one of the memory units in parallel
processor memory, such as the memory units 224A-224N of Figure 2A (e.g., within parallel processor memory 222).
[0032] In graphics applications, the ROP 226 is a processing unit that performs raster operations, such as stencil, z
test, blending, and the like. The ROP 226 then outputs processed graphics data that is stored in graphics memory. In
some embodiments, the ROP 226 includes compression logic to compress z or color data that is written to memory and
decompress z or color data that is read from memory. In some embodiments, the ROP 226 is included within each
processing cluster (e.g., cluster 214A-214N of Figure 2A) instead of within the partition unit 220. In such embodiment,
read and write requests for pixel data are transmitted over the memory crossbar 216 instead of pixel fragment data.
[0033] The processed graphics data may be displayed on a display device, such as one of the one or more display
device(s) 110 of Figure 1, routed for further processing by the processor(s) 102, or routed for further processing by one
of the processing entities within the parallel processor 200 of Figure 2A.
[0034] Figure 2C is a block diagram of a processing cluster 214 within a parallel processing unit, according to an
embodiment. In one embodiment, the processing cluster is an instance of one of the processing clusters 214A-214N of
Figure 2A. The processing cluster 214 can be configured to execute many threads in parallel, where the term "thread"
refers to an instance of a particular program executing on a particular set of input data. In some embodiments, single-
instruction, multiple-data (SIMD) instruction issue techniques are used to support parallel execution of a large number
of threads without providing multiple independent instruction units. In other embodiments, single-instruction, multiple-
thread (SIMT) techniques are used to support parallel execution of a large number of generally synchronized threads,

EP 3 839 739 A1

7

5

10

15

20

25

30

35

40

45

50

55

using a common instruction unit configured to issue instructions to a set of processing engines within each one of the
processing clusters. Unlike a SIMD execution regime, where all processing engines typically execute identical instruc-
tions, SIMT execution allows different threads to more readily follow divergent execution paths through a given thread
program. Persons skilled in the art will understand that a SIMD processing regime represents a functional subset of a
SIMT processing regime.
[0035] Operation of the processing cluster 214 can be controlled via a pipeline manager 232 that distributes processing
tasks to SIMT parallel processors. The pipeline manager 232 receives instructions from the scheduler 210 of Figure 2A
and manages execution of those instructions via a graphics multiprocessor 234 and/or a texture unit 236. The illustrated
graphics multiprocessor 234 is an exemplary instance of an SIMT parallel processor. However, various types of SIMT
parallel processors of differing architectures may be included within the processing cluster 214. One or more instances
of the graphics multiprocessor 234 can be included within a processing cluster 214. The graphics multiprocessor 234
can process data and a data crossbar 240 can be used to distribute the processed data to one of multiple possible
destinations, including other shader units. The pipeline manager 232 can facilitate the distribution of processed data by
specifying destinations for processed data to be distributed vis the data crossbar 240.
[0036] Each graphics multiprocessor 234 within the processing cluster 214 can include an identical set of functional
execution logic (e.g., arithmetic logic units, load-store units, etc.). The functional execution logic can be configured in a
pipelined manner in which new instructions can be issued before previous instructions are complete. The functional
execution logic may be provided. The functional logic supports a variety of operations including integer and floating point
arithmetic comparison operations, Boolean operations bit-shifting, and computation of various algebraic functions. In
one embodiment, the same functional-unit hardware can be leveraged to perform different operations and any combi-
nation of functional units may be present.
[0037] The instructions transmitted to the processing cluster 214 constitutes a thread. A set of threads executing
across the set of parallel processing engines is a thread group. A thread group executes the same program on different
input data. Each thread within a thread group can be assigned to a different processing engine within a graphics multi-
processor 234. A thread group may include fewer threads than the number of processing engines within the graphics
multiprocessor 234. When a thread group includes fewer threads than the number of processing engines, one or more
of the processing engines may be idle during cycles in which that thread group is being processed. A thread group may
also include more threads than the number of processing engines within the graphics multiprocessor 234. When the
thread group includes more threads than the number of processing engines within the graphics multiprocessor 234,
processing can be performed over consecutive clock cycles. In one embodiment, multiple thread groups can be executed
concurrently on a graphics multiprocessor 234.
[0038] In one embodiment, the graphics multiprocessor 234 includes an internal cache memory to perform load and
store operations. In one embodiment, the graphics multiprocessor 234 can forego an internal cache and use a cache
memory (e.g., L1 cache 308) within the processing cluster 214. Each graphics multiprocessor 234 also has access to
L2 caches within the partition units (e.g., partition units 220A-220N of Figure 2A) that are shared among all processing
clusters 214 and may be used to transfer data between threads. The graphics multiprocessor 234 may also access off-
chip global memory, which can include one or more of local parallel processor memory and/or system memory. Any
memory external to the parallel processing unit 202 may be used as global memory. Embodiments in which the processing
cluster 214 includes multiple instances of the graphics multiprocessor 234 can share common instructions and data,
which may be stored in the L1 cache 308.
[0039] Each processing cluster 214 may include an MMU 245 (memory management unit) that is configured to map
virtual addresses into physical addresses. In other embodiments, one or more instances of the MMU 245 may reside
within the memory interface 218 of Figure 2A. The MMU 245 includes a set of page table entries (PTEs) used to map
a virtual address to a physical address of a tile (talk more about tiling) and optionally a cache line index. The MMU 245
may include address translation lookaside buffers (TLB) or caches that may reside within the graphics multiprocessor
234 or the L1 cache or processing cluster 214. The physical address is processed to distribute surface data access
locality to allow efficient request interleaving among partition units. The cache line index may be used to determine
whether a request for a cache line is a hit or miss.
[0040] In graphics and computing applications, a processing cluster 214 may be configured such that each graphics
multiprocessor 234 is coupled to a texture unit 236 for performing texture mapping operations, e.g., determining texture
sample positions, reading texture data, and filtering the texture data. Texture data is read from an internal texture L1
cache (not shown) or in some embodiments from the L1 cache within graphics multiprocessor 234 and is fetched from
an L2 cache, local parallel processor memory, or system memory, as needed. Each graphics multiprocessor 234 outputs
processed tasks to the data crossbar 240 to provide the processed task to another processing cluster 214 for further
processing or to store the processed task in an L2 cache, local parallel processor memory, or system memory via the
memory crossbar 216. A preROP 242 (pre-raster operations unit) is configured to receive data from graphics multiproc-
essor 234, direct data to ROP units, which may be located with partition units as described herein (e.g., partition units
220A-220N of Figure 2A). The preROP 242 unit can perform optimizations for color blending, organize pixel color data,

EP 3 839 739 A1

8

5

10

15

20

25

30

35

40

45

50

55

and perform address translations.
[0041] It will be appreciated that the core architecture described herein is illustrative and that variations and modifi-
cations are possible. Any number of processing units, e.g., graphics multiprocessor 234, texture units 236, preROPs
242, etc., may be included within a processing cluster 214. Further, while only one processing cluster 214 is shown, a
parallel processing unit as described herein may include any number of instances of the processing cluster 214. In one
embodiment, each processing cluster 214 can be configured to operate independently of other processing clusters 214
using separate and distinct processing units, L1 caches, etc.
[0042] Figure 2D shows a graphics multiprocessor 234, according to one embodiment. In such embodiment, the
graphics multiprocessor 234 couples with the pipeline manager 232 of the processing cluster 214. The graphics multi-
processor 234 has an execution pipeline including but not limited to an instruction cache 252, an instruction unit 254,
an address mapping unit 256, a register file 258, one or more general purpose graphics processing unit (GPGPU) cores
262, and one or more load/store units 266. The GPGPU cores 262 and load/store units 266 are coupled with cache
memory 272 and shared memory 270 via a memory and cache interconnect 268.
[0043] In one embodiment, the instruction cache 252 receives a stream of instructions to execute from the pipeline
manager 232. The instructions are cached in the instruction cache 252 and dispatched for execution by the instruction
unit 254. The instruction unit 254 can dispatch instructions as thread groups (e.g., warps), with each thread of the thread
group assigned to a different execution unit within GPGPU core 262. An instruction can access any of a local, shared,
or global address space by specifying an address within a unified address space. The address mapping unit 256 can
be used to translate addresses in the unified address space into a distinct memory address that can be accessed by
the load/store units 266.
[0044] The register file 258 provides a set of registers for the functional units of the graphics multiprocessor 324. The
register file 258 provides temporary storage for operands connected to the data paths of the functional units (e.g., GPGPU
cores 262, load/store units 266) of the graphics multiprocessor 324. In one embodiment, the register file 258 is divided
between each of the functional units such that each functional unit is allocated a dedicated portion of the register file
258. In one embodiment, the register file 258 is divided between the different warps being executed by the graphics
multiprocessor 324.
[0045] The GPGPU cores 262 can each include floating point units (FPUs) and/or integer arithmetic logic units (ALUs)
that are used to execute instructions of the graphics multiprocessor 324. The GPGPU cores 262 can be similar in
architecture or can differ in architecture, according to embodiments. For example, and in one embodiment, a first portion
of the GPGPU cores 262 include a single precision FPU and an integer ALU while a second portion of the GPGPU cores
include a double precision FPU. In one embodiment, the FPUs can implement the IEEE 754-2008 standard for floating
point arithmetic or enable variable precision floating point arithmetic. The graphics multiprocessor 324 can additionally
include one or more fixed function or special function units to perform specific functions such as copy rectangle or pixel
blending operations. In one embodiment one or more of the GPGPU cores can also include fixed or special function logic.
[0046] The memory and cache interconnect 268 is an interconnect network that connects each of the functional units
of the graphics multiprocessor 324 to the register file 258 and to the shared memory 270. In one embodiment, the
memory and cache interconnect 268 is a crossbar interconnect that allows the load/store unit 266 to implement load
and store operations between the shared memory 270 and the register file 258. The register file 258 can operate at the
same frequency as the GPGPU cores 262, thus data transfer between the GPGPU cores 262 and the register file 258
is very low latency. The shared memory 270 can be used to enable communication between threads that execute on
the functional units within the graphics multiprocessor 234. The cache memory 272 can be used as a data cache for
example, to cache texture data communicated between the functional units and the texture unit 236. The shared memory
270 can also be used as a program managed cached. Threads executing on the GPGPU cores 262 can programmatically
store data within the shared memory in addition to the automatically cached data that is stored within the cache memory
272.
[0047] Figures 3A-3B illustrate additional graphics multiprocessors, according to embodiments. The illustrated graph-
ics multiprocessors 325, 350 are variants of the graphics multiprocessor 234 of Figure 2C. The illustrated graphics
multiprocessors 325, 350 can be configured as a streaming multiprocessor (SM) capable of simultaneous execution of
a large number of execution threads.
[0048] Figure 3A shows a graphics multiprocessor 325 according to an additional embodiment. The graphics multi-
processor 325 includes multiple additional instances of execution resource units relative to the graphics multiprocessor
234 of Figure 2D. For example, the graphics multiprocessor 325 can include multiple instances of the instruction unit
332A-332B, register file 334A-334B, and texture unit(s) 344A-344B. The graphics multiprocessor 325 also includes
multiple sets of graphics or compute execution units (e.g., GPGPU core 336A-336B, GPGPU core 337A-337B, GPGPU
core 338A-338B) and multiple sets of load/store units 340A-340B. In one embodiment, the execution resource units
have a common instruction cache 330, texture and/or data cache memory 342, and shared memory 346. The various
components can communicate via an interconnect fabric 327. In one embodiment, the interconnect fabric 327 includes
one or more crossbar switches to enable communication between the various components of the graphics multiprocessor

EP 3 839 739 A1

9

5

10

15

20

25

30

35

40

45

50

55

325.
[0049] Figure 3B shows a graphics multiprocessor 350 according to an additional embodiment. The graphics processor
includes multiple sets of execution resources 356A-356D, where each set of execution resource includes multiple in-
struction units, register files, GPGPU cores, and load store units, as illustrated in Figure 2D and Figure 3A. The execution
resources 356A-356D can work in concert with texture unit(s) 360A-360D for texture operations, while sharing an in-
struction cache 354, and shared memory 362. In one embodiment, the execution resources 356A-356D can share an
instruction cache 354 and shared memory 362, as well as multiple instances of a texture and/or data cache memory
358A-358B. The various components can communicate via an interconnect fabric 352 similar to the interconnect fabric
327 of Figure 3A.
[0050] Persons skilled in the art will understand that the architecture described in Figures 1, 2A-2D, and 3A-3B are
descriptive and not limiting as to the scope of the present embodiments. Thus, the techniques described herein may be
implemented on any properly configured processing unit, including, without limitation, one or more mobile application
processors, one or more desktop or server central processing units (CPUs) including multi-core CPUs, one or more
parallel processing units, such as the parallel processing unit 202 of Figure 2A, as well as one or more graphics
processors or special purpose processing units, without departure from the scope of the embodiments described herein.
[0051] In some embodiments, a parallel processor or GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations, machine-learning operations, pattern analysis operations, and
various general purpose GPU (GPGPU) functions. The GPU may be communicatively coupled to the host processor/cores
over a bus or other interconnect (e.g., a high-speed interconnect such as PCIe or NVLink). In other embodiments, the
GPU may be integrated on the same package or chip as the cores and communicatively coupled to the cores over an
internal processor bus/interconnect (i.e., internal to the package or chip). Regardless of the manner in which the GPU
is connected, the processor cores may allocate work to the GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated circuitry/logic for efficiently processing these commands/in-
structions.

Techniques for GPU to Host Processor Interconnection

[0052] Figure 4A illustrates an exemplary architecture in which a plurality of GPUs 410-413 are communicatively
coupled to a plurality of multi-core processors 405-406 over high-speed links 440-443 (e.g., buses, point-to-point inter-
connects, etc.). In one embodiment, the high-speed links 440-443 support a communication throughput of 4GB/s, 30GB/s,
80GB/s or higher, depending on the implementation. Various interconnect protocols may be used including, but not
limited to, PCIe 4.0 or 5.0 and NVLink 2.0. However, the underlying principles of the invention are not limited to any
particular communication protocol or throughput.
[0053] In addition, in one embodiment, two or more of the GPUs 410-413 are interconnected over high-speed links
444-445, which may be implemented using the same or different protocols/links than those used for high-speed links
440-443. Similarly, two or more of the multi-core processors 405-406 may be connected over high speed link 433 which
may be symmetric multi-processor (SMP) buses operating at 20GB/s, 30GB/s, 120GB/s or higher. Alternatively, all
communication between the various system components shown in Figure 4A may be accomplished using the same
protocols/links (e.g., over a common interconnection fabric). As mentioned, however, the underlying principles of the
invention are not limited to any particular type of interconnect technology.
[0054] In one embodiment, each multi-core processor 405-406 is communicatively coupled to a processor memory
401-402, via memory interconnects 430-431, respectively, and each GPU 410-413 is communicatively coupled to GPU
memory 420-423 over GPU memory interconnects 450-453, respectively. The memory interconnects 430-431 and
450-453 may utilize the same or different memory access technologies. By way of example, and not limitation, the
processor memories 401-402 and GPU memories 420-423 may be volatile memories such as dynamic random access
memories (DRAMs) (including stacked DRAMs), Graphics DDR SDRAM (GDDR) (e.g., GDDR5, GDDR6), or High
Bandwidth Memory (HBM) and/or may be non-volatile memories such as 3D XPoint or Nano-Ram. In one embodiment,
some portion of the memories may be volatile memory and another portion may be non-volatile memory (e.g., using a
two-level memory (2LM) hierarchy).
[0055] As described below, although the various processors 405-406 and GPUs 410-413 may be physically coupled
to a particular memory 401-402, 420-423, respectively, a unified memory architecture may be implemented in which the
same virtual system address space (also referred to as the "effective address" space) is distributed among all of the
various physical memories. For example, processor memories 401-402 may each comprise 64GB of the system memory
address space and GPU memories 420-423 may each comprise 32GB of the system memory address space (resulting
in a total of 256GB addressable memory in this example).
[0056] Figure 4B illustrates additional details for an interconnection between a multi-core processor 407 and a graphics
acceleration module 446 in accordance with one embodiment. The graphics acceleration module 446 may include one
or more GPU chips integrated on a line card which is coupled to the processor 407 via the high-speed link 440. Alter-

EP 3 839 739 A1

10

5

10

15

20

25

30

35

40

45

50

55

natively, the graphics acceleration module 446 may be integrated on the same package or chip as the processor 407.
[0057] The illustrated processor 407 includes a plurality of cores 460A-460D, each with a translation lookaside buffer
461A-461D and one or more caches 462A-462D. The cores may include various other components for executing in-
structions and processing data which are not illustrated to avoid obscuring the underlying principles of the invention
(e.g., instruction fetch units, branch prediction units, decoders, execution units, reorder buffers, etc.). The caches 462A-
462D may comprise level 1 (L1) and level 2 (L2) caches. In addition, one or more shared caches 426 may be included
in the caching hierarchy and shared by sets of the cores 460A-460D. For example, one embodiment of the processor
407 includes 24 cores, each with its own L1 cache, twelve shared L2 caches, and twelve shared L3 caches. In this
embodiment, one of the L2 and L3 caches are shared by two adjacent cores. The processor 407 and the graphics
accelerator integration module 446 connect with system memory 441, which may include processor memories 401-402.
[0058] Coherency is maintained for data and instructions stored in the various caches 462A-462D, 456 and system
memory 441 via inter-core communication over a coherence bus 464. For example, each cache may have cache co-
herency logic/circuitry associated therewith to communicate to over the coherence bus 464 in response to detected
reads or writes to particular cache lines. In one implementation, a cache snooping protocol is implemented over the
coherence bus 464 to snoop cache accesses. Cache snooping/coherency techniques are well understood by those of
skill in the art and will not be described in detail here to avoid obscuring the underlying principles of the invention.
[0059] In one embodiment, a proxy circuit 425 communicatively couples the graphics acceleration module 446 to the
coherence bus 464, allowing the graphics acceleration module 446 to participate in the cache coherence protocol as a
peer of the cores. In particular, an interface 435 provides connectivity to the proxy circuit 425 over high-speed link 440
(e.g., a PCIe bus, NVLink, etc.) and an interface 437 connects the graphics acceleration module 446 to the link 440.
[0060] In one implementation, an accelerator integration circuit 436 provides cache management, memory access,
context management, and interrupt management services on behalf of a plurality of graphics processing engines 431,
432, N of the graphics acceleration module 446. The graphics processing engines 431, 432, N may each comprise a
separate graphics processing unit (GPU). Alternatively, the graphics processing engines 431, 432, N may comprise
different types of graphics processing engines within a GPU such as graphics execution units, media processing engines
(e.g., video encoders/decoders), samplers, and blit engines. In other words, the graphics acceleration module may be
a GPU with a plurality of graphics processing engines 431-432, N or the graphics processing engines 431-432, N may
be individual GPUs integrated on a common package, line card, or chip.
[0061] In one embodiment, the accelerator integration circuit 436 includes a memory management unit (MMU) 439
for performing various memory management functions such as virtual-to-physical memory translations (also referred to
as effective-to-real memory translations) and memory access protocols for accessing system memory 441. The MMU
439 may also include a translation lookaside buffer (TLB) (not shown) for caching the virtual/effective to physical/real
address translations. In one implementation, a cache 438 stores commands and data for efficient access by the graphics
processing engines 431-432, N. In one embodiment, the data stored in cache 438 and graphics memories 433-434, N
is kept coherent with the core caches 462A-462D, 456 and system memory 411. As mentioned, this may be accomplished
via proxy circuit 425 which takes part in the cache coherency mechanism on behalf of cache 438 and memories 433-434,
N (e.g., sending updates to the cache 438 related to modifications/accesses of cache lines on processor caches 462A-
462D, 456 and receiving updates from the cache 438).
[0062] A set of registers 445 store context data for threads executed by the graphics processing engines 431-432, N
and a context management circuit 448 manages the thread contexts. For example, the context management circuit 448
may perform save and restore operations to save and restore contexts of the various threads during contexts switches
(e.g., where a first thread is saved and a second thread is stored so that the second thread can be execute by a graphics
processing engine). For example, on a context switch, the context management circuit 448 may store current register
values to a designated region in memory (e.g., identified by a context pointer). It may then restore the register values
when returning to the context. In one embodiment, an interrupt management circuit 447 receives and processes interrupts
received from system devices.
[0063] In one implementation, virtual/effective addresses from a graphics processing engine 431 are translated to
real/physical addresses in system memory 411 by the MMU 439. One embodiment of the accelerator integration circuit
436 supports multiple (e.g., 4, 8, 16) graphics accelerator modules 446 and/or other accelerator devices. The graphics
accelerator module 446 may be dedicated to a single application executed on the processor 407 or may be shared
between multiple applications. In one embodiment, a virtualized graphics execution environment is presented in which
the resources of the graphics processing engines 431-432, N are shared with multiple applications or virtual machines
(VMs). The resources may be subdivided into "slices" which are allocated to different VMs and/or applications based
on the processing requirements and priorities associated with the VMs and/or applications.
[0064] Thus, the accelerator integration circuit acts as a bridge to the system for the graphics acceleration module
446 and provides address translation and system memory cache services. In addition, the accelerator integration circuit
436 may provide virtualization facilities for the host processor to manage virtualization of the graphics processing engines,
interrupts, and memory management.

EP 3 839 739 A1

11

5

10

15

20

25

30

35

40

45

50

55

[0065] Because hardware resources of the graphics processing engines 431-432, N are mapped explicitly to the real
address space seen by the host processor 407, any host processor can address these resources directly using an
effective address value. One function of the accelerator integration circuit 436, in one embodiment, is the physical
separation of the graphics processing engines 431-432, N so that they appear to the system as independent units.
[0066] As mentioned, in the illustrated embodiment, one or more graphics memories 433-434, M are coupled to each
of the graphics processing engines 431-432, N, respectively. The graphics memories 433-434, M store instructions and
data being processed by each of the graphics processing engines 431-432, N. The graphics memories 433-434, M may
be volatile memories such as DRAMs (including stacked DRAMs), GDDR memory (e.g., GDDR5, GDDR6), or HBM,
and/or may be non-volatile memories such as 3D XPoint or Nano-Ram.
[0067] In one embodiment, to reduce data traffic over link 440, biasing techniques are used to ensure that the data
stored in graphics memories 433-434, M is data which will be used most frequently by the graphics processing engines
431-432, N and preferably not used by the cores 460A-460D (at least not frequently). Similarly, the biasing mechanism
attempts to keep data needed by the cores (and preferably not the graphics processing engines 431-432, N) within the
caches 462A-462D, 456 of the cores and system memory 411.
[0068] Figure 4C illustrates another embodiment in which the accelerator integration circuit 436 is integrated within
the processor 407. In this embodiment, the graphics processing engines 431-432, N communicate directly over the high-
speed link 440 to the accelerator integration circuit 436 via interface 437 and interface 435 (which, again, may be utilize
any form of bus or interface protocol). The accelerator integration circuit 436 may perform the same operations as those
described with respect to Figure 4B, but potentially at a higher throughput given its close proximity to the coherency
bus 462 and caches 462A-462D, 426.
[0069] One embodiment supports different programming models including a dedicated-process programming model
(no graphics acceleration module virtualization) and shared programming models (with virtualization). The latter may
include programming models which are controlled by the accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module 446.
[0070] In one embodiment of the dedicated process model, graphics processing engines 431-432, N are dedicated
to a single application or process under a single operating system. The single application can funnel other application
requests to the graphics engines 431-432, N, providing virtualization within a VM/partition.
[0071] In the dedicated-process programming models, the graphics processing engines 431-432, N, may be shared
by multiple VM/application partitions. The shared models require a system hypervisor to virtualize the graphics processing
engines 431-432, N to allow access by each operating system. For single-partition systems without a hypervisor, the
graphics processing engines 431-432, N are owned by the operating system. In both cases, the operating system can
virtualize the graphics processing engines 431-432, N to provide access to each process or application.
[0072] For the shared programming model, the graphics acceleration module 446 or an individual graphics processing
engine 431-432, N selects a process element using a process handle. In one embodiment, process elements are stored
in system memory 411 and are addressable using the effective address to real address translation techniques described
herein. The process handle may be an implementation-specific value provided to the host process when registering its
context with the graphics processing engine 431-432, N (that is, calling system software to add the process element to
the process element linked list). The lower 16-bits of the process handle may be the offset of the process element within
the process element linked list.
[0073] Figure 4D illustrates an exemplary accelerator integration slice 490. As used herein, a "slice" comprises a
specified portion of the processing resources of the accelerator integration circuit 436. Application effective address
space 482 within system memory 411 stores process elements 483. In one embodiment, the process elements 483 are
stored in response to GPU invocations 481 from applications 480 executed on the processor 407. A process element
483 contains the process state for the corresponding application 480. A work descriptor (WD) 484 contained in the
process element 483 can be a single job requested by an application or may contain a pointer to a queue of jobs. In the
latter case, the WD 484 is a pointer to the job request queue in the application’s address space 482.
[0074] The graphics acceleration module 446 and/or the individual graphics processing engines 431-432, N can be
shared by all or a subset of the processes in the system. Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a graphics acceleration module 446 to start a job in a virtualized
environment.
[0075] In one implementation, the dedicated-process programming model is implementation-specific. In this model,
a single process owns the graphics acceleration module 446 or an individual graphics processing engine 431. Because
the graphics acceleration module 446 is owned by a single process, the hypervisor initializes the accelerator integration
circuit 436 for the owning partition and the operating system initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration module 446 is assigned.
[0076] In operation, a WD fetch unit 491 in the accelerator integration slice 490 fetches the next WD 484 which includes
an indication of the work to be done by one of the graphics processing engines of the graphics acceleration module 446.
Data from the WD 484 may be stored in registers 445 and used by the MMU 439, interrupt management circuit 447

EP 3 839 739 A1

12

5

10

15

20

25

30

35

40

45

50

55

and/or context management circuit 446 as illustrated. For example, one embodiment of the MMU 439 includes seg-
ment/page walk circuitry for accessing segment/page tables 486 within the OS virtual address space 485. The interrupt
management circuit 447 may process interrupt events 492 received from the graphics acceleration module 446. When
performing graphics operations, an effective address 493 generated by a graphics processing engine 431-432, N is
translated to a real address by the MMU 439.
[0077] In one embodiment, the same set of registers 445 are duplicated for each graphics processing engine 431-432,
N and/or graphics acceleration module 446 and may be initialized by the hypervisor or operating system. Each of these
duplicated registers may be included in an accelerator integration slice 490. Exemplary registers that may be initialized
by the hypervisor are shown in Table 1.

[0078] Exemplary registers that may be initialized by the operating system are shown in Table 2.

[0079] In one embodiment, each WD 484 is specific to a particular graphics acceleration module 446 and/or graphics
processing engines 431-432, N. It contains all the information a graphics processing engine 431-432, N requires to do
its work or it can be a pointer to a memory location where the application has set up a command queue of work to be
completed.
[0080] Figure 4E illustrates additional details for one embodiment of a shared model. This embodiment includes a
hypervisor real address space 498 in which a process element list 499 is stored. The hypervisor real address space 498
is accessible via a hypervisor 496 which virtualizes the graphics acceleration module engines for the operating system
495.
[0081] The shared programming models allow for all or a subset of processes from all or a subset of partitions in the
system to use a graphics acceleration module 446. There are two programming models where the graphics acceleration
module 446 is shared by multiple processes and partitions: time-sliced shared and graphics directed shared.
[0082] In this model, the system hypervisor 496 owns the graphics acceleration module 446 and makes its function
available to all operating systems 495. For a graphics acceleration module 446 to support virtualization by the system
hypervisor 496, the graphics acceleration module 446 may adhere to the following requirements: 1) An application’s job
request must be autonomous (that is, the state does not need to be maintained between jobs), or the graphics acceleration
module 446 must provide a context save and restore mechanism. 2) An application’s job request is guaranteed by the
graphics acceleration module 446 to complete in a specified amount of time, including any translation faults, or the
graphics acceleration module 446 provides the ability to preempt the processing of the job. 3) The graphics acceleration
module 446 must be guaranteed fairness between processes when operating in the directed shared programming model.

Table 1 - Hypervisor Initialized Registers

1 Slice Control Register

2 Real Address (RA) Scheduled Processes Area Pointer

3 Authority Mask Override Register

4 Interrupt Vector Table Entry Offset

5 Interrupt Vector Table Entry Limit

6 State Register

7 Logical Partition ID

8 Real address (RA) Hypervisor Accelerator Utilization Record Pointer

9 Storage Description Register

Table 2 - Operating System Initialized Registers

1 Process and Thread Identification

2 Effective Address (EA) Context Save/Restore Pointer

3 Virtual Address (VA) Accelerator Utilization Record Pointer

4 Virtual Address (VA) Storage Segment Table Pointer

5 Authority Mask

6 Work descriptor

EP 3 839 739 A1

13

5

10

15

20

25

30

35

40

45

50

55

[0083] In one embodiment, for the shared model, the application 480 is required to make an operating system 495
system call with a graphics acceleration module 446 type, a work descriptor (WD), an authority mask register (AMR)
value, and a context save/restore area pointer (CSRP). The graphics acceleration module 446 type describes the targeted
acceleration function for the system call. The graphics acceleration module 446 type may be a system-specific value.
The WD is formatted specifically for the graphics acceleration module 446 and can be in the form of a graphics acceleration
module 446 command, an effective address pointer to a user-defined structure, an effective address pointer to a queue
of commands, or any other data structure to describe the work to be done by the graphics acceleration module 446. In
one embodiment, the AMR value is the AMR state to use for the current process. The value passed to the operating
system is similar to an application setting the AMR. If the accelerator integration circuit 436 and graphics acceleration
module 446 implementations do not support a User Authority Mask Override Register (UAMOR), the operating system
may apply the current UAMOR value to the AMR value before passing the AMR in the hypervisor call. The hypervisor
496 may optionally apply the current Authority Mask Override Register (AMOR) value before placing the AMR into the
process element 483. In one embodiment, the CSRP is one of the registers 445 containing the effective address of an
area in the application’s address space 482 for the graphics acceleration module 446 to save and restore the context
state. This pointer is optional if no state is required to be saved between jobs or when a job is preempted. The context
save/restore area may be pinned system memory.
[0084] Upon receiving the system call, the operating system 495 may verify that the application 480 has registered
and been given the authority to use the graphics acceleration module 446. The operating system 495 then calls the
hypervisor 496 with the information shown in Table 3.

[0085] Upon receiving the hypervisor call, the hypervisor 496 verifies that the operating system 495 has registered
and been given the authority to use the graphics acceleration module 446. The hypervisor 496 then puts the process
element 483 into the process element linked list for the corresponding graphics acceleration module 446 type. The
process element may include the information shown in Table 4

Table 3 - OS to Hypervisor Call Parameters

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer (CSRP)

4 A process ID (PID) and optional thread ID (TID)

5 A virtual address (VA) accelerator utilization record pointer (AURP)

6 The virtual address of the storage segment table pointer (SSTP)

7 A logical interrupt service number (LISN)

Table 4 - Process Element Information

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer (CSRP)

4 A process ID (PID) and optional thread ID (TID)

5 A virtual address (VA) accelerator utilization record pointer (AURP)

6 The virtual address of the storage segment table pointer (SSTP)

7 A logical interrupt service number (LISN)

8 Interrupt vector table, derived from the hypervisor call parameters.

9 A state register (SR) value

10 A logical partition ID (LPID)

11 A real address (RA) hypervisor accelerator utilization record pointer

12 The Storage Descriptor Register (SDR)

EP 3 839 739 A1

14

5

10

15

20

25

30

35

40

45

50

55

[0086] In one embodiment, the hypervisor initializes a plurality of accelerator integration slice 490 registers 445.
[0087] As illustrated in Figure 4F, one embodiment of the invention employs a unified memory addressable via a
common virtual memory address space used to access the physical processor memories 401-402 and GPU memories
420-423. In this implementation, operations executed on the GPUs 410-413 utilize the same virtual/effective memory
address space to access the processors memories 401-402 and vice versa, thereby simplifying programmability. In one
embodiment, a first portion of the virtual/effective address space is allocated to the processor memory 401, a second
portion to the second processor memory 402, a third portion to the GPU memory 420, and so on. The entire virtual/effective
memory space (sometimes referred to as the effective address space) is thereby distributed across each of the processor
memories 401-402 and GPU memories 420-423, allowing any processor or GPU to access any physical memory with
a virtual address mapped to that memory.
[0088] In one embodiment, bias/coherence management circuitry 494A-494E within one or more of the MMUs 439A-
439E ensures cache coherence between the caches of the host processors (e.g., 405) and the GPUs 410-413 and
implements biasing techniques indicating the physical memories in which certain types of data should be stored. While
multiple instances of bias/coherence management circuitry 494A-494E are illustrated in Figure 4F, the bias/coherence
circuitry may be implemented within the MMU of one or more host processors 405 and/or within the accelerator integration
circuit 436.
[0089] One embodiment allows GPU-attached memory 420-423 to be mapped as part of system memory, and accessed
using shared virtual memory (SVM) technology, but without suffering the typical performance drawbacks associated
with full system cache coherence. The ability to GPU-attached memory 420-423 to be accessed as system memory
without onerous cache coherence overhead provides a beneficial operating environment for GPU offload. This arrange-
ment allows the host processor 405 software to setup operands and access computation results, without the overhead
of tradition I/O DMA data copies. Such traditional copies involve driver calls, interrupts and memory mapped I/O (MMIO)
accesses that are all inefficient relative to simple memory accesses. At the same time, the ability to access GPU attached
memory 420-423 without cache coherence overheads can be critical to the execution time of an offloaded computation.
In cases with substantial streaming write memory traffic, for example, cache coherence overhead can significantly reduce
the effective write bandwidth seen by a GPU 410-413. The efficiency of operand setup, the efficiency of results access,
and the efficiency of GPU computation all play a role in determining the effectiveness of GPU offload.
[0090] In one implementation, the selection of between GPU bias and host processor bias is driven by a bias tracker
data structure. A bias table may be used, for example, which may be a page-granular structure (i.e., controlled at the
granularity of a memory page) that includes 1 or 2 bits per GPU-attached memory page. The bias table may be imple-
mented in a stolen memory range of one or more GPU-attached memories 420-423, with or without a bias cache in the
GPU 410-413 (e.g., to cache frequently/recently used entries of the bias table). Alternatively, the entire bias table may
be maintained within the GPU.
[0091] In one implementation, the bias table entry associated with each access to the GPU-attached memory 420-423
is accessed prior the actual access to the GPU memory, causing the following operations. First, local requests from the
GPU 410-413 that find their page in GPU bias are forwarded directly to a corresponding GPU memory 420-423. Local
requests from the GPU that find their page in host bias are forwarded to the processor 405 (e.g., over a high-speed link
as discussed above). In one embodiment, requests from the processor 405 that find the requested page in host processor
bias complete the request like a normal memory read. Alternatively, requests directed to a GPU-biased page may be
forwarded to the GPU 410-413. The GPU may then transition the page to a host processor bias if it is not currently using
the page.
[0092] The bias state of a page can be changed either by a software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely hardware-based mechanism.
[0093] One mechanism for changing the bias state employs an API call (e.g. OpenCL), which, in turn, calls the GPU’s
device driver which, in turn, sends a message (or enqueues a command descriptor) to the GPU directing it to change
the bias state and, for some transitions, perform a cache flushing operation in the host. The cache flushing operation is
required for a transition from host processor 405 bias to GPU bias, but is not required for the opposite transition.
[0094] In one embodiment, cache coherency is maintained by temporarily rendering GPU-biased pages uncacheable
by the host processor 405. To access these pages, the processor 405 may request access from the GPU 410 which
may or may not grant access right away, depending on the implementation. Thus, to reduce communication between
the processor 405 and GPU 410 it is beneficial to ensure that GPU-biased pages are those which are required by the
GPU but not the host processor 405 and vice versa.

Graphics Processing Pipeline

[0095] Figure 5 illustrates a graphics processing pipeline 500, according to an embodiment. In one embodiment, a
graphics processor can implement the illustrated graphics processing pipeline 500. The graphics processor can be
included within the parallel processing subsystems as described herein, such as the parallel processor 200 of Figure

EP 3 839 739 A1

15

5

10

15

20

25

30

35

40

45

50

55

2A, which, in one embodiment, is a variant of the parallel processor(s) 112 of Figure 1. The various parallel processing
systems can implement the graphics processing pipeline 500 via one or more instances of the parallel processing unit
(e.g., parallel processing unit 202 of Figure 2A) as described herein. For example, a shader unit (e.g., graphics multi-
processor 234 of Figure 2D) may be configured to perform the functions of one or more of a vertex processing unit 504,
a tessellation control processing unit 508, a tessellation evaluation processing unit 512, a geometry processing unit 516,
and a fragment/pixel processing unit 524. The functions of data assembler 502, primitive assemblers 506, 514, 518,
tessellation unit 510, rasterizer 522, and raster operations unit 526 may also be performed by other processing engines
within a processing cluster (e.g., processing cluster 214 of Figure 3A) and a corresponding partition unit (e.g., partition
unit 220A-220N of Figure 2C). The graphics processing pipeline 500 may also be implemented using dedicated process-
ing units for one or more functions. In one embodiment, one or more portions of the graphics processing pipeline 500
can be performed by parallel processing logic within a general-purpose processor (e.g., CPU). In one embodiment, one
or more portions of the graphics processing pipeline 500 can access on-chip memory (e.g., parallel processor memory
222 as in Figure 2A) via a memory interface 528, which may be an instance of the memory interface 218 of Figure 2A.
[0096] In one embodiment, the data assembler 502 is a processing unit that collects vertex data for surfaces and
primitives. The data assembler 502 then outputs the vertex data, including the vertex attributes, to the vertex processing
unit 504. The vertex processing unit 504 is a programmable execution unit that executes vertex shader programs, lighting
and transforming vertex data as specified by the vertex shader programs. The vertex processing unit 504 reads data
that is stored in cache, local or system memory for use in processing the vertex data and may be programmed to
transform the vertex data from an object-based coordinate representation to a world space coordinate space or a
normalized device coordinates space.
[0097] A first instance of a primitive assembler 506 receives vertex attributes from the vertex processing unit 504. The
primitive assembler 506 readings stored vertex attributes as needed and constructs graphics primitives for processing
by tessellation control processing unit 508. The graphics primitives include triangles, line segments, points, patches,
and so forth, as supported by various graphics processing application programming interfaces (APIs).
[0098] The tessellation control processing unit 508 treats the input vertices as control points for a geometric patch.
The control points are transformed from an input representation from the patch (e.g., the patch’s bases) to a representation
that is suitable for use in surface evaluation by the tessellation evaluation processing unit 512. The tessellation control
processing unit 508 can also compute tessellation factors for edges of geometric patches. A tessellation factor applies
to a single edge and quantifies a view-dependent level of detail associated with the edge. A tessellation unit 510 is
configured to receive the tessellation factors for edges of a patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrilateral primitives, which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512 operates on parameterized coordinates of the subdivided patch
to generate a surface representation and vertex attributes for each vertex associated with the geometric primitives.
[0099] A second instance of a primitive assembler 514 receives vertex attributes from the tessellation evaluation
processing unit 512, reading stored vertex attributes as needed, and constructs graphics primitives for processing by
the geometry processing unit 516. The geometry processing unit 516 is a programmable execution unit that executes
geometry shader programs to transform graphics primitives received from primitive assembler 514 as specified by the
geometry shader programs. In one embodiment, the geometry processing unit 516 is programmed to subdivide the
graphics primitives into one or more new graphics primitives and calculate parameters used to rasterize the new graphics
primitives.
[0100] In some embodiments, the geometry processing unit 516 can add or delete elements in the geometry stream.
The geometry processing unit 516 outputs the parameters and vertices specifying new graphics primitives to primitive
assembler 518. The primitive assembler 518 receives the parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a viewport scale, cull, and clip unit 520. The geometry processing
unit 516 reads data that is stored in parallel processor memory or system memory for use in processing the geometry
data. The viewport scale, cull, and clip unit 520 performs clipping, culling, and viewport scaling and outputs processed
graphics primitives to a rasterizer 522.
[0101] The rasterizer 522 can perform depth culling and other depth-based optimizations. The rasterizer 522 also
performs scan conversion on the new graphics primitives to generate fragments and outputs those fragments and
associated coverage data to the fragment/pixel processing unit 524.
[0102] The fragment/pixel processing unit 524 is a programmable execution unit that is configured to execute fragment
shader programs or pixel shader programs. The fragment/pixel processing unit 524 transforming fragments or pixels
received from rasterizer 522, as specified by the fragment or pixel shader programs. For example, the fragment/pixel
processing unit 524 may be programmed to perform operations included but not limited to texture mapping, shading,
blending, texture correction and perspective correction to produce shaded fragments or pixels that are output to a raster
operations unit 526. The fragment/pixel processing unit 524 can read data that is stored in either the parallel processor
memory or the system memory for use when processing the fragment data. Fragment or pixel shader programs may
be configured to shade at sample, pixel, tile, or other granularities, depending on the sampling rate configured for the

EP 3 839 739 A1

16

5

10

15

20

25

30

35

40

45

50

55

processing units.
[0103] The raster operations unit 526 is a processing unit that performs raster operations including, but not limited to
stencil, z test, blending, and the like, and outputs pixel data as processed graphics data to be storage in graphics memory,
e.g., parallel processor memory 222 as in Figure 2A, and/or system memory 104 as in Figure 1, to be displayed on
the one or more display device(s) 110 or for further processing by one of the one or more processor(s) 102 or parallel
processor(s) 112. In some embodiments, the raster operations unit 526 is configured to compress z or color data that
is written to memory and decompress z or color data that is read from memory.
[0104] Figure 6 illustrates a computing device 600 hosting an intelligent thread dispatch and vectorization mechanism
("dispatch and vectorization mechanism") 610 according to one embodiment. Computing device 600 represents a com-
munication and data processing device including (but not limited to) smart wearable devices, smartphones, virtual reality
(VR) devices, head-mounted display (HMDs), mobile computers, Internet of Things (IoT) devices, laptop computers,
desktop computers, server computers, etc., and be similar to or the same as computing device 100 of Figure 1; accord-
ingly, for brevity, clarity, and ease of understanding, many of the details stated above with reference to Figures 1-5 are
not further discussed or repeated hereafter.
[0105] Computing device 600 may further include (without limitations) an autonomous machine or an artificially intel-
ligent agent, such as a mechanical agent or machine, an electronics agent or machine, a virtual agent or machine, an
electromechanical agent or machine, etc. Examples of autonomous machines or artificially intelligent agents may include
(without limitation) robots, autonomous vehicles (e.g., self-driving cars, self-flying planes, self-sailing boats, etc.), au-
tonomous equipment (self-operating construction vehicles, self-operating medical equipment, etc.), and/or the like.
Throughout this document, "computing device" may be interchangeably referred to as "autonomous machine" or "arti-
ficially intelligent agent" or simply "robot".
[0106] It contemplated that although "autonomous vehicle" and "autonomous driving" are referenced throughout this
document, embodiments are not limited as such. For example, "autonomous vehicle" is not limed to an automobile but
that it may include any number and type of autonomous machines, such as robots, autonomous equipment, household
autonomous devices, and/or the like, and any one or more tasks or operations relating to such autonomous machines
may be interchangeably referenced with autonomous driving.
[0107] Computing device 600 may further include (without limitations) large computing systems, such as server com-
puters, desktop computers, etc., and may further include set-top boxes (e.g., Internet-based cable television set-top
boxes, etc.), global positioning system (GPS)-based devices, etc. Computing device 600 may include mobile computing
devices serving as communication devices, such as cellular phones including smartphones, personal digital assistants
(PDAs), tablet computers, laptop computers, e-readers, smart televisions, television platforms, wearable devices (e.g.,
glasses, watches, bracelets, smartcards, jewelry, clothing items, etc.), media players, etc. For example, in one embod-
iment, computing device 600 may include a mobile computing device employing a computer platform hosting an integrated
circuit ("IC"), such as system on a chip ("SoC" or "SOC"), integrating various hardware and/or software components of
computing device 600 on a single chip.
[0108] As illustrated, in one embodiment, computing device 600 may include any number and type of hardware and/or
software components, such as (without limitation) graphics processing unit ("GPU" or simply "graphics processor") 614,
graphics driver (also referred to as "GPU driver", "graphics driver logic", "driver logic", user-mode driver (UMD), UMD,
user-mode driver framework (UMDF), UMDF, or simply "driver") 616, central processing unit ("CPU" or simply "application
processor") 612, memory 608, network devices, drivers, or the like, as well as input/output (I/O) sources 604, such as
touchscreens, touch panels, touch pads, virtual or regular keyboards, virtual or regular mice, ports, connectors, etc.
Computing device 600 may include operating system (OS) 606 serving as an interface between hardware and/or physical
resources of the computer device 600 and a user. It is contemplated that graphics processor 614 and application
processor 612 may be one or more of processor(s) 102 of Figure 1.
[0109] It is to be appreciated that a lesser or more equipped system than the example described above may be
preferred for certain implementations. Therefore, the configuration of computing device 600 may vary from implementation
to implementation depending upon numerous factors, such as price constraints, performance requirements, technological
improvements, or other circumstances.
[0110] Embodiments may be implemented as any or a combination of: one or more microchips or integrated circuits
interconnected using a parentboard, hardwired logic, software stored by a memory device and executed by a micro-
processor, firmware, an application specific integrated circuit (ASIC), and/or a field programmable gate array (FPGA).
The terms "logic", "module", "component", "engine", and "mechanism" may include, by way of example, software or
hardware and/or combinations of software and hardware.
[0111] In one embodiment, dispatch and vectorization mechanism 610 may be hosted or facilitated by operating system
606 of computing device 600. In another embodiment, dispatch and vectorization mechanism 610 may be hosted by or
part of graphics processing unit ("GPU" or simply "graphics processor") 614 or firmware of graphics processor 614. For
example, dispatch and vectorization mechanism 610 may be embedded in or implemented as part of the processing
hardware of graphics processor 614. Similarly, in yet another embodiment, dispatch and vectorization mechanism 610

EP 3 839 739 A1

17

5

10

15

20

25

30

35

40

45

50

55

may be hosted by or part of central processing unit ("CPU" or simply "application processor") 612. For example, dispatch
and vectorization mechanism 610 may be embedded in or implemented as part of the processing hardware of application
processor 612. In yet another embodiment, dispatch and vectorization mechanism 610 may be hosted by or part of any
number and type of components of computing device 600, such as a portion of dispatch and vectorization mechanism
610 may be hosted by or part of operating system 606, another portion may be hosted by or part of graphics processor
614, another portion may be hosted by or part of application processor 612, while one or more portions of dispatch and
vectorization mechanism 610 may be hosted by or part of operating system 606 and/or any number and type of devices
of computing device 600. It is contemplated that one or more portions or components of dispatch and vectorization
mechanism 610 may be employed as hardware, software, and/or firmware.
[0112] It is contemplated that embodiments are not limited to any particular implementation or hosting of dispatch and
vectorization mechanism 610 and that dispatch and vectorization mechanism 610 and one or more of its components
may be implemented as hardware, software, firmware, or any combination thereof.
[0113] Computing device 600 may host network interface(s) to provide access to a network, such as a LAN, a wide
area network (WAN), a metropolitan area network (MAN), a personal area network (PAN), Bluetooth, a cloud network,
a mobile network (e.g., 3rd Generation (3G), 4th Generation (4G), etc.), an intranet, the Internet, etc. Network interface(s)
may include, for example, a wireless network interface having antenna, which may represent one or more antenna(e).
Network interface(s) may also include, for example, a wired network interface to communicate with remote devices via
network cable, which may be, for example, an Ethernet cable, a coaxial cable, a fiber optic cable, a serial cable, or a
parallel cable.
[0114] Embodiments may be provided, for example, as a computer program product which may include one or more
machine-readable media having stored thereon machine-executable instructions that, when executed by one or more
machines such as a computer, network of computers, or other electronic devices, may result in the one or more machines
carrying out operations in accordance with embodiments described herein. A machine-readable medium may include,
but is not limited to, floppy diskettes, optical disks, CD-ROMs (Compact Disc-Read Only Memories), and magneto-optical
disks, ROMs, RAMs, EPROMs (Erasable Programmable Read Only Memories), EEPROMs (Electrically Erasable Pro-
grammable Read Only Memories), magnetic or optical cards, flash memory, or other type of media/machine-readable
medium suitable for storing machine-executable instructions.
[0115] Moreover, embodiments may be downloaded as a computer program product, wherein the program may be
transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of one or more data
signals embodied in and/or modulated by a carrier wave or other propagation medium via a communication link (e.g.,
a modem and/or network connection).
[0116] Throughout the document, term "user" may be interchangeably referred to as "viewer", "observer", "person",
"individual", "end-user", and/or the like. It is to be noted that throughout this document, terms like "graphics domain"
may be referenced interchangeably with "graphics processing unit", "graphics processor", or simply "GPU" and similarly,
"CPU domain" or "host domain" may be referenced interchangeably with "computer processing unit", "application proc-
essor", or simply "CPU".
[0117] It is to be noted that terms like "node", "computing node", "server", "server device", "cloud computer", "cloud
server", "cloud server computer", "machine", "host machine", "device", "computing device", "computer", "computing
system", and the like, may be used interchangeably throughout this document. It is to be further noted that terms like
"application", "software application", "program", "software program", "package", "software package", and the like, may
be used interchangeably throughout this document. Also, terms like "job", "input", "request", "message", and the like,
may be used interchangeably throughout this document.
[0118] Figure 7 illustrates dispatch and vectorization mechanism 610 of Figure 6 according to one embodiment. For
brevity, many of the details already discussed with reference to Figures 1-6 are not repeated or discussed hereafter.
In one embodiment, dispatch and vectorization mechanism 610 may include any number and type of components, such
as (without limitations): detection/observation logic 701; intelligent thread dispatching logic ("thread dispatcher) 703;
prefetching logic ("prefetcher") 705; communication/compatibility logic 707; and vectorization logic ("vectorizer") 709.
[0119] Embodiments provide for a novel technique for introducing intelligent thread dispatch technique for reducing
data disruption across compute clusters. For example, GPUs, such as graphics processor 614, are formed using multiple
levels of compute clusters. A cluster can contain multiple single instruction, multiple data (SIMD) execution units (EUs)
that are capable of running multiple threads of their own. Most large GPUs can instantiate several of these compute
clusters to size the machine, such as computing device 600.
[0120] Thread (workload) dispatching offers various opportunities to optimize for different requirements. To keep the
workload as tight as possible (such as fewer EUs and/or fewer clusters), the accessible memory footprint may be
contained to a particular compute cluster.
[0121] In one embodiment, detection/observation logic 701 may be used to detect workloads, such as incoming work-
loads, and threads that are to be dispatched and associated with the workloads. In one embodiment, thread dispatcher
703 is provided to analyze any incoming workloads for levels of addresses that are used via complier optimizations and

EP 3 839 739 A1

18

5

10

15

20

25

30

35

40

45

50

55

heuristics, while managing thread dispatching.
[0122] For example, if any of the incoming threads are similar or have adjacent surfaces, they may be clustered
together physically to the same or adjacent compute clusters. If the threads are dissimilar or completely disjoined, the
threads may then be launched on separate blocks to avoid any address conflicts. Often, a given compute cluster or a
set of clusters are backed by shared resources, which may contain caches. Further, keeping the locality in memory
space (or pixel space) may provide for the best utilization or these common assets.
[0123] In one embodiment, as illustrated with respect to Figure 8A, thread dispatcher logic 703 may offer or facilitate
a compiler to scan through the workload for spatial locality and then compare the spatial locality to the hardware profile
of threads. The result of this comparison may then be later used to make the optimum dispatch decision to manage the
locality in hardware.
[0124] Embodiments further provide for a novel technique for prefetching thread group input data to caches as threads
are loaded as facilitated by prefetcher 705. For example, as threads are getting loaded in a streaming microprocessor
(SM), each thread’s data may then be prefetched into the SM cache. Further, in on embodiment, any misses at the
thread start may be hidden and also translation lookaside butter (TLB) may be prefetched as facilitated by prefetcher
705. This prefetching technique may be particularly useful for graphs where nodes may not be fused (such as due to
the number of graph nodes inputs or necessitating neighborhood information).
[0125] In one embodiment, prefetched data may be prefetched into a register file (RF), but may also be prefetched
into shared local memory (SLM), such as cached and/or banked. For example, currently constant values are loaded into
thread registers as threads are loaded. In one embodiment, this novel technique provides for facilitating the start of
prefetching of data into caches as threads are being loaded, since loading threads into shader cores can take some
time (such as about 100s of clock cycles), where there is a window of time data that can be prefetched into various
caches in parallel with the thread dispatch.
[0126] In one embodiment, prefetcher 705 may facilitate a complier to generate hints about the data being used by a
thread group. For most structure data processing code, this may be done using a block of pixels being processed by
the thread group. For example, any addresses of the data block may be stored in the thread group header data structure
as metadata. In one embodiment, thread dispatcher 703 in graphics processor 614 may be used to parse the header
to get the addresses, followed by prefetcher 705 of graphics processor 614 to fetch the data and store in a cache, such
as L1 cache, as the threads are being loaded into the shader cores as illustrated with reference to Figure 9A.
[0127] Embodiments further provide for a novel technique for introducing new vector instruction and language seman-
tics of vector atomics so that no scalarization of atomics is performed. In one embodiment, vectorization for atomics are
added to speed up machine learning training, where atomic operations may be enhanced for variable data size bytes
to quad words and vectorization.
[0128] Embodiments provide for a novel technique to allow software, hardware, or any combination thereof to specify
and use variable data widths and add vectorization to enable parallel operations. Embodiments further allow for facilitating
vectorized lock operations, where multiple operands can be locked, modified, and/or written back simultaneously as
illustrated with reference to Figures 8B and 9B.
[0129] Conventional techniques support atomic operations with fixed data widths. Atomic operations allow for exclusive
access to read, modify, and write back data, where a memory location is locked to prevent simultaneous access by a
different thread. This lock may then be removed at the end of a read-modify-write operation, where these operations
allow for serialization in execution, while stalling other threads. The overhead in execution time may be high and affect
overall throughput of the algorithm. Existing implementations allow for fixed data width scalar atomics.
[0130] Further, communication/compatibility logic 707 may be used to facilitate the needed communication and com-
patibility between any number of devices of computing device 600 and various components of dispatch and vectorization
mechanism 610.
[0131] Communication/compatibility logic 707 may be used to facilitate dynamic communication and compatibility
between computing device 600 and any number and type of other computing devices (such as mobile computing device,
desktop computer, server computing device, etc.); processing devices or components (such as CPUs, GPUs, etc.);
capturing/sensing/detecting devices (such as capturing/sensing components including cameras, depth sensing cameras,
camera sensors, red green blue ("RGB" or "rgb") sensors, microphones, etc.); display devices (such as output compo-
nents including display screens, display areas, display projectors, etc.); user/context-awareness components and/or
identification/verification sensors/devices (such as biometric sensors/detectors, scanners, etc.); database(s) 730, such
as memory or storage devices, databases, and/or data sources (such as data storage devices, hard drives, solid-state
drives, hard disks, memory cards or devices, memory circuits, etc.); communication medium(s) 725, such as one or
more communication channels or networks (e.g., cloud networks, the Internet, intranets, cellular networks, proximity
networks, such as Bluetooth, Bluetooth low energy (BLE), Bluetooth Smart, Wi-Fi proximity, Radio Frequency Identifi-
cation (RFID), Near Field Communication (NFC), Body Area Network (BAN), etc.); wireless or wired communications
and relevant protocols (e.g., Wi-Fi®, WiMAX, Ethernet, etc.); connectivity and location management techniques; software
applications/websites (e.g., social and/or business networking websites, etc., business applications, games and other

EP 3 839 739 A1

19

5

10

15

20

25

30

35

40

45

50

55

entertainment applications, etc.); and programming languages, etc., while ensuring compatibility with changing technol-
ogies, parameters, protocols, standards, etc.
[0132] Further, any use of a particular brand, word, term, phrase, name, and/or acronym, such as "detecting", "ob-
serving", "training", "selecting", "compressing", "associating", "applying", "sharing", "storing", "retrieving", "surface li-
brary", "compressed model", "expanded model", "expanding", "training set", "agent", "machine", "vehicle", "robot", "driv-
ing", "CNN", "DNN", "NN", "execution unit", "EU", "shared local memory", "SLM", "graphics streams", "cache", "graphics
cache", "GPU", "graphics processor", "GPU domain", "GPGPU", "CPU", "application processor", "CPU domain", "graph-
ics driver", "workload", "application", "graphics pipeline", "pipeline processes", "API", "3D
API’, "OpenGL®", "DirectX®", "hardware", "software", "agent", "graphics driver", "kernel mode graphics driver", "user-
mode driver", "user-mode driver framework", "buffer", "graphics buffer", "task", "process", "operation", "software
application", "game", etc., should not be read to limit embodiments to software or devices that carry that label in products
or in literature external to this document.
[0133] It is contemplated that any number and type of components may be added to and/or removed from dispatch
and vectorization mechanism 610 to facilitate various embodiments including adding, removing, and/or enhancing certain
features. For brevity, clarity, and ease of understanding of dispatch and vectorization mechanism 610, many of the
standard and/or known components, such as those of a computing device, are not shown or discussed here. It is
contemplated that embodiments, as described herein, are not limited to any particular technology, topology, system,
architecture, and/or standard and are dynamic enough to adopt and adapt to any future changes.
[0134] Figure 8A illustrates a framework 800 for intelligent thread dispatching according to one embodiment. For
brevity, many of the details previously discussed with reference to Figures 1-7 may not be discussed or repeated
hereafter. Any processes relating to framework 800 may be performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, etc.), software (such as instructions run on a processing device),
or a combination thereof, as facilitated by dispatch and vectorization mechanism 610 of Figure 6. The processes asso-
ciated with framework 800 may be illustrated or recited in linear sequences for brevity and clarity in presentation; however,
it is contemplated that any number of them can be performed in parallel, asynchronously, or in different orders. Further,
embodiments are not limited to any particular architectural placement, framework, setup, or structure of processes and/or
components, such as framework 800.
[0135] As described above with reference to Figure 7, detection/observation logic 701 of Figure 7 may be used to
detect workloads, such as incoming workloads, and threads that are to be dispatched and associated with the workloads
and that intelligent thread dispatching logic 703 may then be triggered to analyze any incoming workloads for levels of
addresses that are used via complier optimizations and heuristics, while managing thread dispatching.
[0136] In one embodiment, thread dispatcher 703 may offer or facilitate a compiler to scan through the workload for
spatial locality and then compare the spatial locality to a hardware profile of threads. The result of this comparison is
later used to make the optimum dispatch decision to manage the locality in hardware.
[0137] In one embodiment, once determined by thread dispatcher 703, directly or through a compiler, whether any
number of incoming threads are similar to each other or have adjacent surfaces to they may be clustered together
physically to the same or adjacent compute block clusters, such as clustering of compute block 0 801A through compute
block n 801N. As illustrated, similar threads may be launched on the same or adjacent compute blocks, such as compute
blocks 801A, 801B, 801C, 801D, 801E, 801N, so that they may be physically adjacent to each other in communication
with arbitration layer 803, where each compute block, such as compute block 0 801A, having any number of EU units,
such as EU units 805A, 805B of compute block 801A. In one embodiment, similar threads may refer to threads having
the same or similar composition and/or assigned tasks, while dissimilar threads refer may be different from each other
in terms of their composition and/or assigned tasks.
[0138] If the threads are dissimilar or completely disjoined as determined by intelligent thread dispatcher directly or
through facilitating the compiler, the threads may then be launched on separate blocks to avoid any address conflicts.
Often, a given compute cluster or a set of clusters are backed by shared resources, which may contain caches. Further,
keeping the locality in memory space (or pixel space) may provide for the best utilization or these common assets.
[0139] Figure 8B illustrates a novel framework 850 of lock and data according to one embodiment. For brevity, many
of the details previously discussed with reference to Figures 1-8A may not be discussed or repeated hereafter. Any
processes relating to framework 850 may be performed by processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, etc.), software (such as instructions run on a processing device), or a combination
thereof, as facilitated by dispatch and vectorization mechanism 610 of Figure 6. The processes associated with framework
850 may be illustrated or recited in linear sequences for brevity and clarity in presentation; however, it is contemplated
that any number of them can be performed in parallel, asynchronously, or in different orders. Further, embodiments are
not limited to any particular architectural placement, framework, setup, or structure of processes and/or components,
such as framework 850.
[0140] As aforementioned, conventional techniques support atomic operations with fixed data widths scalar atomics,
where since atomic operations allow for exclusive access to read, modify, and write back data, a memory location is

EP 3 839 739 A1

20

5

10

15

20

25

30

35

40

45

50

55

often locked to prevent simultaneous access by a different thread. This lock may then be removed at the end of a read-
modify-write operation, where these operations allow for serialization in execution, while stalling other threads. The
overhead in execution time of this conventional technique is rather high and affects overall throughput of the algorithm.
[0141] Embodiments further provide for a novel technique for introducing new vector instruction and language seman-
tics of vector atomics so that no scalarization of atomics is performed. In one embodiment, vectorization for atomics are
added to speed up machine learning training, where atomic operations may be enhanced for variable data size bytes
to quad words and vectorization
[0142] Embodiments provide for a novel technique, as illustrated through this framework 850, implemented in software,
hardware, or any combination thereof to specify and use variable data widths and add vectorization to enable parallel
operations. For example, in one embodiment, vectorized lock operations 851 are facilitated where multiple operands of
data 853 can be locked, modified, and/or written back simultaneously, resulting in avoiding scalarization of atomics.
[0143] Figure 9A illustrates a transaction sequence 900 for intelligent thread dispatching according to one embodiment.
For brevity, many of the details previously discussed with reference to Figures 1-8B may not be discussed or repeated
hereafter. Any processes relating to transaction sequence 900 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable logic, etc.), software (such as instructions run on a processing
device), or a combination thereof, as facilitated by dispatch and vectorization mechanism 610 of Figure 6. The processes
associated with transaction sequence 900 may be illustrated or recited in linear sequences for brevity and clarity in
presentation; however, it is contemplated that any number of them can be performed in parallel, asynchronously, or in
different orders. Further, embodiments are not limited to any particular architectural placement, framework, setup, or
structure of processes and/or components, such as transaction sequence 900.
[0144] Method 900 begins at block 901 with computation of an application kernel, where constant values are loaded
into thread registers as threads are loaded. In one embodiment, prefetching of data is started into case caches as threads
are loaded. Since loading threads in to shader cores takes some time, there is a window of time data can be prefetched
into caches in parallel with thread dispatch. As illustrated, data is communicated over to compiler via application pro-
gramming interface (API) at block 903.
[0145] In one embodiment, compiler at block 903 may be used for inferring addresses of the data processed by the
kernel, where the compiler may generate hints about the data being used by a thread group. For most structure data
processing codes, this may be done fairly easily, such a bock of pixels processed by the thread group.
[0146] In one embodiment, at block 907, driver may be triggered to store the addresses in a command buffer as kernel
thread metadata, where the addresses of the data block may be stored in the thread group header data structure as
metadata. Further, in one embodiment, at block 909, GPU hardware thread scheduler parses the metadata and loads
the data pointed to by the addresses in L1 cache. For example, thread dispatcher at the GPU, such as graphics processor
614 of Figure 6, parses the header to get the addresses, where it then fetches the data and stores it in L1 cache as the
threads are being loaded into the shader cores.
[0147] Figure 9B illustrates a method 950 for vectorization of atomics according to one embodiment. For brevity,
many of the details previously discussed with reference to Figures 1-9A may not be discussed or repeated hereafter.
Any processes relating to method 950 may be performed by processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, etc.), software (such as instructions run on a processing device), or a combination
thereof, as facilitated by dispatch and vectorization mechanism 610 of Figure 6. The processes associated with method
950 may be illustrated or recited in linear sequences for brevity and clarity in presentation; however, it is contemplated
that any number of them can be performed in parallel, asynchronously, or in different orders. Further, embodiments are
not limited to any particular architectural placement, framework, setup, or structure of processes and/or components,
such as method 950.
[0148] Method 950 begins at block 951 with staring of the vectorization process, leading to reading of operand width
and vector length in the data stream at block 953. Subsequently, appropriate lock bit/bits are set at block 955, while
vector data is operated on at block 957. At block 959, lock bit/bits are cleared and process ends at block 961.
[0149] Embodiments provide for a novel technique to specify and use variable data widths and vector lengths to add
vectorization to enable parallel operations. For example, in one embodiment, vectorized lock operations are facilitated
where multiple operands of data can be locked, modified, and/or written back simultaneously, resulting in avoiding atomic
synchronization.

Machine Learning Overview

[0150] A machine learning algorithm is an algorithm that can learn based on a set of data. Embodiments of machine
learning algorithms can be designed to model high-level abstractions within a data set. For example, image recognition
algorithms can be used to determine which of several categories to which a given input belong; regression algorithms
can output a numerical value given an input; and pattern recognition algorithms can be used to generate translated text
or perform text to speech and/or speech recognition.

EP 3 839 739 A1

21

5

10

15

20

25

30

35

40

45

50

55

[0151] An exemplary type of machine learning algorithm is a neural network. There are many types of neural networks;
a simple type of neural network is a feedforward network. A feedforward network may be implemented as an acyclic
graph in which the nodes are arranged in layers. Typically, a feedforward network topology includes an input layer and
an output layer that are separated by at least one hidden layer. The hidden layer transforms input received by the input
layer into a representation that is useful for generating output in the output layer. The network nodes are fully connected
via edges to the nodes in adjacent layers, but there are no edges between nodes within each layer. Data received at
the nodes of an input layer of a feedforward network are propagated (i.e., "fed forward") to the nodes of the output layer
via an activation function that calculates the states of the nodes of each successive layer in the network based on
coefficients ("weights") respectively associated with each of the edges connecting the layers. Depending on the specific
model being represented by the algorithm being executed, the output from the neural network algorithm can take various
forms.
[0152] Before a machine learning algorithm can be used to model a particular problem, the algorithm is trained using
a training data set. Training a neural network involves selecting a network topology, using a set of training data repre-
senting a problem being modeled by the network, and adjusting the weights until the network model performs with a
minimal error for all instances of the training data set. For example, during a supervised learning training process for a
neural network, the output produced by the network in response to the input representing an instance in a training data
set is compared to the "correct" labeled output for that instance, an error signal representing the difference between the
output and the labeled output is calculated, and the weights associated with the connections are adjusted to minimize
that error as the error signal is backward propagated through the layers of the network. The network is considered
"trained" when the errors for each of the outputs generated from the instances of the training data set are minimized.
[0153] The accuracy of a machine learning algorithm can be affected significantly by the quality of the data set used
to train the algorithm. The training process can be computationally intensive and may require a significant amount of
time on a conventional general-purpose processor. Accordingly, parallel processing hardware is used to train many
types of machine learning algorithms. This is particularly useful for optimizing the training of neural networks, as the
computations performed in adjusting the coefficients in neural networks lend themselves naturally to parallel implemen-
tations. Specifically, many machine learning algorithms and software applications have been adapted to make use of
the parallel processing hardware within general-purpose graphics processing devices.
[0154] Figure 10 is a generalized diagram of a machine learning software stack 1000. A machine learning application
1002 can be configured to train a neural network using a training dataset or to use a trained deep neural network to
implement machine intelligence. The machine learning application 1002 can include training and inference functionality
for a neural network and/or specialized software that can be used to train a neural network before deployment. The
machine learning application 1002 can implement any type of machine intelligence including but not limited to image
recognition, mapping and localization, autonomous navigation, speech synthesis, medical imaging, or language trans-
lation.
[0155] Hardware acceleration for the machine learning application 1002 can be enabled via a machine learning frame-
work 1004. The machine learning framework 1004 can provide a library of machine learning primitives. Machine learning
primitives are basic operations that are commonly performed by machine learning algorithms. Without the machine
learning framework 1004, developers of machine learning algorithms would be required to create and optimize the main
computational logic associated with the machine learning algorithm, then re-optimize the computational logic as new
parallel processors are developed. Instead, the machine learning application can be configured to perform the necessary
computations using the primitives provided by the machine learning framework 1004. Exemplary primitives include tensor
convolutions, activation functions, and pooling, which are computational operations that are performed while training a
convolutional neural network (CNN). The machine learning framework 1004 can also provide primitives to implement
basic linear algebra subprograms performed by many machine-learning algorithms, such as matrix and vector operations.
[0156] The machine learning framework 1004 can process input data received from the machine learning application
1002 and generate the appropriate input to a compute framework 1006. The compute framework 1006 can abstract the
underlying instructions provided to the GPGPU driver 1008 to enable the machine learning framework 1004 to take
advantage of hardware acceleration via the GPGPU hardware 1010 without requiring the machine learning framework
1004 to have intimate knowledge of the architecture of the GPGPU hardware 1010. Additionally, the compute framework
1006 can enable hardware acceleration for the machine learning framework 1004 across a variety of types and gener-
ations of the GPGPU hardware 1010.

GPGPU Machine Learning Acceleration

[0157] Figure 11 illustrates a highly-parallel general-purpose graphics processing unit 1100, according to an embod-
iment. In one embodiment, the general-purpose processing unit (GPGPU) 1100 can be configured to be particularly
efficient in processing the type of computational workloads associated with training deep neural networks. Additionally,
the GPGPU 1100 can be linked directly to other instances of the GPGPU to create a multi-GPU cluster to improve

EP 3 839 739 A1

22

5

10

15

20

25

30

35

40

45

50

55

training speed for particularly deep neural networks.
[0158] The GPGPU 1100 includes a host interface 1102 to enable a connection with a host processor. In one embod-
iment, the host interface 1102 is a PCI Express interface. However, the host interface can also be a vendor specific
communications interface or communications fabric. The GPGPU 1100 receives commands from the host processor
and uses a global scheduler 1104 to distribute execution threads associated with those commands to a set of compute
clusters 1106A-H. The compute clusters 1106A-H share a cache memory 1108. The cache memory 1108 can serve as
a higher-level cache for cache memories within the compute clusters 1106A-H.
[0159] The GPGPU 1100 includes memory 1114A-B coupled with the compute clusters 1106A-H via a set of memory
controllers 1112A-B. In various embodiments, the memory 1114A-B can include various types of memory devices
including dynamic random access memory (DRAM) or graphics random access memory, such as synchronous graphics
random access memory (SGRAM), including graphics double data rate (GDDR) memory. In one embodiment, the
memory units 224A-N may also include 3D stacked memory, including but not limited to high bandwidth memory (HBM).
[0160] In one embodiment, each compute cluster GPLAB06A-H includes a set of graphics multiprocessors, such as
the graphics multiprocessor 400 of Figure 4A. The graphics multiprocessors of the compute cluster multiple types of
integer and floating point logic units that can perform computational operations at a range of precisions including suited
for machine learning computations. For example, and in one embodiment at least a subset of the floating-point units in
each of the compute clusters 1106A-H can be configured to perform 16-bit or 32-bit floating point operations, while a
different subset of the floating-point units can be configured to perform 64-bit floating point operations.
[0161] Multiple instances of the GPGPU 1100 can be configured to operate as a compute cluster. The communication
mechanism used by the compute cluster for synchronization and data exchange varies across embodiments. In one
embodiment, the multiple instances of the GPGPU 1100 communicate over the host interface 1102. In one embodiment.
the GPGPU 1100 includes an I/O hub 1108 that couples the GPGPU 1100 with a GPU link 1110 that enables a direct
connection to other instances of the GPGPU. In one embodiment, the GPU link 1110 is coupled to a dedicated GPU-
to-GPU bridge that enables communication and synchronization between multiple instances of the GPGPU 1100. In
one embodiment, the GPU link 1110 couples with a high-speed interconnect to transmit and receive data to other
GPGPUs or parallel processors. In one embodiment, the multiple instances of the GPGPU 1100 are located in separate
data processing systems and communicate via a network device that is accessible via the host interface 1102. In one
embodiment, the GPU link 1110 can be configured to enable a connection to a host processor in addition to or as an
alternative to the host interface 1102.
[0162] While the illustrated configuration of the GPGPU 1100 can be configured to train neural networks, one embod-
iment provides alternate configuration of the GPGPU 1100 that can be configured for deployment within a high perform-
ance or low power inferencing platform. In an inferencing configuration, the GPGPU 1100 includes fewer of the compute
clusters 1106A-H relative to the training configuration. Additionally, memory technology associated with the memory
1114A-B may differ between inferencing and training configurations. In one embodiment, the inferencing configuration
of the GPGPU 1100 can support inferencing specific instructions. For example, an inferencing configuration can provide
support for one or more 8-bit integer dot product instructions, which are commonly used during inferencing operations
for deployed neural networks.
[0163] Figure 12 illustrates a multi-GPU computing system 1200, according to an embodiment. The multi-GPU com-
puting system 1200 can include a processor 1202 coupled to multiple GPGPUs 1206A-D via a host interface switch
1204. The host interface switch 1204, in one embodiment, is a PCI express switch device that couples the processor
1202 to a PCI express bus over which the processor 1202 can communicate with the set of GPGPUs 1206A-D. Each
of the multiple GPGPUs 1206A-D can be an instance of the GPGPU 1100 of Figure 11. The GPGPUs 1206A-D can
interconnect via a set of high-speed point to point GPU to GPU links 1216. The high-speed GPU to GPU links can
connect to each of the GPGPUs 1206A-D via a dedicated GPU link, such as the GPU link 1110 as in Figure 11. The
P2P GPU links 1216 enable direct communication between each of the GPGPUs 1206A-D without requiring communi-
cation over the host interface bus to which the processor 1202 is connected. With GPU-to-GPU traffic directed to the
P2P GPU links, the host interface bus remains available for system memory access or to communicate with other
instances of the multi-GPU computing system 1200, for example, via one or more network devices. While in the illustrated
embodiment the GPGPUs 1206A-D connect to the processor 1202 via the host interface switch 1204, in one embodiment
the processor 1202 includes direct support for the P2P GPU links 1216 and can connect directly to the GPGPUs 1206A-D.

Machine Learning Neural Network Implementations

[0164] The computing architecture provided by embodiments described herein can be configured to perform the types
of parallel processing that is particularly suited for training and deploying neural networks for machine learning. A neural
network can be generalized as a network of functions having a graph relationship. As is well-known in the art, there are
a variety of types of neural network implementations used in machine learning. One exemplary type of neural network
is the feedforward network, as previously described.

EP 3 839 739 A1

23

5

10

15

20

25

30

35

40

45

50

55

[0165] A second exemplary type of neural network is the Convolutional Neural Network (CNN). A CNN is a specialized
feedforward neural network for processing data having a known, grid-like topology, such as image data. Accordingly,
CNNs are commonly used for compute vision and image recognition applications, but they also may be used for other
types of pattern recognition such as speech and language processing. The nodes in the CNN input layer are organized
into a set of "filters" (feature detectors inspired by the receptive fields found in the retina), and the output of each set of
filters is propagated to nodes in successive layers of the network. The computations for a CNN include applying the
convolution mathematical operation to each filter to produce the output of that filter. Convolution is a specialized kind of
mathematical operation performed by two functions to produce a third function that is a modified version of one of the
two original functions. In convolutional network terminology, the first function to the convolution can be referred to as
the input, while the second function can be referred to as the convolution kernel. The output may be referred to as the
feature map. For example, the input to a convolution layer can be a multidimensional array of data that defines the
various color components of an input image. The convolution kernel can be a multidimensional array of parameters,
where the parameters are adapted by the training process for the neural network.
[0166] Recurrent neural networks (RNNs) are a family of feedforward neural networks that include feedback connec-
tions between layers. RNNs enable modeling of sequential data by sharing parameter data across different parts of the
neural network. The architecture for a RNN includes cycles. The cycles represent the influence of a present value of a
variable on its own value at a future time, as at least a portion of the output data from the RNN is used as feedback for
processing subsequent input in a sequence. This feature makes RNNs particularly useful for language processing due
to the variable nature in which language data can be composed.
[0167] The figures described below present exemplary feedforward, CNN, and RNN networks, as well as describe a
general process for respectively training and deploying each of those types of networks. It will be understood that these
descriptions are exemplary and non-limiting as to any specific embodiment described herein and the concepts illustrated
can be applied generally to deep neural networks and machine learning techniques in general.
[0168] The exemplary neural networks described above can be used to perform deep learning. Deep learning is
machine learning using deep neural networks. The deep neural networks used in deep learning are artificial neural
networks composed of multiple hidden layers, as opposed to shallow neural networks that include only a single hidden
layer. Deeper neural networks are generally more computationally intensive to train. However, the additional hidden
layers of the network enable multistep pattern recognition that results in reduced output error relative to shallow machine
learning techniques.
[0169] Deep neural networks used in deep learning typically include a front-end network to perform feature recognition
coupled to a back-end network which represents a mathematical model that can perform operations (e.g., object clas-
sification, speech recognition, etc.) based on the feature representation provided to the model. Deep learning enables
machine learning to be performed without requiring hand crafted feature engineering to be performed for the model.
Instead, deep neural networks can learn features based on statistical structure or correlation within the input data. The
learned features can be provided to a mathematical model that can map detected features to an output. The mathematical
model used by the network is generally specialized for the specific task to be performed, and different models will be
used to perform different task.
[0170] Once the neural network is structured, a learning model can be applied to the network to train the network to
perform specific tasks. The learning model describes how to adjust the weights within the model to reduce the output
error of the network. Backpropagation of errors is a common method used to train neural networks. An input vector is
presented to the network for processing. The output of the network is compared to the desired output using a loss function
and an error value is calculated for each of the neurons in the output layer. The error values are then propagated
backwards until each neuron has an associated error value which roughly represents its contribution to the original
output. The network can then learn from those errors using an algorithm, such as the stochastic gradient descent
algorithm, to update the weights of the of the neural network.
[0171] Figure 13A-B illustrate an exemplary convolutional neural network. Figure 13A illustrates various layers within
a CNN. As shown in Figure 13A, an exemplary CNN used to model image processing can receive input 1302 describing
the red, green, and blue (RGB) components of an input image. The input 1302 can be processed by multiple convolutional
layers (e.g., convolutional layer 1304, convolutional layer 1306). The output from the multiple convolutional layers may
optionally be processed by a set of fully connected layers 1308. Neurons in a fully connected layer have full connections
to all activations in the previous layer, as previously described for a feedforward network. The output from the fully
connected layers 1308 can be used to generate an output result from the network. The activations within the fully
connected layers 1308 can be computed using matrix multiplication instead of convolution. Not all CNN implementations
are make use of fully connected layers DPLA08. For example, in some implementations the convolutional layer 1306
can generate output for the CNN
[0172] The convolutional layers are sparsely connected, which differs from traditional neural network configuration
found in the fully connected layers 1308. Traditional neural network layers are fully connected, such that every output
unit interacts with every input unit. However, the convolutional layers are sparsely connected because the output of the

EP 3 839 739 A1

24

5

10

15

20

25

30

35

40

45

50

55

convolution of a field is input (instead of the respective state value of each of the nodes in the field) to the nodes of the
subsequent layer, as illustrated. The kernels associated with the convolutional layers perform convolution operations,
the output of which is sent to the next layer. The dimensionality reduction performed within the convolutional layers is
one aspect that enables the CNN to scale to process large images.
[0173] Figure 13B illustrates exemplary computation stages within a convolutional layer of a CNN. Input to a convo-
lutional layer 1312 of a CNN can be processed in three stages of a convolutional layer 1314. The three stages can
include a convolution stage 1316, a detector stage 1318, and a pooling stage 1320. The convolution layer 1314 can
then output data to a successive convolutional layer. The final convolutional layer of the network can generate output
feature map data or provide input to a fully connected layer, for example, to generate a classification value for the input
to the CNN
[0174] In the convolution stage 1316 performs several convolutions in parallel to produce a set of linear activations.
The convolution stage 1316 can include an affine transformation, which is any transformation that can be specified as
a linear transformation plus a translation. Affine transformations include rotations, translations, scaling, and combinations
of these transformations. The convolution stage computes the output of functions (e.g., neurons) that are connected to
specific regions in the input, which can be determined as the local region associated with the neuron. The neurons
compute a dot product between the weights of the neurons and the region in the local input to which the neurons are
connected. The output from the convolution stage 1316 defines a set of linear activations that are processed by successive
stages of the convolutional layer 1314.
[0175] The linear activations can be processed by a detector stage 1318. In the detector stage 1318, each linear
activation is processed by a non-linear activation function. The non-linear activation function increases the nonlinear
properties of the overall network without affecting the receptive fields of the convolution layer. Several types of non-
linear activation functions may be used. One particular type is the rectified linear unit (ReLU), which uses an activation
function defined as f(x) = max(0, x), such that the activation is thresholded at zero.
[0176] The pooling stage 1320 uses a pooling function that replaces the output of the convolutional layer 1306 with a
summary statistic of the nearby outputs. The pooling function can be used to introduce translation invariance into the
neural network, such that small translations to the input do not change the pooled outputs. Invariance to local translation
can be useful in scenarios where the presence of a feature in the input data is more important than the precise location
of the feature. Various types of pooling functions can be used during the pooling stage 1320, including max pooling,
average pooling, and 12-norm pooling. Additionally, some CNN implementations do not include a pooling stage. Instead,
such implementations substitute and additional convolution stage having an increased stride relative to previous con-
volution stages.
[0177] The output from the convolutional layer 1314 can then be processed by the next layer 1322. The next layer
1322 can be an additional convolutional layer or one of the fully connected layers 1308. For example, the first convolutional
layer 1304 of Figure 13A can output to the second convolutional layer 1306, while the second convolutional layer can
output to a first layer of the fully connected layers 1308.
[0178] Figure 14 illustrates an exemplary recurrent neural network 1400. In a recurrent neural network (RNN), the
previous state of the network influences the output of the current state of the network. RNNs can be built in a variety of
ways using a variety of functions. The use of RNNs generally revolves around using mathematical models to predict the
future based on a prior sequence of inputs. For example, an RNN may be used to perform statistical language modeling
to predict an upcoming word given a previous sequence of words. The illustrated RNN 1400 can be described has having
an input layer 1402 that receives an input vector, hidden layers 1404 to implement a recurrent function, a feedback
mechanism 1405 to enable a ’memory’ of previous states, and an output layer 1406 to output a result. The RNN 1400
operates based on time-steps. The state of the RNN at a given time step is influenced based on the previous time step
via the feedback mechanism 1405. For a given time step, the state of the hidden layers 1404 is defined by the previous
state and the input at the current time step. An initial input (x1) at a first-time step can be processed by the hidden layer
1404. A second input (x2) can be processed by the hidden layer 1404 using state information that is determined during
the processing of the initial input (x1). A given state can be computed as st = f(Uxt + Wst-1), where U and W are parameter
matrices. The function f is generally a nonlinearity, such as the hyperbolic tangent function (Tanh) or a variant of the
rectifier function f(x) = max(0, x). However, the specific mathematical function used in the hidden layers 1404 can vary
depending on the specific implementation details of the RNN 1400.
[0179] In addition to the basic CNN and RNN networks described, variations on those networks may be enabled. One
example RNN variant is the long short term memory (LSTM) RNN. LSTM RNNs are capable of learning long-term
dependencies that may be necessary for processing longer sequences of language. A variant on the CNN is a convo-
lutional deep belief network, which has a structure similar to a CNN and is trained in a manner similar to a deep belief
network. A deep belief network (DBN) is a generative neural network that is composed of multiple layers of stochastic
(random) variables. DBNs can be trained layer-by-layer using greedy unsupervised learning. The learned weights of the
DBN can then be used to provide pre-train neural networks by determining an optimal initial set of weights for the neural
network.

EP 3 839 739 A1

25

5

10

15

20

25

30

35

40

45

50

55

[0180] Figure 15 illustrates training and deployment of a deep neural network. Once a given network has been struc-
tured for a task the neural network is trained using a training dataset 1502. Various training frameworks 1504 have been
developed to enable hardware acceleration of the training process. For example, the machine learning framework 1004
of Figure 10 may be configured as a training framework 1004. The training framework 1004 can hook into an untrained
neural network 1506 and enable the untrained neural net to be trained using the parallel processing resources described
herein to generate a trained neural net 1508.
[0181] To start the training process the initial weights may be chosen randomly or by pre-training using a deep belief
network. The training cycle then be performed in either a supervised or unsupervised manner.
[0182] Supervised learning is a learning method in which training is performed as a mediated operation, such as when
the training dataset 1502 includes input paired with the desired output for the input, or where the training dataset includes
input having known output and the output of the neural network is manually graded. The network processes the inputs
and compares the resulting outputs against a set of expected or desired outputs. Errors are then propagated back
through the system. The training framework 1504 can adjust to adjust the weights that control the untrained neural
network 1506. The training framework 1504 can provide tools to monitor how well the untrained neural network 1506 is
converging towards a model suitable to generating correct answers based on known input data. The training process
occurs repeatedly as the weights of the network are adjusted to refine the output generated by the neural network. The
training process can continue until the neural network reaches a statistically desired accuracy associated with a trained
neural net 1508. The trained neural network 1508 can then be deployed to implement any number of machine learning
operations.
[0183] Unsupervised learning is a learning method in which the network attempts to train itself using unlabeled data.
Thus, for unsupervised learning the training dataset 1502 will include input data without any associated output data. The
untrained neural network 1506 can learn groupings within the unlabeled input and can determine how individual inputs
are related to the overall dataset. Unsupervised training can be used to generate a self-organizing map, which is a type
of trained neural network 1507 capable of performing operations useful in reducing the dimensionality of data. Unsu-
pervised training can also be used to perform anomaly detection, which allows the identification of data points in an input
dataset that deviate from the normal patterns of the data.
[0184] Variations on supervised and unsupervised training may also be employed. Semi-supervised learning is a
technique in which in the training dataset 1502 includes a mix of labeled and unlabeled data of the same distribution.
Incremental learning is a variant of supervised learning in which input data is continuously used to further train the model.
Incremental learning enables the trained neural network 1508 to adapt to the new data 1512 without forgetting the
knowledge instilled within the network during initial training.
[0185] Whether supervised or unsupervised, the training process for particularly deep neural networks may be too
computationally intensive for a single compute node. Instead of using a single compute node, a distributed network of
computational nodes can be used to accelerate the training process.
[0186] Figure 16 is a block diagram illustrating distributed learning. Distributed learning is a training model that uses
multiple distributed computing nodes to perform supervised or unsupervised training of a neural network. The distributed
computational nodes can each include one or more host processors and one or more of the general-purpose processing
nodes, such as the highly-parallel general-purpose graphics processing unit 1100 as in Figure 1100. As illustrated,
distributed learning can be performed model parallelism 1602, data parallelism 1604, or a combination of model and
data parallelism 1604.
[0187] In model parallelism 1602, different computational nodes in a distributed system can perform training compu-
tations for different parts of a single network. For example, each layer of a neural network can be trained by a different
processing node of the distributed system. The benefits of model parallelism include the ability to scale to particularly
large models. Splitting the computations associated with different layers of the neural network enables the training of
very large neural networks in which the weights of all layers would not fit into the memory of a single computational
node. In some instances, model parallelism can be particularly useful in performing unsupervised training of large neural
networks.
[0188] In data parallelism 1604, the different nodes of the distributed network have a complete instance of the model
and each node receives a different portion of the data. The results from the different nodes are then combined. While
different approaches to data parallelism are possible, data parallel training approaches all require a technique of com-
bining results and synchronizing the model parameters between each node. Exemplary approaches to combining data
include parameter averaging and update based data parallelism. Parameter averaging trains each node on a subset of
the training data and sets the global parameters (e.g., weights, biases) to the average of the parameters from each
node. Parameter averaging uses a central parameter server that maintains the parameter data. Update based data
parallelism is similar to parameter averaging except that instead of transferring parameters from the nodes to the pa-
rameter server, the updates to the model are transferred. Additionally, update based data parallelism can be performed
in a decentralized manner, where the updates are compressed and transferred between nodes.
[0189] Combined model and data parallelism 1606 can be implemented, for example, in a distributed system in which

EP 3 839 739 A1

26

5

10

15

20

25

30

35

40

45

50

55

each computational node includes multiple GPUs. Each node can have a complete instance of the model with separate
GPUs within each node are used to train different portions of the model.
[0190] Distributed training has increased overhead relative to training on a single machine. However, the parallel
processors and GPGPUs described herein can each implement various techniques to reduce the overhead of distributed
training, including techniques to enable high bandwidth GPU-to-GPU data transfer and accelerated remote data syn-
chronization.

Exemplary Machine Learning Applications

[0191] Machine learning can be applied to solve a variety of technological problems, including but not limited to
computer vision, autonomous driving and navigation, speech recognition, and language processing. Computer vision
has traditionally been one of the most active research areas for machine learning applications. Applications of computer
vision range from reproducing human visual abilities, such as recognizing faces, to creating new categories of visual
abilities. For example, computer vision applications can be configured to recognize sound waves from the vibrations
induced in objects visible in a video. Parallel processor accelerated machine learning enables computer vision applica-
tions to be trained using significantly larger training dataset than previously feasible and enables inferencing systems
to be deployed using low power parallel processors.
[0192] Parallel processor accelerated machine learning has autonomous driving applications including lane and road
sign recognition, obstacle avoidance, navigation, and driving control. Accelerated machine learning techniques can be
used to train driving models based on datasets that define the appropriate responses to specific training input. The
parallel processors described herein can enable rapid training of the increasingly complex neural networks used for
autonomous driving solutions and enables the deployment of low power inferencing processors in a mobile platform
suitable for integration into autonomous vehicles.
[0193] Parallel processor accelerated deep neural networks have enabled machine learning approaches to automatic
speech recognition (ASR). ASR includes the creation of a function that computes the most probable linguistic sequence
given an input acoustic sequence. Accelerated machine learning using deep neural networks have enabled the replace-
ment of the hidden Markov models (HMMs) and Gaussian mixture models (GMMs) previously used for ASR.
[0194] Parallel processor accelerated machine learning can also be used to accelerate natural language processing.
Automatic learning procedures can make use of statistical inference algorithms to produce models that are robust to
erroneous or unfamiliar input. Exemplary natural language processor applications include automatic machine translation
between human languages.
[0195] The parallel processing platforms used for machine learning can be divided into training platforms and deploy-
ment platforms. Training platforms are generally highly parallel and include optimizations to accelerate multi-GPU single
node training and multi-node, multi-GPU training. Exemplary parallel processors suited for training include the highly-
parallel general-purpose graphics processing unit 1100 of Figure 1100 and the multi-GPU computing system 1200 of
Figure 1200. On the contrary, deployed machine learning platforms generally include lower power parallel processors
suitable for use in products such as cameras, autonomous robots, and autonomous vehicles.
[0196] Figure 17 illustrates an exemplary inferencing system on a chip (SOC) 1700 suitable for performing inferencing
using a trained model. The SOC 1700 can integrate processing components including a media processor 1702, a vision
processor 1704, a GPGPU 1706 and a multi-core processor 1708. The SOC 1700 can additionally include on-chip
memory 1705 that can enable a shared on-chip data pool that is accessible by each of the processing components. The
processing components can be optimized for low power operation to enable deployment to a variety of machine learning
platforms, including autonomous vehicles and autonomous robots. For example, one implementation of the SOC 1700
can be used as a portion of the main control system for an autonomous vehicle. Where the SOC 1700 is configured for
use in autonomous vehicles the SOC is designed and configured for compliance with the relevant functional safety
standards of the deployment jurisdiction.
[0197] During operation, the media processor 1702 and vision processor 1704 can work in concert to accelerate
computer vision operations. The media processor 1702 can enable low latency decode of multiple high-resolution (e.g.,
4K, 8K) video streams. The decoded video streams can be written to a buffer in the on-chip-memory 1705. The vision
processor 1704 can then parse the decoded video and perform preliminary processing operations on the frames of the
decoded video in preparation of processing the frames using a trained image recognition model. For example, the vision
processor 1704 can accelerate convolution operations for a CNN that is used to perform image recognition on the high-
resolution video data, while back end model computations are performed by the GPGPU 1706.
[0198] The multi-core processor 1708 can include control logic to assist with sequencing and synchronization of data
transfers and shared memory operations performed by the media processor 1702 and the vision processor 1704. The
multi-core processor 1708 can also function as an application processor to execute software applications that can make
use of the inferencing compute capability of the GPGPU 1706. For example, at least a portion of the navigation and
driving logic can be implemented in software executing on the multi-core processor 1708. Such software can directly

EP 3 839 739 A1

27

5

10

15

20

25

30

35

40

45

50

55

issue computational workloads to the GPGPU 1706 or the computational workloads can be issued to the multi-core
processor 1708, which can offload at least a portion of those operations to the GPGPU 1706.
[0199] The GPGPU 1706 can include compute clusters such as a low power configuration of the compute clusters
1106A-1106H within the highly-parallel general-purpose graphics processing unit 1100. The compute clusters within the
GPGPU 1706 can support instruction that are specifically optimized to perform inferencing computations on a trained
neural network. For example, the GPGPU 1706 can support instructions to perform low precision computations such as
8-bit and 4-bit integer vector operations.

System Overview II

[0200] Figure 18 is a block diagram of a processing system 1800, according to an embodiment. In various embodi-
ments, the system 1800 includes one or more processors 1802 and one or more graphics processors 1808, and may
be a single processor desktop system, a multiprocessor workstation system, or a server system having a large number
of processors 1802 or processor cores 1807. In on embodiment, the system 1800 is a processing platform incorporated
within a system-on-a-chip (SoC) integrated circuit for use in mobile, handheld, or embedded devices.
[0201] An embodiment of system 1800 can include, or be incorporated within a server-based gaming platform, a game
console, including a game and media console, a mobile gaming console, a handheld game console, or an online game
console. In some embodiments system 1800 is a mobile phone, smart phone, tablet computing device or mobile Internet
device. Data processing system 1800 can also include, couple with, or be integrated within a wearable device, such as
a smart watch wearable device, smart eyewear device, augmented reality device, or virtual reality device. In some
embodiments, data processing system 1800 is a television or set top box device having one or more processors 1802
and a graphical interface generated by one or more graphics processors 1808.
[0202] In some embodiments, the one or more processors 1802 each include one or more processor cores 1807 to
process instructions which, when executed, perform operations for system and user software. In some embodiments,
each of the one or more processor cores 1807 is configured to process a specific instruction set 1809. In some embod-
iments, instruction set 1809 may facilitate Complex Instruction Set Computing (CISC), Reduced Instruction Set Computing
(RISC), or computing via a Very Long Instruction Word (VLIW). Multiple processor cores 1807 may each process a
different instruction set 1809, which may include instructions to facilitate the emulation of other instruction sets. Processor
core 1807 may also include other processing devices, such a Digital Signal Processor (DSP).
[0203] In some embodiments, the processor 1802 includes cache memory 1804. Depending on the architecture, the
processor 1802 can have a single internal cache or multiple levels of internal cache. In some embodiments, the cache
memory is shared among various components of the processor 1802. In some embodiments, the processor 1802 also
uses an external cache (e.g., a Level-3 (L3) cache or Last Level Cache (LLC)) (not shown), which may be shared among
processor cores 1807 using known cache coherency techniques. A register file 1806 is additionally included in processor
1802 which may include different types of registers for storing different types of data (e.g., integer registers, floating
point registers, status registers, and an instruction pointer register). Some registers may be general-purpose registers,
while other registers may be specific to the design of the processor 1802.
[0204] In some embodiments, processor 1802 is coupled to a processor bus 1810 to transmit communication signals
such as address, data, or control signals between processor 1802 and other components in system 1800. In one
embodiment, the system 1800 uses an exemplary ’hub’ system architecture, including a memory controller hub 1816
and an Input Output (I/O) controller hub 1830. A memory controller hub 1816 facilitates communication between a
memory device and other components of system 1800, while an I/O Controller Hub (ICH) 1830 provides connections to
I/O devices via a local I/O bus. In one embodiment, the logic of the memory controller hub 1816 is integrated within the
processor.
[0205] Memory device 1820 can be a dynamic random access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-change memory device, or some other memory device having
suitable performance to serve as process memory. In one embodiment, the memory device 1820 can operate as system
memory for the system 1800, to store data 1822 and instructions 1821 for use when the one or more processors 1802
executes an application or process. Memory controller hub 1816 also couples with an optional external graphics processor
1812, which may communicate with the one or more graphics processors 1808 in processors 1802 to perform graphics
and media operations.
[0206] In some embodiments, ICH 1830 enables peripherals to connect to memory device 1820 and processor 1802
via a high-speed I/O bus. The I/O peripherals include, but are not limited to, an audio controller 1846, a firmware interface
1828, a wireless transceiver 1826 (e.g., Wi-Fi, Bluetooth), a data storage device 1824 (e.g., hard disk drive, flash memory,
etc.), and a legacy I/O controller 1840 for coupling legacy (e.g., Personal System 2 (PS/2)) devices to the system. One
or more Universal Serial Bus (USB) controllers 1842 connect input devices, such as keyboard and mouse 1844 combi-
nations. A network controller 1834 may also couple to ICH 1830. In some embodiments, a high-performance network
controller (not shown) couples to processor bus 1810. It will be appreciated that the system 1800 shown is exemplary

EP 3 839 739 A1

28

5

10

15

20

25

30

35

40

45

50

55

and not limiting, as other types of data processing systems that are differently configured may also be used. For example,
the I/O controller hub 1830 may be integrated within the one or more processor 1802, or the memory controller hub
1816 and I/O controller hub 1830 may be integrated into a discreet external graphics processor, such as the external
graphics processor 1812.
[0207] Figure 19 is a block diagram of an embodiment of a processor 1900 having one or more processor cores
1902A-1902N, an integrated memory controller 1914, and an integrated graphics processor 1908. Those elements of
Figure 19 having the same reference numbers (or names) as the elements of any other figure herein can operate or
function in any manner similar to that described elsewhere herein, but are not limited to such. Processor 1900 can include
additional cores up to and including additional core 1902N represented by the dashed lined boxes. Each of processor
cores 1902A-1902N includes one or more internal cache units 1904A-1904N. In some embodiments, each processor
core also has access to one or more shared cached units 1906.
[0208] The internal cache units 1904A-1904N and shared cache units 1906 represent a cache memory hierarchy
within the processor 1900. The cache memory hierarchy may include at least one level of instruction and data cache
within each processor core and one or more levels of shared mid-level cache, such as a Level 2 (L2), Level 3 (L3), Level
4 (L4), or other levels of cache, where the highest level of cache before external memory is classified as the LLC. In
some embodiments, cache coherency logic maintains coherency between the various cache units 1906 and 1904A-
1904N.
[0209] In some embodiments, processor 1900 may also include a set of one or more bus controller units 1916 and a
system agent core 1910. The one or more bus controller units 1916 manage a set of peripheral buses, such as one or
more Peripheral Component Interconnect buses (e.g., PCI, PCI Express). System agent core 1910 provides management
functionality for the various processor components. In some embodiments, system agent core 1910 includes one or
more integrated memory controllers 1914 to manage access to various external memory devices (not shown).
[0210] In some embodiments, one or more of the processor cores 1902A-1902N include support for simultaneous
multi-threading. In such embodiment, the system agent core 1910 includes components for coordinating and operating
cores 1902A-1902N during multi-threaded processing. System agent core 1910 may additionally include a power control
unit (PCU), which includes logic and components to regulate the power state of processor cores 1902A-1902N and
graphics processor 1908.
[0211] In some embodiments, processor 1900 additionally includes graphics processor 1908 to execute graphics
processing operations. In some embodiments, the graphics processor 1908 couples with the set of shared cache units
1906, and the system agent core 1910, including the one or more integrated memory controllers 1914. In some embod-
iments, a display controller 1911 is coupled with the graphics processor 1908 to drive graphics processor output to one
or more coupled displays. In some embodiments, display controller 1911 may be a separate module coupled with the
graphics processor via at least one interconnect, or may be integrated within the graphics processor 1908 or system
agent core 1910.
[0212] In some embodiments, a ring based interconnect unit 1912 is used to couple the internal components of the
processor 1900. However, an alternative interconnect unit may be used, such as a point-to-point interconnect, a switched
interconnect, or other techniques, including techniques well known in the art. In some embodiments, graphics processor
1908 couples with the ring interconnect 1912 via an I/O link 1913.
[0213] The exemplary I/O link 1913 represents at least one of multiple varieties of I/O interconnects, including an on-
package I/O interconnect which facilitates communication between various processor components and a high-perform-
ance embedded memory module 1918, such as an eDRAM module. In some embodiments, each of the processor cores
1902-1902N and graphics processor 1908 use embedded memory modules 1918 as a shared Last Level Cache.
[0214] In some embodiments, processor cores 1902A-1902N are homogenous cores executing the same instruction
set architecture. In another embodiment, processor cores 1902A-1902N are heterogeneous in terms of instruction set
architecture (ISA), where one or more of processor cores 1902A-N execute a first instruction set, while at least one of
the other cores executes a subset of the first instruction set or a different instruction set. In one embodiment processor
cores 1902A-1902N are heterogeneous in terms of microarchitecture, where one or more cores having a relatively higher
power consumption couple with one or more power cores having a lower power consumption. Additionally, processor
1900 can be implemented on one or more chips or as an SoC integrated circuit having the illustrated components, in
addition to other components.
[0215] Figure 20 is a block diagram of a graphics processor 2000, which may be a discrete graphics processing unit,
or may be a graphics processor integrated with a plurality of processing cores. In some embodiments, the graphics
processor communicates via a memory mapped I/O interface to registers on the graphics processor and with commands
placed into the processor memory. In some embodiments, graphics processor 2000 includes a memory interface 2014
to access memory. Memory interface 2014 can be an interface to local memory, one or more internal caches, one or
more shared external caches, and/or to system memory.
[0216] In some embodiments, graphics processor 2000 also includes a display controller 2002 to drive display output
data to a display device 2020. Display controller 2002 includes hardware for one or more overlay planes for the display

EP 3 839 739 A1

29

5

10

15

20

25

30

35

40

45

50

55

and composition of multiple layers of video or user interface elements. In some embodiments, graphics processor 2000
includes a video codec engine 2006 to encode, decode, or transcode media to, from, or between one or more media
encoding formats, including, but not limited to Moving Picture Experts Group (MPEG) formats such as MPEG-2, Advanced
Video Coding (AVC) formats such as H.264/MPEG-4 AVC, as well as the Society of Motion Picture & Television Engineers
(SMPTE) 421M/VC-1, and Joint Photographic Experts Group (JPEG) formats such as JPEG, and Motion JPEG (MJPEG)
formats.
[0217] In some embodiments, graphics processor 2000 includes a block image transfer (BLIT) engine 2004 to perform
two-dimensional (2D) rasterizer operations including, for example, bit-boundary block transfers. However, in one em-
bodiment, 2D graphics operations are performed using one or more components of graphics processing engine (GPE)
2010. In some embodiments, graphics processing engine 2010 is a compute engine for performing graphics operations,
including three-dimensional (3D) graphics operations and media operations.
[0218] In some embodiments, GPE 2010 includes a 3D pipeline 2012 for performing 3D operations, such as rendering
three-dimensional images and scenes using processing functions that act upon 3D primitive shapes (e.g., rectangle,
triangle, etc.). The 3D pipeline 2012 includes programmable and fixed function elements that perform various tasks
within the element and/or spawn execution threads to a 3D/Media sub-system 2015. While 3D pipeline 2012 can be
used to perform media operations, an embodiment of GPE 2010 also includes a media pipeline 2016 that is specifically
used to perform media operations, such as video post-processing and image enhancement.
[0219] In some embodiments, media pipeline 2016 includes fixed function or programmable logic units to perform one
or more specialized media operations, such as video decode acceleration, video de-interlacing, and video encode
acceleration in place of, or on behalf of video codec engine 2006. In some embodiments, media pipeline 2016 additionally
includes a thread spawning unit to spawn threads for execution on 3D/Media sub-system 2015. The spawned threads
perform computations for the media operations on one or more graphics execution units included in 3D/Media sub-
system 2015.
[0220] In some embodiments, 3D/Media subsystem 2015 includes logic for executing threads spawned by 3D pipeline
2012 and media pipeline 2016. In one embodiment, the pipelines send thread execution requests to 3D/Media subsystem
2015, which includes thread dispatch logic for arbitrating and dispatching the various requests to available thread exe-
cution resources. The execution resources include an array of graphics execution units to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 2015 includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes shared memory, including registers and addressable
memory, to share data between threads and to store output data.

3D/Media Processing

[0221] Figure 21 is a block diagram of a graphics processing engine 2110 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics processing engine (GPE) 2110 is a version of the GPE 2010
shown in Figure 20. Elements of Figure 21 having the same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited
to such. For example, the 3D pipeline 2012 and media pipeline 2016 of Figure 20 are illustrated. The media pipeline
2016 is optional in some embodiments of the GPE 2110 and may not be explicitly included within the GPE 2110. For
example, and in at least one embodiment, a separate media and/or image processor is coupled to the GPE 2110.
[0222] In some embodiments, GPE 2110 couples with or includes a command streamer 2103, which provides a
command stream to the 3D pipeline 2012 and/or media pipelines 2016. In some embodiments, command streamer 2103
is coupled with memory, which can be system memory, or one or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 2103 receives commands from the memory and sends the com-
mands to 3D pipeline 2012 and/or media pipeline 2016. The commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 2012 and media pipeline 2016. In one embodiment, the ring buffer can additionally
include batch command buffers storing batches of multiple commands. The commands for the 3D pipeline 2012 can
also include references to data stored in memory, such as but not limited to vertex and geometry data for the 3D pipeline
2012 and/or image data and memory objects for the media pipeline 2016. The 3D pipeline 2012 and media pipeline
2016 process the commands and data by performing operations via logic within the respective pipelines or by dispatching
one or more execution threads to a graphics core array 2114.
[0223] In various embodiments, the 3D pipeline 2012 can execute one or more shader programs, such as vertex
shaders, geometry shaders, pixel shaders, fragment shaders, compute shaders, or other shader programs, by processing
the instructions and dispatching execution threads to the graphics core array 2114. The graphics core array 2114 provides
a unified block of execution resources. Multi-purpose execution logic (e.g., execution units) within the graphic core array
2114 includes support for various 3D API shader languages and can execute multiple simultaneous execution threads
associated with multiple shaders.
[0224] In some embodiments, the graphics core array 2114 also includes execution logic to perform media functions,

EP 3 839 739 A1

30

5

10

15

20

25

30

35

40

45

50

55

such as video and/or image processing. In one embodiment, the execution units additionally include general-purpose
logic that is programmable to perform parallel general purpose computational operations, in addition to graphics process-
ing operations. The general-purpose logic can perform processing operations in parallel or in conjunction with general
purpose logic within the processor core(s) 1807 of Figure 18 or core 1902A-1902N as in Figure 19.
[0225] Output data generated by threads executing on the graphics core array 2114 can output data to memory in a
unified return buffer (URB) 2118. The URB 2118 can store data for multiple threads. In some embodiments, the URB
2118 may be used to send data between different threads executing on the graphics core array 2114. In some embod-
iments, the URB 2118 may additionally be used for synchronization between threads on the graphics core array and
fixed function logic within the shared function logic 2120.
[0226] In some embodiments, graphics core array 2114 is scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution units based on the target power and performance level of
GPE 2110. In one embodiment, the execution resources are dynamically scalable, such that execution resources may
be enabled or disabled as needed.
[0227] The graphics core array 2114 couples with shared function logic 2120 that includes multiple resources that are
shared between the graphics cores in the graphics core array. The shared functions within the shared function logic
2120 are hardware logic units that provide specialized supplemental functionality to the graphics core array 2114. In
various embodiments, shared function logic 2120 includes but is not limited to sampler 2121, math 2122, and inter-
thread communication (ITC) 2123 logic. Additionally, some embodiments implement one or more cache(s) 2125 within
the shared function logic 2120. A shared function is implemented where the demand for a given specialized function is
insufficient for inclusion within the graphics core array 2114. Instead a single instantiation of that specialized function is
implemented as a stand-alone entity in the shared function logic 2120 and shared among the execution resources within
the graphics core array 2114. The precise set of functions that are shared between the graphics core array 2114 and
included within the graphics core array 2114 varies between embodiments.
[0228] Figure 22 is a block diagram of another embodiment of a graphics processor 2200. Elements of Figure 22
having the same reference numbers (or names) as the elements of any other figure herein can operate or function in
any manner similar to that described elsewhere herein, but are not limited to such.
[0229] In some embodiments, graphics processor 2200 includes a ring interconnect 2202, a pipeline front-end 2204,
a media engine 2237, and graphics cores 2280A-2280N. In some embodiments, ring interconnect 2202 couples the
graphics processor to other processing units, including other graphics processors or one or more general-purpose
processor cores. In some embodiments, the graphics processor is one of many processors integrated within a multi-
core processing system.
[0230] In some embodiments, graphics processor 2200 receives batches of commands via ring interconnect 2202.
The incoming commands are interpreted by a command streamer 2203 in the pipeline front-end 2204. In some embod-
iments, graphics processor 2200 includes scalable execution logic to perform 3D geometry processing and media
processing via the graphics core(s) 2280A-2280N. For 3D geometry processing commands, command streamer 2203
supplies commands to geometry pipeline 2236. For at least some media processing commands, command streamer
2203 supplies the commands to a video front end 2234, which couples with a media engine 2237. In some embodiments,
media engine 2237 includes a Video Quality Engine (VQE) 2230 for video and image post-processing and a multi-format
encode/decode (MFX) 2233 engine to provide hardware-accelerated media data encode and decode. In some embod-
iments, geometry pipeline 2236 and media engine 2237 each generate execution threads for the thread execution
resources provided by at least one graphics core 2280A.
[0231] In some embodiments, graphics processor 2200 includes scalable thread execution resources featuring modular
cores 2280A-2280N (sometimes referred to as core slices), each having multiple sub-cores 2250A-2250N, 2260A-2260N
(sometimes referred to as core sub-slices). In some embodiments, graphics processor 2200 can have any number of
graphics cores 2280A through 2280N. In some embodiments, graphics processor 2200 includes a graphics core 2280A
having at least a first sub-core 2250A and a second core sub-core 2260A. In other embodiments, the graphics processor
is a low power processor with a single sub-core (e.g., 2250A). In some embodiments, graphics processor 2200 includes
multiple graphics cores 2280A-2280N, each including a set of first sub-cores 2250A-2250N and a set of second sub-
cores 2260A-2260N. Each sub-core in the set of first sub-cores 2250A-2250N includes at least a first set of execution
units 2252A-2252N and media/texture samplers 2254A-2254N. Each sub-core in the set of second sub-cores 2260A-
2260N includes at least a second set of execution units 2262A-2262N and samplers 2264A-2264N. In some embodiments,
each sub-core 2250A-2250N, 2260A-2260N shares a set of shared resources 2270A-2270N. In some embodiments,
the shared resources include shared cache memory and pixel operation logic. Other shared resources may also be
included in the various embodiments of the graphics processor.

Execution Logic

[0232] Figure 23 illustrates thread execution logic 2300 including an array of processing elements employed in some

EP 3 839 739 A1

31

5

10

15

20

25

30

35

40

45

50

55

embodiments of a GPE. Elements of Figure 23 having the same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited
to such.
[0233] In some embodiments, thread execution logic 2300 includes a pixel shader 2302, a thread dispatcher 2304,
instruction cache 2306, a scalable execution unit array including a plurality of execution units 2308A-2308N, a sampler
2310, a data cache 2312, and a data port 2314. In one embodiment, the included components are interconnected via
an interconnect fabric that links to each of the components. In some embodiments, thread execution logic 2300 includes
one or more connections to memory, such as system memory or cache memory, through one or more of instruction
cache 2306, data port 2314, sampler 2310, and execution unit array 2308A-2308N. In some embodiments, each execution
unit (e.g. 2308A) is an individual vector processor capable of executing multiple simultaneous threads and processing
multiple data elements in parallel for each thread. In some embodiments, execution unit array 2308A-2308N includes
any number individual execution units.
[0234] In some embodiments, execution unit array 2308A-2308N is primarily used to execute "shader" programs. In
some embodiments, the execution units in array 2308A-2308N execute an instruction set that includes native support
for many standard 3D graphics shader instructions, such that shader programs from graphics libraries (e.g., Direct 3D
and OpenGL) are executed with a minimal translation. The execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders), pixel processing (e.g., pixel shaders, fragment shaders)
and general-purpose processing (e.g., compute and media shaders).
[0235] Each execution unit in execution unit array 2308A-2308N operates on arrays of data elements. The number of
data elements is the "execution size," or the number of channels for the instruction. An execution channel is a logical
unit of execution for data element access, masking, and flow control within instructions. The number of channels may
be independent of the number of physical Arithmetic Logic Units (ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units 2308A-2308N support integer and floating-point data types.
[0236] The execution unit instruction set includes single instruction multiple data (SIMD) or single instruction multiple
thread (SIMT) instructions. The various data elements can be stored as a packed data type in a register and the execution
unit will process the various elements based on the data size of the elements. For example, when operating on a 256-
bit wide vector, the 256 bits of the vector are stored in a register and the execution unit operates on the vector as four
separate 64-bit packed data elements (Quad-Word (QW) size data elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate 16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data elements). However, different vector widths and register
sizes are possible.
[0237] One or more internal instruction caches (e.g., 2306) are included in the thread execution logic 2300 to cache
thread instructions for the execution units. In some embodiments, one or more data caches (e.g., 2312) are included to
cache thread data during thread execution. In some embodiments, sampler 2310 is included to provide texture sampling
for 3D operations and media sampling for media operations. In some embodiments, sampler 2310 includes specialized
texture or media sampling functionality to process texture or media data during the sampling process before providing
the sampled data to an execution unit.
[0238] During execution, the graphics and media pipelines send thread initiation requests to thread execution logic
2300 via thread spawning and dispatch logic. In some embodiments, thread execution logic 2300 includes a local thread
dispatcher 2304 that arbitrates thread initiation requests from the graphics and media pipelines and instantiates the
requested threads on one or more execution units 2308A-2308N. For example, the geometry pipeline (e.g., 2236 of
Figure 22) dispatches vertex processing, tessellation, or geometry processing threads to thread execution logic 2300
(Figure 23). In some embodiments, thread dispatcher 2304 can also process runtime thread spawning requests from
the executing shader programs.
[0239] Once a group of geometric objects has been processed and rasterized into pixel data, pixel shader 2302 is
invoked to further compute output information and cause results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In some embodiments, pixel shader 2302 calculates the values of the various vertex
attributes that are to be interpolated across the rasterized object. In some embodiments, pixel shader 2302 then executes
an application programming interface (API)-supplied pixel shader program. To execute the pixel shader program, pixel
shader 2302 dispatches threads to an execution unit (e.g., 2308A) via thread dispatcher 2304. In some embodiments,
pixel shader 2302 uses texture sampling logic in sampler 2310 to access texture data in texture maps stored in memory.
Arithmetic operations on the texture data and the input geometry data compute pixel color data for each geometric
fragment, or discards one or more pixels from further processing.
[0240] In some embodiments, the data port 2314 provides a memory access mechanism for the thread execution logic
2300 output processed data to memory for processing on a graphics processor output pipeline. In some embodiments,
the data port 2314 includes or couples to one or more cache memories (e.g., data cache 2312) to cache data for memory
access via the data port.
[0241] Figure 24 is a block diagram illustrating a graphics processor instruction formats 2400 according to some

EP 3 839 739 A1

32

5

10

15

20

25

30

35

40

45

50

55

embodiments. In one or more embodiment, the graphics processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes illustrate the components that are generally included in an execution
unit instruction, while the dashed lines include components that are optional or that are only included in a sub-set of the
instructions. In some embodiments, instruction format 2400 described and illustrated are macro-instructions, in that they
are instructions supplied to the execution unit, as opposed to micro-operations resulting from instruction decode once
the instruction is processed.
[0242] In some embodiments, the graphics processor execution units natively support instructions in a 128-bit instruc-
tion format 2410. A 64-bit compacted instruction format 2430 is available for some instructions based on the selected
instruction, instruction options, and number of operands. The native 128-bit instruction format 2410 provides access to
all instruction options, while some options and operations are restricted in the 64-bit instruction format 2430. The native
instructions available in the 64-bit instruction format 2430 vary by embodiment. In some embodiments, the instruction
is compacted in part using a set of index values in an index field 2413. The execution unit hardware references a set of
compaction tables based on the index values and uses the compaction table outputs to reconstruct a native instruction
in the 128-bit instruction format 2410.
[0243] For each format, instruction opcode 2412 defines the operation that the execution unit is to perform. The
execution units execute each instruction in parallel across the multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a simultaneous add operation across each color channel
representing a texture element or picture element. By default, the execution unit performs each instruction across all
data channels of the operands. In some embodiments, instruction control field 2414 enables control over certain execution
options, such as channels selection (e.g., predication) and data channel order (e.g., swizzle). For 128-bit instructions
2410 an exec-size field 2416 limits the number of data channels that will be executed in parallel. In some embodiments,
exec-size field 2416 is not available for use in the 64-bit compact instruction format 2430.
[0244] Some execution unit instructions have up to three operands including two source operands, src0 2420, src1
2422, and one destination 2418. In some embodiments, the execution units support dual destination instructions, where
one of the destinations is implied. Data manipulation instructions can have a third source operand (e.g., SRC2 2424),
where the instruction opcode 2412 determines the number of source operands. An instruction’s last source operand can
be an immediate (e.g., hard-coded) value passed with the instruction.
[0245] In some embodiments, the 128-bit instruction format 2410 includes an access/address mode information 2426
specifying, for example, whether direct register addressing mode or indirect register addressing mode is used. When
direct register addressing mode is used, the register address of one or more operands is directly provided by bits in the
instruction 2410.
[0246] In some embodiments, the 128-bit instruction format 2410 includes an access/address mode field 2426, which
specifies an address mode and/or an access mode for the instruction. In one embodiment, the access mode to define
a data access alignment for the instruction. Some embodiments support access modes including a 16-byte aligned
access mode and a 1-byte aligned access mode, where the byte alignment of the access mode determines the access
alignment of the instruction operands. For example, when in a first mode, the instruction 2410 may use byte-aligned
addressing for source and destination operands and when in a second mode, the instruction 2410 may use 16-byte-
aligned addressing for all source and destination operands.
[0247] In one embodiment, the address mode portion of the access/address mode field 2426 determines whether the
instruction is to use direct or indirect addressing. When direct register addressing mode is used bits in the instruction
2410 directly provide the register address of one or more operands. When indirect register addressing mode is used,
the register address of one or more operands may be computed based on an address register value and an address
immediate field in the instruction.
[0248] In some embodiments, instructions are grouped based on opcode 2412 bit-fields to simplify Opcode decode
2440. For an 8-bit opcode, bits 4, 5, and 6 allow the execution unit to determine the type of opcode. The precise opcode
grouping shown is merely an example. In some embodiments, a move and logic opcode group 2442 includes data
movement and logic instructions (e.g., move (mov), compare (cmp)). In some embodiments, move and logic group 2442
shares the five most significant bits (MSB), where move (mov) instructions are in the form of 0000xxxxb and logic
instructions are in the form of 0001xxxxb. A flow control instruction group 2444 (e.g., call, jump (jmp)) includes instructions
in the form of 0010xxxxb (e.g., 0x20). A miscellaneous instruction group 2446 includes a mix of instructions, including
synchronization instructions (e.g., wait, send) in the form of 0011xxxxb (e.g., 0x30). A parallel math instruction group
2448 includes component-wise arithmetic instructions (e.g., add, multiply (mul)) in the form of 0100xxxxb (e.g., 0x40).
The parallel math group 2448 performs the arithmetic operations in parallel across data channels. The vector math group
2450 includes arithmetic instructions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector operands.

EP 3 839 739 A1

33

5

10

15

20

25

30

35

40

45

50

55

Graphics Pipeline

[0249] Figure 25 is a block diagram of another embodiment of a graphics processor 2500. Elements of Figure 25
having the same reference numbers (or names) as the elements of any other figure herein can operate or function in
any manner similar to that described elsewhere herein, but are not limited to such.
[0250] In some embodiments, graphics processor 2500 includes a graphics pipeline 2520, a media pipeline 2530, a
display engine 2540, thread execution logic 2550, and a render output pipeline 2570. In some embodiments, graphics
processor 2500 is a graphics processor within a multi-core processing system that includes one or more general-purpose
processing cores. The graphics processor is controlled by register writes to one or more control registers (not shown)
or via commands issued to graphics processor 2500 via a ring interconnect 2502. In some embodiments, ring interconnect
2502 couples graphics processor 2500 to other processing components, such as other graphics processors or general-
purpose processors. Commands from ring interconnect 2502 are interpreted by a command streamer 2503, which
supplies instructions to individual components of graphics pipeline 2520 or media pipeline 2530.
[0251] In some embodiments, command streamer 2503 directs the operation of a vertex fetcher 2505 that reads vertex
data from memory and executes vertex-processing commands provided by command streamer 2503. In some embod-
iments, vertex fetcher 2505 provides vertex data to a vertex shader 2507, which performs coordinate space transformation
and lighting operations to each vertex. In some embodiments, vertex fetcher 2505 and vertex shader 2507 execute
vertex-processing instructions by dispatching execution threads to execution units 2552A, 2552B via a thread dispatcher
2531.
[0252] In some embodiments, execution units 2552A, 2552B are an array of vector processors having an instruction
set for performing graphics and media operations. In some embodiments, execution units 2552A, 2552B have an attached
L1 cache 2551 that is specific for each array or shared between the arrays. The cache can be configured as a data
cache, an instruction cache, or a single cache that is partitioned to contain data and instructions in different partitions.
[0253] In some embodiments, graphics pipeline 2520 includes tessellation components to perform hardware-accel-
erated tessellation of 3D objects. In some embodiments, a programmable hull shader 2511 configures the tessellation
operations. A programmable domain shader 2517 provides back-end evaluation of tessellation output. A tessellator
2513 operates at the direction of hull shader 2511 and contains special purpose logic to generate a set of detailed
geometric objects based on a coarse geometric model that is provided as input to graphics pipeline 2520. In some
embodiments, if tessellation is not used, tessellation components 2511, 2513, 2517 can be bypassed.
[0254] In some embodiments, complete geometric objects can be processed by a geometry shader 2519 via one or
more threads dispatched to execution units 2552A, 2552B, or can proceed directly to the clipper 2529. In some embod-
iments, the geometry shader operates on entire geometric objects, rather than vertices or patches of vertices as in
previous stages of the graphics pipeline. If the tessellation is disabled the geometry shader 2519 receives input from
the vertex shader 2507. In some embodiments, geometry shader 2519 is programmable by a geometry shader program
to perform geometry tessellation if the tessellation units are disabled.
[0255] Before rasterization, a clipper 2529 processes vertex data. The clipper 2529 may be a fixed function clipper or
a programmable clipper having clipping and geometry shader functions. In some embodiments, a rasterizer and depth
test component 2573 in the render output pipeline 2570 dispatches pixel shaders to convert the geometric objects into
their per pixel representations. In some embodiments, pixel shader logic is included in thread execution logic 2550. In
some embodiments, an application can bypass rasterization and access un-rasterized vertex data via a stream out unit
2523.
[0256] The graphics processor 2500 has an interconnect bus, interconnect fabric, or some other interconnect mech-
anism that allows data and message passing amongst the major components of the processor. In some embodiments,
execution units 2552A, 2552B and associated cache(s) 2551, texture and media sampler 2554, and texture/sampler
cache 2558 interconnect via a data port 2556 to perform memory access and communicate with render output pipeline
components of the processor. In some embodiments, sampler 2554, caches 2551, 2558 and execution units 2552A,
2552B each have separate memory access paths.
[0257] In some embodiments, render output pipeline 2570 contains a rasterizer and depth test component 2573 that
converts vertex-based objects into an associated pixel-based representation. In some embodiments, the render output
pipeline 2570 includes a windower/masker unit to perform fixed function triangle and line rasterization. An associated
render cache 2578 and depth cache 2579 are also available in some embodiments. A pixel operations component 2577
performs pixel-based operations on the data, though in some instances, pixel operations associated with 2D operations
(e.g. bit block image transfers with blending) are performed by the 2D engine 2541, or substituted at display time by the
display controller 2543 using overlay display planes. In some embodiments, a shared L3 cache 2575 is available to all
graphics components, allowing the sharing of data without the use of main system memory.
[0258] In some embodiments, graphics processor media pipeline 2530 includes a media engine 2537 and a video
front end 2534. In some embodiments, video front end 2534 receives pipeline commands from the command streamer
2503. In some embodiments, media pipeline 2530 includes a separate command streamer. In some embodiments, video

EP 3 839 739 A1

34

5

10

15

20

25

30

35

40

45

50

55

front-end 2534 processes media commands before sending the command to the media engine 2537. In some embod-
iments, media engine 2537 includes thread spawning functionality to spawn threads for dispatch to thread execution
logic 2550 via thread dispatcher 2531.
[0259] In some embodiments, graphics processor 2500 includes a display engine 2540. In some embodiments, display
engine 2540 is external to processor 2500 and couples with the graphics processor via the ring interconnect 2502, or
some other interconnect bus or fabric. In some embodiments, display engine 2540 includes a 2D engine 2541 and a
display controller 2543. In some embodiments, display engine 2540 contains special purpose logic capable of operating
independently of the 3D pipeline. In some embodiments, display controller 2543 couples with a display device (not
shown), which may be a system integrated display device, as in a laptop computer, or an external display device attached
via a display device connector.
[0260] In some embodiments, graphics pipeline 2520 and media pipeline 2530 are configurable to perform operations
based on multiple graphics and media programming interfaces and are not specific to any one application programming
interface (API). In some embodiments, driver software for the graphics processor translates API calls that are specific
to a particular graphics or media library into commands that can be processed by the graphics processor. In some
embodiments, support is provided for the Open Graphics Library (OpenGL) and Open Computing Language (OpenCL)
from the Khronos Group, the Direct3D library from the Microsoft Corporation, or support may be provided to both OpenGL
and D3D. Support may also be provided for the Open Source Computer Vision Library (OpenCV). A future API with a
compatible 3D pipeline would also be supported if a mapping can be made from the pipeline of the future API to the
pipeline of the graphics processor.

Graphics Pipeline Programming

[0261] Figure 26A is a block diagram illustrating a graphics processor command format 2600 according to some
embodiments. Figure 26B is a block diagram illustrating a graphics processor command sequence 2610 according to
an embodiment. The solid lined boxes in Figure 26A illustrate the components that are generally included in a graphics
command while the dashed lines include components that are optional or that are only included in a sub-set of the
graphics commands. The exemplary graphics processor command format 2600 of Figure 26A includes data fields to
identify a target client 2602 of the command, a command operation code (opcode) 2604, and the relevant data 2606 for
the command. A sub-opcode 2605 and a command size 2608 are also included in some commands.
[0262] In some embodiments, client 2602 specifies the client unit of the graphics device that processes the command
data. In some embodiments, a graphics processor command parser examines the client field of each command to
condition the further processing of the command and route the command data to the appropriate client unit. In some
embodiments, the graphics processor client units include a memory interface unit, a render unit, a 2D unit, a 3D unit,
and a media unit. Each client unit has a corresponding processing pipeline that processes the commands. Once the
command is received by the client unit, the client unit reads the opcode 2604 and, if present, sub-opcode 2605 to
determine the operation to perform. The client unit performs the command using information in data field 2606. For some
commands an explicit command size 2608 is expected to specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least some of the commands based on the command opcode.
In some embodiments, commands are aligned via multiples of a double word.
[0263] The flow diagram in Figure 26B shows an exemplary graphics processor command sequence 2610. In some
embodiments, software or firmware of a data processing system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up, execute, and terminate a set of graphics operations. A
sample command sequence is shown and described for purposes of example only as embodiments are not limited to
these specific commands or to this command sequence. Moreover, the commands may be issued as batch of commands
in a command sequence, such that the graphics processor will process the sequence of commands in at least partially
concurrence.
[0264] In some embodiments, the graphics processor command sequence 2610 may begin with a pipeline flush
command 2612 to cause any active graphics pipeline to complete the currently pending commands for the pipeline. In
some embodiments, the 3D pipeline 2622 and the media pipeline 2624 do not operate concurrently. The pipeline flush
is performed to cause the active graphics pipeline to complete any pending commands. In response to a pipeline flush,
the command parser for the graphics processor will pause command processing until the active drawing engines complete
pending operations and the relevant read caches are invalidated. Optionally, any data in the render cache that is marked
’dirty’ can be flushed to memory. In some embodiments, pipeline flush command 2612 can be used for pipeline syn-
chronization or before placing the graphics processor into a low power state.
[0265] In some embodiments, a pipeline select command 2613 is used when a command sequence requires the
graphics processor to explicitly switch between pipelines. In some embodiments, a pipeline select command 2613 is
required only once within an execution context before issuing pipeline commands unless the context is to issue commands
for both pipelines. In some embodiments, a pipeline flush command is 2612 is required immediately before a pipeline

EP 3 839 739 A1

35

5

10

15

20

25

30

35

40

45

50

55

switch via the pipeline select command 2613.
[0266] In some embodiments, a pipeline control command 2614 configures a graphics pipeline for operation and is
used to program the 3D pipeline 2622 and the media pipeline 2624. In some embodiments, pipeline control command
2614 configures the pipeline state for the active pipeline. In one embodiment, the pipeline control command 2614 is
used for pipeline synchronization and to clear data from one or more cache memories within the active pipeline before
processing a batch of commands.
[0267] In some embodiments, commands for the return buffer state 2616 are used to configure a set of return buffers
for the respective pipelines to write data. Some pipeline operations require the allocation, selection, or configuration of
one or more return buffers into which the operations write intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers to store output data and to perform cross thread commu-
nication. In some embodiments, configuring the return buffer state 2616 includes selecting the size and number of return
buffers to use for a set of pipeline operations.
[0268] The remaining commands in the command sequence differ based on the active pipeline for operations. Based
on a pipeline determination 2620, the command sequence is tailored to the 3D pipeline 2622 beginning with the 3D
pipeline state 2630, or the media pipeline 2624 beginning at the media pipeline state 2640.
[0269] The commands for the 3D pipeline state 2630 include 3D state setting commands for vertex buffer state, vertex
element state, constant color state, depth buffer state, and other state variables that are to be configured before 3D
primitive commands are processed. The values of these commands are determined at least in part based the particular
3D API in use. In some embodiments, 3D pipeline state 2630 commands are also able to selectively disable or bypass
certain pipeline elements if those elements will not be used.
[0270] In some embodiments, 3D primitive 2632 command is used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are passed to the graphics processor via the 3D primitive 2632
command are forwarded to the vertex fetch function in the graphics pipeline. The vertex fetch function uses the 3D
primitive 2632 command data to generate vertex data structures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 2632 command is used to perform vertex operations on 3D primitives
via vertex shaders. To process vertex shaders, 3D pipeline 2622 dispatches shader execution threads to graphics
processor execution units.
[0271] In some embodiments, 3D pipeline 2622 is triggered via an execute 2634 command or event. In some embod-
iments, a register write triggers command execution. In some embodiments execution is triggered via a ’go’ or ’kick’
command in the command sequence. In one embodiment command execution is triggered using a pipeline synchroni-
zation command to flush the command sequence through the graphics pipeline. The 3D pipeline will perform geometry
processing for the 3D primitives. Once operations are complete, the resulting geometric objects are rasterized and the
pixel engine colors the resulting pixels. Additional commands to control pixel shading and pixel back end operations
may also be included for those operations.
[0272] In some embodiments, the graphics processor command sequence 2610 follows the media pipeline 2624 path
when performing media operations. In general, the specific use and manner of programming for the media pipeline 2624
depends on the media or compute operations to be performed. Specific media decode operations may be offloaded to
the media pipeline during media decode. In some embodiments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources provided by one or more general-purpose processing
cores. In one embodiment, the media pipeline also includes elements for general-purpose graphics processor unit
(GPGPU) operations, where the graphics processor is used to perform SIMD vector operations using computational
shader programs that are not explicitly related to the rendering of graphics primitives.
[0273] In some embodiments, media pipeline 2624 is configured in a similar manner as the 3D pipeline 2622. A set
of commands to configure the media pipeline state 2640 are dispatched or placed into a command queue before the
media object commands 2642. In some embodiments, commands for the media pipeline state 2640 include data to
configure the media pipeline elements that will be used to process the media objects. This includes data to configure
the video decode and video encode logic within the media pipeline, such as encode or decode format. In some embod-
iments, commands for the media pipeline state 2640 also support the use of one or more pointers to "indirect" state
elements that contain a batch of state settings.
[0274] In some embodiments, media object commands 2642 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers containing video data to be processed. In some embodiments,
all media pipeline states must be valid before issuing a media object command 2642. Once the pipeline state is configured
and media object commands 2642 are queued, the media pipeline 2624 is triggered via an execute command 2644 or
an equivalent execute event (e.g., register write). Output from media pipeline 2624 may then be post processed by
operations provided by the 3D pipeline 2622 or the media pipeline 2624. In some embodiments, GPGPU operations are
configured and executed in a similar manner as media operations.

EP 3 839 739 A1

36

5

10

15

20

25

30

35

40

45

50

55

Graphics Software Architecture

[0275] Figure 27 illustrates exemplary graphics software architecture for a data processing system 2700 according
to some embodiments. In some embodiments, software architecture includes a 3D graphics application 2710, an oper-
ating system 2720, and at least one processor 2730. In some embodiments, processor 2730 includes a graphics processor
2732 and one or more general-purpose processor core(s) 2734. The graphics application 2710 and operating system
2720 each execute in the system memory 2750 of the data processing system.
[0276] In some embodiments, 3D graphics application 2710 contains one or more shader programs including shader
instructions 2712. The shader language instructions may be in a high-level shader language, such as the High Level
Shader Language (HLSL) or the OpenGL Shader Language (GLSL). The application also includes executable instructions
2714 in a machine language suitable for execution by the general-purpose processor core(s) 2734. The application also
includes graphics objects 2716 defined by vertex data.
[0277] In some embodiments, operating system 2720 is a Microsoft® Windows® operating system from the Microsoft
Corporation, a proprietary UNIX-like operating system, or an open source UNIX-like operating system using a variant
of the Linux kernel. The operating system 2720 can support a graphics API 2722 such as the Direct3D API or the OpenGL
API. When the Direct3D API is in use, the operating system 2720 uses a front-end shader compiler 2724 to compile any
shader instructions 2712 in HLSL into a lower-level shader language. The compilation may be a just-in-time (JIT) com-
pilation or the application can perform shader pre-compilation. In some embodiments, high-level shaders are compiled
into low-level shaders during the compilation of the 3D graphics application 2710.
[0278] In some embodiments, user mode graphics driver 2726 contains a back-end shader compiler 2727 to convert
the shader instructions 2712 into a hardware specific representation. When the OpenGL API is in use, shader instructions
2712 in the GLSL high-level language are passed to a user mode graphics driver 2726 for compilation. In some embod-
iments, user mode graphics driver 2726 uses operating system kernel mode functions 2728 to communicate with a
kernel mode graphics driver 2729. In some embodiments, kernel mode graphics driver 2729 communicates with graphics
processor 2732 to dispatch commands and instructions.

IP Core Implementations

[0279] One or more aspects of at least one embodiment may be implemented by representative code stored on a
machine-readable medium which represents and/or defines logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include instructions which represent various logic within the processor.
When read by a machine, the instructions may cause the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as "IP cores," are reusable units of logic for an integrated circuit that
may be stored on a tangible, machine-readable medium as a hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various customers or manufacturing facilities, which load the hardware
model on fabrication machines that manufacture the integrated circuit. The integrated circuit may be fabricated such
that the circuit performs operations described in association with any of the embodiments described herein.
[0280] Figure 28 is a block diagram illustrating an IP core development system 2800 that may be used to manufacture
an integrated circuit to perform operations according to an embodiment. The IP core development system 2800 may be
used to generate modular, re-usable designs that can be incorporated into a larger design or used to construct an entire
integrated circuit (e.g., an SOC integrated circuit). A design facility 2830 can generate a software simulation 2810 of an
IP core design in a high-level programming language (e.g., C/C++). The software simulation 2810 can be used to design,
test, and verify the behavior of the IP core using a simulation model 2812. The simulation model 2812 may include
functional, behavioral, and/or timing simulations. A register transfer level (RTL) design 2815 can then be created or
synthesized from the simulation model 2812. The RTL design 2815 is an abstraction of the behavior of the integrated
circuit that models the flow of digital signals between hardware registers, including the associated logic performed using
the modeled digital signals. In addition to an RTL design 2815, lower-level designs at the logic level or transistor level
may also be created, designed, or synthesized. Thus, the particular details of the initial design and simulation may vary.
[0281] The RTL design 2815 or equivalent may be further synthesized by the design facility into a hardware model
2820, which may be in a hardware description language (HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP core design. The IP core design can be stored for delivery
to a 3rd party fabrication facility 2865 using non-volatile memory 2840 (e.g., hard disk, flash memory, or any non-volatile
storage medium). Alternatively, the IP core design may be transmitted (e.g., via the Internet) over a wired connection
2850 or wireless connection 2860. The fabrication facility 2865 may then fabricate an integrated circuit that is based at
least in part on the IP core design. The fabricated integrated circuit can be configured to perform operations in accordance
with at least one embodiment described herein.

EP 3 839 739 A1

37

5

10

15

20

25

30

35

40

45

50

55

Exemplary System on a Chip Integrated Circuit

[0282] Figures 29-31 illustrate exemplary integrated circuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various embodiments described herein. In addition to what is illustrated,
other logic and circuits may be included, including additional graphics processors/cores, peripheral interface controllers,
or general purpose processor cores.
[0283] Figure 29 is a block diagram illustrating an exemplary system on a chip integrated circuit 2900 that may be
fabricated using one or more IP cores, according to an embodiment. Exemplary integrated circuit 2900 includes one or
more application processor(s) 2905 (e.g., CPUs), at least one graphics processor 2910, and may additionally include
an image processor 2915 and/or a video processor 2920, any of which may be a modular IP core from the same or
multiple different design facilities. Integrated circuit 2900 includes peripheral or bus logic including a USB controller
2925, UART controller 2930, an SPI/SDIO controller 2935, and an I2S/I2C controller 2940. Additionally, the integrated
circuit can include a display device 2945 coupled to one or more of a high-definition multimedia interface (HDMI) controller
2950 and a mobile industry processor interface (MIPI) display interface 2955. Storage may be provided by a flash memory
subsystem 2960 including flash memory and a flash memory controller. Memory interface may be provided via a memory
controller 2965 for access to SDRAM or SRAM memory devices. Some integrated circuits additionally include an em-
bedded security engine 2970.
[0284] Figure 30 is a block diagram illustrating an exemplary graphics processor 3010 of a system on a chip integrated
circuit that may be fabricated using one or more IP cores, according to an embodiment. Graphics processor 3010 can
be a variant of the graphics processor 2910 of Figure 29. Graphics processor 3010 includes a vertex processor 3005
and one or more fragment processor(s) 3015A-3015N (e.g., 3015A, 3015B, 3015C, 3015D, through 3015N-1, and
3015N). Graphics processor 3010 can execute different shader programs via separate logic, such that the vertex proc-
essor 3005 is optimized to execute operations for vertex shader programs, while the one or more fragment processor(s)
3015A-3015N execute fragment (e.g., pixel) shading operations for fragment or pixel shader programs. The vertex
processor 3005 performs the vertex processing stage of the 3D graphics pipeline and generates primitives and vertex
data. The fragment processor(s) 3015A-3015N use the primitive and vertex data generated by the vertex processor
3005 to produce a framebuffer that is displayed on a display device. In one embodiment, the fragment processor(s)
3015A-3015N are optimized to execute fragment shader programs as provided for in the OpenGL API, which may be
used to perform similar operations as a pixel shader program as provided for in the Direct 3D API.
[0285] Graphics processor 3010 additionally includes one or more memory management units (MMUs) 3020A-3020B,
cache(s) 3025A-3025B, and circuit interconnect(s) 3030A-3030B. The one or more MMU(s) 3020A-3020B provide for
virtual to physical address mapping for graphics processor 3010, including for the vertex processor 3005 and/or fragment
processor(s) 3015A-3015N, which may reference vertex or image/texture data stored in memory, in addition to vertex
or image/texture data stored in the one or more cache(s) 3025A-3025B. In one embodiment, the one or more MMU(s)
3020A-3020B may be synchronized with other MMUs within the system, including one or more MMUs associated with
the one or more application processor(s) 2905, image processor 2915, and/or video processor 2920 of Figure 29, such
that each processor 2905-2920 can participate in a shared or unified virtual memory system. The one or more circuit
interconnect(s) 3030A-3030B enable graphics processor 3010 to interface with other IP cores within the SoC, either via
an internal bus of the SoC or via a direct connection, according to embodiments.
[0286] Figure 31 is a block diagram illustrating an additional exemplary graphics processor 3110 of a system on a
chip integrated circuit that may be fabricated using one or more IP cores, according to an embodiment. Graphics processor
3110 can be a variant of the graphics processor 2910 of Figure 29. Graphics processor 3110 includes the one or more
MMU(s) 3020A-3020B, cache(s) 3025A-3025B, and circuit interconnect(s) 3030A-3030B of the integrated circuit 3000
of Figure 30.
[0287] Graphics processor 3110 includes one or more shader core(s) 3115A-3115N (e.g., 3115A, 3115B, 3115C,
3115D, 3115E, 3115F, through 3015N-1, and 3015N), which provides for a unified shader core architecture in which a
single core or type or core can execute all types of programmable shader code, including shader program code to
implement vertex shaders, fragment shaders, and/or compute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Additionally, graphics processor 3110 includes an inter-core task man-
ager 3105, which acts as a thread dispatcher to dispatch execution threads to one or more shader core(s) 3115A-3115N.
Graphics processor 3110 additionally includes a tiling unit 3118 to accelerate tiling operations for tile-based rendering,
in which rendering operations for a scene are subdivided in image space. Tile-based rendering can be used to exploit
local spatial coherence within a scene or to optimize use of internal caches.
[0288] References to "one embodiment", "an embodiment", "example embodiment", "various embodiments", etc.,
indicate that the embodiment(s) so described may include particular features, structures, or characteristics, but not every
embodiment necessarily includes the particular features, structures, or characteristics. Further, some embodiments may
have some, all, or none of the features described for other embodiments.
[0289] In the foregoing specification, embodiments have been described with reference to specific exemplary embod-

EP 3 839 739 A1

38

5

10

15

20

25

30

35

40

45

50

55

iments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing
from the broader spirit and scope of embodiments as set forth in the appended claims. The Specification and drawings
are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
[0290] In the following description and claims, the term "coupled" along with its derivatives, may be used. "Coupled"
is used to indicate that two or more elements cooperate or interact with each other, but they may or may not have
intervening physical or electrical components between them.
[0291] As used in the claims, unless otherwise specified the use of the ordinal adjectives "first", "second", "third", etc.,
to describe a common element, merely indicate that different instances of like elements are being referred to, and are
not intended to imply that the elements so described must be in a given sequence, either temporally, spatially, in ranking,
or in any other manner.
[0292] The following clauses and/or examples pertain to further embodiments or examples. Specifics in the examples
may be used anywhere in one or more embodiments. The various features of the different embodiments or examples
may be variously combined with some features included and others excluded to suit a variety of different applications.
Examples may include subject matter such as a method, means for performing acts of the method, at least one machine-
readable medium including instructions that, when performed by a machine cause the machine to perform acts of the
method, or of an apparatus or system for facilitating hybrid communication according to embodiments and examples
described herein.
[0293] Some embodiments pertain to Example 1 that includes an apparatus to facilitate intelligent dispatching and
vectorizing at autonomous machines, the apparatus comprising: detection/observation logic, as facilitated by or at least
partially incorporated into the processor, to detect a plurality of threads corresponding to a plurality of workloads asso-
ciated with tasks relating to a graphics processor; and intelligent thread dispatching logic, as facilitated by or at least
partially incorporated into the processor, to determine a first set of threads of the plurality of threads that are similar to
each other or have adjacent surfaces, wherein the intelligent thread dispatching logic is further to physically cluster the
first set of threads close together using a first set of adjacent compute blocks.

Example 2 includes the subject matter of Example 1, wherein the intelligent thread dispatching logic is further to
determine a second set of threads of the plurality of threads that are disjoined or dissimilar to each other, where the
second set of threads are launched on a second set of compute blocks to avoid address conflict with the first set of
compute blocks.
Example 3 includes the subject matter of Examples 1-2, wherein the first and second sets of compute blocks are
backed by shared resources containing cache to keep locality in a memory space or a pixel space to provide utilization
for common areas.
Example 4 includes the subject matter of Examples 1-3, further comprising prefetching logic, as facilitated by or at
least partially incorporated into the processor, to prefetch data into one or more caches simultaneously as one or
more of the plurality of threads are being loaded into a shader core.
Example 5 includes the subject matter of Examples 1-4, further comprising vectorization logic, as facilitated by or
at least partially incorporated into the processor, to facilitated vectorized lock operations such that multiple operands
are one or more of locked, modified, and written back simultaneously.
Example 6 includes the subject matter of Examples 1-5, wherein the vectorization logic is further to read operand
width and vector length from a data stream, wherein the vectorization logic is further to set or clear lock bits to
perform operations on vector data of the data stream based on the operand width and the vector length.
Example 7 includes the subject matter of Examples 1-6, wherein the graphics processor is co-located with an
application processor on a common semiconductor package.
Some embodiments pertain to Example 8 that includes a method for facilitating intelligent dispatching and vectorizing
at autonomous machines, the method comprising: detecting a plurality of threads corresponding to a plurality of
workloads associated with tasks relating to a processor including a graphics processor; determining a first set of
threads of the plurality of threads that are similar to each other or have adjacent surfaces; and physically clustering
the first set of threads close together using a first set of adjacent compute block.
Example 9 includes the subject matter of Example 8, further comprising determining a second set of threads of the
plurality of threads that are disjoined or dissimilar to each other, where the second set of threads are launched on
a second set of compute blocks to avoid address conflict with the first set of compute blocks.
Example 10 includes the subject matter of Examples 8-9, wherein the first and second sets of compute blocks are
backed by shared resources containing cache to keep locality in a memory space or a pixel space to provide utilization
for common areas.
Example 11 includes the subject matter of Examples 8-10, further comprising prefetching data into one or more
caches simultaneously as one or more of the plurality of threads are being loaded into a shader core.
Example 12 includes the subject matter of Examples 8-11, further comprising facilitating vectorized lock operations
such that multiple operands are one or more of locked, modified, and written back simultaneously.

EP 3 839 739 A1

39

5

10

15

20

25

30

35

40

45

50

55

Example 13 includes the subject matter of Examples 8-12, further comprising: reading operand width and vector
length from a data stream; and setting or clearing lock bits to perform operations on vector data of the data stream
based on the operand width and the vector length.
Example 14 includes the subject matter of Examples 8-13, wherein the graphics processor is co-located with an
application processor on a common semiconductor package.
Some embodiments pertain to Example 15 that includes a graphics processing system comprising a computing
device having memory coupled to a processor, the processor to: detect a plurality of threads corresponding to a
plurality of workloads associated with tasks relating to a processor including a graphics processor; determine a first
set of threads of the plurality of threads that are similar to each other or have adjacent surfaces; and physically
cluster the first set of threads close together using a first set of adjacent compute blocks.
Example 16 includes the subject matter of Example 15, wherein the processor is further to: determine a second set
of threads of the plurality of threads that are disjoined or dissimilar to each other, where the second set of threads
are launched on a second set of compute blocks to avoid address conflict with the first set of compute blocks.
Example 17 includes the subject matter of Example 15-16, wherein the first and second sets of compute blocks are
backed by shared resources containing cache to keep locality in a memory space or a pixel space to provide utilization
for common areas.
Example 18 includes the subject matter of Example 15-17, wherein the operations further comprise prefetching data
into one or more caches simultaneously as one or more of the plurality of threads are being loaded into a shader core.
Example 19 includes the subject matter of Examples 15-18, wherein the processor is further to facilitate vectorized
lock operations such that multiple operands are one or more of locked, modified, and written back simultaneously.
Example 20 includes the subject matter of Examples 15-19, wherein the processor is further to: read operand width
and vector length from a data stream; and set or clear lock bits to perform operations on vector data of the data
stream based on the operand width and the vector length, wherein the graphics processor is co-located with an
application processor on a common semiconductor package.
Example 21 includes the subject matter of Examples 15-20, wherein the first graphics processor is co-located with
an application processor on a common semiconductor package.
Example 22 includes at least one non-transitory or tangible machine-readable medium comprising a plurality of
instructions, when executed on a computing device, to implement or perform a method as claimed in any of claims
or examples 8-14.
Example 23 includes at least one machine-readable medium comprising a plurality of instructions, when executed
on a computing device, to implement or perform a method as claimed in any of claims or examples 8-14.
Example 24 includes a system comprising a mechanism to implement or perform a method as claimed in any of
claims or examples 8-14.
Example 25 includes an apparatus comprising means for performing a method as claimed in any of claims or
examples 8-14.
Example 26 includes a computing device arranged to implement or perform a method as claimed in any of claims
or examples 8-14.
Example 27 includes a communications device arranged to implement or perform a method as claimed in any of
claims or examples 8-14.
Example 28 includes at least one machine-readable medium comprising a plurality of instructions, when executed
on a computing device, to implement or perform a method or realize an apparatus as claimed in any preceding claims.
Example 29 includes at least one non-transitory or tangible machine-readable medium comprising a plurality of
instructions, when executed on a computing device, to implement or perform a method or realize an apparatus as
claimed in any preceding claims.
Example 30 includes a system comprising a mechanism to implement or perform a method or realize an apparatus
as claimed in any preceding claims.
Example 31 includes an apparatus comprising means to perform a method as claimed in any preceding claims.
Example 32 includes a computing device arranged to implement or perform a method or realize an apparatus as
claimed in any preceding claims.
Example 33 includes a communications device arranged to implement or perform a method or realize an apparatus
as claimed in any preceding claims.

[0294] The drawings and the forgoing description give examples of embodiments. Those skilled in the art will appreciate
that one or more of the described elements may well be combined into a single functional element. Alternatively, certain
elements may be split into multiple functional elements. Elements from one embodiment may be added to another
embodiment. For example, orders of processes described herein may be changed and are not limited to the manner
described herein. Moreover, the actions of any flow diagram need not be implemented in the order shown; nor do all of
the acts necessarily need to be performed. Also, those acts that are not dependent on other acts may be performed in

EP 3 839 739 A1

40

5

10

15

20

25

30

35

40

45

50

55

parallel with the other acts. The scope of embodiments is by no means limited by these specific examples. Numerous
variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of
material, are possible. The scope of embodiments is at least as broad as given by the following claims.
[0295] The invention may be related to one or more of the following examples:

1. An apparatus intelligent dispatching and vectorizing at autonomous machines, the apparatus comprising:

detection/observation logic to detect a plurality of threads corresponding to a plurality of workloads associated
with tasks relating to a graphics processor; and
intelligent thread dispatching logic to determine a first set of threads of the plurality of threads that are similar
to each other or have adjacent surfaces, wherein the intelligent thread dispatching logic is further to physically
cluster the first set of threads close together using a first set of adjacent compute blocks.

2. The apparatus of example 1, wherein the intelligent thread dispatching logic is further to determine a second set
of threads of the plurality of threads that are disjoined or dissimilar to each other, where the second set of threads
are launched on a second set of compute blocks to avoid address conflict with the first set of compute blocks,
wherein the first and second sets of compute blocks are backed by shared resources containing cache to keep
locality in a memory space or a pixel space to provide utilization for common areas.
3. The apparatus of example 1, further comprising prefetching logic to prefetech data into one or more caches
simultaneously as one or more of the plurality of threads are being loaded into a shader core.
4. The apparatus of example 1, further comprising vectorization logic to facilitated vectorized lock operations such
that multiple operands are one or more of locked, modified, and written back simultaneously, wherein the vectorization
logic is further to read operand width and vector length from a data stream, wherein the vectorization logic is further
to set or clear lock bits to perform operations on vector data of the data stream based on the operand width and the
vector length.
5. The apparatus of example 1, wherein the graphics processor is co-located with an application processor on a
common semiconductor package.
6. A method intelligent dispatching and vectorizing at autonomous machines, the method comprising:

detecting a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a
graphics processor;
determining a first set of threads of the plurality of threads that are similar to each other or have adjacent
surfaces; and
physically clustering the first set of threads close together using a first set of adjacent compute blocks.

7. The method of example 6, further comprising determining a second set of threads of the plurality of threads that
are disjoined or dissimilar to each other, where the second set of threads are launched on a second set of compute
blocks to avoid address conflict with the first set of compute blocks, wherein the first and second sets of compute
blocks are backed by shared resources containing cache to keep locality in a memory space or a pixel space to
provide utilization for common areas.
8. The method of example 6, further comprising prefetching data into one or more caches simultaneously as one
or more of the plurality of threads are being loaded into a shader core.
9. The method of example 6, further comprising facilitating vectorized lock operations such that multiple operands
are one or more of locked, modified, and written back simultaneously.
10. The method of example 6, further comprising at least one of:

reading operand width and vector length from a data stream; and/or
setting or clearing lock bits to perform operations on vector data of the data stream based on the operand width
and the vector length, wherein the graphics processor is co-located with an application processor on a common
semiconductor package.

11. At least one machine-readable medium comprising a plurality of instructions, when executed on a computing
device, to implement or perform a method as claimed in any of examples 6-10.
12. A system comprising a mechanism to implement or perform a method as claimed in any of examples 6-10.
13. An apparatus comprising means for performing a method as claimed in any of examples 6-10.
14. A computing device arranged to implement or perform a method as claimed in any of examples 6-10.
15. A communications device arranged to implement or perform a method as claimed in any of examples 6-10.

EP 3 839 739 A1

41

5

10

15

20

25

30

35

40

45

50

55

Claims

1. An apparatus comprising:
one or more processors including a graphics processor, the one or more processors to:

detect a plurality of threads corresponding to a plurality of workloads associated with tasks relating to the one
or more processors;
determine a first set of threads of the plurality of threads that are similar to each other or have adjacent surfaces,
and further to physically cluster the first set of threads close together using a first set of adjacent compute blocks;
facilitate vectorized lock operations such that multiple operands for the first set of threads are one or more of
locked, modified, and written back simultaneously; and
read operand width and vector length from a data stream and set or clear lock bits to perform operations on
vector data of the data stream based on the operand width and the vector length.

2. The apparatus of claim 1, wherein the one or more processors are further to determine a second set of threads of
the plurality of threads that are disjoined or dissimilar to each other, where the second set of threads are launched
on a second set of compute blocks to avoid address conflict with the first set of compute blocks.

3. The apparatus of claim 1, wherein the first and second sets of compute blocks are backed by shared resources
containing cache to keep locality in a memory space of a pixel space to provide utilization for common areas.

4. The apparatus of claim 1, wherein the one or more processors are to prefetch data into one or more caches
simultaneously as one or more of the plurality of threads are being loaded in to a shader core.

5. The apparatus of claim 1, wherein the graphics processor is co-located with an application processor on a common
semiconductor package.

6. A method comprising:

detecting a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a
processor including a graphics processor;
determining a first set of threads of the plurality of threads that are similar to each other or have adjacent surfaces;
physically clustering the first set of threads close together using a first set of adjacent compute-blocks;
facilitating vectorized lock operations such that multiple operands for the first set of threads are one or more of
locked, modified, and written back simultaneously;
reading operand width and vector length from a data stream; and
setting or clearing lock bits to perform operations on vector data of the data stream based on the operand width
and the vector length.

7. The method of claim 6, further comprising determining a second set of threads of the plurality of threads that are
disjoined or dissimilar to each other, where the second set of threads are launched on a second set of compute
blocks to avoid address conflict with the first set of compute blocks.

8. The method of claim 7, wherein the first and second sets of compute blocks are backed by shared resources
containing cache to keep locality in a memory space or a pixel space to provide utilization of common areas.

9. The method of claim 6, further comprising prefetching data into one or more caches simultaneously as one or more
of the plurality of threads are being loaded into a shader core.

10. The method of claim 6, wherein the graphics processor is co-located with an application processor on a common
semiconductor package.

11. At least one non-transitory machine-readable medium comprising instructions that when executed by a computing
device, cause the computing device to perform operations comprising:

detecting a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a
processor including a graphics processor;
determining a first set of threads of the plurality of threads that are similar to each other or have adjacent surfaces;

EP 3 839 739 A1

42

5

10

15

20

25

30

35

40

45

50

55

physically clustering the first set of threads close together using a first set of adjacent compute blocks;
facilitating vectorized lock operations such that multiple operands for the first set of threads are one or more of
locked, modified, and written back simultaneously;
reading operand width and vector length from a data stream; and
set or clear lock bits to perform operations on vector data of the data stream based on the operand width and
the vector length.

12. The machine-readable medium of claim 11, wherein the operations further comprise: determining a second set of
threads of the plurality of threads that are disjoined or dissimilar to each other, where the second set of threads are
launched on a second set of compute blocks to avoid address conflict with the first set of compute blocks.

13. The machine-readable medium of claim 12, wherein the first and second sets of compute blocks are backed by
shared resources containing cache to keep locality in a memory space or a pixel space to provide utilization for
common areas.

14. The machine-readable medium of claim 11, wherein the operations further comprise prefetching data into one or
more caches simultaneously as one or more of the plurality of threads are being loaded into a shader core.

15. The machine-readable medium of claim 11, wherein the graphics processor is co-located with an application proc-
essor on a common semiconductor package.

EP 3 839 739 A1

43

EP 3 839 739 A1

44

EP 3 839 739 A1

45

EP 3 839 739 A1

46

EP 3 839 739 A1

47

EP 3 839 739 A1

48

EP 3 839 739 A1

49

EP 3 839 739 A1

50

EP 3 839 739 A1

51

EP 3 839 739 A1

52

EP 3 839 739 A1

53

EP 3 839 739 A1

54

EP 3 839 739 A1

55

EP 3 839 739 A1

56

EP 3 839 739 A1

57

EP 3 839 739 A1

58

EP 3 839 739 A1

59

EP 3 839 739 A1

60

EP 3 839 739 A1

61

EP 3 839 739 A1

62

EP 3 839 739 A1

63

EP 3 839 739 A1

64

EP 3 839 739 A1

65

EP 3 839 739 A1

66

EP 3 839 739 A1

67

EP 3 839 739 A1

68

EP 3 839 739 A1

69

EP 3 839 739 A1

70

EP 3 839 739 A1

71

EP 3 839 739 A1

72

EP 3 839 739 A1

73

EP 3 839 739 A1

74

EP 3 839 739 A1

75

EP 3 839 739 A1

76

EP 3 839 739 A1

77

EP 3 839 739 A1

78

EP 3 839 739 A1

79

EP 3 839 739 A1

80

EP 3 839 739 A1

81

EP 3 839 739 A1

82

EP 3 839 739 A1

83

EP 3 839 739 A1

84

EP 3 839 739 A1

85

5

10

15

20

25

30

35

40

45

50

55

EP 3 839 739 A1

86

5

10

15

20

25

30

35

40

45

50

55

EP 3 839 739 A1

87

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• SHANE COOK. CUDA Programming. 2013, 37-51
[0003]

• NICHOLAS WILT. CUDA Handbook, A Comprehen-
sive Guide to GPU Programming, June 2013 [0003]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

