PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :		(11) Internationale Veröffentlichungsnummer: WO 99/09419			
G01R	A2	(43) Internationales Veröffentlichungsdatum: 25. Februar 1999 (25.02.99)			
(21) Internationales Aktenzeichen: PCT/DE (22) Internationales Anmeldedatum: 19. August 1998 ((81) Bestimmungsstaaten: US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).				
(30) Prioritätsdaten: 197 36 224.9 20. August 1997 (20.08.97)	Ι	Veröffentlicht Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.			
(71)(72) Anmelder und Erfinder: SCHÖNWEITZ, Peter Alte Poststrasse 30 a, D-85356 Freising (DE). W Dietrich [DE/DE]; Danziger Strasse 62, D-85748 (DE).	ABNE	R,			

- (54) Title: METHOD FOR VOLTAMETRIC MEASUREMENT OF VERY LOW VOLTAGE USING FEW COMPONENTS
- (54) Bezeichnung: VERFAHREN ZUR MESSUNG KLEINSTER ELEKTRISCHER STRÖME IN DER VOLTAMMETRIE MIT GERINGEM BAUTEILAUFWAND

(57) Abstract

The invention relates to a simplified and improved method to carry out very sensitive voltametric measurements. The pre-determined voltage between the electrolyte and the collector is not obtained by readjusting the electrolyte potential, but by an autonomous regulating circuit which maintains the potential grounded. This provides the advantage that the slightest difference in potential is detected in the operational amplifiers and that the regulator adjusts an equivalent current by means of the load resistor. Said circuit has a limited use in fast cyclovoltametric applications since the regulating distance of the integrator used is longer in comparison with direct compensation.

(57) Zusammenfassung

Dieses Verfahren beschreibt eine vereinfachte und verbesserte Meßmethode für noch empfindlichere voltammetrische Messungen. Hierbei wird die voreingestellte Spannung zwischen Elektrolyt und Arbeitselektrode nicht über Nachregelung des Elektrolytpotentials erreicht, sondern über einen eigenständigen Regelkreis, der das Potential der Arbeitselektrode gegen Masse hält. Der Vorteil dabei ist, daß geringste Potentialunterschiede von Operationsverstärkern detektiert werden und der Regler über den Lastwiderstand ein Stromäquivalent einstellen kann. Diese Schaltung läßt sich nur begrenzt für die Fast-Cyclovoltammetry einsetzen, da die Regelstrecke des hier verwendeten Integrierers im Gegensatz zur direkten Kompensation länger ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	ΙL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung:

5

10

15

25

30

Verfahren zur Messung kleinster elektrischer Ströme in der Voltammetrie mit geringem Bauteilaufwand

Die vorliegende Erfindung betrifft ein Verfahren gemäß Anspruch 1, mit dem voltammetrische Messungen mit geringen Bauteilaufwand (zwei Operationsverstärkern) in Strombereichen bis Picoampere durchgeführt werden können.

Der <u>Stand der Technik</u> erlaubt heutzutage Strommessungen in sehr aufwendigen Schaltungen bis in den unteren Picoamperebereich (10 ⁻¹² Ampere) bei voltammetrischen Messungen und Stromdichtepotentialmessungen an Zwei- oder Dreielektrodensystemen. Dabei werden prinzipiell Operationsverstärker als I/U-Wandler geschaltet oder das Potential an einem Lastwiderstand abgegriffen und aus dem ohmschen Gesetz der Strom berechnet. Eine der für diesen Bereich wichtigsten Schaltungen ist der I/U-Wandler mit Operationsverstärkern. Bei dem Strom-Spannungswandler (siehe Figur 1-b) ergibt sich wegen der virtuellen Masse direkt die Beziehung

$$U_{o} = -RI_{e} \qquad (GI. 1)$$

Da sich wegen der an der Arbeitselektrode stattfindenen Chemie das Potential ändert, wird durch eine ergänzende Schaltung (Figur 2) die Differenzspannung über die Gegenelektrode nachgeführt.

Bei diesen genannten und gängigen Methoden wird also effektiv zu dem vorgegebenen Potential vom D/A-Wandler noch die Potentialdifferenz schaltungstechnisch addiert, die zwischen der Arbeitselektrode und Masse gemessen wird, um exakt reproduzierbare Cyclovoltagramme zu erhalten.

Der Nachteil, daß sich, schaltungstechnisch gesehen, daß sich das Potential an der Arbeitselektrode nach Potentialvorgabe durch die Gegenelektrode noch weiter ändert, wurde in dieser Realisierung als Vorteil ausgenutzt.

Elektrotechnisch wurde dazu die Grenzfläche (siehe Figur 3) und das Potentialgefälle zwischen dem Elektrolyten und der Elektrodenoberfläche betrachtet.

Da sich also das Potential an der Arbeitselektrode ändern möchte, wurde ein eigenständiges Regelsystem entworfen, das das Potential der Arbeitselektrode auf Masse hält. Das dazu notwendige, entgegengerichtete Potential wurde an einen Lastwiderstand an der Arbeitselektrode angelegt (Figur 4). Nach dem ohmschen Gesetz resultierte damit der Strom, der über die Arbeitselektrode fließt.

Wie aus der Schaltung (Figur 2 und Figur 5) und der Beschreibung über den Stand der Technik hervorgeht, wird ein noch größerer Aufwand getrieben, um Ströme bis in den Picoamperebereich zu messen.

10

5

Literatur.

- [1] H. Wupper, *Professionelle Schaltungen mit Operationsverstärkem*, Franzis-Verlag 1994.
- [2] H. Wupper, U. Niemeyer, *Elektronische Schaltungen 2,*Operationsverstärker, Digitalschaltungen, Verbindungsleitungen, Springer
 Verlag, Berlin, Heidelberg 1996, 82.
 - [3] Hamann/Vielstich, Elektrochemie II, Elektrodenprozesse, angewandte Elektrochemie, Verlag Chemie 1981, 142-155.
- [4] Dennis E. Tallman, A wide bandwith computer based potentiostat for fast voltammentry at microelectrodes, J. Electroanal. Chem., 280 (1990), 327-340

Es ist daher Aufgabe der vorliegenden Erfindung eine zuverlässige und einfache elektronische Schaltung (Figur 6-8) für voltammetrische Messungen zur Verfügung zu stellen. Desweiteren ergab sich überraschender Weise neben der hohen Empfindlichkeit und dem geringen Bauteilaufwand (zwei Operationsverstärker, Figur 7 und Figur 8) die Möglichkeit störendes Rauschen durch einfache Schaltungsergänzung mit Widerständen zu beseitigen (Figur 8).

Die Lösung dieser Aufgabe geschieht durch die Merkmale des Patentanspruchs 1, einem Verfahren zur voltammetrischen Messung bei der das Potential an der Arbeitselektrode durch ein Regelsystem auf Masse gehalten wird. Nach dem ohmschen Gesetz entspricht das dabei am Meßpunkt abgegriffene Potential gegen Masse dem Strom der über den Lastwiderstand und der Arbeitselektrode fließt.

Desweiteren führte die Verwendung eines Integrierers zur Verminderung des Grundrauschens und glättete zugleich die Meßsignale. Dabei konnte auf kapazitive Bauteile sowie aktive und passive Filter zur Minderung des Rauschens verzichtet werden.

Durch einen Spannungsteiler (R1/R2) konnte die Auflösung trotz des schon großen Widerstandes R_{LAST} von 100 MOhm dem A/D-Wandler angepaßt werden. Der Widerstand R_G, von 100 Ohm und kleiner, glättet ungewollte Spannungsspitzen nach dem Spannungsverfolger.

<u>Weitere Vorteile und Merkmale</u> der vorliegenden Erfindung ergeben sich aufgrund der Beschreibung sowie anhand der Zeichnungen:

25

30

35

20

10

Als Operationsverstärker wurden u.a. der OPA111 von BurrBrown und der Instrumentenverstärker INA116 ebenfalls von BurrBrown eingesetzt und getestet. Beide brachten trotz ihrer unterschiedlichen Einsatzgebiete sehr zufriedenstellende Ergebnisse im Bereich voltammetrischer Messungen. Wie aus den Figuren 2 und 5 hervorgeht, ist bisher der Bauteilaufwand deutlich höher als mit der neuen Schaltung. Dadurch, daß beim Integrierer an dem nichtinvertierendem Eingang ein Potential eingestellt werden kann, an das sich die Arbeitselektrode anpassen soll, ist es auch möglich auf die potentialvorgebende Seite für den Elektrolyten (Figur 2, siehe Gegenelektrode) zu verzichten. Aus dem resultierendem Zweielektrodensystem, muß dazu lediglich die Gegenelektrode oder Bezugselektrode an Masse gelegt werden. Auf die korrespondierende Elektrode kann weiterhin verzichtet werden.

Abkürzungen:

5

A/D Analog-Digitalwandler
AE Arbeitselektrode

AUX Gegenelektrode

BE Bezugselektrode

CE Gegenelektrode

D/A Digital-Analogwandler

GE Gegenelektrode

10 E Potential

I Elektrische Strom

OP Operationsverstärker

R Elektrischer Widerstand

REF Bezugselektrode

15 U Spannung / Potentialdifferenz

WKG Arbeitselektrode

U_{AE} Potential Arbeitselektrode

U_{AD} Potential Meßpunkt

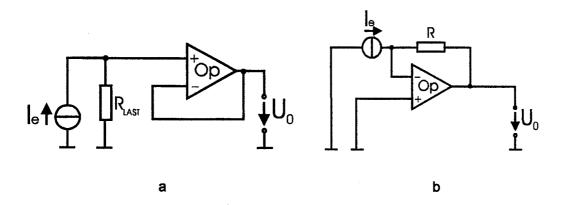
U_{OP} Potential Operationsverstärkereingang

20 U_{DA} Potential DA-Wandler

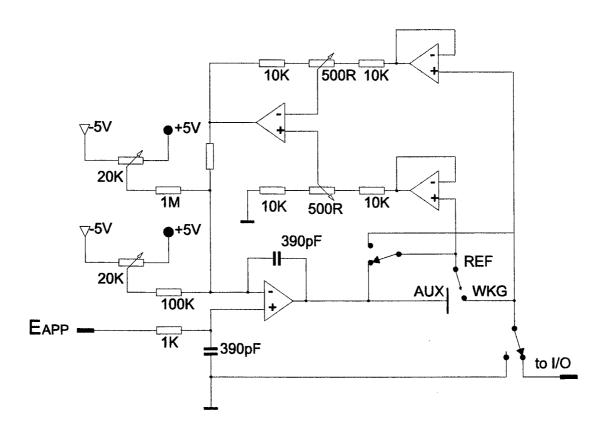
Ansprüche:

10

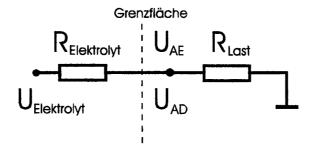
Verfahren, mit welchem voltammetrische Messungen an einem Zwei- oder
 Dreielektrodensystem durchgeführt werden können,


dadurch gekennzeichnet,

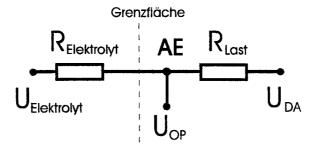
daß das Potential der Arbeitselektrode durch einen eigenen Regelkreis über einen Lastwiderstand gegen Masse des Meßsystems gezogen wird, um die vorgelegte Potentialdifferenz zwischen Elektrolyt und Arbeitselektrode aufrecht zu erhalten, um ausschließlich dadurch den Strom zu bestimmen.


- 2. Strommeßsystem nach Patentanspruch 1,
- 15 dadurch gekennzeichnet,

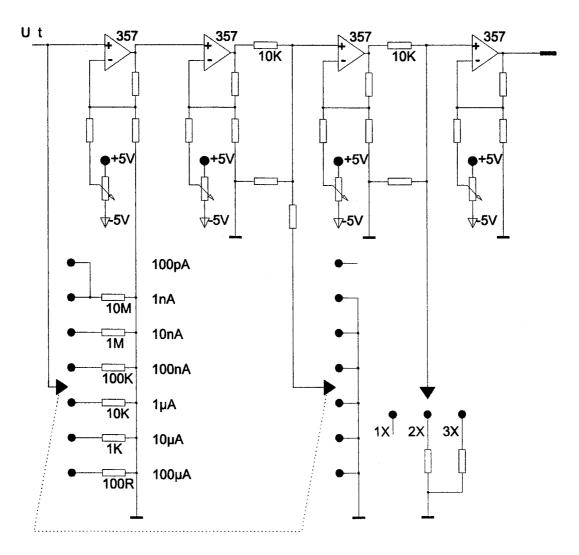
daß der Regelkreis aus zwei Operationsverstärkern besteht, wobei einer die potentialdetekierende Funktion (Spannungsverfolger) und der andere die Reglerfunktion (invertierender Integrierer) übernimmt.


Figuren:

5 Figur 1: a. I/U-Wandler über einen Lastwiderstand b. stromgesteuerte Spannungsquelle

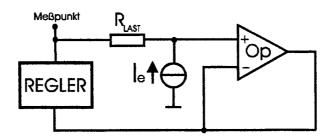


Figur 2: Schaltung zur Kompensation des sich ändernden Potentials an der Arbeitselektrode

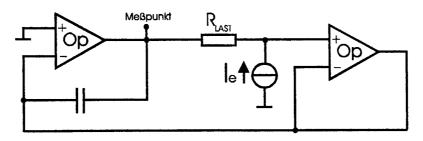


Figur 3: Elektrotechnische Beschreibung für eine herkömmliche Strommessung an der Arbeitselektrode

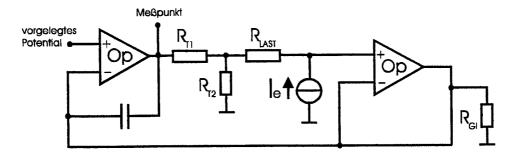
5



Figur 4: Elektrotechnische Beschreibung hinter der Elektrodengrenzfläche für eine Strommessung mit Regelsystem


Figur 5: Eine gängige Verstärkerschaltung um Ströme bis in den Nanoamperebereich zu messen

5


Figur 6: Regelsystem für Strommessungen

5

Figur 7: Regelsystem zur Strommessung mit zwei Operationsverstärkern

10

15

Figur 8: Vollständig aufgebaute Schaltung, die in einem Faradaykäfig Ströme bis in den unteren Picoamperebereich detektiert