
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0174102 A1

Kagan et al.

US 2012O1741 O2A1

(43) Pub. Date: Jul. 5, 2012

(54)

(75)

(73)

(21)

(22)

(60)

SYSTEMAND METHOD FOR
ACCELERATING INPUTAOUTPUT ACCESS
OPERATION ONAVIRTUAL MACHINE

Inventors: Michael Kagan, Zichron Yaakov
(IL); Dror Goldenberg, Zichron
Yaakov (IL); Benny Koren,
Zichron Yaakov (IL); Michael
Tsirkin, Yokneam Yllit (IL)

Assignee: MELLANOXTECHNOLOGIES
LTD., Yokneam (IL)

Appl. No.: 13/420,641

Filed: Mar. 15, 2012

Related U.S. Application Data

Continuation of application No. 12/699,894, filed on
Feb. 4, 2010, which is a division of application No.
11/208,528, filed on Aug. 23, 2005.

CPU Memory
O

Publication Classification

(51) Int. Cl.
G06F 9/455 (2006.01)

(52) U.S. Cl. .. 718/1

(57) ABSTRACT

A system and method for accelerating input/output (IO)
access operation on a virtual machine, The method comprises
providing a Smart IO device that includes an unrestricted
command queue (CQ) and a plurality of restricted CQS and
allowing a guest domain to directly configure and control IO
resources through a respective restricted CQ, the IO resources
allocated to the guest domain. In preferred embodiments, the
allocation of IO resources to each guest domain is performed
by a privileged virtual Switching element. In some embodi
ments, the smartIO device is a HCA and the privileged virtual
Switching element is a Hypervisor.

Hypervisor 108

Guest
D-Ca.
04

O device
O2

Patent Application Publication Jul. 5, 2012 Sheet 1 of 8 US 2012/0174102 A1

F.G. a

Hypervisor 108

O device
102

CPU Memory
O6

Patent Application Publication Jul. 5, 2012 Sheet 2 of 8 US 2012/0174102 A1

:

2 s

s

22. s

Patent Application Publication Jul. 5, 2012 Sheet 3 of 8 US 2012/0174102 A1

F.G. 1c

US 2012/0174102 A1 Jul. 5, 2012 Sheet 4 of 8

Z '5) i--;

Patent Application Publication

US 2012/0174102 A1 Jul. 5, 2012 Sheet 5 of 8

... is irri

Patent Application Publication

US 2012/0174102 A1 Jul. 5, 2012 Sheet 6 of 8 Patent Application Publication

US 2012/0174102 A1 Jul. 5, 2012 Sheet 7 of 8 Patent Application Publication

80$ 909

ON

S3)\·

US 2012/0174102 A1 Jul. 5, 2012 Sheet 8 of 8 Patent Application Publication

909

9 '91-i

US 2012/01741 O2 A1

SYSTEMAND METHOD FOR
ACCELERATING INPUTAOUTPUT ACCESS
OPERATION ONAVIRTUAL MACHINE

0001. This is a Continuation of pending U.S. patent appli
cation Ser. No. 12/699,894, filed Feb. 4, 2010, which is a
Divisional of U.S. patent application Ser. No. 1 1/208,528.
filed Aug. 23, 2005.

FIELD OF THE INVENTION

0002 The present invention relates generally to computer
systems, and more specifically to a virtual environment com
puter architecture that enables direct configuration and con
trol of input/output (IO) resources by guest domains.

BACKGROUND OF THE INVENTION

0003 Packet network communication adapters are a cen
tral element in new high-speed, packetized, serial IO bus
architectures that are gaining acceptance in the computer
industry. In these systems, computing hosts and peripherals
are linked together by a Switching network, commonly
referred to as a Switching fabric, taking the place of parallel
buses that are used in legacy systems. A number of architec
tures of this type have been proposed, culminating in the
“InfiniBandTM (IB) architecture, which is described in detail
in the InfiniBand Architecture Specification, Release 1.0 (Oc
tober, 2000), which is incorporated herein by reference. This
document is available from the InfiniBand Trade Association
at www.infinibandta.org. A host connects to a Switching fab
ric (e.g. the IB fabric) via a host channel adapter (HCA).
0004 Computer system virtualization is known. It allows
multiple operating systems and processes to share the hard
ware resources of a host computer. The system virtualization
infrastructure provides resource isolation so that each guest
operating system (OS) does not realize that it is sharing
resources with another OS and does not adversely affect the
execution of the other OS. Such system virtualization enables
applications including server consolidation, co-located host
ing facilities, distributed web services, applications mobility,
secure computing platforms and other applications that pro
vide for efficient use of underlying hardware resources. How
ever, the existing, known virtualization is exclusively imple
mented in software (SW).
0005 FIG. 1a shows schematically a virtualized server
100 comprising a hardware (HW) section IO device 102.
guest domains 104, CPU and memory functions 106 and at
least one virtual Switching element having isolation and load
balancing functions (also referred to throughout the descrip
tion as a “privileged virtual Switching element, exemplarily
a “Hypervisor”) 108 interconnected as shown. Hypervisor is
described in detail in, for example, the Xen open Source
implementation available at www.Xensource.com, or in the
IBM Redbook publication “Advanced Power Virtualization
on IMM (a server p5 Servers’, Sep. 27, 2004. In prior art
before InfiniBand, all IO accesses (both datapath and control)
had to go through the Hypervisor SW layer. In FIG. 1a, the
thick full lines illustrate datapath access, while the thin full
ones illustrate control access. The necessity to go through SW
for every IO access adversely affects performance and
increases the demands on a CPU. The InfiniBand channel
architecture solves the problem only partially, enabling direct
IO access on the datapath IO operations (see below).

Jul. 5, 2012

0006. The IO device may exemplarily be a HCA, to which
the description refers henceforth in detail. However, it should
be clear that the present invention applies equally well to
other IO devices, for example IO devices in architectures such
as Ethernet, Fiber Channel, TCP/IP, etc. “HCA is thus used
throughout the description as representing any Smart IO
device with functionality as described, while Hypervisor is
used throughout the description as representing any virtual
switching element with functionality as described.
0007. An exemplary HCA is shown in FIG. 1b. It com
prises a command queue (CQ) 120 and a plurality (up to 16M)
of data queues (DQ) 122. The CQ is used to set policies, i.e.
access rights and restrictions to use the HCA resources
(queue pairs, translation tables, etc) to access a network
directly from the application. The data queues implement IO
channels to access the IO device. The multiple HCA
resources (work queues) are used to execute datapath opera
tions and to implement cross-queue isolation and protection.
The protection and isolation policy is set by a single control
entity (CQ) owned by a privileged driver. There is therefore a
single “control interface' to configure resources and multiple
control interfaces to use them.

0008. In SW virtualization as provided by prior art, each
OS becomes a “non-trusted instance and therefore every IO
access goes through the privileged entity (e.g. Hypervisor),
which validates access rights. There is no direct access of a
guest domain to the IO mechanism. As a result, there are
multiple (and not one) kernel transitions for IO access on
behalf of an application running on a guest (virtualized)
server. In addition, Hypervisor implements a “virtual net
work in Software to enable cross-domain communication
and isolation of different domains. The issue here is not only
trust, but also resource management and isolation. The guest
domain is not aware of his fellow domains using the same
resources. Hypervisor allocates resources per domain and (in
absence of HW aids) also enforces this allocation. In order to
do the latter, it is involved in every IO operation. While using
the HCA. Hypervisor can set up policies and the HCA HW
will enforce them. The datapath operation can also be off
loaded to Hypervisor with a standard HCA, but since con
trol operations become too heavy, this solution is inefficient.
0009 FIG.1c shows a prior art non-virtual server environ
ment, in which a HCA 102 is being accessed directly for both
control and datapath operations from a domain (server) 130.
0010. An InfiniBand FICA device driver in a virtualized
server is different from a driver in a non-virtualized server.
With IB, the datapath accesses can go directly to the IO
device, while the control still goes through Hypervisor. Infini
Band defines access to hardware for IO access on the datap
ath, and isolation and protection is a part of its specification.
Thus, a standard-compliant InfiniBand HCA enables export
ing an IO channel for data transfer to each operating system,
off-loading this “virtual network” from Hypervisor to the
HCA HW. Since some control operations (e.g. memory reg
istration) are performance-critical, this solution does not
Solve the entire problem of IO access from a guest domain,
and part of the IO access operation has to go in Software
through Hypervisor. Such a software based approach has two
drawbacks:

0011 1. All control operations on behalf of the application
in the guest domain must be done in Hypervisor, which incurs
kernel transitions, and:

US 2012/01741 O2 A1

0012. 2. The InfiniBand SW (driver) running in the guest
domain must be changed to run datapath operations directly
to the HW, while for control operations it must generate a call
to Hypervisor
0013 The first drawback has performance implications,
since going through multiple kernel transitions is prohibitive.
The second drawback does not enable to run the same OS
distribution on non-virtualized and virtualized servers.
0014. There is therefore a widely recognized need for, and

it would be highly advantageous to have, a hardware based
Solution that enables acceleration of IO access operations on
a virtual machine, while reducing CPU load. It would further
more be advantageous to enable a guest domain to execute
control (and not only datapath) operations by direct access to
hardware.

SUMMARY OF THE INVENTION

0015. According to the present invention there is provided
a method for accelerating IO access operation on a virtual
machine comprising the steps of providing a Smart IO device
that includes an unrestricted CQ and a plurality of restricted
CQS and allowing a guest domain to directly configure and
control IO resources through a respective restricted CQ, the
IO resources allocated to the guest domain through the unre
stricted CQ.
0016. According to the present invention there is provided
a method for accelerating input/output access operation on a
virtual machine comprising the steps of, in a smart IO device,
providing a plurality of restricted CQS, each associated with
a respective guest domain, and using a Hypervisor, allocating
partial IO resources to each restricted CQ, whereby each
guest domain may directly configure and control its respec
tively allocated IO resources through its associated restricted
CQ while being isolated and protected from other guest
domains.
0017. According to the present invention there is provided
a system for accelerating IO access operation on a virtual
machine comprising a Smart IO device that includes an unre
stricted CQ and a plurality of restricted CQs, each restricted
CQ operative to be associated with a respective guest domain;
and a configuring function operative to allocate partial IO
resources to each guest domain, whereby the system enables
each guest domain to directly configure and control IO
resources, while being isolated and protected from all other
guest domains accessing the virtual machine through the
Smart IO device.
0018. According to the present invention there is provided
a system for accelerating IO access operation on an Infini
Band virtual machine comprising a Smart IO device compris
ing a CO creation function, the CQ creation function opera
tive to create CQs that can be exported to a guest OS, enabling
the guest OS to run unmodified InfiniBand software.

BRIEF DESCRIPTION OF THE DRAWINGS

0019 For a better understanding of the present invention
and to show more clearly how it could be applied, reference
will now be made, by way of example only, to the accompa
nying drawings in which:
0020 FIG. 1a shows schematically a prior art virtualized
server;
0021 FIG. 1b shows schematically details of a prior art
HCA:

Jul. 5, 2012

0022 FIG. 1c shows schematically prior art IO access
from a non-virtualized server
0023 FIG. 2 shows schematically a preferred embodi
ment of a system of the present invention for accelerating
input/output access operation on a virtual machine.
0024 FIG. 3 shows in more detail a smart HCA of the
present invention;
0025 FIG. 4 shows schematically a flow chart of the two
major basic steps in the method of the present invention;
0026 FIG. 5 shows a detailed flow chart of the allocation
step in the method of FIG. 4;
0027 FIG. 6 shows a detailed flow chart of the translation
table configuration step in the method of FIG. 4

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0028. The present invention relates to a system and
method for accelerating input/output access operation on a
virtual machine. It allows a guest domain to execute control
(and not only datapath) operations by direct access to hard
ware and represents a novel HW implementation of virtual
ization. The following description uses a HCA as an exem
plary Smart device, and Hypervisor as an exemplary virtual
Switching element. However, as mentioned, the present
invention is meant to encompass other IO devices and other
virtual Switching elements used or operating in various archi
tectures and/or protocols such as Ethernet, Fiber Channel,
TCP/IP, if such IO devices and virtual switching elements
include one or more of the inventive features described
herein. With virtualization support as provided herein, a HCA
enables to have multiple entities that may each independently
configure a subset of HCA resources to be subsequently used
by applications. In essence, the present invention allows a
guest to use a HCA in a virtualized environment the same way
as the usage today in a non-virtualized environment repre
sented by FIG. 1c.
0029. The present invention addresses the two drawbacks
of SW virtualization solutions mentioned in the Background
(before and after IB) and presents a solution that overcomes
these drawbacks. The present invention allows both datapath
and performance-critical control operation access from a
guest domain directly to the IO device. The same driver that
runs in a non-virtualized server can run now also in a virtu
alized server. The solution is achieved by implementing the
following functions in a Smart HCA integrated chip (i.e. in
hardware):
0030) 1. A command queue (CQ) creation (configuration)
function that creates command queues that can be exported to
the guest OS, so that the guest OS is able to run unmodified
SW (e.g. InfiniBand SW). A separate CQ is assigned to each
guest domain, the type of configuration that can be done
through each CQ is specified, and non-allowed commands are
proxied to Hypervisor with results returned to the guest OS.
0031 2. An address translation and validation function. IO
address translation functions per-se exist today in some
bridge devices (called IO memory management unit or
MMU). However, the present invention provides an on-chip
capability that enables to offload Hypervisor in systems that
do not include IO MMU functionality in the chipset. The
Smart HCA implements an additional stage in the address
translation process to validate and translate the physical
address given by the guest OS to a true HW physical address
0032 Some control operations generated by a guest
domain (e.g. HCA shut-down, fabric management etc.) must

US 2012/01741 O2 A1

be validated (and sometimes executed) by Hypervisor. The
smart HCA HW of the present invention is capable of proxy
ing Such an operation for execution in Hypervisor, and return
the result of the execution to the guest domain. In essence, the
invention enables guest domains to access an IO device for
performance-critical control operations. Advantageously, it
also enables use of the same IO device driver that runs on a
non-virtual server to run on a virtual server. Moreover, in
contrast with prior art HCA, in which there is a single control
entity and multiple data queues, the present invention pro
vides multiple control interfaces, each operative to configure
a Subset of resources.
0033 FIG. 2 shows schematically a preferred embodi
ment of a system 200 of the present invention for accelerating
input/output access operation on a virtual machine. System
200 comprises the same elements as system 100, except that
the IO device is a smart IO device 202 with upgraded func
tionality. In inventive contrast with prior art as exemplified by
system 100, each guest domain in FIG. 2 may communicate
directly with Smart IO device 202, in addition to communi
cation through Hypervisor 108. The thick full lines illustrate
datapath access, while the thin full lines illustrate control
access. The dotted lines illustrate proxying of control opera
tions by the HCA to Hypervisor. Some operations will be
executed by the HCA HW according to a command given by
the guest domain. A policy set up for each CQ while it is
created may determine which operations are to be proxied
and which can be executed directly.
0034 FIG.3 shows in more detail a smart HCA 202 of the
present invention. The Smart HCA includes an unrestricted
command interface (queue) 302 owned by Hypervisor, and
used to set up policies and allocate HCA resources between
domains. HCA 202 further comprises multiple (at present up
to 128) restricted command queues 304 that are exported to
the guest domains. Each CQ 304 has data queues 306 and
other HCA resources (that include exemplarily guest virtual
to guest physical translation tables 308 and address spaces
and protection domains (not shown). HCA 202 further com
prises guest physical to HW physical translation tables 310,
which are associated with, but not owned by a guest domain.
The association of restricted command queues with resources
is done by Hypervisor. HCA 202 further comprises data
queues 312 that can be used by Hypervisor (e.g. Hypervisor
can execute IO operations on its own, independently of IO
operations by other domains).
0035 Data queues 306 are configured by the CQ configu
ration function, which, as mentioned, is operative to create
restricted CQs that can be exported to each guest OS or
domain. The address translation and validation function is
operative to perform a two step operation: translate a guest
virtual address into a guest physical address, and translate a
guest physical address to a machine (HW) address (register
ing memory with the HCA to a HW physical address). The
second step represents a new and novel functionality added
by this invention. The CQ configuration function also vali
dates that the physical address given by the domain is mapped
and enabled for IO access. In this operation, the HCA imple
ments an additional stage in the address translation process to
validate and translate the physical address that was given by
the guest OS to the HW physical address
0036. In summary, the smart HCA now comprises inter
nally the original CQ plus a plurality of new restricted CQs,
each identified with a specific guest domain The smart HCA
has now, in a sense, as many translation tables as the number

Jul. 5, 2012

of guest domains, instead of having a single translation table.
In addition, there is a new guest-associated part of the trans
lation table owned by Hypervisor, which contains transla
tions of guest physical addresses to HW addresses. Further,
there is a new operation (step) in the address translation
process, where the HCA takes a guest physical address and
translates it again to a HW address, instead of using the result
of the first translation (of a guest virtual address into a guest
physical address) for memory access.
0037. The “restricted” attribute of the restricted CQs,
which are separate and unique for each guest domain, indi
cates that they have limited privilege. Exemplarily, restricted
CQs are forbidden to (and in fact cannot) control some
machine functions, such as HCA resources allocated to other
domains. They cannot also control a physical machine state
(e.g. “take link down”) that serves other domains. The cross
domain protection is implemented through these restrictions.
0038 FIG. 4 shows schematically a flow chart of the major
basic steps in the method of the present invention. In step 402.
restricted CQs are associated with IO resources and exported
to the guest domain by Hypervisor. From the guest OS per
spective, this action is like discovering a real HW. Alterna
tively, the export may be actually done while booting the
guest domain or as a hot plug event while the guest domain
is running (emulating a hot-plug of a card insertion on a
non-virtualized server) Hypervisor sets up guest physical
address to HW address translations through the unrestricted
CQ in step 404. Each guest domain then uses its respective
restricted CQ to program translation tables that translate a
guest virtual address to a guest physical address in Step 406.
This is used in a “second hop’ of the address translation
process.

0039. Note that in a virtual machine environment, an
address that is perceived by the guest domain as “physical”
(and which will be programmed to the HCA by the guest
domain driver) is not a true HW physical address. The HCA
driver configures physical addresses to be accessed in the
HCA. The HW physical address is managed by Hypervisor.
The HCA looks up the respective translation table for every
memory access. After the initial configuration (e.g. physical
addresses allocated to a guest domain are programmed to
“special translation pages, CO-allocated, queues are allo
cated for that particular CQ, etc.), Hypervisor exports this
part of the HCA to the guest domain (which, in turn, will think
that it has its own HCA).
0040. Note also that the physical memory allocation on the
host is done during the domain boot. The initial programming
of HCA tables to translate from a guest physical address to a
HW address can be done also at boot or "on demand', i.e.
while IO operation traps with error to Hypervisor. The differ
ence between “initial or “on-demand programming is
related to whether HCA translation tables are updated before
or after an application actually attempted to use these pages.
The latter is sometimes handy, as it is a natural filtering of
pages that really needs to be mapped for IO access.
0041 FIG. 5 shows a detailed flow chart of allocation step
402. A guest domain boots by Hypervisor in step 502. In step
504, the HCA is checked by Hypervisor to see if it is “smart'.
i.e. whether it can Support one additional command queue. If
yes, in step 506 Hypervisor checks whether data resources to
be associated with each such additional. CQ are available. If
such resources are found (“yes”), they are allocated to each

US 2012/01741 O2 A1

CQ in step 508. The resources are initialized in step 510, and
the guest domain uses the HCA as if it is running on a
non-virtual server.

0042. If the check result in step 504 is “no, the system
will use a prior art mode of operation and all IO access
operations—data and control—will go through Hypervisor
as done in prior art in step 512. If the check result in step 506
is “no', the operation also goes to step 512. In alternative
embodiments, steps 504 and 506 may be merged into one
step.
0043 FIG. 6 shows details of actions in an exemplary step
404. Hypervisor allocates a physical address on the server for
each guest domain, provides the guest domain with a “virtual
physical address space' and sets up a HCA translation table to
translate from the “virtual physical address to an HW physi
cal address in step 602. The guest PA to HW address transla
tion tables in the HCA are set up in step 604. This process can
happen dynamically (during the server operation). The guest
domain can register its buffer with the HCA for the IO access
by applications running in that domain providing the “virtual
physical address' to the HCA, and the HCA will translate this
“virtual physical address to the HW physical address prior to
accessing memory. In alternative embodiments, physical
memory allocated to one domain is dynamically reallocated
between guest domains in step 606. That is, the physical
memory allocated to one domain can be moved to another in
the life of the server. The smart HCA enables to dynamically
re-allocate physical memory between the guest domains e.g.
HCA enables updates of these “virtual physical” to “HW
address translation tables at runtime.

Example

0044) The example refers to a non-virtual server environ
ment. One of the typical and performance-critical IO opera
tions is reading data from a disk. The way a SW stack is
structured in the operating systems (Linux, Windows, Unix,
Solaris, etc.) is that the block storage access mid-layer pro
vides a list of pages specified by their physical addresses to
the block storage server (SCSI) interface. At this point, a
SCSI network driver sends this list of pages to the target (disk)
so the disk controller will read data from the disk and write to
pages specified. Typically—in order to reduce number of
write operations by the disk controller—an SCSI initiator
driver creates a single (new) virtually contiguous address
space, which includes all the pages specified by the block
storage access mid-layer and sends a single (virtual) address
to the disk to be used to write the data. This address space is
programmed in a HCA by the SCSI driver. When the disk
issues a write operation, it uses a virtual address in the request
packet. The HCA translates this virtual address to physical
addresses programmed by the SCSI driver and writes data to
memory.

0045. In a virtual server environment, the SCSI mid-layer
and the driver run in a guest kernel. Consequently, they do not
have HW physical addresses, but only “virtual physical
addresses, and these addresses are used by the system and
method of the present invention to program HCA translation
tables through a restricted CQ associated with that domain.
When the read operation comes from the disk, the HCA
translates the virtual address received from the disk to this
“virtual physical address. In a next (second) step, it trans
lates this “virtual physical addresses to an HW address using
the second translation hop. At this hop, it also validates that

Jul. 5, 2012

mapping of the “virtual physical address to an HW address
exists, and if yes, it performs the IO operation.
0046. In case the second translation step fails, the HCA
generates an event (interrupt) to Hypervisor (“traps with
error). Hypervisor can either allocate a new physical page to
the domain and resume HCA operation, or shut down the
guest domain. The former happens when the guest domain
specified a valid “guest physical address, but an HW page
has not been allocated to it. The latter happens when the guest
domain specified an invalid 'guest physical address, which
could happen e.g. due to a virus or other SW “bug” in the
guest. The latter is an example of why guests are not treated as
“trusted entities, this being a key value proposition of virtual
SWCS.

0047. In summary, the present system and method provide
a number of new and novel features embodied in a smart IO
device:

0.048 1. Ability to create multiple restricted CQs
0049 2. Ability to associate (allocate) resources to
these restricted CQs

0050. 3. Ability to configure which operations on these
resources are allowed to be done directly by a guest on
these CQs, and which operations need to be proxied to
the Hypervisor. A particularly performance-critical
operation that can be done directly from the guest is to
program FICA translation tables.

0051. 4. Ability to associate address spaces (at present
128) with guest domains (each domain receiving its own
address space) and to use them in the second hop of the
address translation process.

0.052 All publications, patents and patent applications
mentioned in this specification are herein incorporated in
their entirety by reference into the specification, to the same
extent as if each individual publication, patent or patent appli
cation was specifically and individually indicated to be incor
porated herein by reference. In addition, citation or identifi
cation of any reference in this application shall not be
construed as an admission that Such reference is available as
prior art to the present invention.
0053 While the invention has been described with respect
to a limited number of embodiments, it will be appreciated
that many variations, modifications and other applications of
the invention may be made.
What is claimed is:
1. A method for accelerating input/output (IO) access

operation on a virtual machine running on a host computer
that has IO resources, comprising the steps of

a. providing a SmartIO device that includes an unrestricted
command queue, a plurality of restricted command
queues, each restricted command queue for configuring
and controlling only a respective portion of the IO
resources of the host computer, and a corresponding
plurality of data queues separate from the restricted
command queues;

b. by a hypervisor, allocating the respective portion of the
IO resources of one of the restricted command queues to
a guest domain through the unrestricted command
queue, and

c. allowing the guest domain to directly configure and
control the respective portion of the IO resources of the
one restricted command queue through the one
restricted command queue.

2. The method of claim 1, wherein the step of allowing each
guest domain to directly configure and control IO resources

US 2012/01741 O2 A1

includes using a privileged virtual Switching element to per
form the allocation of IO resources through the unrestricted
command queue and to export each restricted command
queue to a respective guest domain.

3. The method of claim 2, wherein the exporting is per
formed during an event selected from the group consisting of
booting the guest domain and hot plugging while the guest
domain is running.

4. The method of claim 2, wherein the using a privileged
virtual switching element to perform the allocation of IO
resources includes using the privileged virtual Switching ele
ment to allocate a particular address space to the respective
guest domain, the address space being one of many Supported
by the Smart IO device.

5. The method of claim 2, wherein the using a privileged
virtual Switching element includes using a hypervisor.

6. The method of claim 1, wherein, for each said restricted
command queue, said respective portion of the IO resources
of the host computer includes both input resources and output
SOUCS.

7. The method of claim 1, wherein said respective portion
of said IO resources of only said one of the restricted com
mand queues is allocated to said guest domain.

8. A method for accelerating input/output (I/O) access
operation on a virtual machine running on a host computer
that has IO resources, comprising the steps of

a. in a Smart IO device, providing a plurality of restricted
command queues, each restricted command queue for
configuring and controlling only a respective portion of
the IO resources of the host computer, each restricted
command queue associated with a respective guest
domain and a separate respective data queue; and

b. using a hypervisor, allocating IO resources to each
restricted command queue, whereby each guest domain
may directly configure and control the respectively allo
cated IO resources of its associated restricted command
queue while being isolated and protected from other
guest domains.

9. The method of claim 8, wherein the providing a plurality
of restricted command queues, each associated with a respec
tive guest domain is performed by the hypervisor.

10. The method of claim 8, wherein the step of allocating
partial IO resources to each restricted command queue
includes, for each guest domain, configuring a respective
translation table located in the Smart IO device through its
respective restricted command queue.

Jul. 5, 2012

11. The method of claim 10, wherein the configuring a
respective translation table includes configuring a table that
translates a guest domain physical address into a hardware
(HW) physical address, thereby enabling to enforce alloca
tion of physical memory for IO accesses.

12. The method of claim8, wherein, for each said restricted
command queue, said respective portion of the IO resources
of the host computer includes both input resources and output
SOUCS.

13. The method of claim8, wherein each said guest domain
is associated with a single said restricted command queue.

14. A system for accelerating input/output (IO) access
operation on a virtual machine running on a host computer
that has IO resources comprising:

a.a SmartIO device that includes an unrestricted command
queue, a plurality of restricted command queues and a
corresponding plurality of data queues separate from the
restricted command queues, each restricted command
queue for configuring and controlling only a respective
portion of the IO resources of the host computer, each
restricted command queue operative to be associated
with a respective guest domain; and

b. a configuring function operative to allocate only the
respective portion of the IO resources of one of the
restricted command queues to each guest domain;
whereby the system enables each guest domain to
directly configure and control only its respective IO
resources, while being isolated and protected from all
other guest domains accessing the virtual machine
through the Smart IO device:

wherein the system is implemented in hardware.
15. The system of claim 14, wherein the configuring func

tion includes a hypervisor.
16. The system of claim 14, wherein the smart IO device

further includes a plurality of translation tables, each associ
ated with a respective guest domain and operative to translate
a guest domain virtual physical address to a hardware physi
cal address.

17. The system of claim 14, wherein, for each said
restricted command queue, said respective portion of the IO
resources of the host computer includes both input resources
and output resources.

18. The system of claim 14, wherein each said guest
domain is associated with a single said restricted command
queue.

