US 20160124669A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0124669 A1

Harris et al.

43) Pub. Date: May 5, 2016

(54)

(71)
(72)

@

(22)

(63)

(60)

Snapshots

PROVIDING SNAPSHOTS OF VIRTUAL
STORAGE DEVICES

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Matthew S. Harris, Kirkland, WA (US);
Andrew Kadatch, Redmond, WA (US);
Sergey Khorun, Seattle, WA (US); Carl
Hamilton, Woodinville, WA (US)

Appl. No.: 14/977,055

Filed: Dec. 21, 2015

Related U.S. Application Data

Continuation of application No. 14/629,149, filed on
Feb. 23, 2015, now Pat. No. 9,251,234, which is a
continuation of application No. 13/602,974, filed on
Sep. 4, 2012, now Pat. No. 8,966,198.

Provisional application No. 61/530,358, filed on Sep.
1,2011.

Regions of Virtual Storage Device

Publication Classification

(51) Int.CL
GOGF 3/06 (2006.01)
(52) US.CL
CPC oo GOGF 3/0619 (2013.01); GOGF 3/065
(2013.01); GOGF 3/0664 (2013.01); GO6F
3/0673 (2013.01)
(57) ABSTRACT

In general, one aspect of the subject matter described in this
specification can be embodied in methods that include receiv-
ing, at a computer system, a request to create a snapshot of a
virtual storage device, wherein the virtual storage device
virtually stores data at virtual addresses, the data being physi-
cally stored at a plurality of physical storage locations that are
managed by an underlying storage system associated with
virtual storage device. The methods can further include iden-
tifying, by the computer system, one or more regions of the
virtual storage device that have been written to since a previ-
ous snapshot of the virtual storage device was created. The
methods can additionally include generating a unique identi-
fier for the requested snapshot; and creating the requested
snapshot using the identified one more regions and the unique
identifier.

\ 110 100
0 1 2 3)_ S
83 P8
82 P5 \\ 31 14
S1 P3 P4 | Virtual Regions
! e} Data
SO PO P1 p2 \‘ i
T T 1 Data3
e f(§_104 ’f" 2 Data5
1 / | s Data4
Snapshots ———
106 3
[Storage Locations
»| Virtual Storage PO Data0
Device
/1 P1 Data1
/—m S P2 Data2
Me— 1
Computer System L P3 Data3
,| Underlying [~
Storage | P4 Datad
System
~——— I P5 Data5
\| e Data6

May 5,2016 Sheet1 of 5 US 2016/0124669 Al

Patent Application Publication

Bulkpspun

gejed 9d
gered Sd
reied vd
geled €d
celed ¢d
Leled Id
oeied 0d

Wmcozmoo._ abeloig
2l .

veyed

gereq

geled

geled

1493

w suoibay [enuIA

00} W

waishs
abelols

2018

A

1 Ol

welsAg Jaindwo))

obei0lg [enuIp

Zd ld od 0S
¥d €d IS
Gd ¢S
9d €S
€ 4 I 0

a0lne(] abelo)S [BNLIA Jo suoiBay

syoysdeus

¢ 9l

US 2016/0124669 Al

002 W

27ze qeee p77e
Y g g
ozz

o1z
c.m 912
. Jabeuepy
3 uoleleg
~d
m abelols Jualsisiad Joysdeus
7))
m WN.Nm_:vos_
% uonealoay
.Wu i oz o joysdeug
nMa wajshs SIOMON W

sbelo)g Buikapun [€E————> UOIEIINWIWOY) EJe(] ;)

8 {74
: Jojelauas

N
.m W joysdeus
a r—
=
£ —
P 1474 Jabeuely joysdeus
g $991na(
£ abeloig
g [enuiA
=
E
«
~d
=
L
~d
<
[~ ™

US 2016/0124669 Al

May 5, 2016 Sheet 3 of 5

Patent Application Publication

Aemalen) m mu_n_
JoBuepy
joysdeus
b 43
> JIOMSN US|
/Nmnm
SUIYOE 1SO SUIYDE 15O
(e e | Lsor \ HoBIN SR | Lzoe
(" (7 ooedsg 7 ooedg ([ooedg soedg)
Tmmoogn_ [oulay % $5900.1d 195N ; $5800.d [9Ula) $5900.d Josn
980£~, FE0E 790¢ < 2905~
\\L\a * WO) [gog E RELEDIRr
paoe S| - /Nu%m pooe S| - /N..G%
L SO 1S0H) L SO JSOH)
N\
— (- N) (- J)
alempieH | | SJempleH alempleH
[ENHIA IHNVN.M zzre § | [ENHIA [ENUIA REY S
. . J/ \ N J
Y - N o N
SIORESU I N p Y qzze || SOI=NO SRS TN o p
. \. J \ J
— \ N o N L
suoneolddy vIE Nwmuﬂ\\V\ suoljeol|ddy suoneoiddy oLE
— 1999 [T Lopze szre S| o0 N9 [T Logze
Om \ y, ff \\ f(\\
|

Patent Application Publication May 5, 2016 Sheet 4 of 5 US 2016/0124669 A1

400‘&

402

Receive a Request to Create a Snapshot of a
Virtual Storage Device

v

Identify Regions that have been Modified Since a
204° Previous Snapshot was Created

v

Generate a Unique Identifier for the Requested
406= | Snhapshot

v

Create the Requested Snapshot Using the
408~ | Identified Regions and the Unique Identifier

4102I__i___ a6y 424-(|__j___
I

Receive Request | Receive Request | Receive Request |
| to Write New Data | | to Access Created to Delete a
| toa First region | | Snapshot | Previous Snapshot
412 41 426 {
G Moy __ ey
Allocate a Second | Retrieve regions | | Determine |
| Storage Location | | Identified in the Whether Portions
| for the New Data | | Snapshot of Previous |

P e | Snapshot Used for |
4142| I 4202r { | Created Snapshot |
—_——y _ Y Eigt i i
Write the New | | Jdentfyand — o gz ;
IData to the Second| Retrieve Most 2| - = —

| Storage Location IRecent Versions ofI Mark Previous |
—————— I | Otherregions | | Snapshot for
| Using Other | | Deletion |
L _Snapshols _ |
422

Provide Access to
the Snapshot

FIG.4 === !

Patent Application Publication May 5, 2016 SheetSof 5 US 2016/0124669 A1

FIG. 5

516

US 2016/0124669 Al

PROVIDING SNAPSHOTS OF VIRTUAL
STORAGE DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation application and
claims priority under 35 U.S.C. §120 to U.S. application Ser.
No. 14/629,149, filed Feb. 23, 2015, which is a continuation
of U.S. application Ser. No. 13/602,974, filed Sep. 4, 2012
(now U.S. Pat. No. 8,966,198), which claims priority under
35 U.S.C. §119(e)(1), to U.S. Provisional Application Ser.
No. 61/530,358, filed on Sep. 1, 2011, the entire contents of
each of which are incorporated herein by reference.

BACKGROUND

[0002] This specification relates to providing snapshots of
virtual storage devices.

[0003] Cloud computing is network-based computing in
which typically large collections of servers housed in data
centers or “server farms” provide computational resources
and data storage as needed to remote end users. Some cloud
computing services provide access to software applications
such as word processors and other commonly used applica-
tions to end users who interface with the applications through
web browsers or other client-side software. Users” electronic
data files are usually stored in the server farm rather than on
the users’ computing devices. Maintaining software applica-
tions and user data on a server farm simplifies management of
end user computing devices. Some cloud computing services
allow end users to execute software applications in virtual
machines.

SUMMARY

[0004] This specification describes technologies relating to
providing snapshots of virtual storage devices.

[0005] In general, one aspect of the subject matter
described in this specification can be embodied in methods
that include receiving, at a computer system, a request to
create a snapshot of a virtual storage device, wherein the
virtual storage device virtually stores data at virtual
addresses, the data being physically stored at a plurality of
physical storage locations that are managed by an underlying
storage system associated with virtual storage device, the
plurality of physical storage locations being associated with
physical addresses and being distributed across a plurality of
physical storage devices, the underlying storage system man-
aging storage of the data across the plurality of physical
storage devices using unique identifiers that are: i) indepen-
dent of the plurality of physical storage devices and the plu-
rality of physical storage locations and ii) different from the
virtual addresses. The methods can further include identify-
ing, by the computer system, one or more regions of the
virtual storage device that have been written to since a previ-
ous snapshot of the virtual storage device was created,
wherein data written to the one or more identified regions is
stored in the plurality of physical storage locations separately
from other stored data that corresponds to other snapshots of
the one or more regions. The methods can additionally
include generating a unique identifier for the requested snap-
shot; and creating the requested snapshot using the identified
one more regions and the unique identifier, wherein the
requested snapshot includes a mapping of the unique identi-

May 5, 2016

fier to the one or more identified regions of the virtual storage
device and does not include any data stored in the virtual
storage device.

[0006] Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages. Snapshots of
virtual storage devices can be efficiently created, retrieved,
and maintained. For example, instead of creating a copy of the
actual data that is being stored by a virtual storage device, a
snapshot can be created to include information that identifies
persistent storage locations where the data is being storage. In
another example, snapshots can build upon each other so that
each snapshot can store only information identifying the por-
tions of a virtual storage device that were written to since a
previous snapshot was created, instead of each snapshot stor-
ing the entire index of a virtual storage device. For instance, if
an example virtual storage device includes 500 regions and
only 10 of those regions were written to since the previous
snapshot of the virtual storage device was created, then a new
snapshot of the virtual storage device can be created to
include information identifying the 10 regions instead of all
500 regions. By including less information, each snapshot
can be created and/or retrieved quickly, can save computa-
tional resources, and/or can reduce lag time associated with
creating and/or restoring snapshots of a virtual storage
device.

[0007] The details of one or more embodiments of the
subject matter described in this specification are set forth in
the accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is conceptual diagram of an example system
that provides snapshots of a virtual storage device.

[0009] FIG. 2is a schematic diagram of an example system
for providing snapshots of a virtual storage device.

[0010] FIG. 3 is a schematic illustration of an example
system in which snapshots of virtual storage devices are
provided.

[0011] FIG. 4 is a flow diagram of an example process for
providing snapshots for a virtual storage device.

[0012] FIG. 5 is a block diagram of example computing
devices.
[0013] Like reference numbers and designations in the

various drawings indicate like elements.

DETAILED DESCRIPTION

[0014] Data that is stored by a storage device, such as a
physical storage device (e.g., hard disc drives, solid-state
drives) and a virtual storage device (e.g., virtualized storage
system using one or more physical storage devices and one or
more layers of abstractions to separate physical and logical
storage locations), can continuously change over time. For
instance, a portion of a storage device may at one point in time
store an executable file and at another point in time store a
word processing document. A snapshot of a storage device is
arecord of the contents of the storage device at a point in time.
Snapshots can be used to restore and/or recreate previous
states of a storage device. For example, snapshots can be used
to allow a user to go back in time to recover the state of a
storage device at a point in the device’s history.

US 2016/0124669 Al

[0015] This document discusses a variety of techniques for
providing efficient snapshots for virtual storage devices. A
virtual storage device can be implemented in a variety of
computing environments. For example, virtual storage
devices can be used as part of a cloud computing system to
provide remote clients with one or more virtualized persistent
storage arrays to which information can be stored and
retrieved. Similarly, virtual storage devices can be imple-
mented as storage devices for virtual machines. In another
example, virtual storage devices can be implemented locally
on a computing device using one or more physical storage
devices and one or more layers of abstraction.

[0016] A snapshot for a virtual storage device maps regions
of' the virtual storage device to storage locations in an under-
lying storage system. Storage devices, both virtual and physi-
cal, can store and retrieve data from regions of storage
devices. Regions can be variable in size and can be address-
able at any location in a storage device. An underlying storage
system is a computer system that stores data for one or more
virtual storage devices using various levels of abstraction. For
example, an underlying storage system can be a cloud com-
puting system that stores data across a networked system of
one or more computer servers and physical storage devices.
Such cloud computing systems can use various unique iden-
tifiers for data, such as a combination of a row identifier, a
column identifier, and a timestamp for data stored in one or
more tables. Such unique identifiers can be independent one
or more physical locations where data is being stored—the
underlying storage system can manage correlating such
unique storage location identifiers to one or more physical
storage locations. In another example, an underlying storage
system can be one or more computing devices that are pro-
viding a virtual machine and one or more corresponding
virtual storage devices. In another example, an underlying
storage system can be a file management system on a local
computing device (e.g., desktop computer, laptop computer,
smartphone) that correlates logical addresses to physical stor-
age locations of one or more physical storage locations that
are accessible to the local computing device.

[0017] Data written to the same regions of a virtual storage
device at different times can be mapped to and persistently
stored in different storage locations in an underlying storage
system. For example, data written to a first region of a virtual
storage device at a first time can be stored in a first storage
location of an underlying storage system. If new data is writ-
ten to the first region of the virtual storage device at a later
second time, the new data can be stored in a second storage
location of the underlying system that is different from the
first storage location. The original data stored in the first
storage location and the new data stored in the second storage
location can be persistently and concurrently maintained as
part of the underlying storage system, even though in the
current state of the virtual storage device original data has
been overwritten with the new data. Such concurrent and
persistent storage of previous versions of data in an underly-
ing storage system can allow for snapshots to be efficiently
created and maintained—instead of having to copy data for a
snapshot, only the storage location of relevant data is tracked.
[0018] Snapshots can build upon each other so that a snap-
shot only includes the regions of the virtual storage device
that were written since the previous snapshot was created. For
instance, a simplified example of a virtual storage device
includes regions 0-3 and a first snapshot maps regions 0-2 of
the virtual storage device to storage locations in an underlying

May 5, 2016

storage system. After creating the first snapshot, data is writ-
ten to regions 2 and 3 of the virtual storage device and then a
second snapshot of the virtual storage device is created. The
second snapshot can map to only regions 2 and 3, which have
been modified since the previous first snapshot. Regions that
are included in a snapshot can include portions of files that
have changed since a previous snapshot. For example, if the
phrase “hello world” in a text file (e.g., .txt file) is changed to
“Hello World,” only the regions of the text file that have
changed (e.g., bytes that have changed from ASCII values for
‘W’ and ‘w’ to ‘H’ and ‘W”) can be added to a snapshot instead
of all of the regions of the text file.

[0019] Torecreate a snapshot ofa virtual storage device, the
snapshots for the virtual storage device are analyzed in
reverse chronological order starting with the snapshot to be
recreated until the most recent copy of each region has been
identified. For instance, referring to the example in the pre-
vious paragraph, to recreate the second snapshot correspond-
ing storage locations for regions 2 and 3 are first identified
from the mapping for the second snapshot. Moving back in
time from the second snapshot, the first snapshot is analyzed
and the remaining regions, regions 0 and 1, are identified in
the mapping for the first snapshot. Thus, the second snapshot
can be recreated by using the data associated with regions 0
and 1 in the first snapshot and the data associated with regions
2 and 3 in the second snapshot.

[0020] FIG. 1 is conceptual diagram of an example system
100 that provides snapshots of a virtual storage device. The
example system 100 is includes a computer system 102 that
provides snapshots 104 of a virtual storage device 106 using
an underlying storage system 108. The computer system 102
can include any of a variety of appropriate computing
devices, such as a client computing device (e.g., laptop com-
puter, smartphone, tablet computing device) that is interfac-
ing over one or more communications network (e.g., the
Internet, local area network (LAN), 3G/4G wireless network)
with a cloud computing system, a virtual machine that is
implemented across one or more networked computing
devices, and/or a standalone computing device (e.g., laptop
computer, smartphone, desktop computer). Other computing
devices may also be included in the computer system 102.

[0021] The snapshots 104 can be any of a variety of appro-
priate data repositories for snapshot information, such as one
or more databases, files, and/or computing devices. The vir-
tual storage device 106 is a virtualization of one or more
physical storage devices. For example, the virtual storage
device 106 can include virtual storage locations (e.g., storage
locations that are not physical storage locations but instead
correspond to one or more physical storage locations of one or
more physical storage devices) that are identified by virtual
addresses (e.g., addresses that correspond to virtual storage
locations of the virtual storage device 106). The virtual stor-
age device 106 can be accessed and used by computing
devices similar manner to physical storage devices. For
example, computing devices can issue the same commands to
write to and read from the virtual storage device 106 that
would be issued to a physical storage device. Various infor-
mation and/or data structures can be associated with the vir-
tual storage device 106 to provide the virtual storage device
106, such as indices mapping regions of the virtual storage
device 106 to storage locations in the underlying storage
system 108, and/or information tracking which regions of the
virtual storage device 106 have been written to since the
previous snapshot was created. The underlying storage sys-

US 2016/0124669 Al

tem 108 can include any of a variety of appropriate computer
systems and/or physical storage devices, such a cloud com-
puting system, a disc management system accessible over a
communication network (e.g., the Internet, a LAN), and/or a
local disc management system on a computing device.
[0022] The system 100 is depicted as including a table 110
depicting example snapshots S0-S3 for the virtual storage
device 106, which is presented as having regions 0-3. As
described above, the snapshots S0-S3 can include a mapping
of regions of the virtual storage device 106 to storage loca-
tions in the underlying storage system 108. In this example,
the storage locations in the underlying storage system 108 are
identified as P0-P6. The storage locations P0-P6 can be any of
avariety ofidentifiers to uniquely identify corresponding data
in the underlying storage system 108, such as information
identifying physical addresses in the underlying storage sys-
tem 108 (e.g., pointers to physical addresses), information
identifying logical addresses in the underlying storage system
108 (e.g., pointers to logical addresses), information identi-
fying unique identifiers that are used by the underlying stor-
age system 108 and that are independent of the physical
storage devices and physical storage locations where the data
is being physically stored (e.g., unique identifiers that include
combinations of row, column, and/or timestamp information
that are used by cloud computing systems to identify data
stored across a plurality of physical storage devices), and/ora
combination of one or more values that can be used to locate
data in the underlying storage system 108. For example, the
underlying storage system 108 can include a database that
provides access to the data for the virtual storage device 106.
The storage locations P0-P6 can each include one or more
values that are used to search fields of the database to locate
corresponding data in the underlying storage system 108. For
instance, such data values can include row and column iden-
tifiers for a table that the underlying storage system 108 uses
to store data for the virtual storage device 106.

[0023] The snapshots S0-S3 can be implemented in a vari-
ety of ways. For instance, the snapshots S0-S3 can be imple-
mented collectively as part of a data structure (e.g., multi-
dimensional array) that maps the regions of the virtual storage
device 106 to the storage locations P0-P6 of the underlying
storage system 108, similar to the example table 110. In
another example, each of the snapshots S0-S3 can be imple-
mented separately (e.g., separate file, separate table, separate
data structure) and can include information that correlates the
regions 0-3 of the virtual storage device 106 to the storage
locations P0-P6 of the underlying storage system 108.
[0024] The snapshots S0-S3 can include a unique identifier
that encodes a sequential order among the snapshots S0-S3.
For example, the snapshots S0-S3 can be associated with a
timestamp that indicates a time at which the snapshot S0-S3
was created. In another example, the snapshots S0-S3 can be
associated with a unique identifier (e.g., an integer) that is
incremented for each snapshot. Such example unique identi-
fiers can be used to not only identify and refer to a snapshot,
but can also be used to determine a sequence in which the
snapshots S0-S3 were created. The sequence of the snapshots
S0-S3 can be used to recreate a snapshot by moving in revers
chronological order through the snapshots S0-S3 until stor-
age locations for each of the regions 0-3 of the virtual storage
device 106 have been located.

[0025] In one example implementation, each of the snap-
shots S0-S3 can be uniquely identified by timestamps and can
include a list of the regions of the virtual storage device 106

May 5, 2016

and the corresponding storage locations in the underlying
storage system 108. In such a list, the regions may be encoded
in the information identifying the storage locations in the
underlying storage system 108. For instance, a storage loca-
tion P0-P6 can be identified by a combination of a unique
identifier for the virtual storage device 106, the corresponding
region of the virtual storage device 106, and a timestamp
corresponding to the relevant snapshot S0-S1.

[0026] As depicted in the table 110, each of the snapshots
S0-S3 can include information that maps fewer than all of the
regions 0-3 of the virtual storage device 106 to the underlying
storage system 108. For instance, the snapshot S3 maps only
region 0 to the storage location P6 of the underlying storage
system 108. Snapshots S0-S3 can be created to only map the
regions of the virtual storage device 106 that have changed
(e.g., been written to) since a previous snapshot. For instance,
the example table 110 indicates that after creating the snap-
shot S0, data was written to regions 1 and 3 of the virtual
storage device 106 at storage locations P3 and P4 of the
underlying storage system 108, respectively. Thus, the snap-
shot S1 includes only information identifying this change in
the virtual storage device 106 over the previous snapshot S0.
Such a configuration can allow for snapshots to be quickly
created (e.g., the mapping does not have to include informa-
tion for all regions, but only a subset of the regions) and to
minimize the amount of storage space occupied by the snap-
shots.

[0027] The snapshots S0-S3 can allow a user to move back
in time for the virtual storage device 106 to any of the previ-
ous states of the device 106 that were captured by the snap-
shots S0-S3. The state of the virtual storage device 106 at any
one of the snapshots S0-S3 can be recreated by going to the
snapshot of interest and then moving in reverse chronological
order until the most recent version of each of the regions 0-3
of the virtual storage device 106 is located. For example, to
recreate the snapshot S2, first the regions that are included in
the snapshot S2 are identified. In this example, the mapping of
region 2 to storage location P5 is identified. Since mappings
forregions 0, 1, and 3 have not been identified, the recreation
moves to examine snapshot S1, which was created before the
snapshot S2. Snapshot S1 maps regions 1 and 3 to storage
locations P3 and P4, respectively. Snapshot S0 is then exam-
ined to identify an entry for region 0, which is mapped in
snapshot S0 to storage location P0. The entries in snapshot SO
for regions 1 and 2 are not analyzed because more recent
versions of these regions were located in snapshots 1 and 2.
The resulting state of the virtual storage device 106 at snap-
shot S2 includes the following: region 0—storage location
P0; region 1—storage location P3; region 2—storage loca-
tion P5; region 3—storage location P4.

[0028] The virtual storage device 106 does not have to be
recreated in its entirety—a portion of the virtual storage
device 106 can be recreated using the snapshots S0-S3.
[0029] Table 112 provides an example of data (Data0-
Data6) that can be stored by the underlying storage system
108. Using the snapshot 104 and the underlying storage sys-
tem 108, data values that have been overwritten in the virtual
storage device 106 can be persistently maintained without
having to copy or move the data that has been overwritten. For
instance, at snapshot SO the region 1 stores Datal (cross-
referencing storage location P1 from the table 110 with the
entry for P1 in the table 112), but is then rewritten with Data3
at snapshot S1 (cross-referencing storage location P3 from
the table 110 with the entry for P3 in the table 112). However,

US 2016/0124669 Al

the storage location P1 associated with region 1 at snapshot
S0 is not rewritten with Data3, but instead the new data value
Data3 is written to a new storage location P3 of the underlying
storage system 108. Thus, the mapping of snapshot SO does
not have to be altered as regions that are mapped to in the
snapshot S0 are rewritten and any older data that has been
rewritten in the virtual storage device 106 can be persistently
maintained in the underlying storage system 108 without
having to be relocated.

[0030] Table 114 provides an example view of the state of
the virtual storage device 106 at the time of snapshot S3, with
the data mapping for the regions 0-3 resolved against the data
stored in the underlying storage system 108. A current state
and historical states of the virtual storage device 106 can
appear as a traditional storage device to the computer system
102, which can obtain data from and write data to the virtual
storage device 106.

[0031] One or more of the snapshots 104 can be deleted for
the virtual storage device 106. Since portions of a snapshot
may be used to recreate other snapshots, deletion of a snap-
shot may be limited to situations where the regions mapped
by a snapshot would no longer be used to recreate other
snapshots. For example, the snapshot SO0 may not be deleted
since the mapped to regions 0 and 2 would be used to recreate
the snapshot S1. In some implementations, regions that block
deletion of a snapshot, such as the mapping for regions 0 and
2 for snapshot S0, can be added to the next chronological
snapshot. For instance, the mapping of region 0 to storage
location PO and region 2 to storage location P2 can be added
to snapshot S1, which can permit the snapshot SO to be
deleted. In conjunction with deleting a snapshot, correspond-
ing storage locations in the underlying storage system 108
can be deleted and released.

[0032] In some implementations, if a user requests that a
snapshot be deleted but the snapshot is unable to be deleted at
the present time, the snapshot is made inaccessible to the user
(e.g., removed from a list of user accessible snapshots) and is
marked for deletion at a future time when deletion is possible.
Such a marking can be used by a service (e.g., garbage col-
lection operation) that periodically examines whether snap-
shots and their corresponding storage locations can be
deleted.

[0033] FIG.2isaschematic diagram of an example system
200 for providing snapshots of a virtual storage device. The
system 200 is similar to the system 100 described above with
regard to FIG. 1. The system 200 can be implemented by any
of a variety of appropriate computing devices, such as the
computer system 102 described above with regard to FIG. 1.
[0034] The system 200 includes a snapshot manager 210
that manages the creation, use, and deletion of snapshots for
one or more virtual storage device(s) 242. The virtual storage
devices 242 are similar to the virtual storage device 106
described above with regard to FIG. 1. The snapshot manager
210 includes a snapshot generator 212, a snapshot recreation
module 214, a snapshot deletion manager 216, and an input/
output (I/0) interface 218. The snapshot generator 212 cre-
ates new snapshots of the virtual storage devices 242. As
described previously, snapshots can be generated using the
regions of a virtual storage device that were modified (e.g.,
written) since a previous snapshot of the virtual storage
device was created. The snapshot recreation module 214 rec-
reates snapshots by scanning through snapshots in reverse
chronological order until the most recent version of the
regions of the portion of the virtual storage device to be

May 5, 2016

recreated have been located. The snapshot deletion manager
216 manages deletion of snapshots as described above. The
1/O interface 218 can be any of a variety of interfaces to
communicate over a data communication network, such as an
physical network (e.g., an internal bus), an internal network
(e.g., LAN), and/or an external network (e.g., the Internet).
For example, the I/O interface can be a wireless network card.
[0035] The system 200 further includes persistent storage
220 that can store snapshot information (e.g., snapshot map-
pings of virtual storage device regions to data storage loca-
tions) and/or data for the virtual storage devices 242. The
persistent storage 220 can be replicated across multiple hard
disks and/or other computer-readable media, e.g., disks 222a,
222b, and 222¢.

[0036] The system 200 also includes an underlying storage
system 230 that manages the storage of data for the virtual
storage devices 242. The underlying storage system 230 is
similar to the underlying storage system 108 described above
with regard to FIG. 1.

[0037] The snapshot manager 210, the persistent storage
220, the underlying storage system 230, and/or the virtual
storage devices 242 can be communicatively connected over
a data communication networks 240. The data communica-
tion network 240 can include a combination of physical data
channels (e.g., communication bus), internal networks (e.g.,
LAN), and/or external networks (e.g., the Internet).

[0038] FIG. 3 is a schematic illustration of an example
system 300 in which snapshots of virtual storage devices are
provided. The system 300 is a virtual machine system that
includes one or more host machines, for example, host
machine 302 and host machine 304. Generally speaking, a
host machine is one or more data processing apparatus such as
a rack mounted servers or other computing devices. The data
processing apparatus can be in different physical locations
and can have different capabilities and computer architec-
tures. Host machines can communicate with each other
through an internal data communication network 316. The
internal network can include one or more wired (e.g., Ether-
net) or wireless (e.g., WI-FI) networks, for example. In some
implementations the internal network 316 is an intranet. Host
machines can also communicate with devices on external
networks, such as the Internet 322, through one or more
gateways 320 which are data processing apparatus respon-
sible for routing data communication traffic between the
internal network 316 and the external network 322. Other
types of external networks are possible.

[0039] Eachhost machine executes a host operating system
(“OS”) or other software that virtualizes the underlying host
machine hardware and manages concurrent execution of one
or more virtual machines. For example, the host operating
system 306 is managing virtual machine (VM) 310 and VM
312, while host OS 308 is managing a single VM 314. Each
VM includes a simulated version of the underlying host
machine hardware, or a different computer architecture. The
simulated version of the hardware is referred to as virtual
hardware (e.g., virtual hardware 310qa, 312a¢ and 314q). For
example, the simulated hardware can include one or more
virtual storage devices, such as the virtual storage device 106
and/or the virtual storage device 242. The virtual storage
devices can be associated with physical disks that are local to
the machine the virtual machine instance is running on or
remotely located. Software that is executed by the virtual
hardware is referred to as guest software. In some implemen-
tations, guest software cannot determine if it is being

US 2016/0124669 Al

executed by virtual hardware or by a physical host machine. If
guest software executing in a VM, or the VM itself, malfunc-
tions or aborts, other VMs executing on the host machine will
not be affected. A host machine’s microprocessor(s) can
include processor-level mechanisms to enable virtual hard-
ware to execute software applications efficiently by allowing
guest software instructions to be executed directly on the host
machine’s microprocessor without requiring code-rewriting,
recompilation, or instruction emulation.

[0040] Each VM (e.g., VMs 310, 312 and 314) is allocated
a set of virtual memory pages from the virtual memory of the
underlying host operating system and is allocated virtual disk
blocks from one or more virtual disk drives for use by the
guest software executing on the VM. For example, host oper-
ating 306 allocates memory pages and disk blocks to VM 310
and VM 312, and host operating system 308 does the same for
VM 314. In some implementations, a given VM cannot access
the virtual memory pages assigned to other VMs. For
example, VM 310 cannot access memory pages that have
been assigned to VM 312. A virtual disk drive can be persisted
across VM restarts. Virtual disk blocks are allocated on physi-
cal disk drives coupled to host machines or available over the
internal network 316, for example. In addition to virtual
memory and disk resources, VMs can be allocated network
addresses through which their respective guest software can
communicate with other processes reachable through the
internal network 316 or the Internet 322. For example, guest
software executing on VM 310 can communicate with guest
software executing on VM 312 or VM 314. In some imple-
mentations, each VM is allocated one or more unique Internet
Protocol (IP) version 4 or version 6 addresses and one or more
User Datagram Protocol (UDP) port numbers.

[0041] A VM'’s guest software can include a guest operat-
ing system (e.g., guest operating systems 3105, 3126 and
314b) which is software that controls the execution of respec-
tive guest software applications (e.g., guest applications
310c¢, 312¢ and 314c¢), within the VM and provides services to
those applications. For example, a guest operating system
could be a variation of the UNIX operating system. Other
operating systems are possible. Each VM can execute the
same guest operating system or different guest operating
systems. In further implementations, a VM does not require a
guest operating system in order to execute guest software
applications. A guest operating system’s access to resources
such as networks and virtual disk storage is controlled by the
underlying host operating system.

[0042] By way of illustration, and with reference to virtual
machine 310, when the guest application 310¢ or guest oper-
ating system 3105 attempts to perform an input/output opera-
tion on a virtual storage device (e.g., the virtual storage device
106), initiate network communication, or perform a privi-
leged operation, for example, the virtual hardware 310q is
interrupted so that the host operating system 306 can perform
the action on behalf of the virtual machine 310. The host
operating system 306 can perform these actions with a pro-
cess that executes in kernel process space 3065, user process
space 306a, or both.

[0043] The kernel process space 3065 is virtual memory
reserved for the host operating system 306’s kernel 3064
which can include kernel extensions and device drivers, for
instance. The kernel process space has elevated privileges
(sometimes referred to as “supervisor mode™); that is, the
kernel 3064 can perform certain privileged operations that are
offlimits to processes running in the user process space 306a.

May 5, 2016

Examples of privileged operations include access to different
address spaces, access to special functional processor units in
the host machine such as memory management units, and so
on. The user process space 306a is a separate portion of
virtual memory reserved for user mode processes. User mode
processes cannot perform privileged operations directly.
[0044] In various implementations, a portion of VM net-
work communication functionality is implemented in a com-
munication process (e.g., communication process 306¢). In
some implementations, the communication process executes
in the user process space (e.g., user process space 306a) of a
host operating system (e.g., host operating system 306). In
other implementations, the communication process can
execute in the kernel process space (e.g., kernel process space
306d) of the host operating system. There can be a single
communication process for all VMs executing on a host
machine or multiple communication processes, e.g., one for
each VM executing on the host machine. In yet further imple-
mentations, some portion of the communication process
executes in the user process space and another portion
executes in the kernel process space.

[0045] The communication process communicates with a
snapshot manager 318 to provide snapshots for the virtual
storage devices that are provided with the virtual hardware
310a, 3124, and 314a. The snapshot manger 318 can provide
snapshots similar to the snapshots described above with
regard to systems 100 and 200, and the snapshot manager can
be similar to the snapshot manager 210 described above with
regard to FIG. 2.

[0046] FIG. 4 is a flow diagram of an example process 400
for providing snapshots for a virtual storage device. The
process 400 can be performed by any of a variety of appro-
priate computing devices, such as the computer system 102
described above with regard to FIG. 1, the system 200
described above with regard to FIG. 2, and/or the system 300
described above with regard to FIG. 3.

[0047] The process 400 includes receiving a request to
create a snapshot of a virtual storage device (402). For
instance, the snapshot manager 318 can receive requests to
create snapshots of virtual storage devices from any of a
variety of appropriate sources, such a one or more of the VM
310-314, the host machines 302-304, and/or client computing
device (e.g., laptop computer, desktop computer, smart-
phone) that can communicate with the snapshot manager 318
over the Internet 322 but which are not depicted in FIG. 3.
[0048] In response to receiving the request, one or more
regions of the virtual storage device that have been modified
(e.g., written to) since a previous snapshot was created are
identified (404). For example, the snapshot generator 212
described above with regard to FIG. 2 creates new snapshots
of'the virtual storage devices 242 by identifying regions of the
virtual storage devices 242 that were modified (e.g., written
to) since a previous snapshot of the virtual storage device was
created. Such identification can be made by the snapshot
generator 212 using any of a variety of appropriate tech-
niques, such as by performing a diff operation with regard to
the current state of the virtual storage devices 242 and the
most recent snapshots created for the virtual storage devices
242. For instance, referring to FIG. 1, if the most recent
snapshot for the virtual storage device 106 is the snapshot S2,
the computer system 102 can identify that region 0 of the
virtual storage device 106 was modified by comparing a cur-
rent state of the virtual storage device 106, as presented in the
table 114, with the S2 snapshot, as presented in table 110.

US 2016/0124669 Al

Using the techniques discussed above to recreate the snapshot
S2, the computer system 102 can determine that the snapshot
S2 includes the following region values: region 0 has the
value stored in storage location P0 (Data0); region 1 has the
value stored in storage location P3 (Data3); region 2 has the
value stored in storage location P5 (Data5); and region 4 has
the value stored in storage location P4 (Datad). Comparing
these values (e.g., performing a diff operation) to the current
data values stored in the virtual storage device 106, as indi-
cated by the table 114, the computer system 102 can identify
that the value of region 0 has been modified since the previous
snapshot S2.

[0049] A unique identifier for the requested snapshot is
generated (406). For example, a running counter of snapshots
for a virtual storage device can be used to identify a next
unique identifier for the requested snapshot. For instance,
referring to FIG. 1, the snapshots S0-S3 can each be associ-
ated with different unique numbers, such as numbers in a
sequence of incremented/decremented integers. In another
example, timestamps (e.g., UNIX epoch timestamp) for times
at which snapshots were created can be generated and used as
a unique identifier for the snapshot.

[0050] The requested snapshot is created using the identi-
fied regions of the virtual storage device and the generated
unique identifier (408). For example, the snapshot generator
212 can create and store snapshots in the persistent storage
220 using information that identifies regions of the virtual
storage devices 242 that have been modified since previous
snapshots were created and information that uniquely identi-
fies the snapshots. For instance, referring to FIG. 1, the com-
puter system 102 can create an entry for the snapshot S3 in the
snapshot repository 104 using, at least, a unique identifier for
the snapshot S3 (e.g., an incremented snapshot number, a
timestamp) and information that identifies the recently modi-
fied regions of the virtual storage device 106 (region 0 of the
virtual storage device 106) and a data value for the recently
modified regions (information identifying storage location P6
from the underlying storage system 108).

[0051] In some implementations, a subsequent request is
received to write new data to a first region of the virtual
storage device, where the first region is one of the identified
regions that are included in the created snapshot (410). For
example, after creating the snapshot S0 the computer system
102 can receive a request to write Data3 to region 1 of the
virtual storage device 106. The snapshot SO is depicted as
including data stored at P1 (Datal) of the underlying storage
system 108 as having been written to region 1 of the virtual
storage device 106. Instead of overwriting a first storage
location (e.g., a physical storage location of an underlying
storage device) that is used to store a data value for the first
region in the created snapshot, a second storage location is
allocated to store the new data (412). For example, instead of
overwriting the storage location P1 of the underlying storage
system 108 with the requested data (Data3), the computer
system 102 allocates a new storage location P3 from the
underlying storage system 108 to store the requested data.
The second storage location can be different and separate
from the first storage location. For example, the newly allo-
cated storage location P3 is different and separate from the
storage location P1 that is storing the original contents of
region 1 of the virtual storage device 106. The new data is
written to the second storage location (414). For example, as
indicated in the table 112, the new data (Data3) is written to
the newly allocated storage location P3 in the underlying

May 5, 2016

storage system 108. The old data for the first region stored in
the first storage location and the new data stored in the second
storage location can be persistently and concurrently main-
tained by an underlying storage system. For example, the
table 112 indicates that the original and rewritten data for
region 1 of the virtual storage device 106, Datal, is still stored
at location P1 of the underlying storage system 108 after the
region 1 of the virtual storage device 106 has been rewritten
with the new data, Data3, which is concurrently stored at
location P3 of the underlying storage system 108.

[0052] In some implementations, a subsequent request is
received to access the created snapshot (416). For example,
the computer system 102 can receive a request from a client
computing device (e.g., a desktop computer, laptop computer,
smartphone) to access the snapshot S2 of the virtual storage
device 106. In response to receiving the subsequent request,
the regions that are identified in the snapshot can be retrieved
(418). For example, the computer system 102 can access the
snapshot S2 from the snapshot repository 104 and can use the
information included in the snapshot S2 (e.g., information
that correlates region 2 of the virtual storage device 106 with
the with location P5 of the underlying storage system 108) to
access data values Data5 for region 2 of the virtual storage
device 106 at snapshot S2. Using reverse chronological order,
other snapshots can analyzed to identify and retrieve the most
recent versions of the other regions of the virtual storage
device that are not included in the snapshot (420). For
example, the computer system 102 can work backward in
time from snapshot S2 to identify the most recent data values
for other regions for which data values have not yet been
retrieved. Moving first to snapshot S1, the computer system
102 can access the snapshot S1 from the snapshot repository
104 and can use the information included in the snapshot S1
(e.g., information that correlates regions 1 and 3 of the virtual
storage device 106 with the with locations P3 and P4, respec-
tively, of the underlying storage system 108) to access data
values Data3 for region 1 and Data4 for region 3 of the virtual
storage device 106. Moving next to snapshot S0, the com-
puter system 102 can access the snapshot S1 from the snap-
shot repository 104 and, using the stored information for the
snapshot S1, can access a data value Data0 for region 0 from
storage location PO of the underlying storage system 108.
Data for the other two regions included in the snapshot S0,
region 1 and region 2, may not be retrieved by the computer
system 102 based data already having been retrieved for these
regions with regard to more recent snapshots (snapshots S2
and S1). Access to the snapshot can be provided using the
identified regions from the snapshot and the most recent
versions of the other regions (422). For example, the com-
puter system 102 can provide at least a portion of the recre-
ated snapshot S2 for the virtual storage device 106 to a client
device that has requested access to the snapshot.

[0053] In some implementations, a subsequent request is
received to delete a previous snapshot (424). For example, the
computer system 102 can receive a request from a client
computing device to delete the snapshot S1 of the virtual
storage device 106. In response to receiving the subsequent
request, a determination can be made as to whether any other
snapshots that occur chronologically after the previous snap-
shot use region information that is specified in the previous
snapshot (426). For example, the computer system 102 can
determine whether snapshots S2 or S3 (snapshots occurring
chronologically after the snapshot S1) rely on data values that
are contained in the snapshot S1 that is requested for deletion.

US 2016/0124669 Al

In this example, the snapshot S2 uses data values for regions
1 and 3 from the snapshot S1, and the snapshot S3 uses the
same data values for regions 1 and 3 from the snapshot S1. If
any of the other snapshots use portions of the previous snap-
shot, then the previous snapshot can be marked for deletion at
a later time when portions of the previous snapshot are not
being used by other snapshots that occur chronologically
after the previous snapshot (428). For example, the computer
system 102 can mark the snapshot S1 for deletion at a later
date when the other snapshots (e.g., S2, S3) are no longer
using portions of data included in the snapshot S1.

[0054] FIG. 5 is a block diagram of example computing
devices 500, 550 that may be used to implement the systems
and methods described in this document, as either a client or
as a server or plurality of servers. Computing device 500 is
intended to represent various forms of digital computers, such
as laptops, desktops, workstations, personal digital assistants,
servers, blade servers, mainframes, and other appropriate
computers. Computing device 550 is intended to represent
various forms of mobile devices, such as personal digital
assistants, cellular telephones, smartphones, and other simi-
lar computing devices. Additionally computing device 500 or
550 can include Universal Serial Bus (USB) flash drives. The
USB flash drives may store operating systems and other
applications. The USB flash drives can include input/output
components, such as a wireless transmitter or USB connector
that may be inserted into a USB port of another computing
device. The components shown here, their connections and
relationships, and their functions, are meant to be exemplary
only, and are not meant to limit implementations described
and/or claimed in this document.

[0055] Computing device 500 includes a processor 502,
memory 504, a storage device 506, a high-speed interface 508
connecting to memory 504 and high-speed expansion ports
510, and a low speed interface 512 connecting to low speed
bus 514 and storage device 506. Each of the components 502,
504,506,508, 510, and 512, are interconnected using various
busses, and may be mounted on a common motherboard or in
other manners as appropriate. The processor 502 can process
instructions for execution within the computing device 500,
including instructions stored in the memory 504 or on the
storage device 506 to display graphical information for a GUI
on an external input/output device, such as display 516
coupled to high speed interface 508. In other implementa-
tions, multiple processors and/or multiple buses may be used,
as appropriate, along with multiple memories and types of
memory. Also, multiple computing devices 500 may be con-
nected, with each device providing portions of the necessary
operations (e.g., as a server bank, a group of blade servers, or
a multi-processor system).

[0056] Thememory 504 stores information within the com-
puting device 500. In one implementation, the memory 504 is
a volatile memory unit or units. In another implementation,
the memory 504 is a non-volatile memory unit or units. The
memory 504 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

[0057] The storage device 506 is capable of providing mass
storage for the computing device 500. In one implementation,
the storage device 506 may be or contain a computer-readable
medium, such as a floppy disk device, a hard disk device, an
optical disk device, or a tape device, a flash memory or other
similar solid state memory device, or an array of devices,
including devices in a storage area network or other configu-
rations. A computer program product can be tangibly embod-

May 5, 2016

ied in an information carrier. The computer program product
may also contain instructions that, when executed, perform
one or more methods, such as those described above. The
information carrier is a computer- or machine-readable
medium, such as the memory 504, the storage device 506, or
memory on processor 502.

[0058] The high speed controller 508 manages bandwidth-
intensive operations for the computing device 500, while the
low speed controller 512 manages lower bandwidth-intensive
operations. Such allocation of functions is exemplary only. In
one implementation, the high-speed controller 508 is coupled
to memory 504, display 516 (e.g., through a graphics proces-
sor or accelerator), and to high-speed expansion ports 510,
which may accept various expansion cards (not shown). Inthe
implementation, low-speed controller 512 is coupled to stor-
age device 506 and low-speed expansion port 514. The low-
speed expansion port, which may include various communi-
cation ports (e.g., USB, Bluetooth, Ethernet, wireless
Ethernet) may be coupled to one or more input/output
devices, such as a keyboard, a pointing device, a scanner, ora
networking device such as a switch or router, e.g., through a
network adapter.

[0059] Thecomputing device 500 may be implemented ina
number of different forms, as shown in the figure. For
example, it may be implemented as a standard server 520, or
multiple times in a group of such servers. It may also be
implemented as part of a rack server system 524. In addition,
it may be implemented in a personal computer such as a
laptop computer 522. Alternatively, components from com-
puting device 500 may be combined with other components
in a mobile device (not shown), such as device 550. Each of
such devices may contain one or more of computing device
500, 550, and an entire system may be made up of multiple
computing devices 500, 550 communicating with each other.
[0060] Computing device 550 includes a processor 552,
memory 564, an input/output device such as a display 554, a
communication interface 566, and a transceiver 568, among
other components. The device 550 may also be provided with
a storage device, such as a microdrive or other device, to
provide additional storage. Each of the components 550, 552,
564, 554, 566, and 568, are interconnected using various
buses, and several of the components may be mounted on a
common motherboard or in other manners as appropriate.
[0061] The processor 552 can execute instructions within
the computing device 550, including instructions stored in the
memory 564. The processor may be implemented as a chip set
of chips that include separate and multiple analog and digital
processors. Additionally, the processor may be implemented
using any of a number of architectures. For example, the
processor 410 may be a CISC (Complex Instruction Set Com-
puters) processor, a RISC (Reduced Instruction Set Com-
puter) processor, or a MISC (Minimal Instruction Set Com-
puter) processor. The processor may provide, for example, for
coordination of the other components of the device 550, such
as control of user interfaces, applications run by device 550,
and wireless communication by device 550.

[0062] Processor 552 may communicate with a user
through control interface 558 and display interface 556
coupled to a display 554. The display 554 may be, for
example, a TFT (Thin-Film-Transistor Liquid Crystal Dis-
play) display or an OLED (Organic Light Emitting Diode)
display, or other appropriate display technology. The display
interface 556 may comprise appropriate circuitry for driving
the display 554 to present graphical and other information to

US 2016/0124669 Al

auser. The control interface 558 may receive commands from
a user and convert them for submission to the processor 552.
In addition, an external interface 562 may be provide in
communication with processor 552, so as to enable near area
communication of device 550 with other devices. External
interface 562 may provide, for example, for wired communi-
cation in some implementations, or for wireless communica-
tion in other implementations, and multiple interfaces may
also be used.

[0063] Thememory 564 stores information within the com-
puting device 550. The memory 564 can be implemented as
one or more of a computer-readable medium or media, a
volatile memory unit or units, or a non-volatile memory unit
or units. Expansion memory 574 may also be provided and
connected to device 550 through expansion interface 572,
which may include, for example, a SIMM (Single In Line
Memory Module) card interface. Such expansion memory
574 may provide extra storage space for device 550, or may
also store applications or other information for device 550.
Specifically, expansion memory 574 may include instruc-
tions to carry out or supplement the processes described
above, and may include secure information also. Thus, for
example, expansion memory 574 may be provide as a security
module for device 550, and may be programmed with instruc-
tions that permit secure use of device 550. In addition, secure
applications may be provided via the SIMM cards, along with
additional information, such as placing identifying informa-
tion on the SIMM card in a non-hackable manner.

[0064] The memory may include, for example, flash
memory and/or NVRAM memory, as discussed below. In one
implementation, a computer program product is tangibly
embodied in an information carrier. The computer program
product contains instructions that, when executed, perform
one or more methods, such as those described above. The
information carrier is a computer- or machine-readable
medium, such as the memory 564, expansion memory 574, or
memory on processor 552 that may be received, for example,
over transceiver 568 or external interface 562.

[0065] Device 550 may communicate wirelessly through
communication interface 566, which may include digital sig-
nal processing circuitry where necessary. Communication
interface 566 may provide for communications under various
modes or protocols, such as GSM voice calls, SMS, EMS, or
MMS messaging, CDMA, TDMA, PDC, WCDMA,
CDMA2000, or GPRS, among others. Such communication
may occur, for example, through radio-frequency transceiver
568. In addition, short-range communication may occur, such
as using a Bluetooth, WiFi, or other such transceiver (not
shown). In addition, GPS (Global Positioning System)
receiver module 570 may provide additional navigation- and
location-related wireless data to device 550, which may be
used as appropriate by applications running on device 550.
[0066] Device 550 may also communicate audibly using
audio codec 560, which may receive spoken information from
a user and convert it to usable digital information. Audio
codec 560 may likewise generate audible sound for a user,
such as through a speaker, e.g., in a handset of device 550.
Such sound may include sound from voice telephone calls,
may include recorded sound (e.g., voice messages, music
files, etc.) and may also include sound generated by applica-
tions operating on device 550.

[0067] The computing device 550 may be implementedina
number of different forms, as shown in the figure. For
example, it may be implemented as a cellular telephone 580.

May 5, 2016

It may also be implemented as part of a smartphone 582,
personal digital assistant, or other similar mobile device.
[0068] Various implementations of the systems and tech-
niques described here can be realized in digital electronic
circuitry, integrated circuitry, specially designed ASICs (ap-
plication specific integrated circuits), computer hardware,
firmware, software, and/or combinations thereof. These vari-
ous implementations can include implementation in one or
more computer programs that are executable and/or interpret-
able on a programmable system including at least one pro-
grammable processor, which may be special or general pur-
pose, coupled to receive data and instructions from, and to
transmit data and instructions to, a storage system, at least one
input device, and at least one output device.

[0069] These computer programs (also known as pro-
grams, software, software applications or code) include
machine instructions for a programmable processor, and can
be implemented in a high-level procedural and/or object-
oriented programming language, and/or in assembly/ma-
chine language. As used herein, the terms “machine-readable
medium” “computer-readable medium” refers to any com-
puter program product, apparatus and/or device (e.g., mag-
netic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/or
data to a programmable processor, including a machine-read-
able medium that receives machine instructions as a machine-
readable signal. The term “machine-readable signal” refers to
any signal used to provide machine instructions and/or data to
a programmable processor.

[0070] To provide for interaction with a user, the systems
and techniques described here can be implemented on a com-
puter having a display device (e.g., a CRT (cathode ray tube)
or LCD (liquid crystal display) monitor) for displaying infor-
mation to the user and a keyboard and a pointing device (e.g.,
amouse or a trackball) by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feed-
back); and input from the user can be received in any form,
including acoustic, speech, or tactile input.

[0071] The systems and techniques described here can be
implemented in a computing system that includes a back end
component (e.g., as a data server), or that includes a middle-
ware component (e.g., an application server), or that includes
a front end component (e.g., a client computer having a
graphical user interface or a Web browser through which a
user can interact with an implementation of the systems and
techniques described here), or any combination of such back
end, middleware, or front end components. The components
of the system can be interconnected by any form or medium
of digital data communication (e.g., a communication net-
work). Examples of communication networks include a local
area network (“LLAN™), a wide area network (“WAN”), peer-
to-peer networks (having ad-hoc or static members), grid
computing infrastructures, and the Internet.

[0072] The computing system can include clients and serv-
ers. A client and server are generally remote from each other
and typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

[0073] While this specification contains many specific
implementation details, these should notbe construed as limi-

US 2016/0124669 Al

tations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain fea-
tures that are described in this specification in the context of
separate embodiments can also be implemented in combina-
tionin a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

[0074] Similarly, while operations are depicted in the draw-
ings in a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer-
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi-
ments, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

[0075] Thus, particular embodiments of the subject matter
have been described. Other embodiments are within the scope
of the following claims. In some cases, the actions recited in
the claims can be performed in a different order and still
achieve desirable results. In addition, the processes depicted
in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desir-
able results. In certain implementations, multitasking and
parallel processing may be advantageous.

What is claimed is:
1. (canceled)
2. A computer-implemented method, comprising:
receiving, at a computer system, a request to create a snap-
shot of a virtual storage device, wherein the virtual stor-
age device virtually stores data at virtual addresses, the
data being physically stored at a plurality of physical
storage locations that are managed by an underlying
storage system associated with virtual storage device;

identifying, by the computer system, one or more regions
of the virtual storage device that have been written to
since a previous snapshot of the virtual storage device
was created, wherein data written to the one or more
identified regions is stored in the plurality of physical
storage locations;

generating a unique identifier for the requested snapshot;

and

creating the requested snapshot using the identified one

more regions and the unique identifier, wherein the
requested snapshot includes a mapping of the unique
identifier to the one or more identified regions of the
virtual storage device.

3. The method of claim 2, wherein the unique identifier
includes a running counter of snapshots to identify a next
unique identifier for the request snapshot.

4. The method of claim 3, wherein the unique identifier
includes a timestamp.

May 5, 2016

5. The method of claim 2, further comprising:

receiving a request to write new data to a first region of the
virtual storage device, wherein the first region is indi-
cated in the previous snapshot as storing previous data at
afirst physical storage location of the underlying storage
system,

allocating a second physical storage location of the under-
lying storage system to store the new data in association
with the first region of the virtual storage device; and

writing the new data to the second physical storage loca-
tion.

6. The method of claim 5, wherein the request to write the
new data to the first region is received before the request to
create the snapshot and after the previous snapshot of the
virtual storage device was created, and wherein the one or
more identified regions includes the first region.

7. The method of claim 2, further comprising:

after creating the snapshot, receiving a request to access the
created snapshot of the virtual storage device;

retrieving the one or more identified regions using the
mapping for the created snapshot;

identifying and retrieving most recent versions of other
regions of the virtual storage device that are not included
in the mapping of the created snapshot, wherein the most
recent versions of the other regions are identified using
other snapshots of the virtual storage device; and

providing access to the created snapshot using the retrieved
one or more identified regions and the most recent ver-
sions of the other regions of the virtual storage device.

8. The method of claim 2, further comprising:

receiving a request to delete the previous snapshot of the
virtual storage device;

determining whether the previous snapshot includes at
least one other region of the virtual storage device that is
not included in the mapping; and

when the previous snapshot is determined to include the at
least one other region, marking the previous snapshot for
deletion at a later time when a new snapshot includes the
at least one region.

9. A system comprising:

one or more computers;

a memory storage system in data communication with the
one or more computers and storing instructions execut-
able by the one or more computers that upon such execu-
tion cause the one or more computers to perform opera-
tions comprising:

receiving a request to create a snapshot of a virtual storage
device, wherein the virtual storage device virtually
stores data at virtual addresses, the data being physically
stored at a plurality of physical storage locations that are
managed by an underlying storage system associated
with virtual storage device;

identifying one or more regions of the virtual storage
device that have been written to since a previous snap-
shot of the virtual storage device was created, wherein
data written to the one or more identified regions is
stored in the plurality of physical storage locations;

generating a unique identifier for the requested snapshot;
and

creating the requested snapshot using the identified one
more regions and the unique identifier, wherein the
requested snapshot includes a mapping of the unique
identifier to the one or more identified regions of the
virtual storage device.

US 2016/0124669 Al

10. The system of claim 9, wherein the unique identifier
includes a running counter of snapshots to identify a next
unique identifier for the request snapshot.
11. The system of claim 10, wherein the unique identifier
includes a timestamp.
12. The system of claim 9, the operations further compris-
ing:
receiving a request to write new data to a first region of the
virtual storage device, wherein the first region is indi-
cated in the previous snapshot as storing previous data at
afirst physical storage location of the underlying storage
system,
allocating a second physical storage location of the under-
lying storage system to store the new data in association
with the first region of the virtual storage device; and

writing the new data to the second physical storage loca-
tion.

13. The system of claim 9, wherein the request to write the
new data to the first region is received before the request to
create the snapshot and after the previous snapshot of the
virtual storage device was created, and wherein the one or
more identified regions includes the first region.

14. The system of claim 9, the operations further compris-
ing:

after creating the snapshot, receiving a request to access the

created snapshot of the virtual storage device;
retrieving the one or more identified regions using the
mapping for the created snapshot;

identifying and retrieving most recent versions of other

regions of the virtual storage device that are notincluded
in the mapping of the created snapshot, wherein the most
recent versions of the other regions are identified using
other snapshots of the virtual storage device; and
providing access to the created snapshot using the retrieved
one or more identified regions and the most recent ver-
sions of the other regions of the virtual storage device.

May 5, 2016

15. The system of claim 9, the operations further compris-
ing:
receiving a request to delete the previous snapshot of the
virtual storage device;

determining whether the previous snapshot includes at
least one other region of the virtual storage device that is
not included in the mapping; and

when the previous snapshot is determined to include the at
least one other region, marking the previous snapshot for
deletion at a later time when a new snapshot includes the
at least one region.

16. A computer program product tangibly embodied on a
computer readable medium, the computer program product
including instructions that, when executed, cause a comput-
ing device to perform operations comprising:
receiving a request to create a snapshot of a virtual storage
device, wherein the virtual storage device virtually
stores data at virtual addresses, the data being physically
stored at a plurality of physical storage locations that are
managed by an underlying storage system associated
with virtual storage device;
identifying one or more regions of the virtual storage
device that have been written to since a previous snap-
shot of the virtual storage device was created, wherein
data written to the one or more identified regions is
stored in the plurality of physical storage locations;

generating a unique identifier for the requested snapshot;
and

creating the requested snapshot using the identified one

more regions and the unique identifier, wherein the
requested snapshot includes a mapping of the unique
identifier to the one or more identified regions of the
virtual storage device.

#* #* #* #* #*

