US 20120323845A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0323845 A1

Catterall et al. 43) Pub. Date: Dec. 20, 2012
(54) ADAPTIVE RELATIONAL DATABASE Publication Classification
ACCESS
(51) Int.CL
(75) Inventors: Roy Antony Catterall, Perth (AU); GO6F 17/30 (2006.01)
Allan Thomas Chandler, Perth (AU); (52) US.CL oo, 707/609; 707/E17.005

Alan David Place, Perth (AU); Mark
Andrew Shewell, Perth (AU); Stephen

James Yates, Perth (AU) (57) ABSTRACT

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US) An approach is provided that receives an alteration request to

(21) Appl. No.: 13/600,584 mark a selected column in a database table as an unused
] column. A database control table is then updated to indicate
(22) Filed: Aug. 31,2012 that the selected column is unused. After the database control

table is updated, when a read request is received for the
selected column, the same data is returned for the selected
(63) Continuation of application No. 12/748,943, filed on column for each row being read and this data is not stored in

Related U.S. Application Data

Mar. 29, 2010. the database table.
Upper levels
320
[—f——— - - — —— — - ——— -
I Control layer |
I 300 |
I |
|
| Read layer Write layer [
| 330 Control tables 335 |
| 305
| 7\ |
R g _ 1
\ 4
Traditional Traditional
read logic write logic
325 340

SAMPLE DB TABLE 250
Control dataa(ggntrol tables) “WUsed” “Used” “Used” “Unused” rs
Columns (Example) ! . Active
370 Period CPU % | Disk usage process list
[Period] | [CPU %] | [Disk usage] | [NOT USED
Rows (Example) . . . NO DATA]
380 . . .

Patent Application Publication

Dec. 20,2012 Sheet 1 of 7

Information Handling System

F I G' 1 Processor(s) '/* 100
110
System Memor
! 120 ! 12— [Processor Interface Bus
Memory North Bridge | PCI ,
Memory Express ggﬁ?rgllf:r Display
Controller // 195 130
Memory 15 18 —
\ o |~ 145
119) ' USB Storage Device %
DMI USB Device USB
Bus Devices
USB Device 142
— 144
% Keyboard and Trackpad }
\J _— 146
—_Bluetooth -
ExpressCard PCI Express 1-lane o 148
155 UsB ‘(H\) IR Receiver
— USB Controller = 150
140 Df/Camera
802.11 Wireless PCI Express 1-ane
175 / 162 N Audio line-in
172 — HD . _ and optical digital
- Interf. Audio —{(_))audio in port
EF-Boot Mgr. SPI bus T8 Circuiy | — 164
180 / . / 160 ‘" Optical digital
178 _/ South Bridge | 198 ~ H\:i//output and
7 = /O Device and headphone jack
e —— Disk Controller | ntemal <~ 7] ntemal
Internal ATA ot UATA bus 135 Microphoﬁé\ 166 J/,»J Speakers
Hard Drive / 168 ——
185 184 —~ PCIE Ethernet
T xpress 1-lane
Controller
..... Serial ATA bus 170
p—— Y 192
Optical drive 188 / LPC Bus TPM
~— 190 195
“Legacy” Boot
110 LPC Bus LPC Bus ROM
Devices 196
198

US 2012/0323845 Al

Patent Application Publication Dec. 20, 2012 Sheet 2 of 7

US 2012/0323845 Al
Storage Device
145 — (e.g., USB drive)
) e—— Personal Computer
Is Insert
Insert S D
. Laptop computer « e 250 Workstation
230 ﬁ\\\\‘ %W - — GH%
T D : - 240
,,,,,, \ S
260 - Server
Computer Network
(e.g.,, LAN, WLAN, the Intemet, \, — —~__
PSTN, Wireless, efc.)
200
\\ \// \\:
| S
7 / ~270 Nonvolatile
o Data Store
Information = _
Handling System
280
Mainframe Computer
T T Nonv;)IatiIe
Tt Data Store
. — a5
Nonvolatile Data Store ——
(e.g., hard drive,
database, etc.)
285

FIG. 2

Patent Application Publication Dec. 20, 2012 Sheet 3 of 7 US 2012/0323845 A1

Upper levels
320
I' A —— D I ————————————————— — -
| Control layer |
| 300 I
| |
|
I Read layer Write layer |
| 330 Control tables 335 I
| 305 I
|
e e e e e e e e _ 1
Traditional Traditional
read logic write logic
325 340

SAMPLE DB TABLE

— 350
/

Control data (control tables) Used" “Used” “Used” “Unused” ¥

360

Columns (Example)
370

Active
process list

[Period] | [CPU %] |[[Disk usage] | [NOT USED

Period CPU % | Disk usage

Rows (Example) NO DATA]

380

FIG. 3

Patent Application Publication Dec. 20, 2012 Sheet 4 of 7 US 2012/0323845 A1

(D%S >

_______ Receive request
(o »| 410 <

DB
Applications
420

A

/" Altertable?
¢ Yes \ 430

Alter DB table |
(See Figure 5) No

0 y

/ Read data?
¢ Yes \ 450

Read data for |
each row No

(See Figure 6) $

460
Yes / Write data? >

I @

Write data for |
each row
(See Figure 7) No

480 l

Handle other
DBMS request
490

!

Wait for next
DBMS request
495

YVY

FIG. 4

Patent Application Publication

Dec. 20,2012 Sheet 5 of 7

Alter DB table
500

v

Get table name from request
505

Yes

Table in DB?
510

US 2012/0323845 Al

No—¢

Request to mark columns
—No as “used” or “unused”?
515

C%eturn Error: Table not in D%
512

Yes

v

this column
520

Select and validate first/next column
o] name in request and the instructions for

v
How is selected column
being marked?
525

“used”

|
“unused”
A 4

Retrieve <putValue>, <chgValue>, and
<getValue> from request for selected
column, use default values if any of
these values not provided in request
530

v

Update DBMS control data and mark
selected column as “unused”
and store its value data
535

<

a

Control
tables
305

A 4

Update DBMS control

— { data and mark selected

column as “used”
550

<

A 4
More columns?

N

970

/

A 4

A 4

Perform other alter requests

FIG. 5

included in the request for this table

580

Return
595

Patent Application Publication

Read data
600

Get table name from request

Dec. 20,2012 Sheet 6 of 7

US 2012/0323845 Al

v
< TableinDB? \L
W)

Yes

v

No *

C

eturn Error: Table notin D
615

)

Select and validate first/next
column 6|r210request

v

Retrieve control data for selected column

Control

tables
305

olumn marked as unused”
630

Yes

v

No
Data
310

Retrieve <getValue> for Retrieve data for
~ —» selected column selected column 4’
635 650

v

v

640

Return <getValue> to Return data to caller for
caller for selected column selected column

655

)

Yes

/ More columns? >

60
I

No

Return
695

FIG. 6

Patent Application Publication

Dec. 20,2012 Sheet 7 of 7

Write data
700

C)

Get table name from request
705

US 2012/0323845 Al

FIG. 7

< Table in DB? No
Y
| Cieturn Error: Table notin D?
Yes 715
v
Select and validate first/next column in
> reguest
120 Control
v tables
305

Retrieve control da% gor selected column

Column marked

Pass column data
unchanged to

Yes as “ungged"? NO———— "\ e logic
Column exists? Yes 7
135 [
Row exists in tablek No ll
745 v |
Pass <putValue>
No Yes to wr?te logic !
165 "
<chgValue> = ‘as-is” \
750 NO; \ ’l
Silently ignore I Pass <chaValue> \
request to write Yes to writeglogic S B
data to this ¥ 760 ~ | | Row
column Silentiv i data
ly ignore
740 request to write data =7 B
to this columnor =~ |
pass current value |g— — —— |
755 Tt~ |
l - - - v \
Y \ Write row to table u;ng =
5
—Yes More columns? No | existingwritelogic T &l Data
150 60 310

Return
795

US 2012/0323845 Al

ADAPTIVE RELATIONAL DATABASE
ACCESS

RELATED APPLICATION

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 12/748,943, filed Mar. 29,2010, titled “Adaptive
Relational Database Access,” and having the same inventors
as the above-referenced application.

BACKGROUND OF THE INVENTION

[0002] A traditional database management system
(DBMS) stores data in tables with the tables containing rows
and columns of data. A column of data is generally of a
particular type, such as “name,” “address,” etc. while the rows
generally pertain to a record, such as a particular customer.
Software applications use data manipulation instructions,
such as the Structured Query Language (SQL) to insert,
extract, or manipulate data in database tables. Because data-
base tables often contain vast amounts of data, reducing the
size of a particular column, or eliminating it altogether, can
sometimes dramatically reduce the size of a particular table.
Columns cannot, however, be eliminated from traditional
database tables without impacting software applications that
access the table and reference the column of data.

SUMMARY

[0003] An approach is provided that receives an alteration
request to mark a selected column in a database table as an
unused column. A database control table is then updated to
indicate that the selected column is unused. After the database
control table is updated, when a read request is received for
the selected column, the same data is returned for the selected
column for each row being read and this data is not stored in
the database table.

[0004] The foregoing is a summary and thus contains, by
necessity, simplifications, generalizations, and omissions of
detail; consequently, those skilled in the art will appreciate
that the summary is illustrative only and is not intended to be
in any way limiting. Other aspects, inventive features, and
advantages of the present invention, as defined solely by the
claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention may be better understood, and
its numerous objects, features, and advantages made apparent
to those skilled in the art by referencing the accompanying
drawings, wherein:

[0006] FIG.1 is a block diagram of a data processing sys-
tem in which the methods described herein can be imple-
mented;

[0007] FIG. 2 provides an extension of the information
handling system environment shown in FIG. 1 to illustrate
that the methods described herein can be performed on a wide
variety of information handling systems which operate in a
networked environment;

[0008] FIG. 3 isa diagram depicting various layers, includ-
ing a control layer, in a database management system;
[0009] FIG. 4 is a high level flowchart showing how the
database management system handles various requests;
[0010] FIG. 5 is a flowchart showing details of how the
database management system handles a request to alter a
database table;

Dec. 20,2012

[0011] FIG. 6 is a flowchart showing details of how the
database management system handles a request to read data
from a database table; and

[0012] FIG. 7 is a flowchart showing details of how the
database management system handles a request to write data
to a database table.

DETAILED DESCRIPTION

[0013] Certain specific details are set forth in the following
description and figures to provide a thorough understanding
of various embodiments of the invention. Certain well-known
details often associated with computing and software tech-
nology are not set forth in the following disclosure, however,
to avoid unnecessarily obscuring the various embodiments of
the invention. Further, those of ordinary skill in the relevant
art will understand that they can practice other embodiments
of the invention without one or more of the details described
below. Finally, while various methods are described with
reference to steps and sequences in the following disclosure,
the description as such is for providing a clear implementa-
tion of embodiments of the invention, and the steps and
sequences of steps should not be taken as required to practice
this invention. Instead, the following is intended to provide a
detailed description of an example of the invention and should
not be taken to be limiting of the invention itself. Rather, any
number of variations may fall within the scope of the inven-
tion, which is defined by the claims that follow the descrip-
tion.

[0014] The following detailed description will generally
follow the summary of the invention, as set forth above,
further explaining and expanding the definitions of the vari-
ous aspects and embodiments of the invention as necessary.
To this end, this detailed description first sets forth a comput-
ing environment in FIG. 1 that is suitable to implement the
software and/or hardware techniques associated with the
invention. A networked environment is illustrated in FIG. 2 as
an extension of the basic computing environment, to empha-
size that modern computing techniques can be performed
across multiple discrete devices.

[0015] FIG. 1 illustrates information handling system 100,
which is a simplified example of a computer system capable
of performing the computing operations described herein.
Information handling system 100 includes one or more pro-
cessors 110 coupled to processor interface bus 112. Processor
interface bus 112 connects processors 110 to Northbridge
115, which is also known as the Memory Controller Hub
(MCH). Northbridge 115 connects to system memory 120
and provides a means for processor(s) 110 to access the
system memory. Graphics controller 125 also connects to
Northbridge 115. In one embodiment, PCI Express bus 118
connects Northbridge 115 to graphics controller 125. Graph-
ics controller 125 connects to display device 130, such as a
computer monitor.

[0016] Northbridge 115 and Southbridge 135 connect to
each other using bus 119. In one embodiment, the bus is a
Direct Media Interface (DMI) bus that transfers data at high
speeds in each direction between Northbridge 115 and South-
bridge 135. In another embodiment, a Peripheral Component
Interconnect (PCI) bus connects the Northbridge and the
Southbridge. Southbridge 135, also known as the I/O Con-
troller Hub (ICH) is a chip that generally implements capa-
bilities that operate at slower speeds than the capabilities
provided by the Northbridge. Southbridge 135 typically pro-
vides various busses used to connect various components.

US 2012/0323845 Al

These busses include, for example, PCI and PCI Express
busses, an ISA bus, a System Management Bus (SMBus or
SMB), and/or a Low Pin Count (LPC) bus. The LPC bus often
connects low-bandwidth devices, such as boot ROM 196 and
“legacy” 1/O devices (using a “super [/O” chip). The “legacy”
1/0 devices (198) can include, for example, serial and parallel
ports, keyboard, mouse, and/or a floppy disk controller. The
LPC bus also connects Southbridge 135 to Trusted Platform
Module (TPM) 195. Other components often included in
Southbridge 135 include a Direct Memory Access (DMA)
controller, a Programmable Interrupt Controller (PIC), and a
storage device controller, which connects Southbridge 135 to
nonvolatile storage device 185, such as a hard disk drive,
using bus 184.

[0017] ExpressCard 155 is a slot that connects hot-plug-
gable devices to the information handling system. Express-
Card 155 supports both PCI Express and USB connectivity as
it connects to Southbridge 135 using both the Universal Serial
Bus (USB) the PCI Express bus. Southbridge 135 includes
USB Controller 140 that provides USB connectivity to
devices that connect to the USB. These devices include web-
cam (camera) 150, infrared (IR) receiver 148, keyboard and
trackpad 144, and Bluetooth device 146, which provides for
wireless personal area networks (PANs). USB Controller 140
also provides USB connectivity to other miscellaneous USB
connected devices 142, such as a mouse, removable nonvola-
tile storage device 145, modems, network cards, ISDN con-
nectors, fax, printers, USB hubs, and many other types of
USB connected devices. While removable nonvolatile stor-
age device 145 is shown as a USB-connected device, remov-
able nonvolatile storage device 145 could be connected using
a different interface, such as a Firewire interface, etcetera.

[0018] Wireless Local Area Network (LAN) device 175
connects to Southbridge 135 via the PCI or PCI Express bus
172. LAN device 175 typically implements one of the IEEE
802.11 standards of over-the-air modulation techniques that
all use the same protocol to wireless communicate between
information handling system 100 and another computer sys-
tem or device. Extensible Firmware Interface (EFI) manager
180 connects to Southbridge 135 via Serial Peripheral Inter-
face (SPI) bus 178 and is used to interface between an oper-
ating system and platform firmware. Optical storage device
190 connects to Southbridge 135 using Serial ATA (SATA)
bus 188. Serial ATA adapters and devices communicate over
a high-speed serial link. The Serial ATA bus also connects
Southbridge 135 to other forms of storage devices, such as
hard disk drives. Audio circuitry 160, such as a sound card,
connects to Southbridge 135 via bus 158. Audio circuitry 160
also provides functionality such as audio line-in and optical
digital audio in port 162, optical digital output and headphone
jack 164, internal speakers 166, and internal microphone 168.
Ethernet controller 170 connects to Southbridge 135 using a
bus, such as the PCI or PCI Express bus. Ethernet controller
170 connects information handling system 100 to a computer
network, such as a Local Area Network (LLAN), the Internet,
and other public and private computer networks.

[0019] While FIG. 1 shows one information handling sys-
tem, an information handling system may take many forms.
For example, an information handling system may take the
form of a desktop, server, portable, laptop, notebook, mobile
internet device, or other form factor computer or data pro-
cessing system. In addition, an information handling system
may take other form factors such as a personal digital assis-
tant (PDA), a gaming device, ATM machine, a portable tele-

Dec. 20,2012

phone device, a communication device or other devices that
include a processor and memory.

[0020] FIG. 2 provides an extension of the information
handling system environment shown in FIG. 1 to illustrate
that the methods described herein can be performed on a wide
variety of information handling systems that operate in a
networked environment. Types of information handling sys-
tems range from small handheld devices, such as handheld
computer/mobile telephone 210 to large mainframe systems,
such as mainframe computer 270. Examples of handheld
computer 210 include personal digital assistants (PDAs), per-
sonal entertainment devices, such as MP3 players, portable
televisions, and compact disc players. Other examples of
information handling systems include pen, or tablet, com-
puter 220, laptop, or notebook, computer 230, workstation
240, personal computer system 250, and server 260. Other
types of information handling systems that are not individu-
ally shown in FIG. 2 are represented by information handling
system 280. As shown, the various information handling sys-
tems can be networked together using computer network 200.
Types of computer network that can be used to interconnect
the various information handling systems include Local Area
Networks (LANs), Wireless Local Area Networks (WL ANs),
the Internet, the Public Switched Telephone Network
(PSTN), other wireless networks, and any other network
topology that can be used to interconnect the information
handling systems. Many of the information handling systems
include nonvolatile data stores, such as hard drives and/or
nonvolatile memory. Some of the information handling sys-
tems shown in FIG. 2 depicts separate nonvolatile data stores
(server 260 utilizes nonvolatile data store 265, mainframe
computer 270 utilizes nonvolatile data store 275, and infor-
mation handling system 280 utilizes nonvolatile data store
285). The nonvolatile data store can be a component that is
external to the various information handling systems or can
be internal to one of the information handling systems. In
addition, removable nonvolatile storage device 145 can be
shared among two or more information handling systems
using various techniques, such as connecting the removable
nonvolatile storage device 145 to a USB port or other con-
nector of the information handling systems.

[0021] FIG. 3 is a diagram depicting various layers, includ-
ing a control layer, in a database management system. Control
layer 300 includes one or more control tables 305, read layer
logic 330, and write layer logic 335. Read layer logic 330
interfaces with upper level database application programs
320 and traditional database read logic 325. When a read
request is received, read layer 330 identifies, using control
tables 305, whether one or more of the columns included in
the read request are “unused” columns. If the columns are
unused, read layer 330 provides the responsive data for the
column(s) (e.g., “N/A,” null value, “no data,” etc.). The
responsive data provided by read layer 330 will be the same
for each row. Data for the other “used” columns will be
retrieved from the database table (data 310) using traditional
read logic 325. In this manner, programs in upper levels 320
expecting a particular “unused” column will still receive data
for the unused columns and will not cause an error in the
application program. Likewise, when an application program
from upper levels 320 writes data to a table, write layer 335
receives the request, uses control tables 305 to determine
whether the columns being written to are “used” or “unused,”
and, if any of the columns are “unused,” then write layer logic
335 determines the data (if any) that will be provided to

US 2012/0323845 Al

traditional write logic 340. Data for “used” columns pass
through write layer logic 335 and are written to the database
table (data 310) using traditional write logic 340. In this
manner, columns that would otherwise consume storage and
memory in the database table can be either substantially
shortened or eliminated altogether. This can result in signifi-
cant storage and memory savings in some situations, such as
in sample database table 350 discussed below.

[0022] Sample database table 350 shows performance
information stored for a system throughout a given period of
time (e.g., a day, week, etc.). The columns 370 used in the
example table include CPU % for a given period, along with
the disk usage and active process list during that period.
While CPU % and disk usage are rather small fields (col-
umns), the active process list is a large field (column) that can
store identifiers of many processes. Thus, the active process
list column likely takes up much more space than the other
columns. To address this concern, control data 360 is estab-
lished in control tables 305. As shown, the control data indi-
cates that the period, CPU % and disk usage columns are
“used,” while the active process list column is “unused.”
When data is captured and written to the database by a soft-
ware program that is monitoring system performance, the
software program will execute instructions to write the
period, CPU %, the disk usage, and the active process list to
the database table. The resulting rows (380) actually written
to the database table will have the period, CPU % and the disk
usage stored intable 350, however, because the active process
list was marked as “unused,” the data provided by the soft-
ware program is not written to the table. Instead, either no
data is written to the column (if the column does not exist), or
write layer logic 335 substitutes a different value to store in
the active process list column (e.g., “N/A,” null value, etc.),
thus saving space in table 350.

[0023] FIG. 4 is a high level flowchart showing how the
database management system handles various requests. Pro-
cessing commences at 400 whereupon, at step 410, the data-
base management system receives a request from software
applications 420 that include database instructions (database
applications). A determination is made as to whether the
request is to alter a database table (decision 430). If the
request is to alter a database table, then decision 430 branches
to the “yes” branch whereupon, at predefined process 440, the
alter database table routine is performed (see FIG. 5 and
corresponding text for processing details). On the other hand,
if the request is notto alter a table, then decision 430 branches
to the “no” branch whereupon a determination is made as to
whether the request is to read data from a database table
(decision 450). If the request is to read data from a table, then
decision 450 branches to the “yes” branch whereupon, at
predefined process 460, aroutine is performed to read data for
each requested row of the requested table (see FIG. 6 and
corresponding text for processing details). On the other hand,
if the request is notto read data, then decision 450 branches to
the “no” branch whereupon a determination is made as to
whether the request is to write data to a database table (deci-
sion 470). If the request is to write data to a table, then
decision 470 branches to the “yes” branch whereupon, at
predefined process 480, a routine is performed to write data to
each row of the requested table (see FIG. 7 and corresponding
text for processing details). On the other hand, if the request
is not to write data, then decision 470 branches to the “no”
branch whereupon, at step 490, the database management
system handles the other request which is not an alter, read, or

Dec. 20,2012

write request. At step 495, the database management system
waits for the next request to arrive. When the next request
arrives, processing loops back to step 410 to receive the
request and process it as outlined above.

[0024] FIG. 5 is a flowchart showing details of how the
database management system handles a request to alter a
database table. Processing commences at 500 whereupon, at
step 505, the routine retrieves the table name from the
received request. A determination is made as to whether the
table exists in the database (decision 510). If the table does not
exist in the database, decision 510 branches to the “no”
branch whereupon processing returns an error to the software
application at 512 indicating that the table is not in the data-
base and processing returns to the calling routine (see FIG. 4).

[0025] Onthe other hand, if the table is in the database, then
decision 510 branches to the “yes” branch whereupon a deter-
mination is made as to whether the request includes any
request(s) to mark one or more columns as either “used” or
“unused” (decision 515). If the request does not include any
request(s) to mark any columns as “used” or “unused,” then
decision 515 branches to the “no” branch whereupon the
other alter request(s) is/are performed at step 580 after which
processing returns to the calling routine at 595.

[0026] Returning to decision 515, if the alter request
includes one or more requests to mark column(s) as either
“used” or “unused,” then decision 515 branches to the “yes”
branch whereupon, at step 520, the first column name that is
being marked as “used” or “unused” is selected and validated.
If the column does not exist in the table, an error is returned
and processing terminates. Otherwise, a determination is
made as to whether the selected column is being marked as
“unused” or as “used” (decision 525). If the selected column
is being marked as “unused”, then decision 525 branches to
the “unused” branch whereupon, at step 530, various values
are retrieved from the request (if provided) and, if values are
not provided, then default values are used. These values
include a “putValue” which is the value that will be provided
to the traditional write logic when a new row is written to the
table. These values also include a “chgValue” which is the
value that will be provided to the traditional write logic when
an existing row is being updated. Finally, these values include
a “getValue” which is the value that will be returned for the
selected column when the column is being read by a software
application. At step 535, control tables 305 are updated to
indicate that the selected column is “unused” as well as the
values of the putValue, chgValue, and getValue associated
with the selected column.

[0027] Returning to decision 525, if the selected column is
being marked as “used,” then decision 525 branches to the
“used” branch. At step 550, control tables 305 are updated to
indicate that the selected column is “used.” In this manner, a
column can be marked as “unused” and subsequently marked
as “used” or vise-versa.

[0028] Following step 535 or 550, a determination is made
as to whether there are more columns that are being marked as
either “used” or “unused” in the alter request (decision 570).
If there are more columns being marked, then decision 570
branches to the “yes” branch which loops back to select the
next column in the request and process it as described above.
This looping continues until there are not more columns that
are being marked as either “used” or “unused,” at which point
decision 570 branches to the “no” branch whereupon, at step
580, any other alter requests (other than marking as “used”

US 2012/0323845 Al

and “unused”) are performed. Processing then returns to the
calling routine (see FIG. 4) at 595.

[0029] FIG. 6 is a flowchart showing details of how the
database management system handles a request to read data
from a database table. Processing commences at 600 where-
upon, at step 605, the table from which data is to be read is
retrieved from the request. A determination is made as to
whether the table exists in the database (decision 610). If the
table does not exist in the database, decision 610 branches to
the “no” branch whereupon processing returns an error to the
software application at 615 indicating that the table is not in
the database and processing returns to the calling routine (see
FIG. 4).

[0030] On the other hand, if the table is in the database, then
decision 610 branches to the “yes” branch whereupon, at step
620, processing selects and validates the first column
included in the request. If the column does not exist in the
table, an error is returned and processing terminates. Other-
wise, at step 625, control data corresponding to the selected
column is retrieved from control tables 305. A determination
is made as to whether the selected column is marked as
“unused” (decision 630). If the selected column is marked as
“unused,” then decision 630 branches to the “yes” branch
whereupon, at step 635, processing retrieves the getValue
from control tables 305 for the selected column and, at step
640, the retrieved getValue is returned to the calling software
application. For example, if the column is a “Street Address”
column that is marked as “unused” with a getValue of “N/A”,
then the value “N/A” is returned as the Street Address for each
row returned from the database table.

[0031] Returning to decision 630, if the column is not
marked as “unused” (and is therefore marked as “used”), then
decision 630 branches to the “no” branch whereupon, at step
650, the actual data is retrieved from the database table for the
requested row/column from data 310. This data is returned to
the calling software application at step 655. Using the
example from above, if the column is “Street Address” and
the column is marked as “used,” then the actual street address
(e.g., “123 Main Street”, etc.) is returned to the requesting
software application.

[0032] Following step 640 or 665, a determination is made
as to whether there are more columns being read in the request
(decision 660). If there are more columns that are being read,
then decision 660 branches to the “yes” branch which loops
back to select the next column in the request and process it as
described above. This looping continues until there are no
more columns being read in the read request, at which point
decision 660 branches to the “no” branch and processing
returns to the calling routine (see FIG. 4) at 695.

[0033] FIG. 7 is a flowchart showing details of how the
database management system handles a request to write data
to a database table. Processing commences at 700 where-
upon, at step 705, the table from which data is to be read is
retrieved from the request. A determination is made as to
whether the table exists in the database (decision 710). If the
table does not exist in the database, decision 710 branches to
the “no” branch whereupon processing returns an error to the
software application at 715 indicating that the table is not in
the database and processing returns to the calling routine (see
FIG. 4).

[0034] On the other hand, if the table is in the database, then
decision 710 branches to the “yes” branch whereupon, at step
720, processing selects and validates the first column
included in the write request. If the column does not exist in

Dec. 20,2012

the table, an error is returned and processing terminates.
Otherwise, at step 725, control data corresponding to the
selected column is retrieved from control tables 305. A deter-
mination is made as to whether the selected column is marked
as “unused” (decision 730). If the selected column is marked
as “unused,” then decision 730 branches to the “yes” branch.
A determination is made as to whether the column exists in
the actual database table (decision 735). If the selected col-
umn does not exist, then decision 735 branches to the “no”
branch whereupon, at step 740, processing silently ignores
the request to write the data to this column. On the other hand,
if the selected column exists in the database table, then deci-
sion 735 branches to the “yes” branch whereupon another
determination is made as to whether the row exists in the
database table (decision 745). If the row already exists (and is
being updated), then decision 745 branches to the “yes”
branch whereupon a determination is made as to whether the
chgValue retrieved from control tables 305 is a special “as-is”
value (decision 750). If the chgValue is the special “as-is”
value, then decision 750 branches to the “yes” branch where-
upon, at step 755, either the request to write data to the
column is silently ignored or the current data for the column
is passed as the data being written and stored in row data 785.
On the other hand, if the chgValue is not the special “as-is”
value, then decision 750 branches to the “no” branch where-
upon, at step 760, the value of the chgValue retrieved from the
control tables is passed to the traditional write logic and
written to row data 785. For example, if the column is “Street
Address” and the value of the retrieved chgValue is “N/A”,
then “N/A” is written to row data 785 as the Street Address
rather than the value provided by the software application
(e.g., “123 Main Street,” etc.).

[0035] Returning to decision 745, if the row does not exist
the table (indicating that a new row is being added to the
table), then decision 745 branches to the “no” branch where-
upon, at step 765, the value of the putValue retrieved from
control data 305 is passed to write logic by writing the
putValue to row data 785. While putValue can be the same
value as the chgValue, it can also be different. Using the Street
Address example from above, the putValue could be set as a
null value and the chgValue set as the special “as-is” value, so
that when new rows are added, the Street Address is set to a
null value, but when an existing row is updated, the Street
Address is set to left unchanged.

[0036] Returning to decision 730, if the column is not
marked as “unused” (and is therefore marked as “used”), then
decision 730 branches to the “no” branch whereupon, at step
770 the data provided in the request by the software applica-
tion is passed unchanged to the traditional write logic by
writing the data to row data 785. Using the example from
above, if the column “Street Address” is marked as “unused”
but the column “Last Name” is marked as “used” and the
software program passes the last name of “Doe” in the write
request, then this name (“Doe”) is written to row data 785 for
eventual writing to the database table.

[0037] Afterthe first selected column (“used” or “unused”)
has been processed in step 740, 755, 760, 765 or 770, a
determination is made as to whether there are more columns
included in the write request (decision 780). If there are more
columns in the write request, then decision 780 branches to
the “yes” branch which loops back to step 720 to select the
next column in the request and process it as described above.
This looping continues until all columns that are included in
the write request have been processed, at which point decision

US 2012/0323845 Al

780 branches to the “no” branch whereupon, at step 790, the
row stored in row data 785 is written to the actual database
table (data 310) using traditional database write logic. Pro-
cessing then returns to the calling routine (see FIG. 4) at 795.
[0038] One of the intended implementations of the inven-
tion is a software application, namely, a set of instructions
(program code) or other functional descriptive material in a
code module that may, for example, be resident in the random
access memory of the computer. Until required by the com-
puter, the set of instructions may be stored in another com-
puter memory, for example, in a hard disk drive, or in a
removable memory such as an optical disk (for eventual use in
a CD ROM) or floppy disk (for eventual use in a floppy disk
drive). Thus, the present invention may be implemented as a
computer program product for use in a computer. In addition,
although the various methods described are conveniently
implemented in a general purpose computer selectively acti-
vated or reconfigured by software, one of ordinary skill in the
art would also recognize that such methods may be carried out
in hardware, in firmware, or in more specialized apparatus
constructed to perform the required method steps. Functional
descriptive material is information that imparts functionality
to a machine. Functional descriptive material includes, but is
not limited to, computer programs, instructions, rules, facts,
definitions of computable functions, objects, and data struc-
tures.

[0039] While particular embodiments of the present inven-
tion have been shown and described, it will be obvious to
those skilled in the art that, based upon the teachings herein,
that changes and modifications may be made without depart-
ing from this invention and its broader aspects. Therefore, the
appended claims are to encompass within their scope all such
changes and modifications as are within the true spirit and
scope of this invention. Furthermore, it is to be understood
that the invention is solely defined by the appended claims. It
will be understood by those with skill in the art that if a
specific number of an introduced claim element is intended,
such intent will be explicitly recited in the claim, and in the
absence of such recitation no such limitation is present. For
non-limiting example, as an aid to understanding, the follow-
ing appended claims contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
elements. However, the use of such phrases should not be
construed to imply that the introduction of a claim element by
the indefinite articles “a” or “an” limits any particular claim
containing such introduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an”; the same
holds true for the use in the claims of definite articles.

What is claimed is:
1. A machine-implemented method comprising:

receiving an alteration request to mark a selected column in
a database table as an unused column;

updating a database control table indicating that the
selected column is unused;

retrieving a get value associated with the alteration request;

storing the get value in the control table;

receiving a read request corresponding to the selected col-
umn from a calling routine;

in response to receiving the read request, retrieving the get
value from the control table; and

returning the get value to the calling routine.

Dec. 20,2012

2. The method of claim 1 further comprising:
determining that the selected column is unused by check-
ing the control table; and
retrieving the get value from the control table in response to
the determining.
3. The method of claim 1 further comprising:
retrieving a write value associated with the alteration
request;
storing the write value in the control table;
receiving a write request corresponding to the selected
column from the calling routine, wherein the write
request includes a write data and identifies one or more
rows to write to the database table; and
in response to the selected column existing in the database
table:
retrieving the previously stored write value in response
to identifying that the selected column is unused; and

writing the previously stored write value to the selected
column of the one or more rows, wherein the write
data included in the write request is not written to the
selected column of the one or more rows.

4. The method of claim 1 further comprising:

retrieving a write value associated with the alteration
request;

storing the write value in the control table;

receiving a write request corresponding to the selected
column from the calling routine, wherein the write
request includes a write data and identifies one or more
rows to write to the database table; and

in response to the selected column not existing in the data-
base table:
inhibiting writing of any data to the selected column of

the one or more rows.
5. The method of claim 1 further comprising:
receiving a second alteration request to mark the selected
column in the database table as a used column;
updating the database control table indicating that the
selected column is used;
after the database control table is updated to indicate that
the selected column is used:
receiving a subsequent read request to read a first set of
one or more rows;

retrieving a data stored in the selected column from the
database table at the first set of rows;

receiving a subsequent write request to write a provided
data to a second set of one or more rows; and

writing the provided data to the selected column in the
database table at the second set of rows.
6. An information handling system comprising:
one or More processors;
a memory accessible by at least one of the processors;
a nonvolatile storage medium accessible by at least one of
the processors;
a database management system including a set of instruc-
tions stored in the memory and executed by at least one
of the processors in order to perform actions of:
receiving an alteration request to mark a selected column
in a database table as an unused column;

updating a database control table indicating that the
selected column is unused;

retrieving a get value associated with the alteration
request;

storing the get value in the control table;

receiving a read request corresponding to the selected
column from a calling routine;

US 2012/0323845 Al

in response to receiving the read request, retrieving the
get value from the control table; and
returning the get value to the calling routine.

7. The information handling system of claim 6 wherein the
actions further comprise:

determining that the selected column is unused by check-

ing the control table; and

retrieving the get value from the control table in response to

the determining.

8. The information handling system of claim 6 wherein the
actions further comprise:

retrieving a write value associated with the alteration

request;

storing the write value in the control table;

receiving a write request corresponding to the selected

column from the calling routine, wherein the write
request includes a write data and identifies one or more
rows to write to the database table; and

in response to the selected column existing in the database

table:

retrieving the previously stored write value in response
to identifying that the selected column is unused; and

writing the previously stored write value to the selected
column of the one or more rows, wherein the write
data included in the write request is not written to the
selected column of the one or more rows.

9. The information handling system of claim 6 wherein the
actions further comprise:

retrieving a write value associated with the alteration

request;

storing the write value in the control table;

receiving a write request corresponding to the selected

column from the calling routine, wherein the write
request includes a write data and identifies one or more
rows to write to the database table; and

in response to the selected column not existing in the data-

base table:
inhibiting writing of any data to the selected column of
the one or more rows.

10. The information handling system of claim 6 wherein
the actions further comprise:

receiving a second alteration request to mark the selected

column in the database table as a used column;
updating the database control table indicating that the
selected column is used;

after the database control table is updated to indicate that

the selected column is used:

receiving a subsequent read request to read a first set of
one or more rows;

retrieving a data stored in the selected column from the
database table at the first set of rows;

receiving a subsequent write request to write a provided
data to a second set of one or more rows; and

writing the provided data to the selected column in the
database table at the second set of rows.

11. A computer program product stored in a computer
readable storage medium, comprising functional descriptive
material that, when executed by an information handling
system, causes the information handling system to perform
actions comprising:

receiving an alteration request to mark a selected column in

a database table as an unused column;

Dec. 20,2012

updating a database control table indicating that the
selected column is unused;
retrieving a get value associated with the alteration request;
storing the get value in the control table;
receiving a read request corresponding to the selected col-
umn from a calling routine;
in response to receiving the read request, retrieving the get
value from the control table; and
returning the get value to the calling routine.
12. The computer program product of claim 11 wherein the
actions further comprise:
determining that the selected column is unused by check-
ing the control table; and
retrieving the get value from the control table in response to
the determining.
13. The computer program product of claim 11 wherein the
actions further comprise:
retrieving a write value associated with the alteration
request;
storing the write value in the control table;
receiving a write request corresponding to the selected
column from the calling routine, wherein the write
request includes a write data and identifies one or more
rows to write to the database table; and
in response to the selected column existing in the database
table:
retrieving the previously stored write value in response
to identifying that the selected column is unused; and
writing the previously stored write value to the selected
column of the one or more rows, wherein the write
data included in the write request is not written to the
selected column of the one or more rows.
14. The computer program product of claim 11 wherein the
actions further comprise:
retrieving a write value associated with the alteration
request;
storing the write value in the control table;
receiving a write request corresponding to the selected
column from the calling routine, wherein the write
request includes a write data and identifies one or more
rows to write to the database table; and
in response to the selected column not existing in the data-
base table:
inhibiting writing of any data to the selected column of
the one or more rows.
15. The computer program product of claim 11 wherein the
actions further comprise:
receiving a second alteration request to mark the selected
column in the database table as a used column;
updating the database control table indicating that the
selected column is used;
after the database control table is updated to indicate that
the selected column is used:
receiving a subsequent read request to read a first set of
one or more rows;
retrieving a data stored in the selected column from the
database table at the first set of rows;
receiving a subsequent write request to write a provided
data to a second set of one or more rows; and
writing the provided data to the selected column in the
database table at the second set of rows.

#* #* #* #* #*

