
US 20210072969A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0072969 A1

Mei et al . (43) Pub . Date : Mar. 11 , 2021

(54) AUTOMATIC UPGRADE OF ROBOTIC
PROCESS AUTOMATION USING A
COMPUTER

(52) U.S. CI .
CPC GO6F 8865 (2013.01) ; G06F 8/38

(2013.01) ; G06F 9/451 (2018.02)
(57) ABSTRACT (71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(72) Inventors : Lijun Mei , Beijing (CN) ; Xue Han ,
Beijing (CN) ; Qi Cheng Li , Beijing
(CN) ; Ya Bin Dang , Beijing (CN) ;
Lian Xue Hu , Beijing (CN)

(21) Appl . No .: 16 / 566,064

Methods , computer program products , and systems for
Robotic Process Automation (RPA) upgrade of an applica
tion are provided . A first mapping indicating relationships
between UI elements in a first version of the application and
UI elements in a second version of the application and a
second mapping indicating relationships between one or
more UI elements in a first version of an RPA code corre
sponding to the first version of the application and UI
elements in the first version of the application are respec
tively obtained . A third mapping indicating relationships
between the one or more UI elements in the second version
of the application and one or more UI elements in a second
version of the RPA code corresponding to the second version
of the application is determined and based on which the
second version of the RPA code corresponding to the second
version of the application is generated .

(22) Filed : Sep. 10 , 2019

Publication Classification

(51) Int . Cl .
G06F 8/65 (2006.01)
G06F 9/451 (2006.01)
GO6F 8/38 (2006.01)

10

12 COMPUTER SYSTEM / SERVER

30

PRO

INTERFACE (S)

Patent Application Publication Mar. 11 , 2021 Sheet 1 of 5 US 2021/0072969 A1

10

12 COMPUTER SYSTEM / SERVER

PROCESSING

E
20

FIG . 1

Patent Application Publication Mar. 11 , 2021 Sheet 2 of 5 US 2021/0072969 A1

54N

54R

>

Sot 002

Patent Application Publication Mar. 11 , 2021 Sheet 3 of 5 US 2021/0072969 A1

-Z
1
os

FIG . 3

Patent Application Publication

*** www

FIRST MAPPING

MAPPING

DETERMINING MODULE

ANALYSIS MODULE

UPDATE MODULE

Mar. 11 , 2021 Sheet 4 of 5

SECOND MAPPING ANALYSIS MODULE

RPA CODE GENERATING MODULE

MISSING INFORMATION RECORD MODULE

US 2021/0072969 Al

FIG . 4

Patent Application Publication Mar. 11 , 2021 Sheet 5 of 5 US 2021/0072969 A1

OBTANA FIRST MAPPING

OBTAIN A SECOND MAPPING
504

DETERMINE A THIRD MAPPING

WWW . wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

I
GENERATE AN UPGRADED RPA CODE

M

FIG . 5

US 2021/0072969 A1 Mar. 11 , 2021
1

AUTOMATIC UPGRADE OF ROBOTIC
PROCESS AUTOMATION USING A

COMPUTER

BACKGROUND

[0006] In other illustrative embodiments , a computer pro
gram product comprising a computer useable or readable
medium having a computer readable program is provided .
The computer readable program , when executed on a com
puting device , causes the computing device to perform
various ones of , and combinations of , the operations out
lined above with regard to the method illustrative embodi
ment .

[0007] These and other features and advantages of the
present invention will be described in , or will become
apparent to those of ordinary skill in the art in view of , the
following detailed description of the example embodiments
of the present invention .

BRIEF DESCRIPTION OF THE DRAWINGS

[0001] The present application relates to computing , and
more specifically , to methods , systems and computer pro
gram products for Robotic Process Automation (RPA)
upgrade .
[0002] Robotic Process Automation (RPA) , is an emerging
form of business process automation technology based on
the notion of metaphorical software robots (RPA robots) or
artificial intelligence (AI) workers . In traditional workflow
automation tools , a software developer produces a list of
actions to automate a task and interface to the back - end
system using internal application programming interfaces
(APIs) or dedicated scripting languages . In contrast , RPA
systems develop the action list by watching the user per
forms that task in the application's graphical user interface
(GUI) , and then perform the automation by repeating those
tasks directly in the GUI . This can lower the barrier to the
use of automation in products that might not otherwise
feature APIs for this purpose . RPA robots manipulate and
communicate with business systems and applications to
streamline processes and reduce the burden on human
employees . A robotic process automation solution will stand
out from other types of automation due to its flexibility and
its ability to efficiently integrate workflows across the entire
enterprise .

[0008] Through the more detailed description of some
embodiments of the present disclosure in the accompanying
drawings , the above and other objects , features and advan
tages of the present disclosure will become more apparent ,
wherein the same reference generally refers to the same
components in the embodiments of the present disclosure :
[0009] FIG . 1 depicts a cloud computing node according
to an embodiment of the present invention ;
[0010] FIG . 2 depicts a cloud computing environment
according to an embodiment of the present invention ;
[0011] FIG . 3 depicts abstraction model layers according
to an embodiment of the present invention ;
[0012] FIG . 4 depicts a block diagram of an exemplary
system 400 for automatic RPA upgrade for an application
according to an embodiment of the present invention ; and
[0013] FIG . 5 depicts a flowchart of an exemplary method
500 for automatic RPA upgrade for an application according
to an embodiment of the present invention .

SUMMARY

DETAILED DESCRIPTION

[0003] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
herein in the Detailed Description . This Summary is not
intended to identify key factors or essential features of the
claimed subject matter , nor is it intended to be used to limit
the scope of the claimed subject matter .
[0004] In one illustrative embodiment of the present
invention , there is provided a method for Robotic Process
Automation (RPA) upgrade for an application . A first map
ping indicating relationships between one or more UI ele
ments in a first version of the application and one or more
UI elements in a second version of the application and a
second mapping indicating relationships between one or
more UI elements in a first version of an RPA code corre
sponding to the first version of the application and the one
or more UI elements in the first version of the application are
respectively obtained . A third mapping indicating relation
ships between the one or more UI elements in the second
version of the application and one or more UI elements in a
second version of the RPA code corresponding to the second
version of the application is determined based on the first
mapping and the second mapping , and based on the third
mapping , the second version of the RPA code is generated .
[0005] In yet another illustrative embodiment , a system /
apparatus is provided . The system / apparatus may comprise
one or more processors and a memory coupled to the one or
more processors . The memory may comprise instructions
which , when executed by the one or more processors , cause
the one or more processors to perform various ones of , and
combinations of , the operations outlined above with regard
to the method illustrative embodiment .

[0014] Some embodiments will be described in more
detail with reference to the accompanying drawings , in
which the embodiments of the present disclosure have been
illustrated . However , the present disclosure can be imple
mented in various manners , and thus should not be construed
to be limited to the embodiments disclosed herein .
[0015] Embodiments of the invention are targeting the
problems stated out above and can be deployed on cloud
computer systems which will be described in the following .
It is to be understood that although this disclosure includes
a detailed description on cloud computing , implementation
of the teachings recited herein are not limited to a cloud
computing environment . Rather , embodiments of the present
invention are capable of being implemented in conjunction
with any other type of computing environment now known
or later developed .
[0016] Cloud computing is a model of service delivery for
enabling convenient , on - demand network access to a shared
pool of configurable computing resources (e.g. networks ,
network bandwidth , servers , processing , memory , storage ,
applications , virtual machines , and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service . This cloud
model may include at least five characteristics , at least three
service models , and at least four deployment models .
[0017] Characteristics are as follows :
[0018] On - demand self - service : a cloud consumer can
unilaterally provision computing capabilities , such as server

US 2021/0072969 A1 Mar. 11 , 2021
2

time and network storage , as needed automatically without
requiring human interaction with the service's provider .
[0019] Broad network access : capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g. , mobile phones , laptops , and PDAs) .
[0020) Resource pooling : the provider's computing
resources are pooled to serve multiple consumers using a
multi - tenant model , with different physical and virtual
resources dynamically assigned and reassigned according to
demand . There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (e.g. ,
country , state , or datacenter) .
[0021] Rapid elasticity : capabilities can be rapidly and
elastically provisioned , in some cases automatically , to
quickly scale out and rapidly released to quickly scale in . To
the consumer , the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time .
[0022] Measured service : cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g. , storage , processing , bandwidth , and
active user accounts) . Resource usage can be monitored ,
controlled , and reported providing transparency for both the
provider and consumer of the utilized service .
[0023] Service Models are as follows :
[0024] Software as a Service (SaaS) : the capability pro
vided to the consumer is to use the provider's applications
running on a cloud infrastructure . The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g. , web - based e - mail) .
The consumer does not manage or control the underlying
cloud infrastructure including network , servers , operating
systems , storage , or even individual application capabilities ,
with the possible exception of limited user - specific applica
tion configuration settings .
[0025] Platform as a Service (PaaS) : the capability pro
vided to the consumer is to deploy onto the cloud infra
structure consumer - created or acquired applications created
using programming languages and tools supported by the
provider . The consumer does not manage or control the
underlying cloud infrastructure including networks , servers ,
operating systems , or storage , but has control over the
deployed applications and possibly application hosting envi
ronment configurations .
[0026] Infrastructure as a Service (IaaS) : the capability
provided to the consumer is to provision processing , storage ,
networks , and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software , which can include operating systems and applica
tions . The consumer does not manage or control the under
lying cloud infrastructure but has control over operating
systems , storage , deployed applications , and possibly lim
ited control of select networking components (e.g. , host
firewalls)
[0027] Deployment Models are as follows :
[0028] Private cloud : the cloud infrastructure is operated
solely for an organization . It may be managed by the
organization or a third party and may exist on - premises or
off - premises .

[0029] Community cloud : the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g. , mission , security
requirements , policy , and compliance considerations) . It
may be managed by the organizations or a third party and
may exist on - premises or off - premises .
[0030] Public cloud : the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services .
[0031] Hybrid cloud : the cloud infrastructure is a compo
sition of two or more clouds (private , community , or public)
that remain unique entities but are bound together by stan
dardized or proprietary technology that enables data and
application portability (e.g. , cloud bursting for load balanc
ing between clouds) .
[0032] A cloud computing environment is service oriented
with a focus on statelessness , low coupling , modularity , and semantic interoperability . At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes .
[0033] Referring now to FIG . 1 , a schematic of an
example of a cloud computing node is shown . Cloud com
puting node 10 is only one example of a suitable cloud
computing node and is not intended to suggest any limitation
as to the scope of use or functionality of embodiments of the
invention described herein . Regardless , cloud computing
node 10 is capable of being implemented and / or performing
any of the functionality set forth hereinabove .
[0034] In cloud computing node 10 there is a computer
system / server 12 or a portable electronic device such as a
communication device , which is operational with numerous
other general purpose or special purpose computing system
environments or configurations . Examples of well - known
computing systems , environments , and / or configurations
that may be suitable for use with computer system / server 12
include , but are not limited to , personal computer systems ,
server computer systems , thin clients , thick clients , hand
held or laptop devices , multiprocessor systems , micropro
cessor - based systems , set top boxes , programmable con
sumer electronics , network PCs , minicomputer systems ,
mainframe computer systems , and distributed cloud com
puting environments that include any of the above systems
or devices , and the like .
[0035] Computer system / server 12 may be described in
the general context of computer system - executable instruc
tions , such as program modules , being executed by a com
puter system . Generally , program modules may include
routines , programs , objects , components , logic , data struc
tures , and so on that perform particular tasks or implement
particular abstract data types . Computer system / server 12
may be practiced in distributed cloud computing environ
ments where tasks are performed by remote processing
devices that are linked through a communications network .
In a distributed cloud computing environment , program
modules may be located in both local and remote computer
system storage media including memory storage devices .
[0036] As shown in FIG . 1 , computer system / server 12 in
cloud computing node 10 is shown in the form of a general
purpose computing device . The components of computer
system / server 12 may include , but are not limited to , one or
more processors or processing units 16 , a system memory
28 , and a bus 18 that couples various system components
including system memory 28 to processor 16 .

US 2021/0072969 A1 Mar. 11 , 2021
3

[0037] Bus 18 represents one or more of any of several
types of bus structures , including a memory bus or memory
controller , a peripheral bus , an accelerated graphics port , and
a processor or local bus using any of a variety of bus
architectures . By way of example , and not limitation , such
architectures include Industry Standard Architecture (ISA)
bus , Micro Channel Architecture (MCA) bus , Enhanced ISA
(EISA) bus , Video Electronics Standards Association
(VESA) local bus , and Peripheral Component Interconnect
(PCI) bus .
[0038] Computer system / server 12 typically includes a
variety of computer system readable media . Such media
may be any available media that is accessible by computer
system / server 12 , and it includes both volatile and non
volatile media , removable and non - removable media .
[0039] System memory 28 can include computer system
readable media in the form of volatile memory , such as
random access memory (RAM) 30 and / or cache memory 32 .
Computer system / server 12 may further include other
removable / non - removable , volatile / non - volatile computer
system storage media . By way of example only , storage
system 34 can be provided for reading from and writing to
a non - removable , non - volatile magnetic media (not shown
and typically called a “ hard drive ”) . Although not shown , a
magnetic disk drive for reading from and writing to a
removable , non - volatile magnetic disk (e.g. , a “ floppy
disk ”) , and an optical disk drive for reading from or writing
to a removable , non - volatile optical disk such as a CD
ROM , DVD - ROM or other optical media can be provided .
In such instances , each can be connected to bus 18 by one
or more data media interfaces . As will be further depicted
and described below , memory 28 may include at least one
program product having a set (e.g. , at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention .
[0040] Program / utility 40 , having a set (at least one) of
program modules 42 , may be stored in memory 28 by way
of example , and not limitation , as well as an operating
system , one or more application programs , other program
modules , and program data . Each of the operating system ,
one or more application programs , other program modules ,
and program data or some combination thereof , may include
an implementation of a networking environment . Program
modules 42 generally carry out the functions and / or meth
odologies of embodiments of the invention as described
herein .
[0041] Computer system / server 12 may also communicate
with one or more external devices 14 such as a keyboard , a
pointing device , a display 24 , etc .; one or more devices that
enable a user to interact with computer system / server 12 ;
and / or any devices (e.g. , network card , modem , etc.) that
enable computer system / server 12 to communicate with one
or more other computing devices . Such communication can
occur via Input / Output (1/0) interfaces 22. Still yet , com
puter system / server 12 can communicate with one or more
networks such as a local area network (LAN) , a general wide
area network (WAN) , and / or a public network (e.g. , the
Internet) via network adapter 20. As depicted , network
adapter 20 communicates with the other components of
computer system / server 12 via bus 18. It should be under
stood that although not shown , other hardware and / or soft
ware components could be used in conjunction with com
puter system / server 12. Examples , include , but are not
limited to : microcode , device drivers , redundant processing

units , external disk drive arrays , RAID systems , tape drives ,
and data archival storage systems , etc.
[0042] Referring now to FIG . 2 , illustrative cloud com
puting environment 50 is depicted . As shown , cloud com
puting environment 50 includes one or more cloud comput
ing nodes 10 with which local computing devices used by
cloud consumers , such as , for example , personal digital
assistant (PDA) or cellular telephone 54A , desktop com
puter 54B , laptop computer 54C , and / or automobile com
puter system 54N may communicate . Nodes 10 may com
municate with one another . They may be grouped (not
shown) physically or virtually , in one or more networks ,
such as Private , Community , Public , or Hybrid clouds as
described hereinabove , or a combination thereof . This
allows cloud computing environment 50 to offer infrastruc
ture , platforms and / or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device . It is understood that the types of com
puting devices 54A - N shown in FIG . 2 are intended to be
illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and / or
network addressable connection (e.g. , using a web browser) .
[0043] Referring now to FIG . 3 , a set of functional
abstraction layers provided by cloud computing environ
ment 50 (FIG . 2) is shown . It should be understood in
advance that the components , layers , and functions shown in
FIG . 3 are intended to be illustrative only and embodiments
of the invention are not limited thereto . As depicted , the
following layers and corresponding functions are provided :
[0044] Hardware and software layer 60 includes hardware
and software components . Examples of hardware compo
nents include : mainframes 61 ; RISC (Reduced Instruction
Set Computer) architecture based servers 62 ; servers 63 ;
blade servers 64 ; storage devices 65 ; and networks and
networking components 66. In some embodiments , software
components include network application server software 67
and database software 68 .
[0045] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided : virtual servers 71 ; virtual storage 72 ;
virtual networks 73 , including virtual private networks ;
virtual applications and operating systems 74 ; and virtual
clients 75 .
[0046] In one example , management layer 80 may provide
the functions described below . Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment . Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment , and billing or invoicing for
consumption of these resources . In one example , these
resources may include application software licenses . Secu
rity provides identity verification for cloud consumers and
tasks , as well as protection for data and other resources . User
portal 83 provides access to the cloud computing environ
ment for consumers and system administrators . Service level
management 84 provides cloud computing resource alloca
tion and management such that required service levels are
met . Service Level Agreement (SLA) planning and fulfill
ment 85 provide pre - arrangement for , and procurement of ,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA .

US 2021/0072969 A1 Mar. 11 , 2021
4

[0052] The first mapping provided by the first mapping
analysis module 401 may be stored in any appropriate data
structures , e.g. , tables , vectors , etc. In the following , it is
illustrated as an example that a data table (Table 1) is utilized
to store the first mapping for a certain UI element . As shown ,
there are four columns in Table 1 – UI element ID , version ,
UI element name and UI element type , however , there may
be more or fewer columns , subject to the actual needs . Also ,
the following table is only for one UI element , there may be
respective tables for different UI elements .

TABLE 1

First mapping

UI Element ID Version UI Element Name UI Element Type

1.0 Textbox /app/.../000001
/app/.../000001
/app/.../00001A

1.1
InputUserName
InputUserName
InputAccName

Textbox
2.0 Textbox

[0047] Workloads layer 90 provides examples of function
ality for which the cloud computing environment may be
utilized . Examples of workloads and functions which may
be provided from this layer include : mapping and navigation
91 ; software development and lifecycle management 92 ;
virtual classroom education delivery 93 ; data analytics pro
cessing 94 ; transaction processing 95 ; and automatic RPA
process upgrade 96 according to embodiments of the inven
tion .
[0048] As described in the above , RPA robots manipulate
and communicate with business systems and applications to
streamline processes , so as to reduce the burden of human
employees . RPA code which implementing RPA robots for
an application are written by RPA developers , and the
corresponding RPA process is built manually . This is a quite
time - consuming task and typically needs a lot of efforts ,
therefore , RPA code are typically written in a manner for the
ability of better reusability across variations and different
processes . However , the old RPA code corresponding to an
old version of the application will fail to operate correctly if
a user interface in the old version of the application is
changed in an upgraded version of the application after its
upgrade , which typically happens quite frequently during
large iterations of the application , for example , the name
and / or the position of an input box is changed within a page ,
or the position of an input box is changed to a completely
different page . It would be beneficial if RPA code may be upgraded automatically along with the upgrade of the appli
cation . However , prior arts fail to provide such kind of
approaches .
[0049] Embodiments of the present invention are targeting
the problem discussed above and provide systems , methods ,
computer program products for automatic RPA upgrade for
an application which will be discussed in detail with refer
ences to the accompanying FIGS . 4 to 5 .
[0050] Referring now to FIG . 4 , in which a block diagram
of an exemplary system 400 for automatic RPA upgrade for
an application , e.g. , a software application , according to an
embodiment of the present invention is depicted . The system
400 comprises a first mapping analysis module 401 , a
second mapping analysis module 402 , a determining module
403 , an RPA code generation module 404 , a mapping update
module 405 and optionally a missing information record
module 406 .
[0051] The first mapping analysis module 401 is config
ured to provide a first mapping indicating relationships
among user interface (UI) elements in different versions of
an application , e.g. between a first version (an old version)
of an application and a second version (an upgraded version)
of the application . The first mapping may be provided by an
analysis on the source code of different versions of the
application , e.g. , via a code analysis tool , if the source code
of the application is available . If the source code of different
versions of the application is not available , however a
development change document which records the changes
among different versions of the application is available , the
first mapping may be provided by an analysis on the
development change document . Such analysis may be con
ducted by any tools that can be easily obtained in existing
arts . For example , git is a free and open source distributed
version control system and provides a lot of such tools . The
development change document may be provided by the
developers of the application and stored together with the
application , or separately .

[0053] As shown in the above , there is shown the first
mapping for a UI element in different versions of the
application . The UI element in version 1.0 of the application
is with an ID /app/.../00001 ’ , a name ‘ InputUserName '
and a type ‘ Textbox ' . The UI element in version 1.1 of the
application is with the same ID , the same name and the same
type . However , the UI element in version 2.0 of the appli
cation is with a new ID /app/.../00001A ’ and a new name
‘ InputAccName ' , but the same type . Here it should be noted
that the above example is merely for the purpose of better
understanding and simplified illustration , it should not
adversely limit the scope of the invention .
[0054] The second mapping analysis module 402 is con
figured to provide a second mapping indicating relationships
between UI elements in a first version of an RPA code
corresponding to a version of the application and UI ele
ments in the same version of the application . For example ,
for a first version (the old version mentioned above) of the
application , the second mapping indicates relationships
between UI elements in the RPA code corresponding to the
first version (the old version mentioned above) of the
application and UI elements in the first version (the old
version mentioned above) of the application . The second mapping may be provided by an analysis on the correspond
ing RPA code of the application via an RPA tool , e.g. , Blue
Prism® tools . Blue Prism® is the trading name of the Blue
Prism Group , a UK multinational software corporation that
provides RPA services .
[0055] The second mapping provided by the second map
ping analysis module 402 may be stored in any appropriate
data structures , e.g. , tables , vectors , etc. In the following , it
is illustrated as an example that a data table (Table 2) is
utilized to store the second mapping for a certain UI ele
ment . As shown , there are four columns in Table 2 – UI
element ID , version , UI element name and UI element type ,
however , there may be more or fewer columns , subject to the
actual needs . Also , the following table is only for one UI
element , there may be respective tables for different UI
elements .

US 2021/0072969 A1 Mar. 11 , 2021
5

TABLE 1 TABLE 3

Second mapping Third mapping

UI Element ID Version UI Element Name UI Element Type UI Element ID Version UI Element Name UI Element Type
/app/.../000001 InputUserName Textbox /app/.../00001A Textbox Application

v1.0
RPA
v1.0

Application InputAccName
v2.0
RPA InputUserName
v2.0

/ app / . . ctxtBTCH InputUserName HTML Edit
Text

/app/.../ctxtBTCH HTML Edit -
Text

[0056] As shown in the above , there is shown the mapping
for a UI element in the Application v1.0 and RPA v1.0 . The
UI element in Application v1.0 is with an ID / app / ..
1000001 ' , a name ‘ InputUserName ' and a type “ Textbox ” .
The UI element in the corresponding RPA code of the
application RPA v1.0 is with an ID lapp /
/ ctxtBTCH ' , the same name , and a type ‘ HTML Edit
Tex? . Here it should be noted that the above example is
merely for the purpose of better understanding and simpli
fied illustration , it should not adversely limit the scope of the
invention .

[0057] According to an embodiment of the invention , the
first mapping analysis module 401 and the second mapping
analysis module 402 may be part of the system 400. Accord
ing to an embodiment of the invention , the first mapping
analysis module 401 and the second mapping analysis
module 402 may be coupled to the system 400 via commu
nication links . According to an embodiment of the invention ,
the first mapping analysis module 401 and the second
mapping analysis module 402 may be one module with both
the functionalities rather than the two different modules
shown in FIG . 4 .

[0058] The determining module 403 is configured to deter
mine a third mapping indication relationships between UI
elements in an upgraded version of the application and UI
elements in an upgraded version of the RPA code corre
sponding to the upgraded version of the application , wherein
the upgraded version of the RPA code corresponding to the
upgraded version of the application is to be generated . For
the example mentioned above with the old version being the
first version , and the upgraded version being the second
version , the third mapping indicates relationships between
UI elements in the second version of the application and UI
elements in its corresponding upgraded version of the RPA
code . The determination of the third mapping is based on the
first mapping (e.g. , obtained from the first mapping analysis
module 401) and the second mapping (e.g. , obtained from
the second mapping analysis module 402) . The upgraded
version of the RPA code corresponding to the second version
of the application is to be generated .
[0059] The third mapping determined by the determining
module 403 based on the first mapping and the second
mapping may be stored in any appropriate data structures ,
e.g. , tables , vectors , etc. In the following , it is illustrated as
an example that a data table (Table 3) is utilized to store the
third mapping for a certain UI element . As shown , there are
four columns in Table 3 — UI element ID , version , UI
element name and UI element type , however , there may be
more or fewer columns , subject to the actual needs . Also , the
following table is only for one UI element , there may be
respective tables for different UI elements .

[0060] As shown in the above , there is shown the third
mapping for a UI element determined based on the first
mapping and the second mapping . The UI element in
Application v2.0 is with an ID /app/.../00001A ’ , a name
‘ InputAccName and a type ' Textbox ’ ; the corresponding
RPA code of the application - RPA v2.0 is with an ID / app /

/ ctxtBTCH ' , a name ‘ InputUserName ' , and a type
‘ HTML Edit Text ' . Here it should be noted that the above
example is merely for the purpose of better understanding
and simplified illustration , it should not adversely limit the
scope of the invention .
[0061] RPA code generating module 404 is configured to
generate an upgraded version of the RPA code based on the
determined third mapping . For the example , with the
upgrade version mentioned above being the second version ,
an upgraded version of the RPA code corresponding to the
second version of the application is generated based on the
determined third mapping via a code generation tool , e.g. ,
Blue Prism® tools .
[0062] The mapping update module 405 is configured to
update the second mapping by replacing it with the third
mapping . This is because after the upgraded version of the
RPA code corresponding to the upgrade version (the second
version in the above example) of the application has been
generated , the mapping that indicates relationships between
UI elements in the upgraded RPA code corresponding to the
upgraded version (the second version) of the application and
the same version (the second version) of the application has
changed to the third mapping . With the mapping update
module 405 , the second mapping can be maintained always
up to date . In future iterations , the second mapping can be
easily obtained directly from the data structure that stores it
without the need to conduct further analysis on the RPA code
corresponding to the current newest version of the applica
tion and the UI elements in the same version of the appli
cation .
[0063] According to an embodiment of the invention , the
mapping update module 405 is also optional . The current
newest mapping may be provided by the second mapping
analysis module 402 in future iterations .
[0064] The optional missing information record module
406 is configured to responsive to a determination that the
first mapping indicates a UI element is in the old version (the
first version) of the application is missing from the upgraded
version (the second version) of the application , record
information of the missing UI element in a tracking docu
ment . According to an embodiment of the invention , the
tracking document may be in any appropriate data struc
tures , e.g. , tables , vectors , etc. According to an embodiment
of the invention , the record of the information of the missing
UI element may be executed responsive to a confirmation to
record the information , e.g. , from a user . According to an
embodiment of the invention , the record of the information
of the missing UI element may be executed automatically .

US 2021/0072969 A1 Mar. 11 , 2021
6

With the recorded information in place , if the missing UI
elements re - appear in future iterations , their corresponding
mappings may be reconstructed easily without a lot effort .
According to an embodiment of the invention , information
of the missing UI element in the tracking document may be
removed responsive to a determination indicating the infor
mation is no longer needed .
[0065] With the exemplary system 400 described above ,
even for large iterations of an application in which UI
elements are changed , RPA code may be automatically
generated . This automatic RPA upgrade does not require
user intervention and further reduce the burden of human
employees .
[0066] Now referring to FIG . 5 , in which a flowchart of an
exemplary method 500 for automatic RPA upgrade for an
application according to an embodiment of the present
invention is depicted .
[0067] At step 502 , a first mapping indicating relation
ships between UI elements in a first version of an application
and UI elements in a second version of the application is
obtained . The first mapping may be obtained , for example ,
by the determining module 403 of system 400 from , for
example , the first mapping analysis module 401. The obtain
ing of the first mapping may comprise obtaining a first code
of the first version of the application and obtaining a second
code of the second version of the application and analyzing
the first code and the second code . The obtaining of the first mapping may comprise obtaining a change document indi
cating changes between the first version of the application
and the second version of the application , and analyzing the
change document .
[0068] At step 504 , a second mapping indicating relation
ships between UI elements in a first version of an RPA code
corresponding to the first version of the application and UI
elements in a first version of an application is obtained . The
second mapping may be obtained , for example , by the
determining module 403 of system 400 from , for example ,
the second mapping analysis module 402 .
[0069] At step 506 , a third mapping indicating relation
ships between UI elements in the second version of the
application and UI elements in a second version of the RPA
code corresponding to the second version of the application
is determined based on the obtained first mapping and
second mapping . The determination of the third mapping
may be conducted , for example , by the determining module
403 of system 400. The second version of the RPA code
corresponding to the second version of the application is to
be generated .
[0070] At step 508 , the second version of the RPA code
corresponding to the second version of the application is
generated . The generation of the second version of the RPA
code may be conducted , for example , by the RPA code
generating module 404 of system 400 .
[0071] Optionally , the method 500 may further comprise
updating the second mapping by replacing it with the third
mapping . Optionally , the method 500 may further comprise
responsive to a determination that the first mapping indicates
a UI element in the first version of the application is missing
from the second version of the application , recording infor
mation of the missing UI element in a tracking document .
The recording of the information of the missing UI element
is executed responsive to a confirmation to record the
information . Optionally , the method 500 may further com
prise removing information of the missing UI element in the

tracking document responsive to a determination indicating
the information is no longer needed .
[0072] It should be noted that the content rendering
according to embodiments of this disclosure could be imple
mented by computer system / server 12 of FIG . 1 .
[0073] The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention .
[0074] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e.g. , light pulses passing
through a fiber optic cable) , or electrical signals transmitted
through a wire .
[0075] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0076] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more
programming languages , including an object oriented pro
gramming language such as Smalltalk , C ++ , or the like , and
procedural programming languages , such as the “ C ” pro
gramming language or similar programming languages . The
computer readable program instructions may execute

US 2021/0072969 A1 Mar. 11 , 2021
7

entirely on the user's computer , partly on the user's com
puter , as a stand - alone software package , partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user's computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0077] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0078] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0079] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0080] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the

reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
[0081] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .
What is claimed is :
1. A computer - implemented method for Robotic Process

Automation (RPA) upgrade for an application , comprising :
obtaining , by one or more processing units , a first map

ping indicating relationships between one or more user
interface (UI) elements in a first version of the appli
cation and one or more UI elements in a second version
of the application ;

obtaining , by one or more processing units , a second
mapping indicating relationships between one or more
UI elements in a first version of an RPA code corre
sponding to the first version of the application and the
one or more UI elements in the first version of the
application ;

determining , by one or more processing units , a third
mapping indicating relationships between the one or
more UI elements in the second version of the appli
cation and one or more UI elements in a second version
of the RPA code corresponding to the second version of
the application based on the first mapping and the
second mapping , wherein the second version of the
RPA code is to be generated ; and

generating , by one or more processing units , the second
version of the RPA code based on the third mapping .

2. The computer - implemented method of claim 1 ,
wherein the obtaining of the first mapping comprises :

obtaining , by one or more processing units , a first code of
the first version of the application ;

obtaining , by one or more processing units , a second code
of the second version of the application , and

obtaining , by one or more processing units , the first
mapping by analyzing the first code and the second
code .

3. The computer - implemented method of claim 1 ,
wherein the obtaining of the first mapping comprises :

obtaining , by one or more processing units , a change
document indicating changes between the first version
of the application and the second version of the appli
cation ; and

obtaining , by one or more processing units , the first
mapping by analyzing the change document .

4. The computer - implemented method of claim 1 , further
comprising :

US 2021/0072969 A1 Mar. 11 , 2021
8

updating , by one or more processing units , the second
mapping by replacing it with the third mapping .

5. The computer - implemented method of claim 1 , further comprising :
responsive to a determination that the first mapping

indicates a UI element in the first version of the
application is missing from the second version of the
application , recording , by one or more processing units ,
information of the missing UI element in a tracking
document .

6. The computer - implemented method of claim 5 ,
wherein the recording of the information of the missing UI
element is executed responsive to a confirmation to record
the information .

7. The computer - implemented method of claim 5 , further
comprising :

removing , by one or more processing units , information
of the missing UI element in the tracking document
responsive to a determination indicating the informa
tion is no longer needed .

8. A computer program product for Robotic Process
Automation (RPA) upgrade for an application , the computer
program product comprising a non - transitory computer
readable storage having program codes embodied therewith ,
the program codes comprising :

program codes to obtain a first mapping indicating rela
tionships between one or more UI elements in a first
version of the application and one or more UI elements
in a second version of the application ;

program codes to obtain a second mapping indicating
relationships between one or more UI elements in a first
version of an RPA code corresponding to the first
version of the application and the one or more UI
elements in the first version of the application ;

program codes to determine a third mapping indicating
relationships between the one or more UI elements in
the second version of the application and one or more
UI elements in a second version of the RPA code
corresponding to the second version of the application
based on the first mapping and the second mapping ,
wherein the second version of the RPA code is to be
generated ; and

program codes to generate the second version of the RPA
code based on the third mapping .

9. The computer program product of claim 8 , wherein the
program codes to obtain the first mapping comprises :

program codes to obtain a first code of the first version of
the application ;

program codes to obtain a second code of the second
version of the application , and

program codes to obtain the first mapping by analyzing
the first code and the second code .

10. The computer program product of claim 8 , wherein
the program codes to obtain the first mapping comprises :

program codes to obtain a change document indicating
changes between the first version of the application and
the second version of the application , and

program codes to obtain the first mapping by analyzing
the change document .

11. The computer program product of claim 8 , further
comprising :

program codes to update the second mapping by replacing
it with the third mapping .

12. The computer program product of claim 8 , further
comprising responsive to a determination that the first
mapping indicates a UI element in the first version of the
application is missing from the second version of the appli
cation :
program codes to record information of the missing UI

element in a tracking document .
13. The computer program product of claim 12 , wherein

the recording of the information of the missing UI element
is executed responsive to a confirmation to record the
information .

14. The computer program product of claim 8 , further
comprising :
program codes to remove information of the missing UI

element in the tracking document responsive to a
determination indicating the information is no longer
needed .

15. A system for Robotic Process Automation (RPA)
upgrade for an application , comprising one or more proces
sors , one or more computer - readable memories , one or more
computer - readable tangible storage devices , and program
instructions stored on at least one of the one or more storage
devices for execution by at least one of the one or more
processors via at least one of the one or more memories , the
program codes comprising :

program codes to obtain a first mapping indicating rela
tionships between one or more UI elements in a first
version of the application and one or more UI elements
in a second version of the application ;

program codes to obtain a second mapping indicating
relationships between one or more UI elements in a first
version of an RPA code corresponding to the first
version of the application and the one or more UI
elements in the first version of the application ;

program codes to determine a third mapping indicating
relationships between the one or more UI elements in
the second version of the application and one or more
UI elements in a second version of the RPA code
corresponding to the second version of the application
based on the first mapping and the second mapping ,
wherein the second version of the RPA code is to be
generated ; and

program codes to generate the second version of the RPA
code based on the third mapping .

16. The system of claim 15 , wherein the program codes to
obtain the first mapping comprises :
program codes to obtain a first code of the first version of

the application ;
program codes to obtain a second code of the second

version of the application ; and
program codes to obtain the first mapping by analyzing

the first code and the second code .
17. The system of claim 15 , wherein the program codes to

obtain the first mapping comprises :
program codes to obtain a change document indicating

changes between the first version of the application and
the second version of the application ; and

program codes to obtain the first mapping by analyzing
the change document .

18. The system of claim 15 , further comprising :
program codes to update the second mapping by replacing

it with the third mapping .
19. The system of claim 15 , further comprising responsive

to a determination that the first mapping indicates a UI

US 2021/0072969 A1 Mar. 11 , 2021
9

element in the first version of the application is missing from
the second version of the application :

program codes to record information of the missing UI
element in a tracking document .

20. The system of claim 19 , further comprising :
program codes to remove information of the missing UI

element in the tracking document responsive to a
determination indicating the information is no longer
needed .

