wo 2017/146855 A1 || I} NN T OO0 O AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/146855 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31 August 2017 (31.08.2017) WIPOIPCT
International Patent Classification: (81)
GO6F 9/34 (2006.01) GO6F 9/38 (2006.01)
International Application Number:

PCT/US2017/014975

International Filing Date:
25 January 2017 (25.01.2017)

Filing Language: English
Publication Language: English
Priority Data:

15/052,801 24 February 2016 (24.02.2016) US

Applicant: INTELL. CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, California 95054

(US).
Inventor: BAGHSORKHI, Sara; 135 Rio Robles E Unit
241, San Jose, California 95134 (US).

Agent: PARVIN, S. Kameron; Nicholson De Vos Web-
ster & Elliott LLP, 217 High Street, Palo Alto, California
94301 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, S@G, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZIM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR EXECUTING AN INSTRUCTION TO PERMUTE A MASK

500

N\

First Source Operand Register
502 8 bits

f A
[ko k1 Jk2]k3 k4 [k5 k6] K7 ]

Second
Source

501

Operand
Register
504 508a
= 506{‘ k0 e
i0 =0
508b
. 506b k1
i =0

508c

] 506¢ K2 «
i2 =0
508d
- 5064 K3 vl
i3 =0 08
=]
— 506e k4 Ve

24
bits)

[ro]rmr2]r3]ra[r5]8]r7]
J

8BITS
Destination Operand Register

FIG. 5 512

(57) Abstract: A processor is described, including a fetch
circuit to fetch an instruction, including a first source oper-
and identifier, a second source operand identifier, and a des-
tination operand identifier, a decode circuit to decode the in-
struction, a data retrieval circuit to retrieve data associated
with the first source operand identifier and the second
source operand identifier, and an execution circuit. In some
embodiments, the execution circuit is configured to determ-
ine whether a first element of the data associated with the
first source operand identifier is set, if the first element is
set, to retrieve a destination index from a corresponding
second element of the data associated with the second
source operand identifier, and to use the destination index to
select and set a destination element of data associated with
the destination operand identifier.
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System and Method for Executing an Instruction to Permute a Mask

Technical Field

[0001] Embodiments described herein generally relate to processors. In particular,
embodiments described herein generally relate to processors configured to execute an instruction
to permute a mask.

Background Information

[0002] Vectorized code refers to operations performed on multiple components of a
vector at the same time. Vector or Single Instruction Multiple Data (SIMD) computing generally
offers improved execution performance over scalar computing because it enables increased
exploitation of the parallelism offered by vector or SIMD processors. However, Pertormance
gaing iy vectorization of 1oops in general purpose applications can be Hmited dus 1o complex
dynamic control flow, Compiiers may not attempt to vectorize sparse branchy loops, especially
when costly 1ustruchions such as gather and scatter are required for vectorization. For certain
types of code, such as sparse and branchy loops, it is difficult to apply vectorization to achieve
performance gains. What is needed, then, is an instruction to enable vectorization of certain

types of code.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Figure 1 is a block diagram 300 illustrating processing components for executing
an instruction to permute a mask according to one embodiment.

[0004] Figure 2 illustrates fields included in an instruction to permute a mask according
to one embodiment.

[0005] Figure 3 is a block flow diagram illustrating execution of an instruction to
permute a mask according to one embodiment.

[0006] Figure 4 illustrates a logic circuit used to set one element of a destination operand
using a first source operand and a second source operand according to one embodiment.

[0007] Figure 5 illustrates a logic circuit used to set one element of a destination operand

using a first source operand and a second source operand according to one embodiment.
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[0008] Figure 6 is pseudocode to illustrate operation of an execution circuit 106 (Figure
1) according to one embodiment.

[0009] Figure 7 is a block flow diagram illustrating operation of an execution circuit 106
(Figure 1) according to one embodiment.

[0010] Figure 8 is a block flow diagram illustrating operation of execution circuit 106
(Figure 1) according to an alternate embodiment.

[0011] Figure 9 is a block flow diagram illustrating operation of execution circuit 106
(Figure 1) according to an alternate embodiment.

[0012] Figure 10 is a block flow diagram illustrating operation of execution circuit 106
(Figure 1) according to an alternate embodiment.

[0013] Figure 11 is a block diagram illustrating a generic vector friendly instruction
format and class A instruction templates thereof according to embodiments.

[0014] Figure 12 is a block diagram illustrating the generic vector friendly instruction

format and class B instruction templates thereof according to embodiments.

[0015] Figure 13 illustrates fields included in generic vector friendly instruction format
1100.

[0016] Figure 14 is a block diagram illustrating the fields of the specific vector friendly
instruction format 1300 that make up the full opcode field 1174 according to one embodiment.
[0017] Figure 15 is a block diagram illustrating the fields of the specific vector friendly
instruction format 1300 that make up the register index field 1144 according to one embodiment.
[0018] Figure 16 is a block diagram illustrating the fields of the specific vector friendly
instruction format that makes up the augmentation operation field 1650 according to one
embodiment.

[0019] Figure 17 is a block diagram of a register architecture 1700 according to one
embodiment.

[0020] Figure 18 is a block diagram illustrating both an exemplary in-order pipeline and

an exemplary register renaming, out-of-order issue/execution pipeline according to
embodiments.
[0021] Figure 19 shows processor core 1890 including a front end unit 1830 coupled to

an execution engine unit 1850, and both are coupled to a memory unit 1870.
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[0022] Figure 20 is a block diagram of a single processor core, along with its connection
to the on-die interconnect network 2002 and with its local subset of the Level 2 (L2) cache 2004,
according to embodiments.

[0023] Figure 21 is an expanded view of part of the processor core in Figure 20
according to embodiments.

[0024] Figure 22 is a block diagram of a processor 2200 that may have more than one
core, may have an integrated memory controller, and may have integrated graphics according to
embodiments.

[0025] Figure 23 shows a block diagram of a system 2300 in accordance with one
embodiment of the present invention.

[0026] Figure 24 shows a block diagram of a first more specific exemplary system 2400
in accordance with an embodiment of the present invention.

[0027] Figure 25 shows a block diagram of a second more specific exemplary system
2500 in accordance with an embodiment of the present invention.

[0028] Figure 26 shows a block diagram of a SoC 2600 in accordance with an
embodiment of the present invention.

[0029] Figure 27 shows a block diagram contrasting the use of a software instruction
converter to convert binary instructions in a source instruction set to binary instructions in a

target instruction set according to embodiments.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0030] Masked loads and stores may be used to improve performance of certain types of
code and code loops. An instruction to modify a mask is disclosed. The disclosed instruction
allows permuting a mask to enable reads from and writes to correct locations. The disclosed
instruction may be used to permute any operand, regardless of its size or intended use. Detailed
below are embodiments of systems, apparatuses, and methods for mask permutation.

[0031] Figure 1 is a block diagram 100 illustrating processing components for executing
an instruction to permute a mask according to one embodiment. Specifically, block diagram 100
includes instruction storage 102, decode circuit 104, execution circuit 106, registers 108,
memory 110, and retire or commit circuit 112. An instruction is input from instruction storage

102, which comprises a cache memory, an on-chip memory, a memory on the same die as the
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processor, an instruction register, a general register, or system memory, without limitation.
Decode circuit 104 decodes the instruction. In one embodiment, the instruction comprises fields
discussed further below with respect to Figure 2. The decoded instruction is executed by
execution circuit 106. Execution circuit 106 is configured to read data from and write data to
registers 108 and memory 110. Registers 108 comprise any one or more of a data register, an
instruction register, a general register, an on-chip memory. Memory 110 comprises any of an
on-chip memory, a memory on the same die as the processor, a memory in the same package as
the processor, a cache memory, or system memory. Several exemplary embodiments of
execution circuit 106 are described and illustrated with respect to Figures 6 — 10. Retire or
commit circuit 112 ensures that execution results are written to or have been written to their
destinations, and frees up or releases resources for later use.

[0032] Figure 2 illustrates fields included in an instruction to permute a mask according
to one embodiment. Specifically, instruction 200 includes opcode 202, first source operand
identifier 204, second source operand identifier 206, and destination operand identifier 208.
Opcode 202 identifies the instruction and/or the operation to be performed, as well as the type of
operands (e.g., instruction to permute a first source operand in a dedicated mask register, using a
second source operand in a vector register, and to write the results to another dedicated mask
register). The first source operand identifier 204 contains the first source operand (an
immediate) or identifies a register or memory location from which to retrieve the first source
operand. The first source operand comprises a plurality of elements, each of which has a
corresponding element in a second source operand, specified by the second source operand
identifier 206, and a corresponding element in a destination operand, specified by the destination
operand identifier 208. In one embodiment, the first source operand is a mask register
comprising settable bits, and the second source operand has corresponding indices that map each
of the first source operand elements to one of the elements of the destination operand. Because
the second source operand and the destination operand correspond to the first source operand,
their minimum sizes depend on the size of the first source operand. For example, if the first
source operand contains 8 elements, the destination operand will contain a minimum of 8
elements, and the second source operand will contain at least 8 indices, each a minimum of 3-bits
wide to select one of the 8 elements of the destination operand. As another example, if the first

source operand contains 64 elements, the destination operand will contain a minimum of 64
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elements, and the second source operand will contain at least 64 corresponding indices, each a
minimum of 8-bits wide to select one of the 64 elements of the destination operand.

[0033] The first and second source operands and the destination operands identified by
fields 104, 106, and 108 are stored in registers of a register set or in memory. The register set is
part of a register file, along with potentially other registers, such as status registers, flag registers,
dedicated mask registers, vector registers, etc. In one embodiment, the registers are visible from
the outside of the processor or from a programmer's perspective. In one embodiment,
instructions specify operands stored in the registers. Various different types of registers are
suitable, as long as they are capable of storing and providing data as described herein.
Alternatively, one or more of the source and destination operands are stored in a storage location
other than a register, such as, for example, a location in system memory.

[0034] Figure 3 is a block flow diagram illustrating execution of an instruction to
permute a mask according to one embodiment. Specifically, block flow diagram 300 includes
starting at block 302, fetching an instruction at block 304, decoding the instruction at block 306,
retrieving data associated with the first and second source operand identifiers at block 308, and
executing the instruction at block 310. The instruction fetched at block 304 has a format with a
first source operand identifier, a second source operand identifier, and a destination operand
identifier. Fetching an instruction at block 304 is performed by fetching an instruction from
instruction storage 102 (Figure 1), which comprises a cache memory, an instruction register, a
general register, or system memory. Decoding the instruction at block 306 includes decoding the
various fields of the instruction (See Figure 2), including the opcode 202, the first source
operand identifier 204, the second source operand identifier 206, and the destination operand
identifier 208. Decoding also includes determining from where to retrieve the operands and to
where to write the results. The operands are stored in registers of a register set or in memory.
The register set is part of a register file, along with potentially other registers, such as status
registers, flag registers, dedicated mask registers, vector registers, etc. In one embodiment, the
registers are visible from the outside of the processor or from a programmer's perspective. For
example, instructions specify operands stored in the registers. Various different types of
registers are suitable, as long as they are capable of storing and providing data as described
herein. Alternatively, one or more of the source and destination operands is stored in a storage

location other than a register, such as, for example, a location in system memory. Executing the
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instruction at block 310 includes determining whether a first element of data associated with the
first source operand identifier is set at block 312, if it is set, extracting a destination index from a
corresponding element of the data associated with the second source operand identifier at block
314, and using the destination index to set a destination element of data associated with the
destination operand identifier at block 316. Execution block 310 is further described below with
reference to Figures 6 to 10. In some embodiments, block flow diagram 300 is performed by
and/or with processing components at illustrated in Figure 1.

[0035] Figure 4 illustrates an exemplary result of executing an instruction to permute a
mask according to the disclosure. Here, the first source operand identifier points to an 8-bit
value 402, set to [kO:k7] = 8’b010001010, and the second source operand identifier points to a
24-bit value 404, which includes 8 3-bit indices mapping each bit of the first source operand to
one of the eight bits of the destination operand. As shown, the second source operand is set to
[10:17] = {x, 3, X, X, 3, X, 6, X}, mapping the three set (i.e. equal to ‘1’) bits of the first source
operand to bits 3, 3, and 6 of the destination operand. For illustration purposes, 10, 12, i3, 15, and
17 are set to ‘x’ because their values will not affect the results, as the corresponding bits of the
first source operand are set to ‘0.” As shown, the destination operand register 406 in this
example is set to 8’b00010010. Note that, as illustrated in Figure 4, it is possible for more than
one of the elements of the second source operand, 10 to 17, to have the same value, to thus map
multiple elements of the first source operand to the same element of the destination operand. In
this way, multiple elements of the first source operand, kO to k7, can be mapped to the same
element of the destination operand, O to r7. As shown in Figure 4, bit k1 of the first source
operand QDO2 is set and corresponding element i1 of the second source operand 404 points to
r3. But also, bit k4 of the first source operand QD02 is set and corresponding element 14 of the
second source operand 404 also points to r3. Therefore, 2 inputs of OR gate 408 are set, setting
destination bit r3. In the illustrated example, then, the first source operand contains more set
elements than the destination operand.

[0036] Figure 5 illustrates a logic circuit to set one element of a destination operand
using a first source operand and a second source operand according to one embodiment. As
shown, logic circuit 500 includes an 8-bit register 502 for holding a first source operand, a 24-bit
register 504 for holding a second source operand, and an 8-bit register 512 for holding a

destination operand. As shown, combinational logic 501 includes comparators 506a-h, AND
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gates 508a-h, and 8-input OR gate 510. As illustrated, register 504 holds element 10 of the
second source operand, which corresponds to element kO of the first source operand. In
operation, if kO is set and 10 is equal to 000, the output of AND gate 508a will be set, causing the
output of OR gate 510 to be set, and for element 1O of register 512 to be set. Similarly, if k1 is
set and i1 equals 000, the output of AND gate S08b will be set, causing OR gate 510 to be set,
and for element 10 of register 512 to be set. Similarly, if k2 is set and 12 equals 000, or if k3 is
set and 13 equals 000, or if k4 is set and 14 equals 000, and so on, the output of OR gate Q’10 will
be set and element rO of the destination operand stored in register 512 will be set.

[0037] For simplicity, the circuit 500 as illustrated in Figure S is only shown to process
one of the eight elements of the destination operand register. More circuitry could be used to set
more or all of the elements in parallel. Alternatively, the illustrated logic circuit could be used
serially to set one element of the destination operand at a time.

[0038] Figure 6 is pseudocode to illustrate operation of execution circuit 106 (Figure 1)
according to one embodiment. As shown, the pseudocode illustrates that exemplary execution
circuit 106 (Figure 1) receives as inputs a 16-bit first source operand identifier, srcl, a 64-bit
second source operand identifier, src2, and a 16-bit destination operand identifier, dest. The
exemplary execution circuit 106 (Figure 1), as illustrated by the pseudocode of Figure 6, clears
the data associated with the destination operand identifier, dest. The exemplary execution circuit
106 (Figure 1), as illustrated by the pseudocode of Figure 6, processes the sixteen bits of srcl,
and for each bit that is set, extracts a destination index associated with the element from a
corresponding element of the data associated with the second source operand identifier, src2; and
uses the destination index to set an element of the data associated with the destination operand
identifier, dest. The exemplary execution circuit 106 (Figure 1) can process the bits one at a
time, serially, or can process multiple bits, or all bits, at the same time in parallel.

[0039] Figure 7 is a block flow diagram illustrating operation of execution circuit 106
(Figure 1) according to one embodiment. Specifically, the execution circuit 106 retrieves data
associated with first and second source operand identifiers at 702, clears a destination operand at
704, tests, at 706, for each element of the first source operand, whether the first source operand
element is set at 708, and if it is not set, proceeds to 714 to test whether the last element of the
first source operand has been processed. But if the execution circuit 106 determines at 708 that

the first source operand element is set, it continues by extracting a destination index
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corresponding to the first source operand element from a corresponding element of the second
source operand at 710, sets the destination element identified by the destination index at 712, and
determines whether the last element of the first source operand has been processed at 714. If it
determines at 714 that the last element of the first source operand has been processed, execution
circuit 106 continues to commit or retire the instruction at 716. Otherwise, at 706, it processes
the next element of the first source operand.

[0040] Executing the instruction to permute a mask, as shown in Figure 7, occurs
substantially serially, processing one element of the first source operand at a time. In some
embodiments, the flow shown in Figure 7 is performed by and/or with processing components at
illustrated in Figure 1.

[0041] Figure 8 is a block flow diagram illustrating operation of execution circuit 106
(Figure 1) according to an alternate embodiment. Specifically, the execution circuit 106
retrieves data associated with first and second source operand identifiers at 802, and clears a
destination operand at 804. At 806, in parallel for every element of the first source operand,
execution circuit 106 tests whether the first source operand element is set at 808, and if it is not
set, commits or retires the instruction at 814 once parallel processing of all elements of the first
source operand has been completed. But if execution circuit 106 determines at 808 that the first
source operand element is set, it extracts a destination index from a corresponding element of the
second source operand at 810, sets the destination element identified by the destination index at
812, then at 814 commits or retires the instruction once parallel processing of all elements of the
first source operand has been completed.

[0042] Execution of the instruction to permute a mask, as shown in Figure 8, occurs
substantially in parallel, processing every element of the first source operand at the same time.
In some embodiments, flow diagram 800 is performed by and/or with processing components at
illustrated in Figure 1.

[0043] Figure 9 is a flow diagram illustrating operation of execution circuit 106 (Figure
1) according to an alternate embodiment. Specifically, the execution circuit 106 retrieves data
associated with first and second source operand identifiers at 902, clears a destination operand at
904, allocates logic to process each element of the destination operand at 906, during which it
allocates logic to process each element of the first source operand at 908, during which it tests

whether the first source operand element is set at 910, and if it is not set, proceeds to 916 to test
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whether the last element of the first source operand has been processed. But if execution circuit
106 determines at 910 that the element is set, it extracts a destination index corresponding to the
first source operand element from a corresponding element of the second source operand at 912,
and determines whether that destination index points to the destination element selected earlier at
Q’106. If the destination index does not point to the selected destination element, execution
circuit 106 at 916 determines whether the last element of the first source operand has been
processed, otherwise, if the destination index does point to the destination element selected at
906, execution circuit 106 at 914 sets the destination operand element identified by the
destination index, and determines whether the last element of the first source operand has been
processed at 916. If execution circuit 106 determines at 916 that the last element of the first
source operand has been processed, it tests at 918 whether the last element of the destination
operand has been processed, and, otherwise, returns to Q108 to select the next element of the
first source operand. At 918, if execution circuit 106 determines that the last element of the
destination operand has not been processed, it returns to 906 to select the next element of the
destination operand. If execution circuit 106 determines at 918 that the last element of the
destination operand has been processed, it commits or retires the instruction at 920.

[0044] Execution of the instruction to permute a mask, as shown in Figure 9, occurs
substantially serially, processing one element of the destination operand and the first source
operand at a time. In some embodiments, flow diagram 900 is performed by and/or with
processing components at illustrated in Figure 1.

[0045] Figure 10 is a flow diagram illustrating operation of execution circuit 106
(Figure 1) according to an alternate embodiment. Specifically, execution circuit 106 retrieves
data associated with first and second source operand identifiers at 1002, clears a destination
operand at 1004, uses parallel circuitry at 1006 to process every element of the destination
operand, and for each element of the destination operand uses parallel circuitry at 1008 to
process every element of the first source operand, and for each element of the first source
operand, execution circuit 106 determines at 1010 whether the first source operand element is
set, and if it is not set, it commits or retires the instruction once all parallel processes are
completed at 1016. But if execution circuit 106 determines at 1010 that the first source operand
element is set, it extracts a destination index corresponding to the first source operand element

from a corresponding element of the second source operand at 1012, sets the destination element
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identified by that index at 1014 if the identified destination element matches the destination
index being processed by the circuit allocated at 1006, and commits or retires the instruction at
1016 once all parallel processes are completed.

[0046] Execution of the instruction to permute a mask, as shown in Figure 10, occurs
substantially in parallel, processing every element of the destination operand and the first source
operand at the same time. In some embodiments, flow diagram 1000 is performed by and/or
with processing components at illustrated in Figure 1.

Instruction Sets

[0047] An instruction set may include one or more instruction formats. A given
instruction format may define various fields (e.g., number of bits, location of bits) to specify,
among other things, the operation to be performed (e.g., opcode) and the operand(s) on which
that operation is to be performed and/or other data field(s) (e.g., mask). Some instruction
formats are further broken down though the definition of instruction templates (or subformats).
For example, the instruction templates of a given instruction format may be defined to have
different subsets of the instruction format’s fields (the included fields are typically in the same
order, but at least some have different bit positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus, each instruction of an ISA is
expressed using a given instruction format (and, if defined, in a given one of the instruction
templates of that instruction format) and includes fields for specifying the operation and the
operands. For example, an exemplary ADD instruction has a specific opcode and an instruction
format that includes an opcode field to specify that opcode and operand fields to select operands
(sourcel/destination and source2); and an occurrence of this ADD instruction in an instruction
stream will have specific contents in the operand fields that select specific operands.
Exemplary Instruction Formats

[0048] Embodiments of the instruction(s) described herein may be embodied in different
formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such systems, architectures, and

pipelines, but are not limited to those detailed.

10
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Generic Vector Friendly Instruction Format

[0049] A vector friendly instruction format is an instruction format that is suited for
vector instructions (e.g., there are certain fields specific to vector operations). While
embodiments are described in which both vector and scalar operations are supported through the
vector friendly instruction format, alternative embodiments use only vector operations the vector
friendly instruction format.

[0050] Figures 11-12 are block diagrams illustrating a generic vector friendly instruction
format and instruction templates thereof according to embodiments. Figure 11 is a block
diagram illustrating a generic vector friendly instruction format and class A instruction templates
thereof according to embodiments of the invention; while Figure 12 is a block diagram
illustrating the generic vector friendly instruction format and class B instruction templates
thereof according to embodiments. Specifically, a generic vector friendly instruction format
1100 for which are defined class A and class B instruction templates, both of which include no
memory access 1105 instruction templates and memory access 1120 instruction templates. The
term generic in the context of the vector friendly instruction format refers to the instruction
format not being tied to any specific instruction set.

[0051] While embodiments of the invention will be described in which the vector
friendly instruction format supports the following: a 64 byte vector operand length (or size) with
32 bit (4 byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector
consists of either 16 doubleword-size elements or alternatively, 8 quadword-size elements); a 64
byte vector operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or
sizes); a 32 byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2
byte), or 8 bit (1 byte) data element widths (or sizes); and a 16 byte vector operand length (or
size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or
sizes); alternative embodiments may support more, less and/or different vector operand sizes
(e.g., 256 byte vector operands) with more, less, or different data element widths (e.g., 128 bit
(16 byte) data element widths).

[0052] The class A instruction templates in Figure 11 include: 1) within the no memory
access 1105 instruction templates there is shown a no memory access, full round control type
operation 1110 instruction template and a no memory access, data transform type operation 1115

instruction template; and 2) within the memory access 1120 instruction templates there is shown

11
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a memory access, temporal 1125 instruction template and a memory access, non-temporal 1130
instruction template. The class B instruction templates in Figure 12 include: 1) within the no
memory access 1105 instruction templates there is shown a no memory access, write mask
control, partial round control type operation 1112 instruction template and a no memory access,
write mask control, vsize type operation 1117 instruction template; and 2) within the memory
access 1120 instruction templates there is shown a memory access, write mask control 1127
instruction template.

[0053] The generic vector friendly instruction format 1100 includes the following fields
listed below in the order illustrated in Figures 11-12.

[0054] Format field 1140 — a specific value (an instruction format identifier value) in this
field uniquely identifies the vector friendly instruction format, and thus occurrences of
instructions in the vector friendly instruction format in instruction streams. As such, this field is
optional in the sense that it is not needed for an instruction set that has only the generic vector
friendly instruction format.

[0055] Base operation field 1142 — its content distinguishes different base operations.
[0056] Register index field 1144 — its content, directly or through address generation,
specifies the locations of the source and destination operands, be they in registers or in memory.
These include a sufficient number of bits to select N registers from a PxQ (e.g. 32x512, 16x128,
32x1024, and 64x1024) register file. While in one embodiment N may be up to three sources
and one destination register, alternative embodiments may support more or less sources and
destination registers (e.g., may support up to two sources where one of these sources also acts as
the destination, may support up to three sources where one of these sources also acts as the
destination, may support up to two sources and one destination).

[0057] Modifier field 1146 — its content distinguishes occurrences of instructions in the
generic vector instruction format that specify memory access from those that do not; that is,
between no memory access 1105 instruction templates and memory access 1120 instruction
templates. Memory access operations read and/or write to the memory hierarchy (in some cases
specifying the source and/or destination addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations are registers). While in one

embodiment this field also selects between three different ways to perform memory address
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calculations, alternative embodiments may support more, less, or different ways to perform
memory address calculations.

[0058] Augmentation operation field 1150 — its content distinguishes which one of a
variety of different operations to be performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this field is divided into a class field 1168,
an alpha field 1152, and a beta field 1154. The augmentation operation field 1150 allows
common groups of operations to be performed in a single instruction rather than 2, 3, or 4
instructions.

[0059] Scale field 1160 — its content allows for the scaling of the index field’s content for
memory address generation (e.g., for address generation that uses 25 * index + base).

[0060] Displacement Field 1162A— its content is used as part of memory address
generation (e.g., for address generation that uses 2 * index + base + displacement).

[0061] Displacement Factor Field 1162B (note that the juxtaposition of displacement
field 1162A directly over displacement factor field 1162B indicates one or the other is used) — its
content is used as part of address generation; it specifies a displacement factor that is to be scaled
by the size of a memory access (N) — where N is the number of bytes in the memory access (e.g.,
for address generation that uses 2 * index + base + scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor field’s content is multiplied by the
memory operands total size (N) in order to generate the final displacement to be used in
calculating an effective address. The value of N is determined by the processor hardware at
runtime based on the full opcode field 1174 (described later herein) and the data manipulation
field 1154C. The displacement field 1162A and the displacement factor field 1162B are optional
in the sense that they are not used for the no memory access 1105 instruction templates and/or
different embodiments may implement only one or none of the two.

[0062] Data element width field 1164 — its content distinguishes which one of a number
of data element widths is to be used (in some embodiments for all instructions; in other
embodiments for only some of the instructions). This field is optional in the sense that it is not
needed if only one data element width is supported and/or data element widths are supported
using some aspect of the opcodes.

[0063] Write mask field 1170 — its content controls, on a per data element position basis,

whether that data element position in the destination vector operand reflects the result of the base
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operation and augmentation operation. Class A instruction templates support merging-
writemasking, while class B instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of elements in the destination to be
protected from updates during the execution of any operation (specified by the base operation
and the augmentation operation); in other one embodiment, preserving the old value of each
element of the destination where the corresponding mask bit has a 0. In contrast, when zeroing
vector masks allow any set of elements in the destination to be zeroed during the execution of
any operation (specified by the base operation and the augmentation operation); in one
embodiment, an element of the destination is set to O when the corresponding mask bit has a 0
value. A subset of this functionality is the ability to control the vector length of the operation
being performed (that is, the span of elements being modified, from the first to the last one);
however, it is not necessary that the elements that are modified be consecutive. Thus, the write
mask field 1170 allows for partial vector operations, including loads, stores, arithmetic, logical,
etc. While embodiments of the invention are described in which the write mask field’s 1170
content selects one of a number of write mask registers that contains the write mask to be used
(and thus the write mask field’s 1170 content indirectly identifies that masking to be performed),
alternative embodiments instead or additional allow the mask write field’s 1170 content to
directly specify the masking to be performed.

[0064] Immediate field 1172 — its content allows for the specification of an immediate.
This field is optional in the sense that is it not present in an implementation of the generic vector
friendly format that does not support immediate and it is not present in instructions that do not
use an immediate.

[0065] Class field 1168 — its content distinguishes between different classes of
instructions. With reference to Figures 11-B, the contents of this field select between class A
and class B instructions. In Figures 11-B, rounded corner squares are used to indicate a specific
value is present in a field (e.g., class A 1168A and class B 1168B for the class field 1168
respectively in Figures 11-B).

Instruction Templates of Class A

[0066] In the case of the non-memory access 1105 instruction templates of class A, the
alpha field 1152 is interpreted as an RS field 1152A, whose content distinguishes which one of

the different augmentation operation types are to be performed (e.g., round 1152A.1 and data
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transform 1152A 2 are respectively specified for the no memory access, round type operation
1110 and the no memory access, data transform type operation 1115 instruction templates),
while the beta field 1154 distinguishes which of the operations of the specified type is to be
performed. In the no memory access 1105 instruction templates, the scale field 1160, the

displacement field 1162A, and the displacement scale filed 1162B are not present.

No-Memory Access Instruction Templates — Full Round Control Type Operation

[0067] In the no memory access full round control type operation 1110 instruction
template, the beta field 1154 is interpreted as a round control field 1154A, whose content(s)
provide static rounding. While in the described embodiments of the invention the round control
field 1154A includes a suppress all floating point exceptions (SAE) field 1156 and a round
operation control field 1158, alternative embodiments may support may encode both these
concepts into the same field or only have one or the other of these concepts/fields (e.g., may have
only the round operation control field 1158).

[0068] SAE field 1156 — its content distinguishes whether or not to disable the exception
event reporting; when the SAE field’s 1156 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point exception flag and does not raise any
floating point exception handler.

[0069] Round operation control field 1158 — its content distinguishes which one of a
group of rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and
Round-to-nearest). Thus, the round operation control field 1158 allows for the changing of the
rounding mode on a per instruction basis. In one embodiment of the invention where a processor
includes a control register for specifying rounding modes, the round operation control field’s

1150 content overrides that register value.

No Memory Access Instruction Templates — Data Transform Type Operation

[0070] In the no memory access data transform type operation 1115 instruction template,
the beta field 1154 is interpreted as a data transform field 1154B, whose content distinguishes
which one of a number of data transforms is to be performed (e.g., no data transform, swizzle,

broadcast).

15



WO 2017/146855 PCT/US2017/014975

[0071] In the case of a memory access 1120 instruction template of class A, the alpha
field 1152 is interpreted as an eviction hint field 1152B, whose content distinguishes which one
of the eviction hints is to be used (in Figure 11, temporal 1152B.1 and non-temporal 1152B.2
are respectively specified for the memory access, temporal 1125 instruction template and the
memory access, non-temporal 1130 instruction template), while the beta field 1154 is interpreted
as a data manipulation field 1154C, whose content distinguishes which one of a number of data
manipulation operations (also known as primitives) is to be performed (e.g., no manipulation;
broadcast; up conversion of a source; and down conversion of a destination). The memory
access 1120 instruction templates include the scale field 1160, and optionally the displacement
field 1162A or the displacement scale field 1162B.

[0072] Vector memory instructions perform vector loads from and vector stores to
memory, with conversion support. As with regular vector instructions, vector memory
instructions transfer data from/to memory in a data element-wise fashion, with the elements that
are actually transferred is dictated by the contents of the vector mask that is selected as the write

mask.

Memory Access Instruction Templates — Temporal
[0073] Temporal data is data likely to be reused soon enough to benefit from caching.
This is, however, a hint, and different processors may implement it in different ways, including

ignoring the hint entirely.

Memory Access Instruction Templates — Non-Temporal
[0074] Non-temporal data is data unlikely to be reused soon enough to benefit from
caching in the Ist-level cache and should be given priority for eviction. This is, however, a hint,

and different processors may implement it in different ways, including ignoring the hint entirely.

Instruction Templates of Class B
[0075] In the case of the instruction templates of class B, the alpha field 1152 is
interpreted as a write mask control (Z) field 1152C, whose content distinguishes whether the

write masking controlled by the write mask field 1170 should be a merging or a zeroing.
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[0076] In the case of the non-memory access 1105 instruction templates of class B, part
of the beta field 1154 is interpreted as an RL field 1157A, whose content distinguishes which
one of the different augmentation operation types are to be performed (e.g., round 1157A.1 and
vector length (VSIZE) 1157A .2 are respectively specified for the no memory access, write mask
control, partial round control type operation 1112 instruction template and the no memory
access, write mask control, VSIZE type operation 1117 instruction template), while the rest of
the beta field 1154 distinguishes which of the operations of the specified type is to be performed.
In the no memory access 1105 instruction templates, the scale field 1160, the displacement field
1162A, and the displacement scale filed 1162B are not present.

[0077] In the no memory access, write mask control, partial round control type operation
1110 instruction template, the rest of the beta field 1154 is interpreted as a round operation field
1159A and exception event reporting is disabled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating point exception handler).

[0078] Round operation control field 1159A — just as round operation control field 1158,
its content distinguishes which one of a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control
field 1159A allows for the changing of the rounding mode on a per instruction basis. In one
embodiment of the invention where a processor includes a control register for specifying
rounding modes, the round operation control field’s 1150 content overrides that register value.
[0079] In the no memory access, write mask control, VSIZE type operation 1117
instruction template, the rest of the beta field 1154 is interpreted as a vector length field 1159B,
whose content distinguishes which one of a number of data vector lengths is to be performed on
(e.g., 128, 256, or 512 byte).

[0080] In the case of a memory access 1120 instruction template of class B, part of the
beta field 1154 is interpreted as a broadcast field 1157B, whose content distinguishes whether or
not the broadcast type data manipulation operation is to be performed, while the rest of the beta
field 1154 is interpreted the vector length field 1159B. The memory access 1120 instruction
templates include the scale field 1160, and optionally the displacement field 1162A or the
displacement scale field 1162B.

[0081] With regard to the generic vector friendly instruction format 1100, a full opcode
field 1174 is shown including the format field 1140, the base operation field 1142, and the data
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element width field 1164. While one embodiment is shown where the full opcode field 1174
includes all of these fields, the full opcode field 1174 includes less than all of these fields in
embodiments that do not support all of them. The full opcode field 1174 provides the operation
code (opcode).

[0082] The augmentation operation field 1150, the data element width field 1164, and the
write mask field 1170 allow these features to be specified on a per instruction basis in the generic
vector friendly instruction format.

[0083] The combination of write mask field and data element width field create typed
instructions in that they allow the mask to be applied based on different data element widths.
[0084] The various instruction templates found within class A and class B are beneficial
in different situations. In some embodiments of the invention, different processors or different
cores within a processor may support only class A, only class B, or both classes. For instance, a
high performance general purpose out-of-order core intended for general-purpose computing
may support only class B, a core intended primarily for graphics and/or scientific (throughput)
computing may support only class A, and a core intended for both may support both (of course, a
core that has some mix of templates and instructions from both classes but not all templates and
instructions from both classes is within the purview of the invention). Also, a single processor
may include multiple cores, all of which support the same class or in which different cores
support different class. For instance, in a processor with separate graphics and general purpose
cores, one of the graphics cores intended primarily for graphics and/or scientific computing may
support only class A, while one or more of the general purpose cores may be high performance
general purpose cores with out of order execution and register renaming intended for general-
purpose computing that support only class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-order or out-of-order cores that support
both class A and class B. Of course, features from one class may also be implement in the other
class in different embodiments. Programs written in a high level language would be put (e.g.,
just in time compiled or statically compiled) into an variety of different executable forms,
including: 1) a form having only instructions of the class(es) supported by the target processor
for execution; or 2) a form having alternative routines written using different combinations of the
instructions of all classes and having control flow code that selects the routines to execute based

on the instructions supported by the processor which is currently executing the code.
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Exemplary Specific Vector Friendly Instruction Format

[0085] Figure 13 is a block diagram illustrating an exemplary specific vector friendly
instruction format according to embodiments. Figure 13 shows a specific vector friendly
instruction format 1300 that is specific in the sense that it specifies the location, size,
interpretation, and order of the fields, as well as values for some of those fields. The specific
vector friendly instruction format 1300 may be used to extend the x86 instruction set, and thus
some of the fields are similar or the same as those used in the existing x86 instruction set and
extension thereof (e.g., AVX). This format remains consistent with the prefix encoding field,
real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields of
the existing x86 instruction set with extensions. The fields from Figure 11 into which the fields
from Figure 13 map are illustrated.

[0086] It should be understood that, although embodiments of the invention are described
with reference to the specific vector friendly instruction format 1300 in the context of the generic
vector friendly instruction format 1100 for illustrative purposes, the invention is not limited to
the specific vector friendly instruction format 1300 except where claimed. For example, the
generic vector friendly instruction format 1100 contemplates a variety of possible sizes for the
various fields, while the specific vector friendly instruction format 1300 is shown as having
fields of specific sizes. By way of specific example, while the data element width field 1164 is
illustrated as a one bit field in the specific vector friendly instruction format 1300, the invention
is not so limited (that is, the generic vector friendly instruction format 1100 contemplates other
sizes of the data element width field 1164).

[0087] The generic vector friendly instruction format 1100 includes the following fields
listed below in the order illustrated in Figure 13.

[0088] EVEX Prefix (Bytes 0-3) 1302 - is encoded in a four-byte form.

[0089] Format Field 1140 (EVEX Byte O, bits [7:0]) - the first byte (EVEX Byte 0) is the
format field 1140 and it contains 0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the invention).

[0090] The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields
providing specific capability.
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[0091] REX field 1305 (EVEX Byte 1, bits [7-5]) — consists of an EVEX R bit field
(EVEX Byte 1, bit [7] - R), EVEX X bit field (EVEX byte 1, bit [6] — X), and 1157BEX byte 1,
bit [S]-B). The EVEXR, EVEX X, and EVEX B bit fields provide the same functionality as
the corresponding VEX bit fields, and are encoded using 1s complement form, i.e. ZMMO is
encoded as 1111B, ZMM15 is encoded as 0000B. Other fields of the instructions encode the
lower three bits of the register indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr,
Xxxx, and Bbbb may be formed by adding EVEX R, EVEX X, and EVEX B.

[0092] REX’ field 1110 — this is the first part of the REX’ field 1110 and is the EVEX R’
bit field (EVEX Byte 1, bit [4] - R’) that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the invention, this bit, along with others as
indicated below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit
mode) from the BOUND instruction, whose real opcode byte is 62, but does not accept in the
MOD R/M field (described below) the value of 11 in the MOD field; alternative embodiments of
the invention do not store this and the other indicated bits below in the inverted format. A value
of 1 is used to encode the lower 16 registers. In other words, R’Rrrr is formed by combining

EVEX R’, EVEX R, and the other RRR from other fields.

[0093] Opcode map field 1315 (EVEX byte 1, bits [3:0] — mmmm) — its content encodes
an implied leading opcode byte (OF, OF 38, or OF 3).
[0094] Data element width field 1164 (EVEX byte 2, bit [7] — W) - is represented by the

notation EVEX. W. EVEX W is used to define the granularity (size) of the datatype (either 32-
bit data elements or 64-bit data elements).

[0095] EVEX vvvv 1320 (EVEX Byte 2, bits [6:3]-vvvv) the role of EVEX vvvv may
include the following: 1) EVEX vvvv encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions with 2 or more source operands; 2)
EVEX vvvv encodes the destination register operand, specified in 1s complement form for
certain vector shifts; or 3) EVEX.vvvv does not encode any operand, the field is reserved and
should contain 1111b. Thus, EVEX.vvvv field 1320 encodes the 4 low-order bits of the first
source register specifier stored in inverted (1s complement) form. Depending on the instruction,
an extra different EVEX bit field is used to extend the specifier size to 32 registers.

[0096] EVEX.U 1168 Class field (EVEX byte 2, bit [2]-U) — If EVEX.U = 0, it indicates
class A or EVEX.UO; if EVEX .U = 1, it indicates class B or EVEX.U1.
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[0097] Prefix encoding field 1325 (EVEX byte 2, bits [1:0]-pp) — provides additional bits
for the base operation field. In addition to providing support for the legacy SSE instructions in
the EVEX prefix format, this also has the benefit of compacting the SIMD prefix (rather than
requiring a byte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one
embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into
the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior
to being provided to the decoder’s PLA (so the PLA can execute both the legacy and EVEX
format of these legacy instructions without modification). Although newer instructions could
use the EVEX prefix encoding field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to
support the 2 bit SIMD prefix encodings, and thus not require the expansion.

[0098] Alpha field 1152 (EVEX byte 3, bit [7] — EH; also known as EVEX EH,
EVEXrs, EVEX RL, EVEX. write mask control, and EVEX.N; also illustrated with o)) — as
previously described, this field is context specific.

[0099] Beta field 1154 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX s2.0,

EVEX 1.0, EVEX rrl, EVEX LLO, EVEX LLB; also illustrated with ) — as previously
described, this field is context specific.

[0100] REX’ field 1110 — this is the remainder of the REX’ field and is the EVEX.V’ bit
field (EVEX Byte 3, bit [3] - V’) that may be used to encode either the upper 16 or lower 16 of
the extended 32 register set. This bit is stored in bit inverted format. A value of 1 is used to
encode the lower 16 registers. In other words, V’VVVYV is formed by combining EVEX.V’,
EVEX.vvvv.

[0101] Write mask field 1170 (EVEX byte 3, bits [2:0]-kkk) — its content specifies the
index of a register in the write mask registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special behavior implying no write mask is
used for the particular instruction (this may be implemented in a variety of ways including the
use of a write mask hardwired to all ones or hardware that bypasses the masking hardware).
[0102] Real Opcode Field 1330 (Byte 4) is also known as the opcode byte. Part of the
opcode is specified in this field.
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[0103] MOD R/M Field 1340 (Byte 5) includes MOD field 1342, Reg field 1344, and
R/M field 1346. As previously described, the MOD field’s 1342 content distinguishes between
memory access and non-memory access operations. The role of Reg field 1344 can be
summarized to two situations: encoding either the destination register operand or a source
register operand, or be treated as an opcode extension and not used to encode any instruction
operand. The role of R/M field 1346 may include the following: encoding the instruction
operand that references a memory address, or encoding either the destination register operand or
a source register operand.

[0104] Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale field’s
1150 content is used for memory address generation. SIB.xxx 1354 and SIB.bbb 1356 — the
contents of these fields have been previously referred to with regard to the register indexes Xxxx
and Bbbb.

[0105] Displacement field 1162A (Bytes 7-10) — when MOD field 1342 contains 10,
bytes 7-10 are the displacement field 1162A, and it works the same as the legacy 32-bit
displacement (disp32) and works at byte granularity.

[0106] Displacement factor field 1162B (Byte 7) — when MOD field 1342 contains 01,
byte 7 is the displacement factor field 1162B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since
disp8 is sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64
byte cache lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0,
and 64; since a greater range is often needed, disp32 is used; however, disp32 requires 4 bytes.
In contrast to disp8 and disp32, the displacement factor field 1162B is a reinterpretation of disp8;
when using displacement factor field 1162B, the actual displacement is determined by the
content of the displacement factor field multiplied by the size of the memory operand access (N).
This type of displacement is referred to as disp8*N. This reduces the average instruction length
(a single byte of used for the displacement but with a much greater range). Such compressed
displacement is based on the assumption that the effective displacement is multiple of the
granularity of the memory access, and hence, the redundant low-order bits of the address offset
do not need to be encoded. In other words, the displacement factor field 1162B substitutes the
legacy x86 instruction set 8-bit displacement. Thus, the displacement factor field 1162B is

encoded the same way as an x86 instruction set 8-bit displacement (so no changes in the

22



WO 2017/146855 PCT/US2017/014975

ModRM/SIB encoding rules) with the only exception that disp8 is overloaded to disp8*N. In
other words, there are no changes in the encoding rules or encoding lengths but only in the
interpretation of the displacement value by hardware (which needs to scale the displacement by
the size of the memory operand to obtain a byte-wise address offset). Immediate field 1172

operates as previously described.

Full Opcode Field

[0107] Figure 14 is a block diagram illustrating the fields of the specific vector friendly
instruction format 1300 that make up the full opcode field 1174 according to one embodiment.
Specifically, the full opcode field 1174 includes the format field 1140, the base operation field
1142, and the data element width (W) field 1164. The base operation field 1142 includes the
prefix encoding field 1325, the opcode map field 1315, and the real opcode field 1330.

Register Index Field

[0108] Figure 15 is a block diagram illustrating the fields of the specific vector friendly
instruction format 1300 that make up the register index field 1144 according to one embodiment.
Specifically, the register index field 1144 includes the REX field 1305, the REX’ field 1310, the
MODR/M reg field 1344, the MODR/M.1/m field 1346, the VVVYV field 1320, xxx field 1354,
and the bbb field 1356.

Augmentation Operation Field

[0109] Figure 16 is a block diagram illustrating the fields of the specific vector friendly
instruction format 1300 that make up the augmentation operation field 1650 according to one
embodiment. When the class (U) field 1668 contains 0, it signifies EVEX.UO (class A 1668A);
when it contains 1, it signifies EVEX U1 (class B 1668B). When U=0 and the MOD field 1642
contains 16 (signifying a no memory access operation), the alpha field 1652 (EVEX byte 3, bit
[7] — EH) is interpreted as the RS field 1652A. When the RS field 1652A contains a 1 (round
1652A.1), the beta field 1654 (EVEX byte 3, bits [6:4] - SSS) is interpreted as the round control
field 1654A. The round control field 1654A includes a one bit SAE field 1656 and a two bit
round operation field 1658. When the RS field 1652 A contains a 0 (data transform 1652A.2),
the beta field 1654 (EVEX byte 3, bits [6:4] SSS) is interpreted as a three bit data transform field
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1654B. When U=0 and the MOD field 1342 contains 00, 01, or 10 (signifying a memory access
operation), the alpha field 1652 (EVEX byte 3, bit [7] — EH) is interpreted as the eviction hint
(EH) field 1652B and the beta field 1654 (EVEX byte 3, bits [6:4] SSS) is interpreted as a three
bit data manipulation field 1654C.

[0110] When U=1, the alpha field 1652 (EVEX byte 3, bit [7] — EH) is interpreted as the
write mask control (Z) field 1652C. When U=1 and the MOD field 1342 contains 16 (signifying
a no memory access operation), part of the beta field 1654 (EVEX byte 3, bit [4]- So) is
interpreted as the RL field 1657A; when it contains a 1 (round 1657A.1) the rest of the beta field
1654 (EVEX byte 3, bit [6-5]- S2-1) is interpreted as the round operation field 1659A, while when
the RL field 1657A contains a 0 (VSIZE 1657.A2) the rest of the beta field 1654 (EVEX byte 3,
bit [6-5]- S2-1) is interpreted as the vector length field 1659B (EVEX byte 3, bit [6-5]- L1-0).
When U=1 and the MOD field 1342 contains 00, 01, or 10 (signifying a memory access
operation), the beta field 1654 (EVEX byte 3, bits [6:4] - SSS) is interpreted as the vector length
field 1659B (EVEX byte 3, bit [6-5] - L1.0) and the broadcast field 1657B (EVEX byte 3, bit [4] -
B).

Exemplary Register Architecture

[0111] Figure 17 is a block diagram of a register architecture 1700 according to one
embodiment. In the embodiment illustrated, there are 32 vector registers 1710 that are 512 bits
wide; these registers are referenced as zmmO through zmm31. The lower order 256 bits of the
lower 16 zmm registers are overlaid on registers ymmO0-16. The lower order 128 bits of the
lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on registers
xmmO-15. The specific vector friendly instruction format 1300 operates on these overlaid

register file as illustrated in the below tables.

Adjustable Vector Class Operations Registers
Length
Instruction Templates A (Figure | 1110, 1115, zmm registers (the vector length is 64

that do not include the 11; U=0) | 1125,1130 byte)

vector length field 1159B | B (Figure | 1112 zmm registers (the vector length is 64
12; U=1) byte)
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Instruction templates that | B (Figure | 1117, 1127 zmm, ymm, or xmm registers (the

do include the vector 12; U=1) vector length is 64 byte, 32 byte, or

length field 1159B 16 byte) depending on the vector
length field 1159B

[0112] In other words, the vector length field 1159B selects between a maximum length
and one or more other shorter lengths, where each such shorter length is half the length of the
preceding length; and instructions templates without the vector length field 1159B operate on the
maximum vector length. Further, in one embodiment, the class B instruction templates of the
specific vector friendly instruction format 1300 operate on packed or scalar single/double-
precision floating point data and packed or scalar integer data. Scalar operations are operations
performed on the lowest order data element position in an zmm/ymm/xmm register; the higher
order data element positions are either left the same as they were prior to the instruction or
zeroed depending on the embodiment.

[0113] Write mask registers 1715 - in the embodiment illustrated, there are 8 write mask
registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 1715 are 16 bits in size. As previously described, in one embodiment of the invention,
the vector mask register kO cannot be used as a write mask; when the encoding that would
normally indicate kO is used for a write mask, it selects a hardwired write mask of OXFFFF,
effectively disabling write masking for that instruction.

[0114] General-purpose registers 1725 - in the embodiment illustrated, there are sixteen
64-bit general-purpose registers that are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by the names RAX, RBX, RCX,
RDX, RBP, RSI, RDI, RSP, and RS through R15.

[0115] Scalar floating point stack register file (x87 stack) 1745, on which is aliased the
MMX packed integer flat register file 1750 - in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point operations on 32/64/80-bit floating
point data using the x87 instruction set extension; while the MMX registers are used to perform
operations on 64-bit packed integer data, as well as to hold operands for some operations

performed between the MMX and XMM registers.
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[0116] Alternative embodiments of the invention may use wider or narrower registers.
Additionally, alternative embodiments of the invention may use more, less, or different register

files and registers.

Exemplary Core Architectures, Processors, and Computer Architectures

[0117] Processor cores may be implemented in different ways, for different purposes,
and in different processors. For instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose computing; 2) a high performance
general purpose out-of-order core intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific (throughput) computing. Implementations
of different processors may include: 1) a CPU including one or more general purpose in-order
cores intended for general-purpose computing and/or one or more general purpose out-of-order
cores intended for general-purpose computing; and 2) a coprocessor including one or more
special purpose cores intended primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same
package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a
coprocessor is sometimes referred to as special purpose logic, such as integrated graphics and/or
scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that may
include on the same die the described CPU (sometimes referred to as the application core(s) or
application processor(s)), the above described coprocessor, and additional functionality.
Exemplary core architectures are described next, followed by descriptions of exemplary

processors and computer architectures.

Exemplary Core Architectures

In-order and out-of-order core block diagram

[0118] Figure 18 is a block diagram illustrating both an exemplary in-order pipeline and
an exemplary register renaming, out-of-order issue/execution pipeline according to
embodiments. Figure 19 is a block diagram illustrating both an exemplary embodiment of an in-
order architecture core and an exemplary register renaming, out-of-order issue/execution

architecture core to be included in a processor according to embodiments. The solid lined boxes
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in Figures 18 and 19 illustrate the in-order pipeline and in-order core, while the optional addition
of the dashed lined boxes illustrates the register renaming, out-of-order issue/execution pipeline
and core. Given that the in-order aspect is a subset of the out-of-order aspect, the out-of-order
aspect will be described.

[0119] In Figure 18, a processor pipeline 1800 includes a fetch stage 1802, a length
decode stage 1804, a decode stage 1806, an allocation stage 1808, a renaming stage 1810, a
scheduling (also known as a dispatch or issue) stage 1812, a register read/memory read stage
1814, an execute stage 1816, a write back/memory write stage 1818, an exception handling stage
1822, and a commit stage 1824.

[0120] Figure 19 shows processor core 1890 including a front end unit 1830 coupled to
an execution engine unit 1850, and both are coupled to a memory unit 1870. The core 1890 may
be a reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 1890 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, coprocessor core, general purpose computing graphics
processing unit (GPGPU) core, graphics core, or the like.

[0121] The front end unit 1830 includes a branch prediction unit 1832 coupled to an
instruction cache unit 1834, which is coupled to an instruction translation lookaside buffer (TLB)
1836, which is coupled to an instruction fetch unit 1838, which is coupled to a decode unit 1840.
The decode unit 1840 (or decoder) may decode instructions, and generate as an output one or
more micro-operations, micro-code entry points, microinstructions, other instructions, or other
control signals, which are decoded from, or which otherwise reflect, or are derived from, the
original instructions. The decode unit 1840 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but are not limited to, look-up tables,
hardware implementations, programmable logic arrays (PLAs), microcode read only memories
(ROMs), etc. In one embodiment, the core 1890 includes a microcode ROM or other medium
that stores microcode for certain macroinstructions (e.g., in decode unit 1840 or otherwise within
the front end unit 1830). The decode unit 1840 is coupled to a rename/allocator unit 1852 in the
execution engine unit 1850.

[0122] The execution engine unit 1850 includes the rename/allocator unit 1852 coupled

to a retirement unit 1854 and a set of one or more scheduler unit(s) 1856. The scheduler unit(s)
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1856 represents any number of different schedulers, including reservations stations, central
instruction window, etc. The scheduler unit(s) 1856 is coupled to the physical register file(s)
unit(s) 1858. Each of the physical register file(s) units 1858 represents one or more physical
register files, different ones of which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating point, vector integer, vector
floating point,, status (e.g., an instruction pointer that is the address of the next instruction to be
executed), etc. In one embodiment, the physical register file(s) unit 1858 comprises a vector
registers unit, a write mask registers unit, and a scalar registers unit. These register units may
provide architectural vector registers, vector mask registers, and general purpose registers. The
physical register file(s) unit(s) 1858 is overlapped by the retirement unit 1854 to illustrate
various ways in which register renaming and out-of-order execution may be implemented (e.g.,
using a reorder buffer(s) and a retirement register file(s); using a future file(s), a history
buffer(s), and a retirement register file(s); using a register maps and a pool of registers; etc.).
The retirement unit 1854 and the physical register file(s) unit(s) 1858 are coupled to the
execution cluster(s) 1860. The execution cluster(s) 1860 includes a set of one or more execution
units 1862 and a set of one or more memory access units 1864. The execution units 1862 may
perform various operations (e.g., shifts, addition, subtraction, multiplication) and on various
types of data (e.g., scalar floating point, packed integer, packed floating point, vector integer,
vector floating point). While some embodiments may include a number of execution units
dedicated to specific functions or sets of functions, other embodiments may include only one
execution unit or multiple execution units that all perform all functions. The scheduler unit(s)
1856, physical register file(s) unit(s) 1858, and execution cluster(s) 1860 are shown as being
possibly plural because certain embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar floating point/packed integer/packed
floating point/vector integer/vector floating point pipeline, and/or a memory access pipeline that
each have their own scheduler unit, physical register file(s) unit, and/or execution cluster — and
in the case of a separate memory access pipeline, certain embodiments are implemented in which
only the execution cluster of this pipeline has the memory access unit(s) 1864). It should also be
understood that where separate pipelines are used, one or more of these pipelines may be out-of-

order issue/execution and the rest in-order.
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[0123] The set of memory access units 1864 is coupled to the memory unit 1870, which
includes a data TLB unit 1872 coupled to a data cache unit 1874 coupled to a level 2 (L2) cache
unit 1876. In one exemplary embodiment, the memory access units 1864 may include a load
unit, a store address unit, and a store data unit, each of which is coupled to the data TLB unit
1872 in the memory unit 1870. The instruction cache unit 1834 is further coupled to a level 2
(L2) cache unit 1876 in the memory unit 1870. The L2 cache unit 1876 is coupled to one or
more other levels of cache and eventually to a main memory.

[0124] By way of example, the exemplary register renaming, out-of-order
issue/execution core architecture may implement the pipeline 1800 as follows: 1) the instruction
fetch 1838 performs the fetch and length decoding stages 1802 and 1804; 2) the decode unit
1840 performs the decode stage 1806; 3) the rename/allocator unit 1852 performs the allocation
stage 1808 and renaming stage 1810; 4) the scheduler unit(s) 1856 performs the schedule stage
1812; 5) the physical register file(s) unit(s) 1858 and the memory unit 1870 perform the register
read/memory read stage 1814; the execution cluster 1860 perform the execute stage 1816; 6) the
memory unit 1870 and the physical register file(s) unit(s) 1858 perform the write back/memory
write stage 1818; 7) various units may be involved in the exception handling stage 1822; and 8)
the retirement unit 1854 and the physical register file(s) unit(s) 1858 perform the commit stage
1824.

[0125] The core 1890 may support one or more instructions sets (e.g., the x86 instruction
set (with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 1890 includes logic to support a packed data
instruction set extension (e.g., AVX1, AVX2), thereby allowing the operations used by many
multimedia applications to be performed using packed data.

[0126] It should be understood that the core may support multithreading (executing two
or more parallel sets of operations or threads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a single physical core provides a
logical core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading

thereafter such as in the Intel® Hyperthreading technology).
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[0127] While register renaming is described in the context of out-of-order execution, it
should be understood that register renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes separate instruction and data cache units
1834/1874 and a shared L2 cache unit 1876, alternative embodiments may have a single internal
cache for both instructions and data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the system may include a combination
of an internal cache and an external cache that is external to the core and/or the processor.

Alternatively, all of the cache may be external to the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0128] Figures 20 and 21 illustrate a block diagram of a more specific exemplary in-
order core architecture, which core would be one of several logic blocks (including other cores of
the same type and/or different types) in a chip. The logic blocks communicate through a high-
bandwidth interconnect network (e.g., a ring network) with some fixed function logic, memory
I/0O interfaces, and other necessary 1/0O logic, depending on the application.

[0129] Figure 20 is a block diagram of a single processor core, along with its connection
to the on-die interconnect network 2002 and with its local subset of the Level 2 (L2) cache 2004,
according to embodiments. In one embodiment, an instruction decoder 2000 supports the x86
instruction set with a packed data instruction set extension. An L1 cache 2006 allows low-
latency accesses to cache memory into the scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 2008 and a vector unit 2010 use separate register sets
(respectively, scalar registers 2012 and vector registers 2014) and data transferred between them
is written to memory and then read back in from a level 1 (L1) cache 2006, alternative
embodiments of the invention may use a different approach (e.g., use a single register set or
include a communication path that allow data to be transferred between the two register files
without being written and read back).

[0130] The local subset of the L2 cache 2004 is part of a global L2 cache that is divided
into separate local subsets, one per processor core. Each processor core has a direct access path
to its own local subset of the L2 cache 2004. Data read by a processor core is stored in its L2
cache subset 2004 and can be accessed quickly, in parallel with other processor cores accessing

their own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache
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subset 2004 and is flushed from other subsets, if necessary. The ring network ensures coherency
for shared data. The ring network is bi-directional to allow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring data-
path is 1012-bits wide per direction.

[0131] Figure 21 is an expanded view of part of the processor core in Figure 20
according to embodiments. Figure 21 includes an L1 data cache 2006A part of the L1 cache
2006, as well as more detail regarding the vector unit 2010 and the vector registers 2014,
Specifically, the vector unit 2010 is a 16-wide vector processing unit (VPU) (see the 16-wide
ALU 2028), which executes one or more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register inputs with swizzle unit 2020,
numeric conversion with numeric convert units 2022A-B, and replication with replication unit
2024 on the memory input. Write mask registers 2026 allow predicating resulting vector writes.
[0132] Figure 22 is a block diagram of a processor 2200 that may have more than one
core, may have an integrated memory controller, and may have integrated graphics according to
embodiments. The solid lined boxes in Figure 22 illustrate a processor 2200 with a single core
2202A, a system agent 2210, a set of one or more bus controller units 2216, while the optional
addition of the dashed lined boxes illustrates an alternative processor 2200 with multiple cores
2202A-N, a set of one or more integrated memory controller unit(s) 2214 in the system agent
unit 2210, and special purpose logic 2208.

[0133] Thus, different implementations of the processor 2200 may include: 1) a CPU
with the special purpose logic 2208 being integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores 2202A-N being one or more general
purpose cores (e.g., general purpose in-order cores, general purpose out-of-order cores, a
combination of the two); 2) a coprocessor with the cores 2202A-N being a large number of
special purpose cores intended primarily for graphics and/or scientific (throughput); and 3) a
coprocessor with the cores 2202A-N being a large number of general purpose in-order cores.
Thus, the processor 2200 may be a general-purpose processor, coprocessor or special-purpose
processor, such as, for example, a network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics processing unit), a high-throughput many
integrated core (MIC) coprocessor (including 30 or more cores), embedded processor, or the like.

The processor may be implemented on one or more chips. The processor 2200 may be a part of
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and/or may be implemented on one or more substrates using any of a number of process
technologies, such as, for example, BICMOS, CMOS, or NMOS.

[0134] The memory hierarchy includes one or more levels of cache within the cores, a set
or one or more shared cache units 2206, and external memory (not shown) coupled to the set of
integrated memory controller units 2214. The set of shared cache units 2206 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 2212 interconnects the integrated graphics logic 2208, the set of shared cache
units 2206, and the system agent unit 2210/integrated memory controller unit(s) 2214, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or more cache units 2206 and cores
2202-A-N.

[0135] In some embodiments, one or more of the cores 2202A-N are capable of multi-
threading. The system agent 2210 includes those components coordinating and operating cores
2202A-N. The system agent unit 2210 may include for example a power control unit (PCU) and
a display unit. The PCU may be or include logic and components needed for regulating the
power state of the cores 2202A-N and the integrated graphics logic 2208. The display unit is for
driving one or more externally connected displays.

[0136] The cores 2202A-N may be homogenous or heterogeneous in terms of
architecture instruction set; that is, two or more of the cores 2202A-N may be capable of
execution the same instruction set, while others may be capable of executing only a subset of that

instruction set or a different instruction set.

Exemplary Computer Architectures

[0137] Figures 23-26 are block diagrams of exemplary computer architectures. Other
system designs and configurations known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, servers, network devices, network hubs,
switches, embedded processors, digital signal processors (DSPs), graphics devices, video game
devices, set-top boxes, micro controllers, cell phones, portable media players, hand held devices,

and various other electronic devices, are also suitable. In general, a huge variety of systems or
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electronic devices capable of incorporating a processor and/or other execution logic as disclosed
herein are generally suitable.

[0138] Referring now to Figure 23, shown is a block diagram of a system 2300 in
accordance with one embodiment of the present invention. The system 2300 may include one or
more processors 2310, 2315, which are coupled to a controller hub 2320. In one embodiment the
controller hub 2320 includes a graphics memory controller hub (GMCH) 2390 and an
Input/Output Hub (IOH) 2350 (which may be on separate chips), the GMCH 2390 includes
memory and graphics controllers to which are coupled memory 2340 and a coprocessor 2345;
the IOH 2350 is couples input/output (I/O) devices 2360 to the GMCH 2390. Alternatively, one
or both of the memory and graphics controllers are integrated within the processor (as described
herein), the memory 2340 and the coprocessor 2345 are coupled directly to the processor 2310,
and the controller hub 2320 in a single chip with the IOH 2350.

[0139] The optional nature of additional processors 2315 is denoted in Figure 23 with
broken lines. Each processor 2310, 2315 may include one or more of the processing cores
described herein and may be some version of the processor 2200.

[0140] The memory 2340 may be, for example, dynamic random access memory
(DRAM), phase change memory (PCM), or a combination of the two. For at least one
embodiment, the controller hub 2320 communicates with the processor(s) 2310, 2315 via a
multi-drop bus, such as a frontside bus (FSB), point-to-point interface such as QuickPath
Interconnect (QPI), or similar connection 2395.

[0141] In one embodiment, the coprocessor 2345 is a special-purpose processor, such as,
for example, a high-throughput MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embedded processor, or the like. In one
embodiment, controller hub 2320 may include an integrated graphics accelerator.

[0142] There can be a variety of differences between the physical resources 2310, 2315
in terms of a spectrum of metrics of merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

[0143] In one embodiment, the processor 2310 executes instructions that control data
processing operations of a general type. Embedded within the instructions may be coprocessor
instructions. The processor 2310 recognizes these coprocessor instructions as being of a type

that should be executed by the attached coprocessor 2345. Accordingly, the processor 2310
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issues these coprocessor instructions (or control signals representing coprocessor instructions) on
a coprocessor bus or other interconnect, to coprocessor 2345. Coprocessor(s) 2345 accept and
execute the received coprocessor instructions.

[0144] Referring now to Figure 24, shown is a block diagram of a first more specific
exemplary system 2400 in accordance with an embodiment of the present invention. As shown
in Figure 24, multiprocessor system 2400 is a point-to-point interconnect system, and includes a
first processor 2470 and a second processor 2480 coupled via a point-to-point interconnect 2450.
Each of processors 2470 and 2480 may be some version of the processor 2200. In one
embodiment of the invention, processors 2470 and 2480 are respectively processors 2310 and
2315, while coprocessor 2438 is coprocessor 2345. In another embodiment, processors 2470 and
2480 are respectively processor 2310 coprocessor 2345.

[0145] Processors 2470 and 2480 are shown including integrated memory controller
(IMC) units 2472 and 2482, respectively. Processor 2470 also includes as part of its bus
controller units point-to-point (P-P) interfaces 2476 and 2478, similarly, second processor 2480
includes P-P interfaces 2486 and 2488. Processors 2470, 2480 may exchange information via a
point-to-point (P-P) interface 2450 using P-P interface circuits 2478, 2488. As shown in Figure
24, IMCs 2472 and 2482 couple the processors to respective memories, namely a memory 2432
and a memory 2434, which may be portions of main memory locally attached to the respective
processors.

[0146] Processors 2470, 2480 may each exchange information with a chipset 2490 via
individual P-P interfaces 2452, 2454 using point to point interface circuits 2476, 2494, 2486, and
2498. Chipset 2490 may optionally exchange information with the coprocessor 2438 via a high-
performance interface 2492. In one embodiment, the coprocessor 2438 is a special-purpose
processor, such as, for example, a high-throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU, embedded processor, or the like.
[0147] A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor is placed
into a low power mode.

[0148] Chipset 2490 may be coupled to a first bus 2416 via an interface 2496. In one

embodiment, first bus 2416 may be a Peripheral Component Interconnect (PCI) bus, or a bus
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such as a PCI Express bus or another third generation I/O interconnect bus, although the scope of
the present invention is not so limited.

[0149] As shown in Figure 24, various I/O devices 2414 may be coupled to first bus
2416, along with a bus bridge 2418 which couples first bus 2416 to a second bus 2420. In one
embodiment, one or more additional processor(s) 2415, such as coprocessors, high-throughput
MIC processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 2416. In one embodiment, second bus 2420 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 2420 including, for example, a keyboard and/or
mouse 2422, communication devices 2427 and a storage unit 2428 such as a disk drive or other
mass storage device which may include instructions/code and data 2430, in one embodiment.
Further, an audio I/O 2424 may be coupled to the second bus 2420. Note that other architectures
are possible. For example, instead of the point-to-point architecture of Figure 24, a system may
implement a multi-drop bus or other such architecture.

[0150] Referring now to Figure 25, shown is a block diagram of a second more specific
exemplary system 2500 in accordance with an embodiment of the present invention. Like
elements in Figures 24 and 25 bear like reference numerals, and certain aspects of Figure 24
have been omitted from Figure 25 in order to avoid obscuring other aspects of Figure 25.
[0151] Figure 25 illustrates that the processors 2570, 2580 may include integrated
memory and I/O control logic (“CL”) 2572 and 2582, respectively. Thus, the CL 2572, 2582
include integrated memory controller units and include I/O control logic. Figure 25 illustrates
that not only are the memories 2532, 2534 coupled to the CL 2572, 2582, but also that I/O
devices 2514 are also coupled to the control logic 2572, 2582. Legacy I/O devices 2515 are
coupled to the chipset 2590.

[0152] Referring now to Figure 26, shown is a block diagram of a SoC 2600 in
accordance with an embodiment of the present invention. Similar elements in Figure 22 bear
like reference numerals. Also, dashed lined boxes are optional features on more advanced SoCs.
In Figure 26, an interconnect unit(s) 2608 is coupled to: an application processor 2610 which
includes a set of one or more cores 2602A-N, corresponding cache unites 2604A-N, and shared
cache unit(s) 2606; a system agent unit 2610; a bus controller unit(s) 2616; an integrated

memory controller unit(s) 2614; a set or one or more coprocessors 2620 which may include
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integrated graphics logic, an image processor, an audio processor, and a video processor; an
static random access memory (SRAM) unit 2630; a direct memory access (DMA) unit 2632; and
a display unit 2640 for coupling to one or more external displays. In one embodiment, the
coprocessor(s) 2620 include a special-purpose processor, such as, for example, a network or
communication processor, compression engine, GPGPU, a high-throughput MIC processor,
embedded processor, or the like.

[0153] Embodiments of the mechanisms disclosed herein may be implemented in
hardware, software, firmware, or a combination of such implementation approaches.
Embodiments of the invention may be implemented as computer programs or program code
executing on programmable systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage elements), at least one input device,
and at least one output device.

[0154] Program code, such as code 2430 illustrated in Figure 24, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion or purposes
of this application, a processing system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller, an application specific integrated
circuit (ASIC), or a microprocessor.

[0155] The program code may be implemented in a high level procedural or object
oriented programming language to communicate with a processing system. The program code
may also be implemented in assembly or machine language, if desired. In fact, the mechanisms
described herein are not limited in scope to any particular programming language. In any case,
the language may be a compiled or interpreted language.

[0156] One or more aspects of at least one embodiment may be implemented by
representative instructions stored on a machine-readable medium which represents various logic
within the processor, which when read by a machine causes the machine to fabricate logic to
perform the techniques described herein. Such representations, known as “IP cores” may be
stored on a tangible, machine readable medium and supplied to various customers or
manufacturing facilities to load into the fabrication machines that actually make the logic or

processor.
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[0157] Such machine-readable storage media may include, without limitation, non-
transitory, tangible arrangements of articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of disk including floppy disks, optical
disks, compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

[0158] Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also be referred to as program

products.

Emulation (including binary translation, code morphing, etc.)

[0159] In some cases, an instruction converter may be used to convert an instruction from
a source instruction set to a target instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction converter may be implemented in
software, hardware, firmware, or a combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

[0160] Figure 27 is a block diagram contrasting the use of a software instruction
converter to convert binary instructions in a source instruction set to binary instructions in a
target instruction set according to embodiments. In the illustrated embodiment, the instruction
converter is a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 27
shows a program in a high level language 2702 may be compiled using an x86 compiler 2704 to

generate x86 binary code 2706 that may be natively executed by a processor with at least one
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x86 instruction set core 2716. The processor with at least one x86 instruction set core 2716
represents any processor that can perform substantially the same functions as an Intel processor
with at least one x86 instruction set core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on an Intel processor with at least one
x86 instruction set core, in order to achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler 2704 represents a compiler that is
operable to generate x86 binary code 2706 (e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at least one x86 instruction set core 2716.
Similarly, Figure 27 shows the program in the high level language 2702 may be compiled using
an alternative instruction set compiler 2708 to generate alternative instruction set binary code
2710 that may be natively executed by a processor without at least one x86 instruction set core
2714 (e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 2712 is used to convert the x86 binary code 2706 into code that
may be natively executed by the processor without an x86 instruction set core 2714. This
converted code is not likely to be the same as the alternative instruction set binary code 2710
because an instruction converter capable of this is difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 2712 represents software, firmware, hardware, or
a combination thereof that, through emulation, simulation or any other process, allows a
processor or other electronic device that does not have an x86 instruction set processor or core to

execute the x86 binary code 2706.
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CLAIMS

What is claimed is:
1. A processor, comprising:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

a data retrieval circuit to retrieve data associated with the first source operand identifier
and the second source operand identifier;

an execution circuit to execute the decoded instruction to perform a procedure
comprising: determining whether a first element of the data associated with the first source
operand identifier is set, if the first element is set, extracting a destination index from a
corresponding second element of the data associated with the second source operand identifier,
and using the destination index to set a destination element of data associated with the

destination operand identifier.

2. A processor, comprising:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

data retrieval means to retrieve data associated with the first source operand identifier and
the second source operand identifier;

an execution circuit to execute the decoded instruction to perform a procedure
comprising: determining whether a first element of the data associated with the first source
operand identifier is set, if the first element is set, extracting a destination index from a
corresponding second element of the data associated with the second source operand identifier,
and using the destination index to set a destination element of data associated with the

destination operand identifier.
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3. A processor, comprising:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

a data retrieval circuit to retrieve data associated with the first source operand identifier
and the second source operand identifier;

execution means to set a selected element of the destination operand for each set element

of the first source operand, the selection being specified by the second source operand.

4. A processor, comprising:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

data retrieval means to retrieve data associated with the first source operand identifier and
the second source operand identifier;

execution means to set a selected element of the destination operand for each set element

of the first source operand, the selection being specified by the second source operand.

5. Any of the processors of claims 3-4, wherein the execution means is further configured to
clear the data associated with the destination operand identifier before executing the decoded

instruction.

6. Any of the processors of claims 1 to 5, wherein the data associated with the second
source operand identifier comprises a plurality of indices useable to map a corresponding
plurality of source elements of the data associated with the first source operand identifier to a

plurality of destination elements of the data associated with the destination operand identifier.
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7. Any of the processors of any of claims 3-5, wherein the execution means is further
configured to:

count a first number of set elements in the data associated with the first source operand
identifier;

count a second number of set elements in the data associated with the destination operand
identifier; and

if the first number is greater than or equal to the second number, generate a signal

indicating the second number of set elements is lower than the first number of set elements.

8. Any of the processors of claims 1-2, wherein the execution circuit is further configured to
execute the decoded instruction serially on a plurality of elements of the data associated with the

first source operand identifier.

0. Any of the processors of claims 1-2, wherein the execution circuit is further configured to
execute the decoded instruction in parallel on a plurality of elements of the data associated with

the first source operand identifier.

10.  Any of the processors of claims 1-2, wherein the execution circuit is further configured to
perform the executing step in serial on every element of the data associated with the first source

operand identifier.

11.  Any of the processors of claims 1-2, wherein the execution circuit is further configured to
execute the decoded instruction in parallel on every element of the data associated with the first

source operand identifier.

12.  Any of the processors of claims 1-6, wherein the data associated with the first source
operand is retrieved into a first writemask register, data associated with the destination operand
is in a second writemask register, and data associated with the second source operand is in a

memory location.
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13.  Any of the processors of claims 1-6, wherein the data associated with the first source
operand is retrieved into a first writemask register, data associated with the destination operand
is in a second writemask register, and data associated with the second source operand is in a

register.

14. A method comprising:

fetching an instruction, a format of the instruction including a first source operand
identifier, a second source operand identifier, and a destination operand identifier;

decoding the instruction;

retrieving data associated with the first source operand identifier and the second source
operand identifier;

executing the decoded instruction to perform a procedure comprising: determining
whether a first element of the data associated with the first source operand identifier is set, if the
first element is set, excerpting a destination index from a corresponding second element of the
data associated with the second source operand identifier, and using the destination index to set a

destination element of data associated with the destination operand identifier.

15. A method comprising:

fetching an instruction, a format of the instruction including a first source operand
identifier, a second source operand identifier, and a destination operand identifier;

decoding the instruction;

retrieving data associated with the first source operand identifier and the second source
operand identifier;

performing steps to set a selected element of the destination operand for each set element

of the first source operand, the selection being specified by the second source operand.

16. Any of the methods of claims 14-15, further comprising clearing the data associated with

the destination operand identifier before executing the decoded instruction.
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17.  Any of the methods of claims 14-16, wherein the data associated with the second source
operand identifier comprises a plurality of indices useable to map a corresponding plurality of
source elements of the data associated with the first source operand identifier to a plurality of

destination elements of the data associated with the destination operand identifier.

18. Any of the methods of claims 14-17, further comprising:

counting a first number of set elements in the data associated with the first source
operand identifier;

counting a second number of set elements in the data associated with the destination
operand identifier; and

if the first number is greater than or equal to the second number generating a signal

indicating the second number of set elements is lower than the first number of set elements.

19. Any of the methods of claims 14-17, further comprising performing the executing step in

parallel on a plurality of elements of the data associated with the first source operand identifier.

20.  Any of the methods of claims 14-17, wherein the data associated with the first source
operand is retrieved into a writemask register, data associated with the destination operand is in a

writemask register, and data associated with the second source operand is in a memory location.
21.  Any of the methods of claims 14-17, wherein the data associated with the first source

operand is retrieved into a writemask register, data associated with the destination operand is in a

writemask register, and data associated with the second source operand is in a register.
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22. An article of manufacture comprising a non-transitory machine-readable storage medium,
the non-transitory machine-readable storage medium storing instructions capable of being
executed by a processor to perform the steps of:

fetching an instruction, a format of the instruction including a first source operand
identifier, a second source operand identifier, and a destination operand identifier;

decoding the instruction;

retrieving data associated with the first source operand identifier and the second source
operand identifier;

executing the decoded instruction to perform a procedure comprising: determining
whether a first element of the data associated with the first source operand identifier is set, if the
first element is set, excerpting a destination index from a corresponding second element of the
data associated with the second source operand identifier, and using the destination index to set a

destination element of data associated with the destination operand identifier.

23. An article of manufacture comprising a non-transitory machine-readable storage medium,
the non-transitory machine-readable storage medium storing instructions capable of being
executed by a processor to perform the steps of:

fetching an instruction, a format of the instruction including a first source operand
identifier, a second source operand identifier, and a destination operand identifier;

decoding the instruction;

retrieving data associated with the first source operand identifier and the second source
operand identifier;

executing steps to set a selected element of the destination operand for each set element

of the first source operand, the selection being specified by the second source operand.

24, Any of the articles of manufacture of claims 22-23, further comprising clearing the data

associated with the destination operand identifier before executing the instruction.
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25.  Any of the articles of manufacture of claims 22-24, wherein the data associated with the
second source operand identifier comprises a plurality of indices useable to map a corresponding
plurality of source elements of the data associated with the first source operand identifier to a

plurality of destination elements of the data associated with the destination operand identifier.
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AMENDED CLAIMS
received by the International Bureau on 20 June 2017 (20.06.2017)

What is claimed is:
1. A processor, comprising;:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

a data retrieval circuit to retrieve data associated with the first source operand identifier
and the second source operand identifier; and

an execution circuit to execute the decoded instruction to: determine whether a first
element of the data associated with the first source operand identifier is set, if the first element is
set, extract a destination index from a corresponding second element of the data associated with
the second source operand identifier, and use the destination index to set a destination element of

data associated with the destination operand identifier.

2. A processor, comprising;:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

data retrieval means to retrieve data associated with the first source operand identifier and
the second source operand identifier; and

an execution circuit to execute the decoded instruction to: determine whether a first
element of the data associated with the first source operand identifier is set, if the first element is
set, extract a destination index from a corresponding second element of the data associated with
the second source operand identifier, and use the destination index to set a destination element of

data associated with the destination operand identifier.
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3. A processor, comprising;:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

a data retrieval circuit to retrieve data associated with the first source operand identifier
and the second source operand identifier; and

execution means to set a selected element of data associated with the destination operand
identifier for each set element of the data associated with the first source operand identifier, the

selection being specified by the data associated with the second source operand identifier.

4, A processor, comprising;:

a fetch circuit to fetch an instruction, a format of the instruction including a first source
operand identifier, a second source operand identifier, and a destination operand identifier;

a decode circuit to decode the instruction;

data retrieval means to retrieve data associated with the first source operand identifier and
the second source operand identifier; and

execution means to set a selected element of data associated with the destination operand
identifier for each set element of the data associated with the first source operand identifier, the

selection being specified by the data associated with the second source operand identifier.

5. Any of the processors of claims 3-4, wherein the execution means is further configured to
clear the data associated with the destination operand identifier before executing the decoded

istruction.

6. Any of the processors of claims 1 to 4, wherein the data associated with the second
source operand identifier comprises a plurality of indices useable to map a corresponding
plurality of source elements of the data associated with the first source operand identifier to a

plurality of destination elements of the data associated with the destination operand identifier.
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7. Any of the processors of any of claims 3-4, wherein the execution means is further
configured to:

count a first number of set elements in the data associated with the first source operand
identifier;

count a second number of set elements in the data associated with the destination operand
identifier; and

if the first number is greater than or equal to the second number, generate a signal

indicating the second number of set elements is lower than the first number of set elements.

8. Any of the processors of claims 1-2, wherein the execution circuit is further configured to
execute the decoded instruction serially on a plurality of elements of the data associated with the

first source operand identifier.

9. Any of the processors of claims 1-2, wherein the execution circuit is further configured to
execute the decoded instruction in parallel on a plurality of elements of the data associated with

the first source operand identifier.

10. Any of the processors of claims 1-2, wherein the execution circuit is further to execute
the decoded instruction in serial on every element of the data associated with the first source

operand identifier.

11. Any of the processors of claims 1-2, wherein the execution circuit is further configured to
execute the decoded instruction in parallel on every element of the data associated with the first

source operand identifier.

12. Any of the processors of claims 1-4, wherein the data associated with the first source
operand identifier is retrieved into a first writemask register, data associated with the destination
operand identifier is in a second writemask register, and data associated with the second source

operand identifier is in a memory location.
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13. Any of the processors of claims 1-4, wherein the data associated with the first source
operand identifier is retrieved into a first writemask register, data associated with the destination
operand identifier is in a second writemask register, and data associated with the second source

operand identifier is in a register.

14. A method comprising:

fetching an instruction, a format of the instruction including a first source operand
identifier, a second source operand identifier, and a destination operand identifier;

decoding the instruction;

retrieving data associated with the first source operand identifier and the second source
operand identifier; and

executing the decoded instruction to: determine whether a first element of the data
associated with the first source operand identifier is set, if the first element is set, excerpt a
destination index from a corresponding second element of the data associated with the second
source operand identifier, and use the destination index to set a destination element of data

associated with the destination operand identifier.

15. A method comprising:

fetching an instruction, a format of the instruction including a first source operand
identifier, a second source operand identifier, and a destination operand identifier;

decoding the fetched instruction;

retrieving data associated with the first source operand identifier and the second source
operand identifier; and

executing the decoded instruction to set a selected element of data associated with the
destination operand identifier for each set element of the data associated with the first source
operand identifier, the selection being specified by the data associated with the second source

operand identifier.

16. Any of the methods of claims 14-15, further comprising clearing the data associated with

the destination operand identifier before executing the decoded instruction.
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17. Any of the methods of claims 14-15, wherein the data associated with the second source
operand identifier comprises a plurality of indices useable to map a corresponding plurality of
source elements of the data associated with the first source operand identifier to a plurality of

destination elements of the data associated with the destination operand identifier.

18. Any of the methods of claims 14-15, further comprising:

counting a first number of set elements in the data associated with the first source
operand identifier;

counting a second number of set elements in the data associated with the destination
operand identifier; and

if the first number is greater than or equal to the second number generating a signal

indicating the second number of set elements is lower than the first number of set elements.

19. Any of the methods of claims 14-15, further comprising executing the decoded
instruction in parallel on a plurality of elements of the data associated with the first source

operand identifier.

20. Any of the methods of claims 14-15, wherein the data associated with the first source
operand identifier is retrieved into a writemask register, data associated with the destination
operand identifier is in a writemask register, and data associated with the second source operand

identifier is in a memory location.

21. Any of the methods of claims 14-15, wherein the data associated with the first source
operand identifier is retrieved into a writemask register, data associated with the destination
operand identifier is in a writemask register, and data associated with the second source operand

identifier is in a register.
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22. An article of manufacture comprising a non-transitory machine-readable storage medium,
the non-transitory machine-readable storage medium storing instructions capable of being
executed by a processor to:

fetch an instruction, a format of the instruction including a first source operand identifier,
a second source operand identifier, and a destination operand identifier;

decode the instruction;

retrieve data associated with the first source operand identifier and the second source
operand identifier; and

execute the decoded instruction to: determine whether a first element of the data
associated with the first source operand identifier is set, if the first element is set, excerpt a
destination index from a corresponding second element of the data associated with the second
source operand identifier, and use the destination index to set a destination element of data

associated with the destination operand identifier.

23. An article of manufacture comprising a non-transitory machine-readable storage medium,
the non-transitory machine-readable storage medium storing instructions capable of being
executed by a processor to:

fetch an instruction, a format of the instruction including a first source operand identifier,
a second source operand identifier, and a destination operand identifier;

decode the fetched instruction;

retrieve data associated with the first source operand identifier and the second source
operand identifier; and

execute the decoded instruction to set a selected element of data associated with the
destination operand identifier for each set element of the data associated with the first source
operand identifier, the selection being specified by the data associated with the second source

operand identifier.

24, Any of the articles of manufacture of claims 22-23, further comprising clearing the data

associated with the destination operand identifier before executing the instruction.
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25. Any of the articles of manufacture of claims 22-23, wherein the data associated with the
second source operand identifier comprises a plurality of indices useable to map a corresponding
plurality of source elements of the data associated with the first source operand identifier to a

plurality of destination elements of the data associated with the destination operand identifier.
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