
THAT TARTANI A MANO ALTO AD UN NUO KIT DI MAN MATALIN US 20180136927A1 
( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No . : US 2018 / 0136927 A1 

Hu et al . ( 43 ) Pub . Date : May 17 , 2018 

3 ( 54 ) NOTIFICATIONS FRAMEWORK FOR 
DISTRIBUTED SOFTWARE UPGRADES 

Publication Classification 
( 51 ) Int . CI . 

G06F 8 / 65 ( 2006 . 01 ) 
( 52 ) U . S . CI . 

??? . . . . . . . . . . . . G06F 8 / 65 ( 2013 . 01 ) 
6 ( 71 ) Applicant : Oracle International Corporation , 

Redwood Shores , CA ( US ) 

( 57 ) ABSTRACT 
( 72 ) Inventors : Fang Hu , Dublin , CA ( US ) ; Chi Kin 

Vong , Chandler , AZ ( US ) ; Praveena 
Vajja , San Francisco , CA ( US ) ; Tim 
Richardson , Mesa , AZ ( US ) 

( 73 ) Assignee : Oracle International Corporation , 
Redwood Shores , CA ( US ) 

( 21 ) Appl . No . : 15 / 868 , 699 
( 22 ) Filed : Jan . 11 , 2018 

Techniques for managing an upgrade operation comprising 
multiple upgrade process executing on multiple host 
machines ( or hosts ) for upgrading software applications on 
the multiple hosts . Techniques are disclosed for managing 
notifications that are generated by the multiple upgrade 
processes during execution , and more particular , techniques 
for reducing the number of notifications that are sent to a 
user . The techniques include : only sending a subset of the 
generated notifications to a user , the subset being selected at 
the host machines based upon notifications level criteria 
specified by the user for the host machines ; consolidating 
multiple generated notifications into a fewer number of 
consolidated notifications and only sending consolidated 
notifications to the user ; combination of criteria - based selec 
tion and notifications consolidation . 

Related U . S . Application Data 
( 63 ) Continuation of application No . 14 / 935 , 254 , filed on 

Nov . 6 , 2015 , now Pat . No . 9 , 880 , 828 . 
( 60 ) Provisional application No . 62 / 076 , 900 , filed on Nov . 

7 , 2014 

Host 1 
110 

UPH1 - 1 
112 100 

UPH1 - 2 
114 Upgrade Console 

104 

Upgrade Orchestrator Module Upgrade 
Orchestrator 

106 Host 2 
120 

Notification Filter 
118 UPH2 - 1 

122 
Configuration File 

119 UPH2 - 2 
124 

- Communication 
Network 108 

Upgrade Orchestrator Module 
126 

Host n 
130 se mere - - - - - Notification Filter 

128 
UPHn - 1 

132 Configuration File 
UPHn - 2 

134 
User 
102 

Upgrade Orchestrator Module 
136 

Notification Filter 
128 

Configuration File 
129 



Host 1 110 
UPH1 - 1 112 

100 

UPH1 - 2 114 

Patent Application Publication 

Upgrade Console 104 

. 

Upgrade Orchestrator 106 

Upgrade Orchestrator Module 116 

Host 2 120 

Notification Filter 118 

UPH2 - 1 122 

Configuration File 119 

UPH2 - 2 124 

Communication Network 108 

Upgrade Orchestrator Module 126 

May 17 , 2018 Sheet 1 of 9 

Host n 130 

movements are 

Notification Filter 128 

were 

UPHn - 1 132 
M 

more comes more come se 

Configuration File 129 

UPHN - 2 134 

ns 

User 102 

Upgrade Orchestrator Module 136 Notification Filter 128 

US 2018 / 0136927 A1 

FIG . 1 

Configuration File 129 



Pod 1 202 

Host 2 

Host 1 10 

120 

200 

UPH1 - 1 112 

LP2 122 

· ? 

Patent Application Publication 

Upgrade Console 104 

UPH1 - 2 114 

? PN2 - 2 124 

Upgrade Orchestrator 106 

Upgrade Orchestrator Module 

Upgrade Orchestrator Module 116 

126 

Notification Filter 118 

Notification Filter 128 

Configuration File 

Communication I Netwok 108 

119 

Configuration File 129 

Configuration File 
- 209 

May 17 , 2018 Sheet 2 of 9 

- - 

Host n 130 

- - 

UPA - 1 132 

- - 
- - 

UPHP - 2 134 

- 

User 102 

Upgrade Orchestrator Module 136 Notification Filter 138 

US 2018 / 0136927A1 

FIG . 2 

Configuration File 139 
?1??h 
? ? 

?????????? 



Patent Application Publication May 17 , 2018 Sheet 3 of 9 US 2018 / 0136927 A1 

300 

Store a first configuration file identifying a selected notification level on a first host 
machine 

302 
Design Time Step 

Execute a first upgrade process on the first host machine for upgrading a first 
software application on the first host machine 

304 

Generate , by the first upgrade process on the first host machine , a first 
notification comprising information related to the first upgrade process 

306 

Determine , by the first host machine , a first notification level associated with the 
first notification 

308 

Run - Time Steps 
Compare , by the first host machine , the first notification level to the selected 

notification level 
310 

Determine , by the first host machine , whether the first notification is to be sent to 
a user based on the comparing 

312 

Send the first notification to the user if it is determined that the first notification is 
to be sent to the user 

314 

FIG . 3 



Patent Application Publication May 17 , 2018 Sheet 4 of 9 US 2018 / 0136927 A1 

400 

Execute the first upgrade process on a first host machine for upgrading a first 
software application on the first host machine 

402 

Execute the second upgrade process on a second host machine for upgrading a 
second software application on the second host machine 

404 

Generate , by the first upgrade process on the first host machine , a first 
notification comprising information related to the first upgrade process 

406 

Generate , by the second upgrade process on the second host machine , a second 
notification comprising information related to the second upgrade process 

408 

Select one of the first host machine or the second host machine as a notification 
agent 
410 

Consolidate by the notification agent , the first notification and the second 
notification into one or more consolidated notifications 

412 

FIG . 4 



Patent Application Publication May 17 , 2018 Sheet 5 of 9 US 2018 / 0136927 A1 

DATABASE 
514 

DATABASE 
516 

COMPONENT 
518 

COMPONENT 

L520 520 

COMPONENT 
522 

SERVER 
512 

NETWORK ( S ) 
510 508 

ATZUTE 

502 

504 

506 

FIG . 5 



PROCESSING UNIT 604 

600 

Patent Application Publication 

CORE 

CORE 

CORE 

CACHE 

CACHE 
CACHE 

SUB PROCESSING UNIT 

= 
SUB PROCESSING UNIT 634 

PROCESSING ACCELERATION UNIT 606 
= 

1 / 0 SUBSYSTEM 
608 

632 

602 

SYSTEM MEMORY 

COMMUNICATIONS SUBSYSTEM 624 

610 

COMPUTER READABLE STORAGE MEDIA READER 620 

APPLICATION PROGRAMS 612 

May 17 , 2018 Sheet 6 of 9 

PROGRAM DATA 614 

DATA FEEDS 626 
EVENT STREAMS 628 
EVENT UPDATES 630 

COMPUTER READABLE STORAGE MEDIA 

OPERATING SYSTEM 616 

622 

STORAGE SUBSYSTEM 618 

US 2018 / 0136927 A1 

FIG . 6 



Patent Application Publication May 17 , 2018 Sheet 7 of 9 US 2018 / 0136927 A1 

700 

From 308 

Read user - specified level from configuration file 
702 

User - specified level 
hierarchical ? 

704 

Level determined in 308 
equal to or higher than the user 

specified level ? 
706 

Level determined in 308 
matches user - specified level ? 

708 

Lp Send the notification to user 
710 710 

Do not send the notification 
to user 
712 

FIG . 7 



Patent Application Publication May 17 , 2018 Sheet 8 of 9 US 2018 / 0136927 A1 

800 

Notification generated on a first host machine 
802 

Determine a notification level for the generated notification 
804 semua oran 

First host machine part of a group of host 
machines ( e . g . , a pod ) and a notification level specified for the user 

in a configuration file for the group ? 
806 

TO 812 

Determine , based upon a user - specified notification level in the configuration file 
for the first host machine and the notification level determined in 804 whether the 

notification generated in 802 is to be sent to the user 
808 

Send the notification to the user if it is determined in 808 that the notification is to 
be sent to the user , else do not send the notification to the user 

810 

FIG . 8A 



Patent Application Publication May 17 , 2018 Sheet 9 of 9 US 2018 / 0136927 A1 

From 806 

User - specified level in configuration file 
for the first host machine ? 

812 

Level - to - use : user - specified 
level in configuration file for 

first host machine 
814 

Level - to - use : user - specified 
level in the group ( e . g . , pod ) 

configuration file 
816 

Determine , based upon the level - to - use and the notification level determined in 
804 , whether the notification generated in 802 is to be sent to the user 

818 

Send the notification to the user if it is determined in 808 that the notification is to 
be sent to the user , else do not send the notification to the user 

820 

FIG . 8B 



US 2018 / 0136927 A1 May 17 , 2018 

NOTIFICATIONS FRAMEWORK FOR 
DISTRIBUTED SOFTWARE UPGRADES 

CROSS - REFERENCES TO RELATED 
APPLICATIONS 

receiving these notifications are completely overwhelmed 
by the volume of such notifications . 
100051 Conventionally , individual user recipients have 
tried to address this problem by building their own filtering 
applications to reduce notifications received by that specific 
recipient . However , these filtering applications are user 
specific and execute on the user - side ( on the user ' s client 
devices ) and thus fail to reduce the overall notifications 
related network traffic generated by the hosts executing the 
upgrade processes . 

[ 0001 ] This application is a continuation of U . S . patent 
application Ser . No . 14 / 935 , 254 , filed Nov . 6 , 2015 ( now 
allowed ) , which claims priority and benefit from U . S . Pro 
visional Patent Application No . 62 / 076 , 900 , filed Nov . 7 , 
2014 and entitled “ NOTIFICATIONS FRAMEWORK FOR 
DISTRIBUTED SOFTWARE UPGRADES . ” The entire 
contents of the 14 / 935 , 254 and 62 / 076 , 900 applications are 
incorporated herein by reference for all purposes . 

BACKGROUND 
[ 0002 ] The term upgrading a software application gener 
ally refers to the process of replacing an existing version of 
the software application with a newer version , adding a new 
version of the software application where none previously 
existed , or somehow changing an existing version of the 
software application to a newer different version . A software 
upgrade may be performed for various reasons such as to 
add one or more features , remove one or more features , 
modify one or more features from an existing version of the 
software , remove bugs or errors , improve the software 
efficiency , and other reasons . An upgrade is generally per 
formed to enhance the performance of a software applica 
tion . 
[ 0003 ] Many modern computing environments typically 
include a framework of multiple heterogeneous software 
applications , which may be developed by different third 
party entities . These software applications may include zero 
or more plugins . The plugins may , for example , include 
software components that add a new utility / feature or 
enhance the utilities / features of a software application . The 
applications may run on or be hosted by multiple hosts in a 
distributed environment , with each host potentially hosting 
multiple applications . Performing an upgrade operation in 
such a distributed environment comprises multiple upgrade 
processes executed by multiple hosts such that one or more 
upgrade processes may be executed to upgrade each appli 
cation . Many of the upgrade processes may be executed in 
parallel . Possible dependencies among the upgrade pro 
cesses further complicate the overall upgrade . 
[ 0004 ] In an environment where multiple applications 
hosted by multiple hosts need to be upgraded , the upgrade 
operation can comprise several upgrade processes running , 
possibly in parallel , on multiple hosts . Each upgrade process 
may be configured to generate and send out a message or 
notification indicative of the progress of the process . These 
notifications may , for example , be provided in the form of 
emails that are sent to one or more users such as system 
administrators and the like . Since a single host may execute 
multiple upgrade processes , possibly in parallel , with each 
upgrade process generating one or more notifications , a host 
may generate and send out multiple such notifications . Since 
there could be multiple hosts ( e . g . , thousands of hosts ) 
involved in the upgrade operation with each host executing 
one or more upgrade processes , a large number of notifica 
tions may be generated as part of the overall upgrade 
operation . Significant processing and memory resources are 
used , and many times wasted , in the generation and delivery 
of these large numbers of notifications . Moreover , the users 

BRIEF SUMMARY 
[ 0006 ] The present disclosure relates generally to manag 
ing an overall upgrade operation comprising multiple 
upgrade process executing on multiple host machines ( or 
hosts ) for upgrading software applications on the multiple 
hosts . In certain embodiments , techniques are disclosed for 
managing notifications that are generated by the multiple 
upgrade processes during execution . For example , an 
upgrade process may generate one or more notifications 
indicating the progress of the upgrade process when the 
notification is generated . The techniques reduce the number 
of notifications that are sent to a user . As a result , compared 
to conventional techniques , the number of network , process 
ing , and memory resources needed for processing of the 
notifications , both on the host machines side and also on the 
client devices of users that receive the notifications , are 
dramatically reduced . 
[ 00071 In certain embodiments , according to one tech 
nique , instead of sending all the notifications generated by 
the upgrade processes to a user , only a subset of the 
generated notifications are sent to a user , the subset selected 
at the host machines based upon notifications level criteria 
specified by the user for the host machines . In one embodi 
ment , for a notification generated by an upgrade process 
executing on a host machine , a level associated with the 
generated notification is determined and compared to a 
user - specified notification level for that host machine . A 
determination is then made whether or not to send the 
notification to the user based upon the comparison . The 
notification is sent to the user only if the comparison 
indicates that the notification is to be sent to the user , else the 
notification is not sent to the user and filtered out . 
10008 ] In certain embodiments , according to another tech 
nique , multiple notifications generated by the upgrade pro 
cesses may be consolidated into a few number of consoli 
dated notifications ( i . e . , fewer than the number of multiple 
notifications generated by the upgrade process ) , and the 
consolidated notifications sent to a user instead of the 
multiple generated notifications . For example , multiple noti 
fications may be consolidated into a single consolidated 
notification , which is then sent to the user instead of the 
multiple notifications . 
0009 ] In certain embodiments , combinations of the fil 

tering and consolidation techniques may be used to reduce 
the number of notifications that are communicated to users . 
As notifications are generated by the upgrade processes 
executing on a host , the level of each generated notification 
is compared to the level ( s ) specified in the configuration file 
configured for that host . The comparison determines 
whether that notification is to be communicated to a recipi 
ent or is not to be communicated ( i . e . , is to be filtered out ) . 
In this manner , a notification filtering system is implemented 
on a host that only communicates notifications with a certain 



US 2018 / 0136927 A1 May 17 , 2018 

level ( s ) to one or more recipients and does not communicate 
the other notifications that are filtered out . A recipient could 
a user , such as a system administrator , or a notification agent , 
or the like . In some embodiments , one of the hosts may be 
assigned as the notification agent . Alternatively , the upgrade 
system may include a dedicated notification agent . 
[ 0010 ] In certain embodiments , techniques ( including 
methods , systems , code or software instructions executed by 
one or more processors ) are provided for generating , by an 
upgrade process executing on a host machine for upgrading 
a software application on the host machine , a notification 
comprising information related to the upgrade process . The 
host machine determines a notification level associated with 
the notification . The host machine determines , based upon 
the notification level associated with the notification and a 
user - specified notification level configured for the host 
machine , whether the notification is to be sent to a user . 
Determining whether the notification is to be sent to the user 
comprises comparing the notification level associated with 
the notification to the user - specified notification level , and 
determining that the notification is to be sent to the user if 
the notification level associated with the notification 
matches the user - specified notification level . Determining 
whether the notification is to be sent to the user comprises 
comparing the notification level associated with the notifi 
cation to the user - specified notification level , and determin 
ing that the notification is to be sent to the user if the 
notification level associated with the notification matches or 
is higher than the user - specified notification level . The host 
machines send the notification to the user upon determining 
that the notification is to be sent to the user . The host 
machine does not send the notification to the user upon 
determining that the notification is to not be sent to the user . 
The host machine stores a configuration file , the configura 
tion file storing the user - specified notification level . The 
notification comprises information indicating an upgrade 
progress status of the upgrade process . The notification is 
sent to a notification agent to be consolidated with additional 
notifications prior to being sent to the user . 
[ 0011 ] In certain embodiments , techniques ( including 
methods , systems , code or software instructions executed by 
one or more processors ) are provided for receiving , by a 
third host machine from a group of host machines , a first 
notification generated by a first upgrade process executing 
on a first host machine for upgrading a first software 
application on the first host machine . The first notification 
comprises information related to the first upgrade process . 
The first host machine is included in the group of host 
machine . The third host machine receives a second notifi 
cation generated by a second upgrade process executing on 
a second host machine for upgrading a second software 
application on the second host machine . The second notifi 
cation comprises information related to the second upgrade 
process . The second host machine included in the group of 
host machines . The third host machine consolidates the first 
notification and the second notification into a consolidated 
notification . The third host machine determines whether the 
consolidated notification is to be sent to a user . The third host 
machine sends the consolidated notification to the user , 
instead of the first notification and the second notification , 
upon determining that the consolidated notification is to be 
sent to the user . The third host machine does not send the 
consolidated notification to the user upon determining that 
the consolidated notification is not to be sent to the user . A 

third notification may be generated by a third upgrade 
process executing on the third host machine for upgrading a 
third software application on the third host machine . The 
third notification comprises information related to the third 
upgrade process . The third host machine included in the 
group of host machines . The third host machine consolidates 
the third notification with the first notification and the 
second notification into the consolidated notification . 
[ 0012 ] In some embodiments , determining whether the 
consolidated notification is to be sent to the user further 
comprises the third host machine determines a notification 
level associated with the consolidated notification . The third 
host machine determines based upon the notification level 
associated with the consolidated notification and a user 
specified notification level configured for the group of host 
machines , whether the notification is to be sent to the user . 
0013 ] According to some embodiments , the third host 

machine compares the notification level associated with the 
consolidated notification to the user - specified notification 
level , and determines that the consolidated notification is to 
be sent to the user if the notification level associated with the 
consolidated notification matches the user - specified notifi 
cation level . In some embodiments , the third host machine 
compares the notification level associated with the consoli 
dated notification to the user - specified notification level , and 
determines that the consolidated notification is to be sent to 
the user if the notification level associated with the consoli 
dated notification matches or is higher than the user - speci 
fied notification level . 
[ 0014 ] In some embodiments , the first host machine deter 
mines a first notification level associated with the first 
notification , and compares the first notification level asso 
ciated with the first notification to a first user - specified 
notification level configured for the first host machine . The 
first host machine then determines that the first notification 
is to be sent to the third host machine based on the 
comparing . Yet in other embodiments , the third host 
machine determines a first notification level associated with 
the first notification and a second notification level associ 
ated with the second notification . The third host machine 
compares the first notification level and the second notifi 
cation level to a user - specified notification level configured 
for the group of host machines , and determines that the first 
notification and the second notification are to be consoli 
dated based on the comparing . 
[ 0015 ] In certain embodiments , techniques ( including 
methods , systems , code or software instructions executed by 
one or more processors ) are provided for generating , by an 
upgrade process executing on a host machine for upgrading 
a software application on the host machine , a notification 
comprising information related to the upgrade process . The 
host machine is provided in a group of host machines . The 
host machine determines a notification level associated with 
the notification . The host machine stores a configuration file , 
the configuration file storing a user - specified notification 
level for the host machine , and a group configuration file , the 
group configuration file storing a user - specified group noti 

fication level for the group of host machines . The host 
machine determines , based upon the notification level asso 
ciated with the notification , the user - specified notification 
level , and the user - specified group notification level , 
whether the notification is to be sent to a user . The host 
machine sends the notification to the user upon determining 
that the notification is to be sent to the user . The host 



US 2018 / 0136927 A1 May 17 , 2018 

[ 0026 ] FIG . 7 depicts a simplified flowchart depicting a 
method performed by a host machine for determining 
whether a notification is to be sent to a user according to an 
embodiment of the present invention . 
100271 FIGS . 8A and 8B together depict a simplified 
flowchart for determining whether a notification generated 
by a host machine is to be sent to a user when the host 
machine is part of a group of host machines ( e . g . , a pod ) 
according to an embodiment of the present invention . 

DETAILED DESCRIPTION 

machine does not send the notification to the user upon 
determining that the notification is to not be sent to the user . 
The notification comprises information indicating an 
upgrade progress status of the upgrade process . The notifi 
cation is sent to a notification agent to be consolidated with 
additional notifications prior to being sent to the user . 
[ 0016 ] In some embodiments , the determining whether the 
notification is to be sent to the user further comprises 
comparing , by the host machine , the notification level asso 
ciated with the notification to the user - specified group noti 
fication level and the user - specified notification level . The 
user - specified group notification level trumps the user - speci 
fied notification level for the notification . The host machine 
determines that the notification is to be sent to the user if the 
notification level associated with the notification matches 
the user - specified group notification level . In other embodi 
ments , the host machine determines that the notification is to 
be sent to the user if the notification level associated with the 
notification matches or is higher the user - specified group 
notification level . 
[ 0017 ] In some embodiments , the determining whether the 
notification is to be sent to the user further comprises 
comparing , by the host machine , the notification level asso 
ciated with the notification to the user - specified group noti 
fication level and the user - specified notification level . The 
user - specified notification level trumps the user - specified 
group notification level for the notification . The host 
machine determines that the notification is to be sent to the 
user if the notification level associated with the notification 
matches the user - specified notification level . In other 
embodiments , the host machine determines that the notifi 
cation is to be sent to the user if the notification level 
associated with the notification matches or is higher the 
user - specified notification level . 
[ 0018 ] These and other embodiments are described in 
further detail below . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0019 ] Illustrative embodiments of the present invention 
are described in detail below with reference to the following 
drawing figures : 
[ 0020 ] FIG . 1 depicts an upgrade infrastructure for execut 
ing multiple upgrade processes on multiple hosts according 
to an embodiment of the present invention . 
[ 0021 ] FIG . 2 depicts an upgrade infrastructure including 
multiple hosts grouped into a pod for executing multiple 
upgrade processes according to an embodiment of the pres 
ent invention . 
[ 0022 ] FIG . 3 depicts a simplified flowchart depicting 
processing performed by the upgrade infrastructure for 
filtering notifications by a host machine before sending the 
notifications to a user , according to an embodiment of the 
present invention . 
10023 ] FIG . 4 depicts a simplified flowchart depicting 
processing performed by the upgrade infrastructure for 
consolidating notifications generated by multiple upgrade 
processes hosted by multiple host machines before sending 
the notifications to a user , according to an embodiment of the 
present invention . 
[ 0024 ] FIG . 5 depicts a simplified diagram of a distributed 
system for implementing one of the embodiments . 
[ 0025 ] FIG . 6 depicts an exemplary computer system that 
may be used to implement an embodiment of the present 
invention . 

[ 0028 ] In the following description , for the purposes of 
explanation , specific details are set forth in order to provide 
a thorough understanding of embodiments of the invention . 
However , it will be apparent that various embodiments may 
be practiced without these specific details . The figures and 
description are not intended to be restrictive . 
[ 0029 ] Systems depicted in some of the figures may be 
provided in various configurations . In some embodiments , 
the systems may be configured as a distributed system where 
one or more components of the system are distributed across 
one or more networks . 
[ 0030 ] The present disclosure relates generally to manag 
ing an overall upgrade operation comprising multiple 
upgrade process executing on multiple host machines ( or 
hosts ) for upgrading software applications on the multiple 
hosts . The software applications hosted by the hosts may be 
developed by different third - party entities . Due to the het 
erogeneity of the software applications and further coupled 
with the distributed nature of the computing environment , 
the process of upgrading such applications is quite compli 
cated . The upgrade is performed by running one or multiple 
software upgrades on the various hosts for upgrading the 
various pieces of software applications hosted by the hosts . 
The complexity of performing such a distributed upgrade is 
impacted by several factors such as the number of applica 
tions that need to be upgraded , the distributed nature of the 
applications , potential upgrade dependencies between 
upgrade processes for the applications hosted by the same or 
different hosts , customized upgrade requirements for indi 
vidual applications , the number of hosts involved in the 
upgrade , and other factor . 
[ 0031 ] An upgrade infrastructure , as described herein , 
enables software upgrades to be performed in a heteroge 
neous and distributed computing environment in an auto 
mated and efficient manner . The upgrade infrastructure 
enables two or more upgrade processes hosted by the same 
host or hosted by multiple different hosts to synchronize and 
coordinate their upgrade activities in an automated manner . 
In certain embodiments , the upgrade infrastructure provides 
multi - level consolidated notifications to inform users of the 
upgrade progress status . Each upgrade process may generate 
notifications . The hosts may associate levels with the gen 
erated notifications according to a pre - determined criteria . 
The levels may correspond to different severity or impor 
tance levels in a notification hierarchy . 
[ 0032 ] In certain embodiments , techniques are disclosed 
for managing notifications that are generated by the multiple 
upgrade processes during execution . For example , an 
upgrade process may generate one or more notifications 
indicating the progress of the upgrade process when the 
notification is generated . The techniques reduce the number 
of notifications that are sent to a user . As a result , compared 
to conventional techniques , the number of network , process 



US 2018 / 0136927 A1 May 17 , 2018 

ing , and memory resources needed for processing of the 
notifications , both on the host machines side and also on the 
client devices of users that receive the notifications , are 
dramatically reduced . 
[ 0033 ] In certain embodiments , according to one tech 
nique , instead of sending all the notifications generated by 
the upgrade processes to a user , only a subset of the 
generated notifications are sent to a user , the subset selected 
at the host machines based upon notifications level criteria 
specified by the user for the host machines . In one embodi 
ment , for a notification generated by an upgrade process 
executing on a host machine , a level associated with the 
generated notification is determined and compared to a 
user - specified notification level for that host machine . A 
determination is then made whether or not to send the 
notification to the user based upon the comparison . The 
notification is sent to the user only is the comparison 
indicates that the notification is to be sent to the user , else the 
notification is not sent to the user and filtered out . 
[ 0034 ] In certain embodiments , according to another tech 
nique , multiple notifications generated by the upgrade pro 
cesses may be consolidated into a few number of consoli 
dated notifications ( i . e . , fewer than the number of multiple 
notifications generated by the upgrade process ) , and the 
consolidated notifications sent to a user instead of the 
multiple generated notifications . For example , multiple noti 
fications may be consolidated into a single consolidated 
notification , which is then sent to the user instead of the 
multiple notifications . 
( 0035 ] In certain embodiments , combinations of the fil 
tering and consolidation techniques may be used to reduce 
the number of notifications that are communicated to users . 
[ 0036 ] FIG . 1 illustrates an exemplary upgrade infrastruc 
ture ( e . g . upgrade system ) 100 according to various embodi 
ments . The upgrade infrastructure 100 includes multiple 
hosts 110 , 120 , 130 . The hosts 110 , 120 , 130 may host 
multiple software applications . When these software appli 
cations are to be upgraded , multiple upgrade processes 112 , 
114 , 122 , 124 , 132 , 134 may be executed by the hosts 110 , 
120 , 130 to upgrade the software applications hosted by the 
hosts 110 , 120 , 130 . 
[ 0037 ] In the embodiment depicted in FIG . 1 , the upgrade 
infrastructure 100 includes an upgrade console 104 in com 
munication with the hosts 110 , 120 , 130 through a commu 
nication network 108 . The upgrade console 104 may be a 
computing system that a user 102 ( e . g . a system adminis 
trator ) may interact with to initiate and control the overall 
upgrade on the hosts 110 , 120 , 130 . The upgrade console 104 
may include an upgrade orchestrator 106 for initiating , 
coordinating and synchronizing the upgrade processes 112 , 
114 , 122 , 124 , 132 , 134 hosted by the hosts 110 , 120 , 130 . 
Status information related to the overall upgrade may be 
output to the user via upgrade console 104 . 
[ 0038 ] Various embodiments may enable the user 102 to 
directly interact with the hosts 110 , 120 , 130 through the 
communication network 108 to initiate and control the 
overall upgrade on the hosts 110 , 120 , 130 . In such embodi 
ments , the user 102 may not use the upgrade console 104 to 
interact with the hosts 110 , 120 , 130 . 
[ 0039 ] In certain embodiments , the upgrade may be per 
formed in phases . During each phase , multiple upgrade 
processes ( i . e . tasks ) may be hosted by the hosts 110 , 120 , 
130 . The upgrade orchestrator 106 may ensure that a current 
set of upgrade processes run to successful completion on all 

hosts before proceeding with the next set of upgrade pro 
cesses . One of ordinary skill in the art will appreciate that the 
upgrade infrastructure 100 may include any number of 
components , hosts and upgrade processes . Thus , the upgrade 
infrastructure 100 is not limited to the components , hosts 
and upgrade processes illustrated in FIG . 1 . 
[ 0040 ] As illustrated in FIG . 1 , multiple upgrade processes 
may be hosted by each one of the hosts 110 , 120 , 130 . For 
example , upgrade processes 112 , 114 may be hosted by on 
host 110 , upgrade processes 122 , 124 may be hosted by on 
host 120 and upgrade processes 132 , 134 may be hosted by 
on host 130 . Two or more of the upgrade processes 112 , 114 , 
122 , 124 , 132 , 134 may run in parallel . In various embodi 
ments , the upgrade processes 112 , 114 , 122 , 124 , 132 , 134 
may be serialized . The upgrade orchestrator 106 may syn 
chronize two or more of the upgrade processes 112 , 114 , 
122 , 124 , 132 , 134 using a dedicated upgrade orchestrator 
module 116 , 126 , 136 executed on each host 110 , 120 , 130 , 
respectively . Each upgrade orchestrator module 116 , 126 , 
136 may be a piece of code be hosted by the host 110 , 120 , 
130 for performing the upgrade activities . The upgrade 
orchestrator modules 116 , 126 , 136 may initiate and control 
the upgrade processes 112 , 114 , 122 , 124 , 132 , 134 executed 
on the hosts 110 , 120 , 130 . The upgrade orchestrator mod 
ules 116 , 126 , 136 may receive and / or respond to commands 
and instructions from the upgrade console 104 to facilitate 
the upgrade on the hosts 110 , 120 , 130 . 
[ 0041 ] The upgrade processes 112 , 114 , 122 , 124 , 132 , 
134 executed on the hosts 110 , 120 , 130 may generate 
notifications . A notification generated by an upgrade process 
may include information related to the status of the upgrade 
process when the notification is generated . An upgrade 
process may generate one or more notifications , potentially 
at different time points during its execution on a host . For 
example , a notification generated by upgrade process 112 
may include information indicative of a status of upgrade 
process 112 , a notification generated by upgrade process 114 
may include information indicative of a status of upgrade 
process 114 , and so on . Upgrade process 112 may generate 
notifications at different time points during its execution , 
with a notification generated at a particular time point 
including information about the status of up 112 at that time 
point . 

10042 ] According to certain embodiments , the notifica 
tions generated by the upgrade processes are associated with 
levels ( e . g . , severity or importance levels ) according to a 
pre - determined criteria . For example , the notifications may 
be associated with an indicator ( e . g . , a flag , a text field ) 
indicating the level associated with the notification . For 
example , in one embodiment , three notification levels may 
be predefined : an INFO level , an ALERT level , and a 
PAUSEPOINT level . Each generated notification may be 
associated with one of these three levels by associating a flag 
or a text field with the notification indicating the specific 
level . For example , the notifications associated with the 
INFO level may include status change notifications gener 
ated by one or more of the upgrade processes 112 , 114 , 122 , 
124 , 132 , 134 . The notifications associated with the ALERT 
level may include upgrade failure notifications generated by 
one or more of the upgrade processes 112 , 114 , 122 , 124 , 
132 , 134 . The notifications associated with the PAUSE 
POINT level may indicate that one or more of the upgrade 
processes 112 , 114 , 122 , 124 , 132 , 134 are paused . 



US 2018 / 0136927 A1 May 17 , 2018 

[ 0043 ] In certain embodiments , two or more of the levels 
may be organized in a hierarchy or ordering ( e . g . a severity 
or an importance hierarchy ) . For example , a hierarchy may 
be defined for the PAUSEPOINT , ALERT , and INFO levels 
discussed above such that PAUSEPOINT corresponds to a 
higher hierarchical level than the ALERT level , and the 
ALERT level corresponds to a higher hierarchical level than 
the INFO level . As discussed below , the hierarchical rela 
tionships between the levels may influence the notifications 
that are sent to the users . 
10044 ] A user 102 in communication with the hosts 110 , 
120 , 130 may define , either through direct interaction with 
the hosts 110 , 120 , 130 or through the communication 
network 108 , one or more configuration files 119 , 129 , 139 
for the hosts 110 , 120 , 130 . The configuration files 119 , 129 , 
139 may enable the user 102 to indicate the user ' s preference 
to receive notifications corresponding to a given level . For 
example , the user 102 may wish to receive notifications 
associated with a particular level ( or levels ) , e . g . the ALERT 
level . In some embodiments , configuration file may be 
defined at a host - level , and include user preferences for 
multiple users . For example , configuration file 119 , 129 or 
139 may include notification preferences of two or more 
users . A first user ( e . g . , user _ 1 ) may be an upgrade admin 
istrator and may wish to receive ALERT level notifications 
( e . g . , notifications for critical events such as a patching 
failure ) . A second user ( e . g . , user _ 2 ) may wish to receive all 
notifications generated by the host . The user preference for 
user _ 1 and user _ 2 may be stored in the same configuration 
file , ( e . g . , the configuration file for the host ) . 
[ 0045 ] The notification filters 118 , 128 , 138 may use the 
configuration files 119 , 129 , 139 to filter out any notifica 
tions that are not associated with the user - specified level . 
Any notifications associated with levels that do not match 
the user - specified level ( in the configuration file ) are not 
communicated to that user , resulting in those notifications 
being filtered out for that particular user . The hosts 110 , 120 , 
130 may send the remaining notifications ( i . e . notifications 
associated with the user - specified level ) to the user 102 . 
100461 . As described above , in certain embodiments , the 
different notification levels may be hierarchically related to 
each other . The user 102 may specify such a hierarchical 
level for a host and information indicative of the hierarchical 
level may be stored in the configuration file for that host . In 
one such embodiment , when the user 102 specified a level 
for receiving notifications , the upgrade infrastructure 100 
may not only enable notifications matching the user - speci 
fied level to be communicated to the user 102 but also allow 
notifications at higher hierarchical levels ( e . g . more severe 
or more important notifications ) than the user - specified 
hierarchical level to be sent to the user 102 as well . In such 
an embodiment , the user - specified hierarchical level may be 
considered a lower bound for notifications to be sent to the 
user . 
[ 0047 ] For example , in an embodiment where the PAUSE 
POINT , ALERT , and INFO levels are hierarchically related , 
with PAUSEPOINT being higher ( or more severe / impor 
tant ) than ALERT , and ALERT being higher ( or more 
sever / important ) that INFO , if the user 102 indicates for a 
host that the user 102 wishes to receive notifications asso 
ciated with the ALERT level , the hosts may send notifica 
tions associated with the PAUSEPOINT level ( e . g . a higher 
hierarchical level than the ALERT level ) along with the 
notifications associated with the ALERT level to the user . In 

this exemplary embodiment , the notification filters 118 , 128 , 
138 may filter out notifications associated with the INFO 
level ( e . g . a lower hierarchical level than the ALERT level ) . 
Accordingly , the user 102 may receive notifications that 
indicate an upgrade failure ( e . g . notifications associated with 
the ALERT level ) or notifications that indicate paused 
upgrade processes ( e . g . notifications associated with the 
PAUSEPOINT level ) . The user 102 will not receive the less 
important notifications that indicate , for example , mere 
status changes ( e . g . notifications associated with the INFO 
level ) . 
[ 0048 ] According to various embodiments , different con 
figuration files 119 , 129 , 139 may be defined for different 
types of hosts 110 , 120 , 130 . The level ( or levels ) of interest 
specified by a user for one host may be different from the 
level ( or levels ) specified by the same user for a different 
host . Various different factors may influence the level ( or 
levels ) that the user specifies as of interest for a particular 
host , including but restricted to , the one or more applications 
hosted by the host , the configuration of the host ( e . g . , 
networking , processing ( e . g . , number of processors , speed of 
the processors , etc . ) , and memory resources ( e . g . , system 
memory ( e . g . , RAM ) resources of the host ) ) , and the like . 
For example , the user 102 may choose to receive only the 
notifications associated with a first specified level from host 
110 while the user 102 may choose to receive notifications 
associated with a second level from host 120 , where the 
second level is different from the first level . The configura 
tion files 119 and 129 may be set up accordingly . 
10049 ] In certain embodiments , one or more hosts may be 
grouped together . An exemplary group of hosts may be a 
pod . The term pod , as used herein , defines a modular set of 
resources including , for example , a specific set of infrastruc 
ture , middleware , and / or application resources . A pod may 
comprise one or more hosts . In certain embodiments , in a 
group of hosts comprising multiple hosts , notifications gen 
erated by different hosts within the group may be combined 
or consolidated into a fewer number of notifications . The 
notification consolidation within a pod ( e . g . , an exemplary 
group of hosts ) is discussed below with respect to FIG . 2 . In 
general , consolidation of notifications can be performed in 
any environment where multiple hosts are logically grouped 
together and is not limited to pod environments . 
[ 0050 ] FIG . 2 illustrates an exemplary upgrade infrastruc 
ture ( e . g . upgrade system ) 200 according to various embodi 
ments . The upgrade infrastructure 200 includes similar ele 
ments to the upgrade infrastructure 100 illustrated in FIG . 1 . 
The reference numerals for these elements are kept the same 
and a discussion of these elements is provided above . 
Accordingly , the discussion of the similar elements is omit 
ted here . 
10051 ] As illustrated in FIG . 2 , the upgrade infrastructure 
200 includes multiple hosts 110 , 120 , 130 . In the embodi 
ment depicted in FIG . 2 , hosts 110 and 120 are grouped 
together to form a pod 202 . This is not meant to be 
restrictive . In alternative embodiments , a pod may comprise 
various other combinations and numbers of hosts . Further , 
while only one pod 202 is depicted in FIG . 2 , in alternative 
embodiments , the upgrade infrastructure 200 may include 
additional pods formed by grouping two or more hosts 
together . The upgrade infrastructure 200 may also include 
one or more hosts ( e . g . host 130 ) that are not part of a pod . 
In this manner , upgrade infrastructure 200 may comprise 
some groupings of hosts and other non - grouped hosts . 



US 2018 / 0136927 A1 May 17 , 2018 

[ 0052 ] As described above for FIG . 1 , a user 102 may 
define one or more configuration files 119 , 129 , and 139 for 
the individual hosts 110 , 120 , and 139 , respectively to 
specify notifications that are of interest to the user 102 . 
Additionally , the user 102 may specify a configuration file 
209 for pod 202 . Configuration file 209 specifies the noti 
fication level ( s ) of interest to the user at the pod level . For 
example , the user 102 may choose to receive only notifica 
tions associated with a particular level from all hosts in the 
pod 202 . Accordingly , the user 102 may define the pod - level 
configuration file 209 to store information indicative of this 
particular level . By configuring a configuration file at the 
pod level , only the notifications associated with that par 
ticular level ( or higher in the case of an hierarchical level ) 
will be sent from all hosts 110 , 120 within the pod 202 . 
[ 0053 ] The configuration file for a pod level is indepen 
dent from the configuration files specified for the individual 
hosts within that pod . In some embodiments , if a configu 
ration file is defined at the pod level , the user may not even 
define configuration files for one or more individual hosts 
included in that pod . For example , in the embodiment 
depicted in FIG . 2 , the user 102 may not define the host - level 
configuration files 119 and 129 for hosts 110 and 120 
respectively . 
[ 0054 ] As described above , in some embodiments , in 
addition to the pod - level configuration file that identifies a 
user ' s specified notification alert level ( s ) for the pod , a 
configuration file may be defined for one or more hosts 
within that pod . In such a scenario , for a host for which a 
host - specific configuration file is defined , the level specified 
in the host - specific configuration overrides the level speci 
fied in the pod - level configuration file . For example , the user 
102 may choose to specify the ALERT level as the level of 
interest for the user for all hosts in the pod 202 except a 
selected subset of hosts , e . g . Internet Download Manager 
( IDM ) hosts . That is , even within a pod , the user can specify 
different notification levels for different groups of hosts 
within the pod . The user 102 may prefer to receive all 
notifications ( as opposed to just the notifications associated 
with the user - specified ALERT level ) from the selected 
subset of hosts , e . g . the IDM hosts , in order to have a close 
watch on the upgrade progress running on these hosts . If 
host 120 illustrated in FIG . 2 is an IDM host , the user may 
define the host - level configuration file 129 such that all 
notifications from host 120 will be sent to the user 102 . In 
this exemplary configuration , host 120 may send all notifi 
cations to user 102 while host 110 may only send the 
notifications associated with the user - specified ALERT 
level . 
[ 0055 ] In certain embodiments , upgrade processes 112 , 
114 , 122 , 124 to be executed on different hosts 110 , 120 
within a pod 202 may be started at approximately the same 
time . Each upgrade process may be configured to generate 
a starting notification upon starting execution . Accordingly , 
if there are 20 hosts in a pod , 20 starting notifications may 
be sent to the user at approximately the same time . More 
over , every time an upgrade process restarts , the starting 
notification for the host executing the upgrade process may 
be resent . For an upgrade operation running on a large 
number of hosts ( e . g . , thousands of hosts ) a very large 
number ( e . g . , tens of thousands ) of notifications ( e . g . , email 
notifications ) may be sent just for start , restart , etc . In certain 
embodiments , the upgrade infrastructure 200 addresses this 
problem by consolidating notifications from multiple hosts 

resulting in a fewer notifications . Thus , instead of having 
each host send notifications individually , the upgrade infra 
structure 200 may consolidate notifications into fewer noti 
fications . In certain embodiments , the multiple notifications 
across multiple hosts may be consolidated into one notifi 
cation . 
[ 0056 ] For purposes of explanation , it is assumed that 
consolidation is to be performed for hosts within pod 202 . In 
such an embodiment , one of the hosts within the pod may be 
identified as a notification agent for the hosts within the pod 
and only the notification agent is configured to send out 
notifications for that pod . In one embodiment , the upgrade 
orchestrator 106 may identify one of the hosts in a pod as the 
notification agent . In alternative embodiments , a dedicated 
notification agent may be provided as part of upgrade 
infrastructure 100 . For example , upgrade orchestrator 106 
may select the host 110 as the notification agent for the pod 
202 . Accordingly , only the host 110 may send notifications 
for the pod 202 . 
[ 0057 ) According to various embodiments , a notification 
agent may send the notifications in separate threads to 
prevent the notifications from blocking the process of the 
overall upgrade . The notification agent may send the noti 
fications in multiple threads where each thread requires less 
processing resources for transmitting the tread when com 
pared to the processing resources required for transmitting a 
single large thread including all notifications . Assigning a 
host as the notification agent may be a static assignment ( i . e . 
one host is selected to be a notification agent throughout the 
execution of the upgrade processes ) or a dynamic assign 
ment ( i . e . different hosts become the notification agent 
throughout the execution of the upgrade processes ) . 
[ 0058 ] In certain embodiments , the selection of the noti 
fication agent from among a group of hosts may depend on 
the types of notifications generated by the hosts . For 
example , a host may be selected as the notification agent 
based on the host ' s ability to send start notifications ( i . e . 
notifications indicating that the upgrade processes be hosted 
by the host have started execution ) . Which host operates as 
the notification agent for sending start notifications may not 
be a static ( i . e . fixed ) agent due to the fact that any single 
host may not always run or may not always start before other 
hosts . Accordingly , which host operates as the notification 
agent for sending the start notifications may be dynamic and 
thus , may vary over a period of time . For example , the 
upgrade orchestrator 106 may chose a first host from mul 
tiple hosts that is the earliest one to start starts an upgrade 
progress as the notification agent to send start notifications . 
10059 ] In some embodiments , the selected host may wait 
for other hosts to start executing upgrade processes and 
consolidate the start notifications from all other hosts into a 
single start notification . The start notifications generated by 
the upgrade processes starting execution on the multiple 
hosts are all routed to the host that is the notification agent . 
The notification agent host may then consolidate the mul 
tiple start notifications received from the other hosts and also 
start notifications generated by upgrade processes executed 
on the notification agent host into a smaller number of 
notifications . For example , the multiple start notifications 
may be consolidated into a single stated notification that 
indicates that multiple upgrade processes on the multiple 
hosts of a given pod have started successfully . In some 
embodiments , the notification agent may discard restart 
notifications from any hosts within the pod . 



US 2018 / 0136927 A1 May 17 , 2018 

[ 0060 ] In some embodiments , in order to allow multiple 
upgrade processes to generate start notifications and for the 
notification agent host to receive these start notifications , the 
consolidated start notification may be sent by the notification 
agent after a predefined delay after the time the notification 
agent host was started successfully . The predefined delay 
may be configurable using a property in the configuration 
file 209 and may be configured such that reasonable latency 
is allowed for hosts starting in a batch and sufficient time is 
allowed for the notification agent host to receive start 
notifications from these multiple hosts . For example , the 
predefined delay may be configurable using EMAIL _ 
STARTNOTIFICATION _ DELAY defined in pod . properties 
configuration file . For example , 
EMAIL _ STARTNOTIFICATION _ DELAY = 120 , may indi 
cate that the start notification will be sent 120 seconds after 
the time the notification agent host ( e . g . , the first host ) was 
started successfully . 
[ 0061 ] In certain embodiments , the upgrade infrastructure 
may provide an application programming interface ( API ) for 
the users to send customized notifications without the need 
to code mail transport details . The supported transports may 
include simple message transfer protocol ( SMTP ) message 
transfer agent ( MTA ) , mail submission agent ( MSA ) and 
authenticated MSA connections . The supported transports 
may be run on all platforms . The overall upgrade operation 
and the user may be in different platforms with different 
infrastructures including different operating systems , using 
different e - mail relays , protocols , ports , etc . For all the 
platforms , the API may set secured or non - secured connec 
tions to the e - mail relay including detecting the connection 
port , protocol , authentication , etc . and find recipients defined 
in the configuration file . The API may prepare the notifica 
tion message by uploading / attaching any given attachments 
to the notification message , format the notification message , 
and send the notification message to the e - mail relay . The 
API may also retry in case of failure . The built - in API 
significantly reduces the development effort by individual 
developers by hiding the mail transport details . 
[ 0062 ] The techniques discussed herein significantly 
reduce the notification traffic in a high scalable upgrade 
system through the use of configurable filters , simultaneous 
notifications and consolidated notifications across multiple 
hosts . The tens of thousands of notifications ( e . g . , start / stop 
notifications ) that were previously sent for a given upgrade 
process among the multiple upgrade processes of an overall 
upgrade operation are reduced to one notification per pod 
that includes information for multiple hosts . In addition , tens 
of thousands of conventional notifications may be automati 
cally discarded based on user - defined preferences requesting 
to receive only a selected set of notifications . Thus , tech 
niques discussed herein dramatically reduce the notifica 
tions - related traffic for that pod . 
[ 0063 ] FIG . 3 depicts a simplified flowchart 300 depicting 
processing performed by the upgrade infrastructure for 
selectively choosing notifications that are sent to a user from 
a host machine from among multiple notifications generated 
by upgrade processes executed by the host machine , accord - 
ing to an embodiment of the present invention . The pro 
cessing depicted in FIG . 3 may be implemented in software 
( e . g . , code , instructions , program ) executed by one or more 
processing units ( e . g . , processors cores ) , in hardware , or 
using combinations thereof . The software may be stored on 
a non - transitory computer - readable medium ( e . g . , a memory 

device , a memory ) . The particular series of processing steps 
depicted in FIG . 3 is not intended to be limiting . In one 
embodiment , the processing depicted in FIG . 3 is performed 
by one or more components of the upgrade infrastructure 
100 depicted in FIG . 1 . 
10064 ] . The processing in flowchart 300 comprises two 
phases : a design time phase and a runtime phase . The design 
time phase corresponds to before the upgrade operation is 
started . The runtime phase corresponds to when the overall 
upgrade operation has been initiated . The description below 
assumes that the host machines involved in the upgrade 
operation include a first host machine . 
[ 0065 ] During the design time , at 302 , information is 
stored on the first host machine identifying a user - specified 
level information . In certain embodiment , this information 
may be stored in a first configuration file stored on the first 
host machine . The first configuration file may identify a 
user - specified notification level that is then used by the first 
host machine to identify which notifications are to be sent to 
the user and which notifications are to be not sent to the user 
( i . e . , filtered out ) . The user - specified notification level indi 
cates a notification level that the user is interested in . In 
some embodiments , the user - specified level may be a hier 
archical level . 
[ 0066 ] In certain embodiments , the configuration file 
stored on a host machine may store user - specified level 
preferences for multiple users . The level preference speci 
fied by a first user may be different from a level preference 
specified by a second user , and so on . In this manner , level 
preferences for multiple users may be stored in the configu 
ration file stored on a host machine and the host machine 
may then use this configuration information to determine 
which notifications to send to individual users and which 
notifications to filter out . For example , the first configuration 
file may store user - specified level preferences for one or 
more users in addition to the first user . 
10067 ] The processing depicted in 304 , 306 , 308 , 310 , 
312 , and 314 is performed during the runtime phase . At 304 , 
as part of the overall upgrade operation , a first upgrade 
process may be executed on the first host machine for 
upgrading a first software application on the first host 
machine . At 306 , the first upgrade process may generate a 
first notification during execution on the first host machine . 
The first notification may include information related to the 
first upgrade process such as the status of the upgrade 
process as of the time the first notification is generated . For 
example , the first notification may indicate that the first 
upgrade process has started execution , paused execution , 
about to finish execution , or that a failure occurred during 
the execution of the upgrade process , and the like . 
[ 0068 ] At 308 , the first host machine may determine a first 
notification level associated with the first notification gen 
erated in 306 . For example , the first notification may include 
a flag or a field indicating the notification level associated 
with the first notification . 
100691 At 310 , the first host machine may compare the first 
notification level to the user - specified notification level 
indicated in the configuration file . At 312 , the first host 
machine may then determine whether the first notification is 
to be sent to a user based on the comparing performed in 
310 . At 314 , the first host machine sends the first notification 
to the user if the first host machine determines in 312 that the 
first notification is to be sent to the user , else the notification 
is not sent to the user . The notification may be sent to the 



US 2018 / 0136927 A1 May 17 , 2018 

user in various different forms such as an electronic alert , an 
email messages , a text message , an SMS message , and the 
like . 
0070 ] Different techniques may be used in 310 , 312 , and 
314 to determine whether the first notification is to be sent 
to the user . One such technique is depicted in FIG . 7 . FIG . 
7 depicts a simplified flowchart 700 depicting a method 
performed by a host machine for determining whether a 
notification is to be sent to a user according to an embodi 
ment of the present invention . The processing depicted in 
FIG . 7 may be implemented in software ( e . g . , code , instruc 
tions , program ) executed by one or more processing units 
( e . g . , processors cores ) of the host machine , in hardware , or 
using combinations thereof . The software may be stored on 
a non - transitory computer - readable medium ( e . g . , a memory 
device , a memory ) . The particular series of processing steps 
depicted in FIG . 7 is not intended to be limiting . 
[ 0071 ] The flowchart 700 starts after the first host machine 
determines a first notification level associated with the first 
notification generated in 306 , at 308 . For example , the first 
notification may include a flag or a field indicating the 
notification level associated with the first notification . 
[ 0072 ] At 702 , the first host machine reads a user - specified 
level from the configuration file . At 704 , the first host 
machine determines whether the user - specified level is hier 
archical . As provided above , two or more of the levels may 
be organized in a hierarchy or ordering ( e . g . a severity or an 
importance hierarchy ) . For example , a hierarchy may be 
defined for the PAUSEPOINT , ALERT , and INFO levels 
discussed above such that PAUSEPOINT corresponds to a 
higher hierarchical level than the ALERT level , and the 
ALERT level corresponds to a higher hierarchical level than 
the INFO level . The hierarchical relationships between the 
levels may influence the notifications that are sent to the 
users . 
[ 0073 ] If the first host machine determines that the user 
specified level is hierarchical ( e . g . , YES to 704 ) , then , at 
706 , the first host machine determines whether the level 
determined in 308 is equal or higher than the user - specified 
level . 
[ 0074 ] If the first host machine determines that the level 
determined in 308 is equal or higher than the user - specified 
level ( e . g . , YES to 706 ) , then the first host machine sends the 
notification to the user at 710 . 
[ 0075 ) If the first host machine determines that the level 
determined in 308 is not equal or higher than the user 
specified level ( e . g . , NO to 706 ) , then the first host machine 
does not send the notification to the user at 712 . 
[ 0076 ] On the other hand , returning back to 704 , if the first 
host machine determines that the user - specified level is not 
hierarchical ( e . g . , NO to 704 ) , then , at 708 , the first host 
machine determines whether the level determined in 308 
matches the user - specified level . 
[ 0077 ] If the first host machine determines that the level 
determined in 308 matches the user - specified level ( e . g . , 
YES to 708 ) , then the first host machine sends the notifi 
cation to the user at 710 . 
[ 0078 ] If the first host machine determines that the level 
determined in 308 does not match the user - specified level 
( e . g . , NO to 708 ) , then the first host machine does not send 
the notification to the user at 712 . 
[ 0079 ] In some embodiments , the first host machine may 
be a part of a group of host machines ( e . g . , a pod ) having a 
group configuration file identifying a user - specified group 

notification level . The group notification level may indicate 
a notification level that the user is interested in for all hosts 
within the group . FIGS . 8A and 8B together depict a 
simplified flowchart 800 for determining whether a notifi 
cation generated by a host machine is to be sent to a user 
when the host machine is part of a group of host machines 
( e . g . , a pod ) according to an embodiment of the present 
invention . The processing depicted in FIGS . 8A and 8B may 
be implemented in software ( e . g . , code , instructions , pro 
gram ) executed by one or more processing units ( e . g . , 
processors cores ) of a host machine , in hardware , or using 
combinations thereof . The software may be stored on a 
non - transitory computer - readable medium ( e . g . , a memory 
device , a memory ) . The particular series of processing steps 
depicted in FIGS . 8A and 8B is not intended to be limiting . 
100801 At 802 , a notification is generated on a first host 
machine . At 804 , the first host machine determines a noti 
fication level for the generated notification . 
[ 0081 ] At 806 , the first host machine determines whether 
the first host machine is part of a group of host machines 
( e . g . , a pod ) and a notification level specified for the user in 
a configuration file for the group . 
[ 0082 ] If the first host machine determines that the first 
host machine is part of a group of host machines ( e . g . , a pod ) 
and a notification level specified for the user in a configu 
ration file for the group ( YES to 806 ) , then , at 808 , the first 
host machine determines , based upon a user - specified noti 
fication level in the configuration file for the first host 
machine and the notification level determined in 804 , 
whether the notification generated in 802 is to be sent to the 
user . 
f0083 ] At 810 , the first host machine sends the notification 
to the user if it is determined in 808 that the notification is 
to be sent to the user , else the first host machine does not 
send the notification to the user . 
[ 0084 ] If the first host machine determines that the first 
host machine is not part of a group of host machines ( e . g . , 
a pod ) and a notification level specified for the user in a 
configuration file for the group ( NO to 806 ) , then the 
processing moves to 812 in FIG . 8B . At 812 , the first host 
machine determines whether there is a user - specified level in 
configuration file for the first host machine . 
[ 0085 ] If there is a user - specified level in configuration file 
for the first host machine ( YES to 812 ) , then , at 814 , the first 
host machine determines the level - to - use as the user - speci 
fied level in the configuration file . 
10086 ] . If there is no user - specified level in configuration 
file for the first host machine ( NO to 812 ) , then , at 816 , the 
first host machine determines the level - to - use as the user 
specified level in the group ( e . g . , pod ) configuration file . 
[ 0087 ] At 818 , the first host machine determines , based 
upon the level - to - use and the notification level determined in 
804 , whether the notification generated in 802 is to be sent 
to the user . 
10088 ] At 820 , the first host machine sends the notification 
to the user if it is determined in 818 that the notification is 
to be sent to the user , else the first host machine does not 
send the notification to the user . 
10089 ] As provided above , in certain embodiments , mul 
tiple notifications generated by one or more host machines 
may be consolidated into a few number of consolidated 
notifications . For example , multiple notifications generated 
by one or more upgrade processes executing on one or more 
host machines may be consolidated into a single consoli 



US 2018 / 0136927 A1 May 17 , 2018 

dated notification and the consolidated notification then sent 
to a user instead of the multiple notifications . FIG . 4 
illustrates a simplified flowchart 400 depicting processing 
performed for consolidating multiple notifications generated 
by one or more upgrade processes hosted by one or more 
host machines according to an embodiment of the present 
invention . The processing depicted in FIG . 4 may be imple 
mented in software ( e . g . , code , instructions , program ) 
executed by one or more processing units ( e . g . , processors 
cores ) , hardware , or combinations thereof . The software 
may be stored in memory ( e . g . , on a memory device , on a 
non - transitory computer - readable storage medium ) . The 
particular series of processing steps depicted in FIG . 4 is not 
intended to be limiting . In one embodiment , the processing 
depicted in FIG . 4 is performed by one or more components 
of the upgrade infrastructure 200 depicted in FIG . 2 . 
[ 0090 ) For the processing depicted in FIG . 4 , it is assumed 
that a group of multiple host machines has been configured , 
the group including a first host machine and a second host 
machine . At 402 , a first upgrade process is executed on the 
first host machine for upgrading a first software application 
on the first host machine . Similarly , at 404 , a second upgrade 
process may be executed on the second host machine for 
upgrading a second software application on the second host 
machine . The first upgrade process and the second upgrade 
process may generate notifications at various time points 
during their execution . The notifications for each upgrade 
process may include information indicative of a status of 
that upgrade process when the notification is generated . For 
example , the notifications may indicate that the upgrade 
process has started execution , paused execution , is close to 
finishing execution , or that a failure happened during the 
execution of the upgrade process , and the like . 
[ 0091 ] For example , at 406 , the first upgrade process may 
generate a first notification comprising information related 
to the first upgrade process executing on the first host 
machine . The first notification may indicate an upgrade 
progress status of the first upgrade process . At 408 , the 
second upgrade process may generate a second notification 
comprising information related to the second upgrade pro 
cess executing on the second host machine . The second 
notification may indicate an upgrade progress status of the 
second upgrade process . 
[ 0092 ] Since the first and second host machines are part of 
a group of host machines ( e . g . , a pod ) , at 410 , the first 
notification generated by the first host machine and the 
second notification generated by the second host machine 
are sent to a host machine within the group that is acting as 
the notification agent for that group of host machines . In 
some embodiments , the selection of a particular host 
machine within the group as the notification agent may be 
done statically , for example , configured prior to the initiation 
of the upgrade operation . In such an embodiment , the 
notification agent for the group of host machines remains the 
same and does not change . In some other embodiments , the 
selection of a particular host machine within the group as the 
notification agent may be done dynamically and may change 
during the upgrade operation . In a dynamic embodiment , as 
part of 410 , a determination may first be made as to which 
host machine within the group of host machines is the 
notification agent and the first and second notifications are 
then sent to that notification agent host machine . It is 
possible that one of the first host machine or the second host 

machine acts as the notification agent . [ You will need to 
make changes to FIG . 4 based upon the changes made here . 
[ 0093 ] In some embodiments , a dedicated host machine , 
possibly even outside the group of host machines , may be 
designated as the dedicated notification agent as part of the 
upgrade infrastructure . The notifications are then sent to that 
notification agent . 
[ 0094 ] At 412 , the notification agent consolidates the first 
notification and the second notification into a single con 
solidated notification . At 414 , the consolidated notification 
is then sent to the user instead of the first and second 
notifications . The consolidated notification may be sent to 
the user in various different forms such as an electronic alert , 
an email messages , a text message , an SMS message , and 
the like . 
100951 . While consolidation of only two notifications is 
depicted in FIG . 4 and described above , this is not meant to 
be restrictive . In general , multiple notifications may be 
consolidated in a fewer number of consolidated notifica 
tions , where the number of consolidated notifications is 
lesser than the number of generated notifications . The mul 
tiple notifications may be generated by the same upgrade 
process , by multiple upgrade processes on the same host , or 
multiple upgrade processes on multiple hosts . The multiple 
notifications may be consolidated into a fewer number of 
consolidated notifications or even into a single consolidate 
notification . 
[ 0096 ] For example , according to one technique , informa 
tion from the multiple notifications may be collected and 
aggregated into the consolidated notification . In another 
technique , the notification agent may generate information 
to be included in the consolidated notification based upon 
the information contained in the multiple notifications to be 
consolidated . For example , in one embodiment , the notifi 
cation agent may generate summary information based the 
information contained in the individual notifications to be 
consolidated and the summary information may be included 
in the consolidate notification that is generated and sent to 
the user . 
[ 0097 ] In certain embodiments , the filtering of notifica 
tions based upon user - specified levels and the consolidation 
of notifications may be performed together by the notifica 
tion agent . In certain embodiments , for a notification gen 
erated by a host machine , the host machine may be config 
ured to first determine whether the notification is to be sent 
to the notification agent based upon the notification level 
associated with the generated notification and the user 
specified level stored in the configuration file for the host 
machine . The host machine may only the send the notifica 

t ion to the notification agent if the notification level asso 
ciated with the notification matches the user - specified noti 
fication level , or in the case of hierarchical levels , matches 
or is higher than the user - specified notification level . In this 
manner , the notification agent receives only a subset , and not 
all , of the notifications generated by the host machines . The 
notification agent may then form consolidated notifications 
based upon the received notifications . For example , for the 
scenarios depicted in FIG . 4 and described above , the user 
may define a first configuration file for the first host machine 
and / or a second configuration file for the second host 
machine . The first host machine may decide whether or not 
to send the first notification to the notification agent based on 
the first configuration file . The second host machine may 
decide whether or not to send the second notification to the 



US 2018 / 0136927 A1 May 17 , 2018 

footions 

notification agent based on the second configuration file . 
Accordingly , the first configuration file and the second 
configuration file may be applied to the first notification and 
the second notification , respectively , prior to the notification 
agent receiving the notifications . 
[ 0098 ] In some other embodiments , the notification agent 
may be configured to filter the received notifications based 
upon a user - specified notification level in the group - level 
configuration file ( e . g . , the pod - level configuration file ) . 
Accordingly , from the multiple notifications received by the 
notification agent , the notification agent may filter out some 
notifications based upon the group - level configuration infor 
mation . The notifications that are not filtered out may then 
be consolidated by the notification agent and the consoli 
dated notifications then sent out to the user . 
[ 0099 ] In yet another embodiment , notification levels may 
also be associated with the consolidate notifications and the 
notification agent may determine whether or not to send a 
consolidated notification to the user based upon the level 
associated with the consolidated notification and the user 
specified level in the group - level configuration file for that 
groups of host machines . The notification agent may then 
only send out consolidated notifications that pass the group 
level based notification level filter to the user . 
[ 0100 ] As described above , embodiments provide various 
techniques for reducing the number of notifications that are 
communicated to users from multiple hosts involved in an 
upgrade operation . These techniques include filtering out 
notifications at the host machines based upon user - specified 
level criteria , generating consolidated notifications , and 
combinations thereof . As a result , the number of notifica 
tions that are actually sent to a user is far less than the 
number of notifications that are generated by the multiple 
upgrade processes executing on the multiple host machines . 
As a result , compared to conventional techniques , the num 
ber of network , processing , and memory resources needed 
for processing of the notifications , both on the host machines 
side and also on the client devices of users that receive the 
notifications , are dramatically reduced . 
[ 0101 ] FIG . 5 depicts a simplified diagram of a distributed 
system 500 for implementing one of the embodiments . In the 
illustrated embodiment , distributed system 500 includes one 
or more client computing devices 502 , 504 , 506 , and 508 , 
which are configured to execute and operate a client appli 
cation such as a web browser , proprietary client ( e . g . , Oracle 
Forms ) , or the like over one or more network ( s ) 510 . Server 
512 may be communicatively coupled with remote client 
computing devices 502 , 504 , 506 , and 508 via network 510 . 
[ 0102 ] In various embodiments , server 512 may be 
adapted to run one or more services or software applications 
provided by one or more of the components of the system . 
In some embodiments , these services may be offered as 
web - based or cloud services or under Software as a Service 
( SaaS ) model to the users of client computing devices 502 , 
504 , 506 , and / or 508 . Users operating client computing 
devices 502 , 504 , 506 , and / or 508 may in turn utilize one or 
more client applications to interact with server 512 to utilize 
the services provided by these components . 
10103 ] In the configuration depicted in the figure , the 
software components 518 , 520 and 522 of system 500 are 
shown as being implemented on server 512 . In other 
embodiments , one or more of the components of system 500 
and / or the services provided by these components may also 
be implemented by one or more of the client computing 

devices 502 , 504 , 506 , and / or 508 . Users operating the client 
computing devices may then utilize one or more client 
applications to use the services provided by these compo 
nents . These components may be implemented in hardware , 
firmware , software , or combinations thereof . It should be 
appreciated that various different system configurations are 
possible , which may be different from distributed system 
500 . The embodiment shown in the figure is thus one 
example of a distributed system for implementing an 
embodiment system and is not intended to be limiting . 
0104 Client computing devices 502 , 504 , 506 , and / or 
508 may be portable handheld devices ( e . g . , an iPhone® , 
cellular telephone , an iPad® , computing tablet , a personal 
digital assistant ( PDA ) ) or wearable devices ( e . g . , a Google 
Glass® head mounted display ) , running software such as 
Microsoft Windows Mobile® , and / or a variety of mobile 
operating systems such as iOS , Windows Phone , Android , 
BlackBerry 10 , Palm OS , and the like , and being Internet , 
e - mail , short message service ( SMS ) , Blackberry® , or other 
communication protocol enabled . The client computing 
devices can be general purpose personal computers includ 
ing , by way of example , personal computers and / or laptop 
computers running various versions of Microsoft Win 
dows® , Apple Macintosh® , and / or Linux operating sys 
tems . The client computing devices can be workstation 
computers running any of a variety of commercially - avail 
able UNIX® or UNIX - like operating systems , including 
without limitation the variety of GNU / Linux operating sys 
tems , such as for example , Google Chrome OS . Alterna 
tively , or in addition , client computing devices 502 , 504 , 
506 , and 508 may be any other electronic device , such as a 
thin - client computer , an Internet - enabled gaming system 
( e . g . , a Microsoft Xbox gaming console with or without a 
Kinect® gesture input device ) , and / or a personal messaging 
device , capable of communicating over network ( s ) 510 . 
[ 0105 ] Although exemplary distributed system 500 is 
shown with four client computing devices , any number of 
client computing devices may be supported . Other devices , 
such as devices with sensors , etc . , may interact with server 
512 . 
[ 0106 ] Network ( s ) 510 in distributed system 500 may be 
any type of network familiar to those skilled in the art that 
can support data communications using any of a variety of 
commercially - available protocols , including without limita 
tion TCP / IP ( transmission control protocol / Internet proto 
col ) , SNA ( systems network architecture ) , IPX ( Internet 
packet exchange ) , AppleTalk , and the like . Merely by way of 
example , network ( s ) 510 can be a local area network ( LAN ) , 
such as one based on Ethernet , Token - Ring and / or the like . 
Network ( s ) 510 can be a wide - area network and the Internet . 
It can include a virtual network , including without limitation 
a virtual private network ( VPN ) , an intranet , an extranet , a 
public switched telephone network ( PSTN ) , an infra - red 
network , a wireless network ( e . g . , a network operating under 
any of the Institute of Electrical and Electronics ( IEEE ) 
802 . 11 suite of protocols , Bluetooth® , and / or any other 
wireless protocol ) ; and / or any combination of these and / or 
other networks . 
[ 0107 ] Server 512 may be composed of one or more 
general purpose computers , specialized server computers 
( including , by way of example , PC ( personal computer ) 
servers , UNIX® servers , mid - range servers , mainframe 
computers , rack - mounted servers , etc . ) , server farms , server 
clusters , or any other appropriate arrangement and / or com 



US 2018 / 0136927 A1 May 17 , 2018 
11 

bination . In various embodiments , server 512 may be 
adapted to run one or more services or software applications 
described in the foregoing disclosure . For example , server 
512 may correspond to a server for performing processing 
described above according to an embodiment of the present 
disclosure . 
[ 0108 ] Server 512 may run an operating system including 
any of those discussed above , as well as any commercially 
available server operating system . Server 512 may also run 
any of a variety of additional server applications and / or 
mid - tier applications , including HTTP ( hypertext transport 
protocol ) servers , FTP ( file transfer protocol ) servers , CGI 
( common gateway interface ) servers , JAVA® servers , data 
base servers , and the like . Exemplary database servers 
include without limitation those commercially available 
from Oracle , Microsoft , Sybase , IBM ( International Busi 
ness Machines ) , and the like . 
[ 0109 ] In some implementations , server 512 may include 
one or more applications to analyze and consolidate data 
feeds and / or event updates received from users of client 
computing devices 502 , 504 , 506 , and 508 . As an example , 
data feeds and / or event updates may include , but are not 
limited to , Twitteræ feeds , Facebook updates or real - time 
updates received from one or more third party information 
sources and continuous data streams , which may include 
real - time events related to sensor data applications , financial 
tickers , network performance measuring tools ( e . g . , network 
monitoring and traffic management applications ) , click 
stream analysis tools , automobile traffic monitoring , and the 
like . Server 512 may also include one or more applications 
to display the data feeds and / or real - time events via one or 
more display devices of client computing devices 502 , 504 , 
506 , and 508 . 
0110 ) Distributed system 500 may also include one or 

more databases 514 and 516 . Databases 514 and 516 may 
reside in a variety of locations . By way of example , one or 
more of databases 514 and 516 may reside on a non 
transitory storage medium local to ( and / or resident in ) server 
512 . Alternatively , databases 514 and 516 may be remote 
from server 512 and in communication with server 512 via 
a network - based or dedicated connection . In one set of 
embodiments , databases 514 and 516 may reside in a 
storage - area network ( SAN ) . Similarly , any necessary files 
for performing the functions attributed to server 512 may be 
stored locally on server 512 and / or remotely , as appropriate . 
In one set of embodiments , databases 514 and 516 may 
include relational databases , such as databases provided by 
Oracle , that are adapted to store , update , and retrieve data in 
response to SQL - formatted commands . 
[ 0111 ] FIG . 6 illustrates an exemplary computer system 
600 , in which various embodiments of the present invention 
may be implemented . The system 600 may be used to 
implement any of the computer systems described above . As 
shown in the figure , computer system 600 includes a pro 
cessing unit 604 that communicates with a number of 
peripheral subsystems via a bus subsystem 602 . These 
peripheral subsystems may include a processing accelera 
tion unit 606 , an 1 / 0 subsystem 608 , a storage subsystem 
618 and a communications subsystem 624 . Storage subsys 
tem 618 includes tangible computer - readable storage media 
622 and a system memory 610 . 
[ 0112 ] Bus subsystem 602 provides a mechanism for 
letting the various components and subsystems of computer 
system 600 communicate with each other as intended . 

Although bus subsystem 602 is shown schematically as a 
single bus , alternative embodiments of the bus subsystem 
may utilize multiple buses . Bus subsystem 602 may be any 
of several types of bus structures including a memory bus or 
memory controller , a peripheral bus , and a local bus using 
any of a variety of bus architectures . For example , such 
architectures may include an Industry Standard Architecture 
( ISA ) bus , Micro Channel Architecture ( MCA ) bus , 
Enhanced ISA ( EISA ) bus , Video Electronics Standards 
Association ( VESA ) local bus , and Peripheral Component 
Interconnect ( PCI ) bus , which can be implemented as a 
Mezzanine bus manufactured to the IEEE P1386 . 1 standard . 
[ 0113 ] Processing unit 604 , which can be implemented as 
one or more integrated circuits ( e . g . , a conventional micro 
processor or microcontroller ) , controls the operation of 
computer system 600 . One or more processors may be 
included in processing unit 604 . These processors may 
include single core or multicore processors . In certain 
embodiments , processing unit 604 may be implemented as 
one or more independent processing units 632 and / or 634 
with single or multicore processors included in each pro 
cessing unit . In other embodiments , processing unit 604 may 
also be implemented as a quad - core processing unit formed 
by integrating two dual - core processors into a single chip . 
[ 0114 ] In various embodiments , processing unit 604 can 
execute a variety of programs in response to program code 
and can maintain multiple concurrently executing programs 
or processes . At any given time , some or all of the program 
code to be executed can be resident in processor ( s ) 604 
and / or in storage subsystem 618 . Through suitable program 
ming , processor ( s ) 604 can provide various functionalities 
described above . Computer system 600 may additionally 
include a processing acceleration unit 606 , which can 
include a digital signal processor ( DSP ) , a special - purpose 
processor , and / or the like . 
[ 0115 ] I / O subsystem 608 may include user interface input 
devices and user interface output devices . User interface 
input devices may include a keyboard , pointing devices such 
as a mouse or trackball , a touchpad or touch screen incor 
porated into a display , a scroll wheel , a click wheel , a dial , 
a button , a switch , a keypad , audio input devices with voice 
command recognition systems , microphones , and other 
types of input devices . User interface input devices may 
include , for example , motion sensing and / or gesture recog 
nition devices such as the Microsoft Kinect® motion sensor 
that enables users to control and interact with an input 
device , such as the Microsoft Xbox 360 game controller , 
through a natural user interface using gestures and spoken 
commands . User interface input devices may also include 
eye gesture recognition devices such as the Google Glass® 
blink detector that detects eye activity ( e . g . , blinking ' while 
taking pictures and / or making a menu selection ) from users 
and transforms the eye gestures as input into an input device 
( e . g . , Google Glass® ) . Additionally , user interface input 
devices may include voice recognition sensing devices that 
enable users to interact with voice recognition systems ( e . g . , 
Siri® navigator ) , through voice commands . 
[ 0116 ] User interface input devices may also include , 
without limitation , three dimensional ( 3D ) mice , joysticks or 
pointing sticks , gamepads and graphic tablets , and audio / 
visual devices such as speakers , digital cameras , digital 
camcorders , portable media players , webcams , image scan 
ners , fingerprint scanners , barcode reader 3D scanners , 3D 
printers , laser rangefinders , and eye gaze tracking devices . 



US 2018 / 0136927 A1 May 17 , 2018 

Additionally , user interface input devices may include , for 
example , medical imaging input devices such as computed 
tomography , magnetic resonance imaging , position emission 
tomography , medical ultrasonography devices . User inter 
face input devices may also include , for example , audio 
input devices such as MIDI keyboards , digital musical 
instruments and the like . 
[ 0117 ] User interface output devices may include a display 
subsystem , indicator lights , or non - visual displays such as 
audio output devices , etc . The display subsystem may be a 
cathode ray tube ( CRT ) , a flat - panel device , such as that 
using a liquid crystal display ( LCD ) or plasma display , a 
projection device , a touch screen , and the like . In general , 
use of the term " output device ” is intended to include all 
possible types of devices and mechanisms for outputting 
information from computer system 600 to a user or other 
computer . For example , user interface output devices may 
include , without limitation , a variety of display devices that 
visually convey text , graphics and audio / video information 
such as monitors , printers , speakers , headphones , automo 
tive navigation systems , plotters , voice output devices , and 
modems . 
[ 0118 ] Computer system 600 may comprise a storage 
subsystem 618 that comprises software elements , shown as 
being currently located within a system memory 610 . Sys 
tem memory 610 may store program instructions that are 
loadable and executable on processing unit 604 , as well as 
data generated during the execution of these programs . 
[ 0119 ] Depending on the configuration and type of com 
puter system 600 , system memory 610 may be volatile ( such 
as random access memory ( RAM ) ) and / or non - volatile ( such 
as read - only memory ( ROM ) , flash memory , etc . ) The RAM 
typically contains data and / or program modules that are 
immediately accessible to and / or presently being operated 
and executed by processing unit 604 . In some implementa 
tions , system memory 610 may include multiple different 
types of memory , such as static random access memory 
( SRAM ) or dynamic random access memory ( DRAM ) . In 
some implementations , a basic input / output system ( BIOS ) , 
containing the basic routines that help to transfer informa 
tion between elements within computer system 600 , such as 
during start - up , may typically be stored in the ROM . By way 
of example , and not limitation , system memory 610 also 
illustrates application programs 612 , which may include 
client applications , Web browsers , mid - tier applications , 
relational database management systems ( RDBMS ) , etc . , 
program data 614 , and an operating system 616 . By way of 
example , operating system 616 may include various ver 
sions of Microsoft Windows® , Apple Macintosh® , and / or 
Linux operating systems , a variety of commercially - avail 
able UNIX® or UNIX - like operating systems ( including 
without limitation the variety of GNU / Linux operating sys 
tems , the Google Chrome® OS , and the like ) and / or mobile 
operating systems such as iOS , Windows® Phone , 
Android OS , BlackBerry® 10 OS , and Palm® OS oper 
ating systems . 
[ 0120 ] Storage subsystem 618 may also provide a tangible 
computer - readable storage medium for storing the basic 
programming and data constructs that provide the function 
ality of some embodiments . Software ( programs , code mod 
ules , instructions ) that when executed by a processor pro 
vide the functionality described above may be stored in 
storage subsystem 618 . These software modules or instruc 
tions may be executed by processing unit 604 . Storage 

subsystem 618 may also provide a repository for storing data 
used in accordance with the present invention . 
[ 0121 ] Storage subsystem 600 may also include a com 
puter - readable storage media reader 620 that can further be 
connected to computer - readable storage media 622 . 
Together and , optionally , in combination with system 
memory 610 , computer - readable storage media 622 may 
comprehensively represent remote , local , fixed , and / or 
removable storage devices plus storage media for temporar 
ily and / or more permanently containing , storing , transmit 
ting , and retrieving computer - readable information . 
[ 0122 ] Computer - readable storage media 622 containing 
code , or portions of code , can also include any appropriate 
media known or used in the art , including storage media and 
communication media , such as but not limited to , volatile 
and non - volatile , removable and non - removable media 
implemented in any method or technology for storage and / or 
transmission of information . This can include tangible com 
puter - readable storage media such as RAM , ROM , elec 
tronically erasable programmable ROM ( EEPROM ) , flash 
memory or other memory technology , CD - ROM , digital 
versatile disk ( DVD ) , or other optical storage , magnetic 
cassettes , magnetic tape , magnetic disk storage or other 
magnetic storage devices , or other tangible computer read 
able media . This can also include nontangible computer 
readable media , such as data signals , data transmissions , or 
any other medium which can be used to transmit the desired 
information and which can be accessed by computing sys 
tem 600 . 
[ 0123 ] By way of example , computer - readable storage 
media 622 may include a hard disk drive that reads from or 
writes to non - removable , nonvolatile magnetic media , a 
magnetic disk drive that reads from or writes to a removable , 
nonvolatile magnetic disk , and an optical disk drive that 
reads from or writes to a removable , nonvolatile optical disk 
such as a CD ROM , DVD , and Blu - Ray® disk , or other 
optical media . Computer - readable storage media 622 may 
include , but is not limited to , Zip® drives , flash memory 
cards , universal serial bus ( USB ) flash drives , secure digital 
( SD ) cards , DVD disks , digital video tape , and the like . 
Computer - readable storage media 622 may also include , 
solid - state drives ( SSD ) based on non - volatile memory such 
as flash - memory based SSDs , enterprise flash drives , solid 
state ROM , and the like , SSDs based on volatile memory 
such as solid state RAM , dynamic RAM , static RAM , 
DRAM - based SSDs , magnetoresistive RAM ( MRAM ) 
SSDs , and hybrid SSDs that use a combination of DRAM 
and flash memory based SSDs . The disk drives and their 
associated computer - readable media may provide non - vola 
tile storage of computer - readable instructions , data struc 
tures , program modules , and other data for computer system 
600 . 
[ 0124 ] Communications subsystem 624 provides an inter 
face to other computer systems and networks . Communica 
tions subsystem 624 serves as an interface for receiving data 
from and transmitting data to other systems from computer 
system 600 . For example , communications subsystem 624 
may enable computer system 600 to connect to one or more 
devices via the Internet . In some embodiments communi 
cations subsystem 624 can include radio frequency ( RF ) 
transceiver components for accessing wireless voice and / or 
data networks ( e . g . , using cellular telephone technology , 
advanced data network technology , such as 3G , 4G or EDGE 
( enhanced data rates for global evolution ) , WiFi ( IEEE 



US 2018 / 0136927 A1 May 17 , 2018 
13 

- 

802 . 11 family standards , or other mobile communication 
technologies , or any combination thereof ) , global position 
ing system ( GPS ) receiver components , and / or other com 
ponents . In some embodiments communications subsystem 
624 can provide wired network connectivity ( e . g . , Ethernet ) 
in addition to or instead of a wireless interface . 
T0125 ) In some embodiments , communications subsystem 
624 may also receive input communication in the form of 
structured and / or unstructured data feeds 626 , event streams 
628 , event updates 630 , and the like on behalf of one or more 
users who may use computer system 600 . 
[ 0126 ] By way of example , communications subsystem 
624 may be configured to receive data feeds 626 in real - time 
from users of social networks and / or other communication 
services such as Twitter feeds , Facebook updates , web 
feeds such as Rich Site Summary ( RSS ) feeds , and / or 
real - time updates from one or more third party information 
sources . 

[ 0127 ] Additionally , communications subsystem 624 may 
also be configured to receive data in the form of continuous 
data streams , which may include event streams 628 of 
real - time events and / or event updates 630 , that may be 
continuous or unbounded in nature with no explicit end . 
Examples of applications that generate continuous data may 
include , for example , sensor data applications , financial 
tickers , network performance measuring tools ( e . g . network 
monitoring and traffic management applications ) , click 
stream analysis tools , automobile traffic monitoring , and the 
like . 
[ 0128 ] Communications subsystem 624 may also be con 
figured to output the structured and / or unstructured data 
feeds 626 , event streams 628 , event updates 630 , and the like 
to one or more databases that may be in communication with 
one or more streaming data source computers coupled to 
computer system 600 . 
[ 0129 ] Computer system 600 can be one of various types , 
including a handheld portable device ( e . g . , an iPhone® 
cellular phone , an iPad® computing tablet , a PDA ) , a 
wearable device ( e . g . , a Google Glass® head mounted 
display ) , a PC , a workstation , a mainframe , a kiosk , a server 
rack , or any other data processing system . 
[ 0130 ] Due to the ever - changing nature of computers and 
networks , the description of computer system 600 depicted 
in the figure is intended only as a specific example . Many 
other configurations having more or fewer components than 
the system depicted in the figure are possible . For example , 
customized hardware might also be used and / or particular 
elements might be implemented in hardware , firmware , 
software ( including applets ) , or a combination . Further , 
connection to other computing devices , such as network 
input / output devices , may be employed . Based on the dis 
closure and teachings provided herein , a person of ordinary 
skill in the art will appreciate other ways and / or methods to 
implement the various embodiments . 
[ 0131 ] In the foregoing specification , aspects of the inven 
tion are described with reference to specific embodiments 
thereof , but those skilled in the art will recognize that the 
invention is not limited thereto . Various features and aspects 
of the above - described invention may be used individually 
or jointly . Further , embodiments can be utilized in any 
number of environments and applications beyond those 
described herein without departing from the broader spirit 

and scope of the specification . The specification and draw 
ings are , accordingly , to be regarded as illustrative rather 
than restrictive . 
What is claimed is : 
1 . A method comprising : 
receiving , by a particular host machine from a plurality of 

host machines , a first notification , the first notification 
generated by a first upgrade process executed by a first 
host machine from the plurality of host machines , the 
first upgrade process for upgrading a first software 
application on the first host machine , the first notifica 
tion comprising information related to the first upgrade 
process ; 

generating , by the particular host machine , a single noti 
fication based upon the first notification and a second 
notification , the second notification generated by a 
second upgrade process executed by a second host 
machine from the plurality of host machines , the sec 
ond upgrade process for upgrading a second software 
application on the second host machine , the second 
notification comprising information related to the sec 
ond upgrade process ; and 

sending , by the particular host machine , the single noti 
fication to a user instead of the first notification and the 
second notification . 

2 . The method of claim 1 , wherein the first notification is 
generated before the second notification . 

3 . The method of claim 1 , further comprising : 
selecting , from among the plurality of host machines , the 

particular host machine as a notification agent for the 
plurality of host machines , and 

upon selecting the particular host machine as the notifi 
cation agent : 
sending , by the first host machine , the first notification 

to the particular host machine ; and 
sending , by the second host machine , the second noti 

fication to the particular host machine . 
4 . The method of claim 3 , wherein the selecting is 

performed prior to execution of the first upgrade process and 
execution of the second upgrade process . 

5 . The method of claim 3 , wherein the selecting is 
performed after initiation of the first upgrade process and the 
second upgrade process . 

6 . The method of claim 3 , wherein the consolidated 
notification is a second consolidated notification , wherein 
the selecting is performed after a first consolidated notifi 
cation is sent , and wherein the first consolidated notification 
is sent before the first consolidated notification . 

7 . The method of claim 1 , wherein the selecting is based 
upon one or more of the following : 

a type of notification of the first notification or the second 
notification ; or 

a start time of the first upgrade process , the second 
upgrade process , or a third upgrade process . 

8 . The method of claim 1 , further comprising : 
determining whether to send the single notification to the 

user , wherein the determining is based upon a notifi 
cation level of the single notification and a user 
specified level for the plurality of host machines ; 

wherein the single notification is sent to the user in 
response to determining to send the single notification 
to the user . 



US 2018 / 0136927 A1 May 17 , 2018 
14 

9 . The method of claim 1 , wherein the single notification 
is sent to the user after a predefined delay after an upgrade 
process of the particular host machine begins . 

10 . A non - transitory computer - readable storage medium 
storing a plurality of instructions executable by one or more 
processors , the plurality of instructions when executed by 
the one or more processors cause the one or more processors 
to : 

receive a first notification , the first notification generated 
by a first upgrade process executed by a first host 
machine , the first upgrade process for upgrading a first 
software application on the first host machine , the first 
notification comprising information related to the first 
upgrade process ; 

generate a single notification based upon the first notifi 
cation and a second notification , the second notification 
generated by a second upgrade process executed by a 
second host machine , the second upgrade process for 
upgrading a second software application on the second 
host machine , the second notification comprising infor 
mation related to the second upgrade process ; and 

send the single notification to a user instead of the first 
notification and the second notification . 

11 . The non - transitory computer - readable storage 
medium of claim 10 , wherein the first notification is gener 
ated before the second notification . 

12 . The non - transitory computer - readable storage 
medium of claim 10 , wherein the plurality of instructions 
when executed by the one or more processors further cause 
the one or more processors to : 

select , from among a plurality of host machines , a par 
ticular host machine as a notification agent for the 
plurality of host machines , wherein the plurality of host 
machines includes the first host machine and the second 
host machine ; and 

upon selecting the particular host machine as the notifi 
cation agent : 
send , by the first host machine , the first notification to 

the particular host machine ; and 
send , by the second host machine , the second notifica 

tion to the particular host machine . 
13 . The non - transitory computer - readable storage 

medium of claim 12 , wherein the selecting is performed 
prior to execution of the first upgrade process and execution 
of the second upgrade process . 

14 . The non - transitory computer - readable storage 
medium of claim 12 , wherein the selecting is performed 
after initiation of the first upgrade process and the second 
upgrade process . 

15 . The non - transitory computer - readable storage 
medium of claim 12 , wherein the consolidated notification is 
a second consolidated notification , wherein the selecting is 
performed after a first consolidated notification is sent , and 
wherein the first consolidated notification is sent before the 
first consolidated notification . 

16 . The non - transitory computer - readable storage 
medium of claim 12 , wherein the selecting is based upon one 
or more of the following : 

a type of notification of the first notification or the second 
notification ; or 

a start time of the first upgrade process , the second 
upgrade process , or a third upgrade process . 

17 . The non - transitory computer - readable storage 
medium of claim 10 , wherein the plurality of instructions 
when executed by the one or more processors further cause 
the one or more processors to : 

determine whether to send the single notification to the 
user , wherein the determining is based upon a notifi 
cation level of the single notification and a user 
specified level for a plurality of host machines includ 
ing the first host machine and the second host machine ; 

wherein the single notification is sent to the user in 
response to determining to send the single notification 
to the user . 

18 . The non - transitory computer - readable storage 
medium of claim 10 , wherein the single notification is sent 
to the user after a predefined delay after an upgrade process 
of a particular host machine begins . 

19 . A system comprising : 
one or more processors ; and 
a non - transitory computer - readable medium including 

instructions that , when executed by the one or more 
processors , cause the one or more processors to : 
receive a first notification , the first notification gener 

ated by a first upgrade process executed by a first 
host machine , the first upgrade process for upgrading 
a first software application on the first host machine , 
the first notification comprising information related 
to the first upgrade process ; 

generate a single notification based upon the first 
notification and a second notification , the second 
notification generated by a second upgrade process 
executed by a second host machine , the second 
upgrade process for upgrading a second software 
application on the second host machine , the second 
notification comprising information related to the 
second upgrade process ; and 

send the single notification to a user instead of the first 
notification and the second notification . 

20 . The system of claim 19 , wherein the instructions , 
when executed by the one or more processors , further cause 
the one or more processors to : 

determine whether to send the single notification to the 
user , wherein the determining is based upon a notifi 
cation level of the single notification and a user 
specified level for a plurality of host machines includ 
ing the first host machine and the second host machine ; 

wherein the single notification is sent to the user in 
response to determining to send the single notification 
to the user . 

* * * * * 


