
US 20210096930A1 
IN 

( ( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2021/0096930 A1 

Shafi et al . ( 43 ) Pub . Date : Apr. 1 , 2021 

( 54 ) APPARATUSES , METHODS , AND SYSTEMS 
FOR PROCESSOR NON - WRITE - BACK 
CAPABILITIES 

( 52 ) U.S. CI . 
CPC GO6F 9/526 ( 2013.01 ) ; G06F 12/1009 

( 2013.01 ) ; G06F 2212/1032 ( 2013.01 ) ; G06F 
13/1668 ( 2013.01 ) ; G06F 9/30101 ( 2013.01 ) ; 

G06F 12/084 ( 2013.01 ) ( 71 ) Applicant : Intel Corporation , Santa Clara , CA 
( US ) 

( 57 ) ABSTRACT 
( 72 ) Inventors : Hisham Shafi , Akko ( IL ) ; Vedvyas 

Shanbhogue , Austin , TX ( US ) ; Gilbert 
Neiger , Portland , OR ( US ) ; James A. 
Coleman , Mesa , AZ ( US ) 

( 21 ) Appl . No .: 16 / 586,028 

( 22 ) Filed : Sep. 27 , 2019 

Systems , methods , and apparatuses relating to processor 
non - write - back capabilities are described . In one embodi 
ment , a processor includes a plurality of logical processors , 
a control register comprising a non - write - back lock disable 
bit , a cache shared by the plurality of logical processors , a 
bus to couple the cache to a memory to service a memory 
request for the memory from the plurality of logical pro 
cessors , and a memory controller to disable a non - write - back 
lock access of the bus for a read - modify - write type of the 
memory request issued by a logical processor of the plurality 
of logical processors when the non - write - back lock disable 
bit is set to a first value , and implement the non - write - back 
lock access of the bus for the read - modify - write type of the 
memory request when the non - write - back lock disable bit is 
set to a second value . 

Publication Classification 
( 51 ) Int . CI . 

GO6F 9/52 ( 2006.01 ) 
G06F 12/1009 ( 2006.01 ) 
GO6F 12/084 ( 2006.01 ) 
G06F 13/16 ( 2006.01 ) 
G06F 9/30 ( 2006.01 ) 

CORE 104-1 
CONTROL 
REGISTER 

110-1 
MEMORY 
CONTROL 
REGISTER 

DATA 112-1 
REGISTER ( S ) 

106-1 OTHER 
! CONTROL 

CAPABILITY REGISTERS 
REGISTER ( S ) HE.G. , CRO - CR4 ) 

108-1 114-1 

BTB , I - CACHE , AND / OR I - TLB 
116-1 

PROCESSOR 100 
CORE 104 - N 

CONTROL 
REGISTER 

110 - N 
i MEMORY 
! CONTROL 
REGISTER 

DATA 112 - N 
REGISTER ( S ) 

106 - N OTHER 
I CONTROL 

CAPABILITY REGISTERS 
REGISTERS HE.G. , CRO - CR4 ) : 

108 - N 114 - N 
L- 

BTB , I - CACHE , AND / OR 1 - TLB 
116 - N 

DECODER 
118-1 

DECODER 
118 - N 

RENAMEJALLOCATOR / SCHEDULER 
120-1 

RENAME / ALLOCATOR / SCHEDULER 
120 - N 

EXECUTION UNIT ( S ) 
122-1 

EXECUTION UNIT ( S ) 
122 - N 

REORDER / RETIREMENT UNIT 
124-1 

REORDER / RETIREMENT UNIT 
124 - N 

LOWER LEVEL D - CACHE 
AND / OR D - TLB 

126-1 
LOWER LEVEL D - CACHE 

AND / OR D - TLB 
126 - N 

HIGHER LEVEL CACHE 128 

MEMORY CONTROLLER 130 
MEMORY ENCRYPTION CIRCUIT 1401 

BUS 132 

134 
MEMORY 102 

| PAGE TABLES 136 11 SEGMENT DESCRIPTOR TABLES 1381 



Patent Application Publication Apr. 1 , 2021 Sheet 1 of 17 US 2021/0096930 A1 

CORE 104-1 
CONTROL 
REGISTER 

110-1 
i MEMORY i 
CONTROL ! 
REGISTER 

DATA 112-1 
REGISTER ( S ) 

106-1 i OTHER 
CONTROL 
REGISTERS ! CAPABILITY 

REGISTER ( S ) ( E.G. , CRO - CR4 ) 
108-1 114-1 

PROCESSOR 100 
CORE 104 - N 

CONTROL 
REGISTER 

110 - N 
MEMORY I 
CONTROL 
REGISTER 

DATA 112 - N 
REGISTER ( S ) 

106 - N OTHER 
I CONTROL 

CAPABILITY REGISTERS 
REGISTERS ( E.G. , CRO - CR4 ) 

108 - N 114 - N 

......... 

BTB , I - CACHE , AND / OR I - TLB 
116-1 

BTB , I - CACHE , AND / OR I - TLB 
116 - N 

DECODER 
118-1 

DECODER 
118 - N 

RENAME / ALLOCATOR / SCHEDULER 
120-1 

RENAME / ALLOCATOR / SCHEDULER 
120 - N 

EXECUTION UNIT ( S ) 
122-1 

EXECUTION UNIT ( S ) 
122 - N 

REORDER / RETIREMENT UNIT 
124-1 

REORDER / RETIREMENT UNIT 
124 - N 

LOWER LEVEL D - CACHE 
AND / OR D - TLB 

126-1 

LOWER LEVEL D - CACHE 
AND / OR D - TLB 

126 - N 

HIGHER LEVEL CACHE 128 

MEMORY CONTROLLER 130 
I MEMORY ENCRYPTION CIRCUIT 140 
L 

BUS 132 

134 
MEMORY 102 

| PAGE TABLES 136 11 SEGMENT DESCRIPTOR TABLES 138 
L 

FIG . 1 



Patent Application Publication 

EXAMPLE TEST_CTRL FORMAT 200 

30 

28 

27 

0 

REGISTER ADDRESS 202 31 
HEX DECIMAL 

DISABLE LOCK # 

33H . 

51 

ASSERTION FOR SPLIT LOCK ACCESS 

29 
ENABLE #AC ( 0 ) EXCEPTION FOR SPLIT LOCKED ACCESSES 

RESERVED 

NON - WRITE - BACK LOCK DISABLE 

RESERVED 

FIG . 2 

EXAMPLE IA32_CORE_CAPABILITY FORMAT 300 

Apr. 1 , 2021 Sheet 2 of 17 

4 

3 

0 

REGISTER ADDRESS 302 31 
HEX DECIMAL 

CFH 

207 

5 
#AC ( 0 ) EXCEPTION FOR SPLIT LOCKED ACCESSES SUPPORTED 

RESERVED 

NON - WRITE - BACK LOCK DISABLE CAPABILITY 
RESERVED 

FIG . 3 

US 2021/0096930 A1 



Patent Application Publication Apr. 1 , 2021 Sheet 3 of 17 US 2021/0096930 A1 

31 ( 63 ) 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
SIS SIV U PIP PIMIP TIPIV MM M RESERVED K M M CR4 

TE ? exw ITIORU 00 11 / 
OSXSAVE 

FSGSBASE 
PCIDE 

1211 

OSFXSR 
OSXMMEXCPT 

5 4 3 2 31 ( 63 ) 

PAGE - DIRECTORY BASE 
??? 
CW CR3 

( PDBR ) 

31 ( 63 ) 0 

PAGE - FAULT LINEAR ADDRESS CR2 

31 ( 63 ) 0 

CR1 

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0 

PIC 
GD W 

W 
? 

??????????? CRO ET SMPE M 

RESERVED 

FIG . 4 



Patent Application Publication Apr. 1 , 2021 Sheet 4 of 17 US 2021/0096930 A1 

500 

SETTING A NON - WRITE - BACK LOCK DISABLE BIT IN A CONTROL 
REGISTER OF A PLURALITY OF LOGICAL PROCESSORS OF A 

PROCESSOR 502 

PERFORMING A RESPECTIVE OPERATION WITH EACH OF THE 
PLURALITY OF LOGICAL PROCESSORS OF THE PROCESSOR THAT 

SHARE A CACHE COUPLED TO A MEMORY VIA A BUS 504 

RECEIVING A MEMORY REQUEST FROM A LOGICAL PROCESSOR OF 
THE PLURALITY OF LOGICAL PROCESSORS FOR THE MEMORY WITH 

A MEMORY CONTROLLER 506 

DISABLING A NON - WRITE - BACK LOCK ACCESS OF THE BUS FOR A 
READ - MODIFY - WRITE TYPE OF THE MEMORY REQUEST ISSUED BY 

THE LOGICAL PROCESSOR OF THE PLURALITY OF LOGICAL 
PROCESSORS WITH THE MEMORY CONTROLLER WHEN THE NON 
WRITE - BACK LOCK DISABLE BIT IS SET TO A FIRST VALUE 508 

IMPLEMENTING THE NON - WRITE - BACK LOCK ACCESS OF THE BUS 
FOR THE READ - MODIFY - WRITE TYPE OF THE MEMORY REQUEST 
WITH THE MEMORY CONTROLLER WHEN THE NON - WRITE - BACK 

LOCK DISABLE BIT IS SET TO A SECOND VALUE 510 

FIG . 5 



FULL OPCODE FIELD 674 

FIG.6A 

BASE REGISTER 

MODIFIER 

FIELD 
FORMATOPERATION INDEX 

FIELD 

FIELD FIELD 

640 

642 

646 

644 

AUGMENTATION OPERATION FIELD 650 

CLASS 
ALPHA 

FIELD 

FIELD 652 

BETA FIELD 654 

668 

DISP . F. 

WRITE 

1 

SCALE : 662A 

DATA 
ELEMENT MASK IMMEDIATEI 

FIELD 

660 DISPFF . WIDTH FIELD FIELD 672 1 
662B FIELD 664 670 

1 

NO MEMORY 

ACCESS NO MEMORY ACCESS , FULL 605 ROUND CNTRL TYPE OP . 610 

Patent Application Publication 

1 

GENERIC VECTOR FRIENDLY INSTRUCTION FORMAT 600 

1 

| RS FIELD 652A ROUND 652A , 1 

IFORMAT 

BASE REGISTER NO OPERATION INDEX MEMORY CLASS 

FIELD 

FIELD 

FIELD 

| 640 

ACCESS A 668A 

642 644 646A 

NO MEMORY ACCESS , DT TYPEJ OPERATION 615 

1 

ROUND CONTROL FIELD 654A SAE ROUND FIELD OPERATION 
656 

FIELD 658 

DATA 
WRITE ELEMENT MASK IMMEDIATE WIDTH FIELD ) FIELD 672 

FIELD 664 ) 670 

FORMAT 

BASE REGISTER NO 

FORMAT 

OPERATION INDEX MEMORY CLASS 

FIELD 

FIELD FIELD ACCESS A 668A 

640 

642 644 646A 

DATA 

DATA TRANSFORM 
TRANSFORMI 652A.2 
FIELD 654B 

DATA 
WRITE ELEMENT MASK IMMEDIATEI 

WIDTH FIELD FIELD 672 | 

FIELD 664 670 

Apr. 1 , 2021 Sheet 5 of 17 

MEMORY ACCESS 620 

MEMORY ACCESS , TEMPORAL 625 

EVICTION 1 HINT ( EH ) FIELD 652B 

1 

BASE REGISTER 

FORMAT 
OPERATION INDEX 

MEMORY 
CLASS TEMPORAL 

FIELD 

ACCESS 

FIELD 

FIELD 

640 

646B 

A 668A 652B.1 

642 644 

DATA WRITE 

DISP . F. 

DATA SCALE 662A 

ELEMENT MASK IMMEDIATE 

MANIPULATION FIELD 

DISP . F. F. WIDTH FIELD FIELD 672 | 

FIELD 654C 660 

662B FIELD 664 670 

1 

I 

MEMORY ACCESS , NONTEMPORAL 630 
BASE 

FORMAT 

REGISTER 
MEMORY 

NON 

OPERATION INDEX 

CLASS 

FIELD 

FIELD FIELD 

ACCESS 

TEMPORAL 

640 

646B 

A 668A 

642 

652B.2 

644 

DISP . F. 

SCALE 

WRITE 
DATA 

662A 

FIELD 

ELEMENT MASK IMMEDIATEI 

660 

DISP . F. F. WIDTH FIELD FIELD 672 | 

662B 

FIELD 664 ) 670 

US 2021/0096930 A1 

DATA MANIPULATION FIELD 654C 



FULL OPCODE FIELD 674 

FIG . 6B 

BASE REGISTER 

AUGMENTATION OPERATION FIELD 650 

FORMAT 

MODIFIER 
OPERATION INDEX 

FIELD 

FIELD 
CLASS 

FIELD FIELD 

ALPHA 

646 

FIELD 

BETA FIELD 654 

644 

FIELD 652 

668 

DISP . F. 

WRITEI 
DATA 

SCALE 
662A 

ELEMENT MASK IMMEDIATEI 

FIELD 

DISP . F. F. WIDTH FIELD | FIELD 672 i 

660 

662B FIELD 664 670 

| 640 

642 

1 

Patent Application Publication 

GENERIC VECTOR FRIENDLY INSTRUCTION FORMAT 600 

NO MEMORY 

1 

RL 

ACCESS 

FIELD 

605 NO MEM . ACC . , W.M.C. , PART . RND . CNTRL . TYPE OP . 612 
BASE 

FORMAT 

REGISTER NO 

ROUND 

MEMORY CLASS WRITE MASK 

OPERATION INDEX 
FIELD 

RND 

CONTROL 

FIELD 

OPERATION 

FIELD 

640 

ACCESS B 668B 

657A . 1 

FIELD 6520 

642 644 646A 

FIELD 659A 
| 657A 1 

FORMATI 

DATA 
WRITE ELEMENT MASK IMMEDIATE ! WIDTH FIELD FIELD 672 1 

FIELD 664 670 

FORM 

NO MEM . ACC . , W.M.C. , VSIZE TYPE OP . 617 

BASE REGISTER NO INDEX 

VECTOR 

MEMORY CLASS WRITE MASK VSIZE 

FIELD 

CONTROL 

LENGTH 

FIELD 

FIELD ACCESS B 668B 

657A.2 

640 

FIELD 652C 

642 

FIELD 659B 

644 

646A 

FORMATOPERATION 

1 

WRITE 
DATA 

ELEMENT MASK IMMEDIATE 
WIDTH FIELD FIELD 672 i 

FIELD 664 670 

1 

Apr. 1 , 2021 Sheet 6 of 17 

1 

1 

MEMORY ACCESS 620 

MEM . ACC , W.M.C. , 627 BASE REGISTER 

FORMAT 

BROAD 

OPERATION 

MEMORY 
INDEX 

WRITE MASK 

CLASS 
ACCESS 

CAST 

FIELD 

CONTROL 

FIELD FIELD 

FIELD 

640 

B 668B 

646B 

FIELD 652C 

642 644 

657B 

1 

TDISP.E 

DATA WRITE 

VECTOR SCALEL_662A_ELEMENT MASK IMMEDIATE 
LENGTH FIELD 

DISP . F. F. WIDTH FIELD FIELD 672 

FIELD 659B 660 

FIELD 664 670 

662B 

1 

US 2021/0096930 A1 



FIG . 7A 

0 

O 

EVEX PREFIX 702 

DATA ELEMENT 

CLASS 

WIDTH FIELD 664 

FIELD 668 REX ' 710 

REX ' 710 

BETA FIELD 654 

MOD R / M BYTE 
7 65 32 

MOD REG R / M 
742 744 746 

SIB BYTE 
7 65 32 

SS 

XXX BBB 

752 

754 756 DISPLACEMENT FIELD 662A | ( DISP32 WHEN MOD = 10 ) 

Patent Application Publication 

1 

??? ??? SIB DODDIMM8 ] 
S2 

750 ? 

ALPA 

MMW 

0x62 RXBR'MMMMWVV VUPPA BBBVKKK YYYYYYYY MOD R / M 

REX OPCODE ! WW FIELD 720 

REAL OPCODE FIELD ! 

740 750 

672 

705 

730 

FORMAT 

MAP 

ALPHA FIELD 

FIELD 640 

715 

652 

WRITE MASK 

DISPLACEMENT FACTOR FIELD 662B ( DISP8 * N 

PREFIX 

FIELD 

WHEN MOD = 01 ) . REFERRED TO AS DISP8 * N , BUT 

ENCODING 

670 

HOLDS ONLY THE DISPLACEMENT FACTOR 

FIELD 725 

WHICH IS MULTIPLIED BYN 

SPECIFIC VECTOR FRIENDLY INSTRUCTION FORMAT 700 

FIG . 7B FULL OPCODE FIELD 674 

FIG . 7C 

OPCODE MAP 715 

FORMAT FIELD 640 

DATA ELEMENT 

R XBR V 

WIDTH FIELD 664 

Apr. 1 , 2021 Sheet 7 of 17 

REGISTER INDEX FIELD 644 
REG R / M VVVV 

XXX 

BBB 

RYBES 
? 

7 ? 

744 

746 

754 

756 

REX 

REX 710 

WW FIELD 720 

705 

Ox62 PPMMMM W YYYYYYYY 
PREFIX ENCODING FIELD 725 

BASE OPERATION FIELD 642 

REAL OPCODE FIELD 730 

US 2021/0096930 A1 



Patent Application Publication Apr. 1 , 2021 Sheet 8 of 17 US 2021/0096930 A1 

FIG . 7D CLASS FIELD ALPHA FIELD BETA FIELD 654 668 652 
AUGMENTATION OPERATION FIELD 650 [ U ] ??????? 

RS . MOD FIELD 742 
FIELD 652A a BIBIB 11 a BIBIB RS 
ROUND 652A . 1 FIELD 652A 

1 r2 r1 ro O S2 S1 SO SAE FIELD DATA 656 I TRANSFORM ROUND OPERATION FIELD 658 1 652A.2 DATA TRANSFORM 
I FIELD 654B ROUND CONTROL FIELD 654A U = 0 

MOD FIELD 742 
a BBB 00 OR 01 OR 10 

662A 

| SIB DODO 

BIBI BRL BBB RL 

EVICTION EH S2 S1 ISO HINT FIELD 
652B 750 662B 

DATA MANIPULATION FIELD 654C 
MOD FIELD 742 

11 
FIELD FIELD 
657A 657A 

WRITE r1 rol 1 L1 LoO MASK ROUND 1 VSIZE 
CONTROL 657A.1 657A.2 

FIELD 652C a ROUND VECTOR LENGTH FIELD OPERATION 
FIELD 659A 659B T MERGING 0 MOD FIELD 742 

ZEROING ????? 00 OR 01 OR 10 
1 662A 

U = 1 

__662 LILI B ] [ SIB LONDOC 
750 662B 

VECTOR LENGTH 
FIELD 659B BROADCAST FIELD 657B 



REGISTER ARCHITECTURE 800 

SCALAR FP STACK REGISTER FILE 845 ( X87FP ) 80 BITS 

GENERAL PURPOSE REGISTERS 825 16 X 64 BITS 

0 

Patent Application Publication 

ALIASED 

7 

VECTOR REGISTERS 810 512 BITS 

zmmo 

64 BITS MMX PACKED INT FLAT REGISTER FILE 850 

ymmo 
xmmo 

WRITE MASK REGISTERS 815 64 BITS 

ko 

Apr. 1 , 2021 Sheet 9 of 17 

ymm 15 

xmm 15 128 BITS 
256 BITS 

zmm 31 

k7 

US 2021/0096930 A1 

FIG . 8 



PIPELINE 900 

FIG . 9A REGISTER 

LENGTH 
FETCH 

DECODEALLOC . RENAMING SCHEDULE READ 

DECODING 
902 

906 908 910 912 MEMORY READ 

904 

914 

COMMITI 

WRITE BACK 

EXECUTE STAGE MEMORY 
916 

WRITE 918 

I. 

EXCEPTION HANDLING 922 
924 1 
I 

Patent Application Publication 

BRANCH PREDICTION UNIT 932 

INSTRUCTION CACHE UNIT 934 INSTRUCTION TLB UNIT 936 

CORE 990 

INSTRUCTION FETCH 938 

FRONT END UNIT 930 

DECODE UNIT 940 

EXECUTION ENGINE UNIT 950 

T 

RENAME I ALLOCATOR UNIT 952 

J 

FIG . 9B 

RETIREMENT UNIT 

SCHEDULER UNIT ( S ) 956 

954 

1 

PHYSICAL REGISTER FILES UNIT ( S ) 958 

Apr. 1 , 2021 Sheet 10 of 17 

EXECUTION UNIT ( S ) 962 
MEMORY ACCESS UNIT ( S ) 964 

EXECUTION CLUSTER ( S ) 960 

DATA TLB UNIT 972 DATA CACHE UNIT 974 

MEMORY UNIT 970 

L2 CACHE UNIT 976 

US 2021/0096930 A1 



INSTRUCTION DECODE 1000 

WRITE MASK REGISTERS 1026 

Patent Application Publication 

SCALAR UNIT 1008 

VECTOR UNIT 1010 

16 - WIDE VECTOR ALU 1028 

SCALAR REGISTERS 1012 

REPLICATE 1024 
SWIZZLE 1020 

VECTOR REGISTERS 1014 

L1 CACHE 1006 

VECTOR REGISTERS 1014 

Apr. 1 , 2021 Sheet 11 of 17 

LOCAL SUBSET OF THE L2 CACHE 1004 

NUMERIC CONVERT 1022A 

NUMERIC CONVERT 1022B 

RING NETWORK 1002 

L1 DATA CACHE 1006A 

FIG . 10A 

US 2021/0096930 A1 

FIG . 10B 



Patent Application Publication 

PROCESSOR 1100 

SPECIAL PURPOSE LOGIC 1108 

SYSTEM AGENT UNIT 1110 

CORE 1102A CACHE UNIT ( S ) 1104A 

CORE 1102N CACHE UNIT ( S ) 1104N 

BUS CONTROLLER UNIT ( S ) 1116 

SHARED CACHE UNIT ( S ) 1106 
RING 1112 

INTEGRATED MEMORY CONTROLLER UNIT ( S ) 1114 

Apr. 1 , 2021 Sheet 12 of 17 

L 

= ? 

FIG . 11 

US 2021/0096930 A1 



Patent Application Publication Apr. 1 , 2021 Sheet 13 of 17 US 2021/0096930 A1 

1215 1200 

1210 

- IT PROCESSOR ? 

1295 
1245 1240 

CONTROLLER 
HUB 1220 CO 

PROCESSOR GMCH 1290 
1 

T 
NON - WRITE 
BACK LOCK 

DISABLEMENT 
CODE 
1240A 

1260 - 

JOH 1250 1/0 

FIG . 12 



1300 

PROCESSOR 

PROCESSOR COPROCESSOR 

MEMORY 1332 

MEMORY 1334 

Patent Application Publication 

IMC 

IMC 

1382 

1372 

1350 

1378 

1376 

1388 

1386 

1370 

P - P 

P - P 

P - P 

P - P 

1380 1354 

1352 1394 

CHIPSET 1390 

1339 

P - P 

P - P 

1398 

| COPROCESSOR 1338 

VF 

1392 

VF 

1396 

Apr. 1 , 2021 Sheet 14 of 17 

· 1316 

BUS BRIDGE 1318 

I / O DEVICES 
1314 

AUDIO 1/0 1324 

PROCESSOR 1315 

1320 

DATA STORAGE 

KEYBOARD MOUSE 

1322 

COMM DEVICES 

1327 

CODE AND DATA 

US 2021/0096930 A1 

1330 

1328 

FIG . 13 



1 / O DEVICES 
1414 

1400 

Patent Application Publication 

PROCESSOR 

PROCESSOR 

MEMORY 1332 

MEMORY 1334 

CL 

CL 

Z 
1372 

1382 

1350 

1378 

1376 

1388 

1386 

1370 

P - P 

P - P P - P 

P - P 

P - P 

1380 

1352 

1354 

Apr. 1 , 2021 Sheet 15 of 17 

P - P 

1394 

P - P 

1398 

CHIPSET 
1 / F 

1396 

1390 

LEGACY I / O 
1415 

US 2021/0096930 A1 

FIG . 14 



APPLICATION PROCESSOR 1510 

Patent Application Publication 

CORE 1102A 

CORE 1102N 

SYSTEM ON A CHIP 1500 

SYSTEM AGENT UNIT 1110 

CACHE UNIT ( S ) 1104A 

CACHE 1 UNIT ( S ) 1 1104N 
L 

1 SHARED CACHE UNIT ( S ) 1106 

COPROCESSOR ( S ) 1520 

INTERCONNECT UNIT ( S ) 1502 

BUS CONTROLLER UNIT ( S ) 1116 

Apr. 1 , 2021 Sheet 16 of 17 

INTEGRATED MEMORY CONTROLLER UNIT ( S ) 1114 

SRAM UNIT 1530 

DMA UNIT 1532 

DISPLAY UNIT 1540 

FIG . 15 

US 2021/0096930 A1 



PROCESSOR WITHOUT AN X86 INSTRUCTION SET CORE 1614 

PROCESSOR WITH AT LEAST ONE X86 INSTRUCTION SET CORE 1616 

Patent Application Publication 

HARDWARE SOFTWARE 

ALTERNATIVE INSTRUCTION SET BINARY CODE 1610 

INSTRUCTION CONVERTER 1612 

X86 BINARY CODE 1606 

Apr. 1 , 2021 Sheet 17 of 17 

ALTERNATIVE INSTRUCTION SET COMPILER 1608 

X86 COMPILER 1604 

HIGH LEVEL LANGUAGE 1602 

US 2021/0096930 A1 

FIG . 16 



US 2021/0096930 A1 Apr. 1 , 2021 
1 

APPARATUSES , METHODS , AND SYSTEMS 
FOR PROCESSOR NON - WRITE - BACK 

CAPABILITIES 

TECHNICAL FIELD 

[ 0001 ] The disclosure relates generally to electronics , and , 
more specifically , an embodiment of the disclosure relates to 
a processor with non - write - back capabilities . 

BACKGROUND 
[ 0002 ] A processor , or set of processors , executes instruc 
tions from an instruction set , e.g. , the instruction set archi 
tecture ( ISA ) . The instruction set is the part of the computer 
architecture related to programming , and generally includes 
the native data types , instructions , register architecture , 
addressing modes , memory architecture , interrupt and 
exception handling , and external input and output ( 1/0 ) . It 
should be noted that the term instruction herein may refer to 
a macro - instruction , e.g. , an instruction that is provided to 
the processor for execution , or to a micro - instruction , e.g. , 
an instruction that results from a processor's decoder decod 
ing macro - instructions . 

[ 0015 ] FIG . 8 is a block diagram of a register architecture 
according to one embodiment of the disclosure 
[ 0016 ] FIG . 9A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the disclosure . 
[ 0017 ] FIG . 9B is a block diagram illustrating both an 
exemplary embodiment of an in - order architecture core and 
an exemplary register renaming , out - of - order issue / execu 
tion architecture core to be included in a processor according 
to embodiments of the disclosure . 
[ 0018 ] FIG . 10A is a block diagram of a single processor 
core , along with its connection to the on - die interconnect 
network and with its local subset of the Level 2 ( L2 ) cache , 
according to embodiments of the disclosure . 
[ 0019 ] FIG . 10B is an expanded view of part of the 
processor core in FIG . 10A according to embodiments of the 
disclosure . 
[ 0020 ] FIG . 11 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the disclosure . 
[ 0021 ] FIG . 12 is a block diagram of a system in accor 
dance with one embodiment of the present disclosure . 
[ 0022 ] FIG . 13 is a block diagram of a more specific 
exemplary system in accordance with an embodiment of the 
present disclosure . 
[ 0023 ] FIG . 14 , shown is a block diagram of a second 
more specific exemplary system in accordance with an 
embodiment of the present disclosure . 
[ 0024 ] FIG . 15 , shown is a block diagram of a system on 
a chip ( SOC ) in accordance with an embodiment of the 
present disclosure . 
[ 0025 ] FIG . 16 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the disclosure . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] The present disclosure is illustrated by way of 
example and not limitation in the figures of the accompa 
nying drawings , in which like references indicate similar 
elements and in which : 
[ 0004 ] FIG . 1 illustrates a hardware processor coupled to 
a memory according to embodiments of the disclosure . 
[ 0005 ] FIG . 2 illustrates an example format for a memory 
control register according to embodiments of the disclosure . 
[ 0006 ] FIG . 3 illustrates an example format for a capa 
bilities register according to embodiments of the disclosure 
according to embodiments of the disclosure . 
[ 0007 ] FIG . 4 illustrates an example format for control 
registers ( e.g. , CR4 to CRO ) according to embodiments of 
the disclosure . 
[ 0008 ] FIG . 5 is a flow diagram according to embodiments 
of the disclosure . 
[ 0009 ] FIG . 6A is a block diagram illustrating a generic 
vector friendly instruction format and class A instruction 
templates thereof according to embodiments of the disclo 

DETAILED DESCRIPTION 

sure . 

[ 0010 ] FIG . 6B is a block diagram illustrating the generic 
vector friendly instruction format and class B instruction 
templates thereof according to embodiments of the disclo 
sure . 

[ 0011 ] FIG . 7A is a block diagram illustrating fields for the 
generic vector friendly instruction formats in FIGS . 6A and 
6B according to embodiments of the disclosure . 
[ 0012 ] FIG . 7B is a block diagram illustrating the fields of 
the specific vector friendly instruction format in FIG . 7A that 
make up a full opcode field according to one embodiment of 
the disclosure . 
[ 0013 ] FIG . 7C is a block diagram illustrating the fields of 
the specific vector friendly instruction format in FIG . 7A that 
make up a register index field according to one embodiment 
of the disclosure . 
[ 0014 ] FIG . 7D is a block diagram illustrating the fields of 
the specific vector friendly instruction format in FIG . 7A that 
make up the augmentation operation field 650 according to 
one embodiment of the disclosure . 

[ 0026 ] In the following description , numerous specific 
details are set forth . However , it is understood that embodi 
ments of the disclosure may be practiced without these 
specific details . In other instances , well - known circuits , 
structures and techniques have not been shown in detail in 
order not to obscure the understanding of this description . 
[ 0027 ] References in the specification to “ one embodi 
ment , " " an embodiment , " " an example embodiment , " etc. , 
indicate that the embodiment described may include a 
particular feature , structure , or characteristic , but every 
embodiment may not necessarily include the particular 
feature , structure , or characteristic . Moreover , such phrases 
are not necessarily referring to the same embodiment . Fur 
ther , when a particular feature , structure , or characteristic is 
described in connection with an embodiment , it is submitted 
that it is within the knowledge of one skilled in the art to 
affect such feature , structure , or characteristic in connection 
with other embodiments whether or not explicitly described . 
[ 0028 ] A ( e.g. , hardware ) processor ( e.g. , having one or 
more cores ) may execute instructions ( e.g. , a thread of 
instructions ) to operate on data , for example , to perform 
arithmetic , logic , or other functions . For example , software 
may request an operation and a hardware processor ( e.g. , a 
core or cores thereof ) may perform the operation in response 
to the request . In certain embodiment , a logical processor or 



US 2021/0096930 A1 Apr. 1 , 2021 
2 

non 

logical processors ( e.g. , of a central processing unit ( CPU ) 
is to perform the operation in response to the request . A 
logical processor may be a core . A plurality of logical 
processors may be implemented on a single core , for 
example , where the core's components support multithread 
ing ( e.g. , executing two or more parallel sets of operations 
or threads ) , and may do so in a variety of ways including 
time sliced multithreading , simultaneous multithreading 
( where a single physical core provides a logical core for each 
of the threads that physical core is simultaneously multi 
threading ) , or a combination thereof ( e.g. , time sliced fetch 
ing and decoding and simultaneous multithreading thereaf 
ter such as in the Intel® Hyper - Threading technology ) . 
[ 0029 ] In certain embodiments , a plurality of logical pro 
cessors performs operations . At least one of the logical 
processors may perform a locked read - modify - write ( RMW ) 
operation where the storage for the data to be read , then 
modified , the written back in its modified state , is locked 
from other logical processors modifying that storage during 
the RMW operation . As one example , a first logical proces 
sor that is to modify data ( e.g. , a cache line of data ) is to 
assert a lock over the storage for that data , modifies the data 
( e.g. , one or more bits thereof ) , then writes the modified 
version of the data back into the storage ( e.g. , the same 
location that was read from ) , and then deasserts the lock , 
e.g. , to prevent another logical processor from performing a 
write between the read and the write by the first logical 
processor . Non - limiting examples of read - modify - write 
types of memory requests that implement a lock ( e.g. , a bus 
lock ) are certain lock instructions and flows ( e.g. , ADD with 
a lock prefix , updating segment access bits , or page tables 
access / dirty bits ) . 
[ 0030 ] In certain embodiments , a locked RMW operation 
is for data that is stored in a cache ( e.g. , an Ll cache ) shared 
by a plurality of logical processors , so it only impacts 
software running on same logical processors that share this 
cache . However , in other embodiments , a non - write - back 
lock is implemented for an RMW type of memory request to 
the storage storing the data to be read and modified . In one 
embodiment , a non - write - back lock is implemented because 
the data to be read and modified is not stored within a ( e.g. , 
internal ) cache of the logical processor to perform the RMW 
operation , but is stored in memory separate from the cache 
that is locked from other accesses by the non - write - back 
lock . For example , locking a bus that couples a plurality of 
logical processors to a memory . 
[ 0031 ] However , in certain embodiments , the non - write 
back lock blocks all logical processors ( e.g. , that are coupled 
to the memory via the bus that is locked ) from accessing 
memory till the RMW operation is completed . Having a 
burst of bus locks by one of the logical processors thus 
causes data starvation to the rest of the logical processors in 
these embodiments . In a processor running real - time soft 
ware ( e.g. , a real - time operating system ( RTOS ) ) and gen 
eral - purpose software ( e.g. , general purpose operating sys 
tem ( GPOS ) ) , memory requests from the general - purpose 
software that cause issuance of non - write - back locks pre 
vents the real - time software from accessing memory , and 
thus prevents real - time software from progressing in these 
embodiments . In one embodiment , this happens in a system 
including both RTOS and GPOS , where a GPOS configures 
a page table to allow non - write - back ( non - WB ) access to 
software . The embodiments herein thus are an improvement 
to the functioning of the processor ( e.g. , of a computer ) itself 

by allowing for the selective control of the implementation 
or disabling of non - write - back locks as disclosed . With this 
feature , an internet of things ( IoT ) system can be free of 
these bus locks and will allow real - time software to run 
without interference from other software on the processor 
( e.g. , CPU ) . 
[ 0032 ] Certain embodiments herein provide a new archi 
tecture that allow software ( e.g. , an operating system ) to 
selectively disable non - write - back lock accesses ( e.g. , dis 
ables servicing the memory request that was to cause the 
non - write - back lock ) , e.g. , in contrast to just disabling all 
types of locks . In one embodiment , a new model - specific 
register ( MSR ) bit is added , that when set to an " on " value , 
is to cause the processor ( e.g. , CPU ) to disable non - write 
back lock accesses , for example , by causing the generation 
of a general protection ( GP ) fault when software issues a 
-WB lock access while this MSR bit is set to the " on " 

value . 
[ 0033 ] FIG . 1 illustrates a hardware processor 100 coupled 
to a memory 102 according to embodiments of the disclo 
sure . Memory 102 may be system memory , e.g. , separate 
from a cache . Hardware processor 100 may include one or 
more cores ( e.g. , cores 104-1 to 104 - N , where N is any 
integer greater than one ) . Each core may include one or 
more logical processors . A single logical processor may be 
a single core . A plurality of logical processors may be 
implemented on a single core , for example , where the core's 
components support multithreading ( e.g. , executing two or 
more parallel sets of operations or threads ) , and may do so 
in a variety of ways including time sliced multithreading , 
simultaneous multithreading ( where a single physical core 
provides a logical core for each of the threads that physical 
core is simultaneously multithreading ) , or a combination 
thereof ( e.g. , time sliced fetching and decoding and simul 
taneous multithreading thereafter such as in the Intel® 
Hyper - Threading technology ) . A logical processor may 
share access to certain components , e.g. , cache ( s ) or 
memory . 
[ 0034 ] Hardware processor 100 , as depicted in FIG . 1 , 
includes two cores , core 104-1 and core 104 - N , which share 
access to a higher level cache 128. Each core may execute 
a plurality of hardware threads . For example , in an embodi 
ment with two logical processors being implemented by 
each core , software entities , such as an operating system , 
may view processor 100 as four separate logical processors , 
while processor 100 is capable of executing four software 
threads . Cores 104 - A to 104 - N may be symmetric cores as 
shown or be asymmetric cores , e.g. , cores with different 
configurations , execution units , etc. 
[ 0035 ] In certain embodiments , core 104-1 includes any 
combination of data register or registers 106-1 , control 
register or registers 110-1 , and capability register or registers 
108-1 . In one embodiment , data register 106-1 is used to 
store data that is to be operated on . In one embodiment , 
capability register 108-1 stores a bit or bits that each 
represent the capabilities of that particular core , for example , 
to indicate if the core ( or all cores ) supports non - write - back 
lock disablement as discussed herein e.g. , as depicted in 
FIG . 3. In one embodiment , control register 110-1 stores a 
bit or bits that each control whether certain functionality is 
enabled for that core , for example , to turn on or off the 
non - write - back lock disablement as discussed herein . In one 
embodiment , control register 110-1 includes a memory 
control register 112-1 , e.g. , as depicted in FIG . 2. In one 



US 2021/0096930 A1 Apr. 1 , 2021 
3 

embodiment , control register 110-1 includes other control 
register or registers 114-1 , e.g. , as depicted in FIG . 4 . 
[ 0036 ] Depicted core 104-1 includes a branch target buffer 
( BTB ) , instruction cache ( i - cache ) , and / or instruction trans 
lation lookaside buffer ( I - TLB ) 116-1 , e.g. , with a BTB to 
predict branches to be executed / taken , an instruction cache 
to cache instructions ( e.g. , instruction from a higher level 
cache and / or memory 102 ) and / or an I - TLB to store ( e.g. , 
linear to physical ) address translation entries for instruc 
tions . In certain embodiments , a processor 100 capable of 
speculative execution prefetches and speculatively executes 
predicted branches . 
[ 0037 ] Decoder 118-1 ( e.g. , decode circuit ) is to decode an 
instruction ( e.g. , received from fetching of the instruction ) 
into a decoded instruction . In one embodiment , processor 
100 supports an Instruction Set Architecture ( ISA ) which 
defines and specifies instructions that are decodable / execut 
able on processor 100 . 
[ 0038 ] Depicted core 104-1 includes a rename / allocator / 
scheduler 120-1 . In one embodiment , rename circuitry is a 
register renamer to rename program / instruction reference 
registers to other registers internal to processor 100. In one 
embodiment , allocator circuitry is to allocate ( e.g. , reserve ) 
processor resources , such as execution units and / or reorder 
buffers to track instruction results . In one embodiment , 
scheduler circuitry is to schedule execution of the instruction 
( e.g. , microcode corresponding to the instruction on the 
processor resources ( e.g. , execution unit ( s ) 122-1 ) . 
[ 0039 ] In certain embodiments , instructions ( e.g. , micro 
code ) are scheduled on execution units ( e.g. , execution 
circuits ) according to their type and / or availability . For 
example , a floating point instruction is scheduled on a port 
of an execution unit that has an available floating point 
execution unit . Register files associated with the execution 
units may also be included to store information instruction 
processing results . Exemplary execution units include a 
floating point execution unit , an integer execution unit , a 
jump execution unit , a load execution unit , a store execution 
unit , or other execution units . 
[ 0040 ) Depicted core 104-1 includes a reorder / retirement 
unit 124-1 . In one embodiment , reorder / retirement unit 
124-1 includes components , such as the reorder buffers 
mentioned above , load buffers , and store buffers , to support 
out - of - order execution and later in - order retirement of 
instructions executed out - of - order , e.g. , where allocator and 
rename circuitry also reserve other resources , such as reor 
der buffers to track instruction results . 
[ 0041 ] In certain embodiments , core 104 - N includes any 
combination of data register or registers 106 - N , control 
register or registers 110 - N , and capability register or regis 
ters 108 - N . In one embodiment , data register 106 - N is used 
to store data that is to be operated on . In one embodiment , 
capability register 108 - N stores a bit or bits that each 
represent the capabilities of that particular core , for example , 
to indicate if the core ( or all cores ) supports non - write - back 
lock disablement as discussed herein e.g. , as depicted in 
FIG . 3. In one embodiment , control register 110 - N stores a 
bit or bits that each control whether certain functionality is 
enabled for that core , for example , to turn on or off the 
non - write - back lock disablement as discussed herein . In one 
embodiment , control register 110 - N includes a memory 
control register 112 - N , e.g. , as depicted in FIG . 2. In one 
embodiment , control register 110 - N includes other control 
register or registers 114 - N , e.g. , as depicted in FIG . 4 . 

[ 0042 ] Depicted core 104 - N includes a branch target buf 
fer ( BTB ) , instruction cache ( i - cache ) , and / or instruction 
translation lookaside buffer ( I - TLB ) 116 - N , e.g. , with a BTB 
to predict branches to be executed / taken , an instruction 
cache ( i - cache ) to cache instructions ( e.g. , instruction from 
a higher level cache and / or memory 102 ) , and / or an I - TLB 
to store ( e.g. , linear to physical ) address translation entries 
for instructions . In certain embodiments , a processor 100 
capable of speculative execution prefetches and specula 
tively executes predicted branches . 
[ 0043 ] Decoder 118 - N ( e.g. , decode circuit ) is to decode 
an instruction ( e.g. , received from fetching of the instruc 
tion ) into a decoded instruction . In one embodiment , pro 
cessor 100 supports an Instruction Set Architecture ( ISA ) 
which defines and specifies instructions that are decodable / 
executable on processor 100 . 
[ 0044 ] Depicted core 104 - N includes a rename / allocator / 
scheduler 120 - N . In one embodiment , rename circuitry is a 
register renamer to rename program / instruction reference 
registers to other registers internal to processor 100. In one 
embodiment , allocator circuitry is to allocate ( e.g. , reserve ) 
processor resources , such as execution units and / or reorder 
buffers to track instruction results . In one embodiment , 
scheduler circuitry is to schedule execution of the instruction 
( e.g. , microcode corresponding to the instruction ) on the 
processor resources ( e.g. , execution unit ( s ) 122 - N ) . 
[ 0045 ] In certain embodiments , instructions ( e.g. , micro 
code ) are scheduled on execution units ( e.g. , execution circuits ) according to their type and / or availability . For 
example , a floating point instruction is scheduled on a port 
of an execution unit that has an available floating point 
execution unit . Register files associated with the execution 
units may also be included to store information instruction 
processing results . Exemplary execution units include a 
floating point execution unit , an integer execution unit , a 
jump execution unit , a load execution unit , a store execution 
unit , or other execution units . 
[ 0046 ] Depicted core 104 - N includes a reorder / retirement 
unit 124 - N . In one embodiment , reorder / retirement unit 
124 - N includes components , such the reorder buffers 
mentioned above , load buffers , and store buffers , to support 
out - of - order execution and later in - order retirement of 
instructions executed out - of - order , e.g. , where allocator and 
rename circuitry also reserve other resources , such as reor 
der buffers to track instruction results . 
[ 0047 ] Depicted core 104-1 includes a lower level data 
cache ( d - cache ) and / or data translation lookaside buffer 
( d - TLB ) , for example , with data cache to cache data ( e.g. , 
data from a higher level cache and / or memory 102 ) and / or 
D - TLB to store ( e.g. , linear to physical ) address translation 
entries for stored data , e.g. , coupled to a respective execu 
tion unit or units . Depicted processor 100 includes a higher 
level ( e.g. , L2 or L3 ) cache 128. A cache is included in 
certain embodiments to cache recently fetched and / or oper 
ated on elements . Note that higher - level may refer to cache 
levels being further way from the execution unit ( s ) . In one 
embodiment , higher - level cache 128 is a second - level ( L2 ) 
data cache . In one embodiment , each data cache is to store 
recently used / operated on elements , such as data operands , 
which are potentially held in cache coherency states , such 
as , but not limited to , modified , exclusive , shared , and 
invalid ( MESI ) states . A D - TLB may store recent virtual ( or 
linear ) to physical address translations . As a specific 
example , a processor may include a page table structure to 



US 2021/0096930 A1 Apr. 1 , 2021 
4 

break physical memory into a plurality of virtual pages . Data 
cache ( s ) may be utilized as a transactional memory or other 
memory to track tentative accesses during execution of a 
transaction . In one embodiment , page tables 136 and / or 
segment descriptor tables are stored in memory 102 , e.g. , 
and cached in one or more caches . 
[ 0048 ] Processor 100 may include a memory controller 
130 ( or a system on a chip ( SOC ) having processor 100 may 
include a memory controller ) . In one embodiment , memory 
controller 130 controls the memory accesses , e.g. , to service 
a miss of data in a cache by looking in a higher level cache ( s ) 
and / or memory 102. In one embodiment , higher level cache 
128 ( e.g. , and memory controller 130 ) are coupled to a bus 
132. In FIG . 1 , bus 132 includes a port 134 to memory 102 . 
Bus 132 may include other ports to communicate with 
devices external to processor 100 , such as memory 102 , a 
chipset , or other circuits . Memory 102 may be dedicated to 
processor 100 or shared with other devices in a system . 
Examples of memory 102 includes dynamic random access 
memory ( DRAM ) , static RAM ( SRAM ) , non - volatile 
memory ( NV memory ) , etc. Bus 132 may include input / 
output ( I / O ) buffers to transmit and receive bus signals on 
the bus . Bus may be an interconnect . 
[ 0049 ] In certain embodiments , a plurality of logical pro 
cessors ( e.g. , of a single core 104-1 or 104 - N , of on a 
plurality of cores 104-1 to 104 - N ) are performing opera 
tions . At least one of the logical processors may perform a 
locked read - modify - write ( RMW ) operation where the stor 
age for the data to be read , then modified , the written back 
in its modified state , is locked from other logical processors 
modifying that storage during the RMW operation . As one 
example , a first logical processor ( e.g. , of core 104-1 ) that is 
to modify data ( e.g. , a cache line of data ) is to assert a lock 
over the storage for that data , modifies the data ( e.g. , one or 
more bits thereof ) , then writes the modified version of the 
data back into the storage ( e.g. , the same location that was 
read from ) , and then de - asserts the lock , e.g. , to prevent 
another logical processor ( e.g. , of core 104-1 or of core 
104 - N ) from performing a write between the read and the 
write by the first logical processor . Non - limiting examples 
of read - modify - write types of memory requests that imple 
ment a lock ( e.g. , a bus lock ) are certain lock instructions 
and flows ( e.g. , ADD with a lock prefix , updating segment 
access bits , or page tables access / dirty bits ) . 
[ 0050 ] In certain embodiments , a locked RMW operation 
is for data that is stored in a cache ( e.g. , an L1 cache of core 
104-1 ) shared by a plurality of logical processors ( e.g. , an Li 
cache of core 104-1 ) , so it only impacts software running on 
same logical processors that share this cache . However , in 
other embodiments , a non - write - back lock is implemented 
for an RMW type of memory request to the storage storing 
the data to be read and modified . In one embodiment , a 
non - write - back lock is implemented because the data to be 
read and modified is not stored within a ( e.g. , internal ) cache 
of the logical processor to perform the RMW operation , but 
is stored in memory 102 separate from the cache that is 
locked from other accesses by the non - write - back lock . For 
example , locking a bus 132 that couples a plurality of logical 
processors to a memory . 
[ 0051 ] In one embodiment , a locked RMW operation is for 
data that is stored in a cache of core 104-1 or core 104 - N 
( e.g. , higher level cache 128 ) shared by a plurality of logical 
processors of core 104-1 or core 104 - N , and the cache that 
is locked from other accesses by a non - write - back lock of 

bus 132. Thus , in this embodiment , the non - write - back lock 
blocks all logical processors or core 104-1 or core 104 - N 
from accessing memory till the RMW operation is com 
pleted . For example , where a first logical processor is 
running real - time code and a second logical processor is 
running general - purpose code , memory requests from the 
general - purpose software that cause issuance of non - write 
back locks prevent the real - rime software from accessing 
memory , and thus prevents real - time software from pro 
gressing in certain embodiments . 
[ 0052 ] Certain embodiments herein provide a new archi 
tecture that allow software ( e.g. , an operating system ) to 
selectively disable non - write - back lock accesses ( e.g. , dis 
ables servicing the memory request that was to cause the 
non - write - back lock ) , e.g. , in contrast to just disabling all 
types of locks . In one embodiment , a new bit is added in 
control register 110-1 and / or control register 110 - N ( e.g. , 
memory control register 112-1 and / or memory control reg 
ister 112 - N ) , that when set to an " on " value instead of an 
" off " value , is to cause the processor ( e.g. , CPU ) to disable 
non - write - back lock accesses , for example , by causing the 
generation of a general protection ( GP ) fault when software 
issues a non - WB lock access while this MSR bit is set to the 
" on " value . In one embodiment , each core includes its own 
bit in its control register ( e.g. , memory control register ) , that 
when set to an “ on ” value instead of an " off " value , is to 
cause the core to disable non - write - back lock accesses for 
that core ( e.g. , each logical processor implemented on that 
core ) . In one embodiment , each core of multiple cores shares 
a bit ( or single field of multiple bits ) in a shared control 
register ( e.g. , memory control register ) , that when set to an 
" on " value instead of an “ off ” value , is to cause the cores to 
disable non - write - back lock accesses for those cores ( e.g. , 
each logical processor implemented on those cores ) . 
[ 0053 ] In certain embodiments , a memory request is sent 
by a requesting entity , e.g. , an execution unit sends a load 
request or a store request . The memory request may a be a 
read - modify - write type , e.g. , that reads a value from storage 
into an execution unit , modifies the value with the execution 
unit , and then writes that modified value back into the 
storage ( e.g. , the same storage location ) . In one embodi 
ment , a memory request is received by memory controller 
130 ( e.g. , to access memory 102 ) , and the memory controller 
is to check if the control register ( e.g. , memory control 
register ) has the bit in that control register ( e.g. , memory 
control register for a core that generated the memory 
request ) that is set to an " on " value instead of an " off " value , 
is and thus cause the memory controller 130 to disable 
non - write - back ( e.g. , noncached ) lock accesses for the 
memory 102 ( e.g. , by not allowing a bus lock of bus 132 for 
that memory request ) . In one embodiment , a non - write - back 
memory access is a memory access that is not serviceable 
from cache ( e.g. , non - cachable ) , but is serviced from 
memory 102 . 
[ 0054 ] In certain embodiments , memory requests for page 
tables 136 and / or segment descriptor tables 138 are read 
modify - write types of memory requests , and thus may cause 
a locking access ( e.g. , a non - write - back lock access ) of bus 
132. In certain embodiments , page tables 136 store data 
structure used by the virtual memory system in a computer 
( e.g. , operating system ) to indicate the mapping between 
virtual addresses and physical addresses to break physical 
memory into a plurality of virtual pages . In one embodi 
ment , the physical address of the current page directory is 



US 2021/0096930 A1 Apr. 1 , 2021 
5 

access ) is detected and the non - write - back lock disable bit is 
set ( e.g. , MEMORY_CONTROL [ Non_WB_LOCK_DIS 
ABLE ] bit is set ) : 
1. When hardware and / or software has disabled cache ( e.g. , 
by setting bit CD in register CRO to “ on ” ) so all access are 
un - cacheable , 
2. When memory of a protected container ( e.g. , enclave ) is 
used by memory encryption circuit 140 with non - write - back 
memory type , e.g. , preserved memory used for Intel® Soft 
ware Guard Extensions ( SGX ) is programmed with non 
write - back memory type , 
3. Virtual Machine Monitor ( VMM ) enabled extended page 
tables ( EPT ) and EPT Access / Dirty ( A / D ) and EPT memory 
type ( MEMTYPE ) is non - write - back ( non - WB ) , or 
4. Posted interrupt descriptor if it is mapped to non - write 
back memory . 

stored in register CR3 ( e.g. , in FIG . 4 ) , also may be referred 
to as the page directory base register ( PDBR ) . In certain 
embodiments , segment descriptor tables 138 store a data 
structure used by the virtual memory system in a computer 
( e.g. , operating system ) to map a virtual ( e.g. , logical ) 
address into a physical ( e.g. , linear ) address . 
[ 0055 ] Registers may include one or more of ( e.g. , any 
combination of ) : control registers ( e.g. , CRO through CR4 ) 
determine the operating mode of the processor and the 
characteristics of the currently exe xecuting task ; memory 
control registers may include one or more of memory 
management registers ( e.g. , global descriptor table register 
( GDTR ) , interrupt descriptor table register ( IDTR ) , task 
register , or local descriptor table register ( LDTR ) to specify 
the locations of data structures used in protected mode 
memory management ; debug registers ( e.g. , DRO through 
DR7 ) to control and allow monitoring of the processor's 
debugging operations ; memory type range registers 
( MTRRs ) used to assign memory types to regions of 
memory ; or machine ( e.g . , . model ) specific registers ( MSRs ) 
used to control and report on processor ( e.g. , per core ) 
performance ( e.g. , where MSRs , other than the time - stamp 
counter , are to handle system related functions and are not 
accessible to an application program ) . FIGS . 2-4 illustrate 
various register formats that may be utilized . 
[ 0056 ] In one embodiment , processor 100 is to disable a 
non - write - back lock access of the bus by generating a fault 
( e.g. , interrupt ) ( for example , a general protection fault that 
stops execution of the request for the lock of the bus and 
sends an interrupt , e.g. , to read by the operating system ) , 
for example , per logical processor or per core . 
[ 0057 ] In certain embodiments , there are some cases 
where it may be desirable for a processor ( e.g. , a CPU ) to not 
create a general protection fault even when a non - write - back 
lock ( e.g. , lock access ) of the bus ( e.g. , a locked RMW 

[ 0058 ] In certain embodiments hardware and / or software 
can ensure that bus locks ( as a result of a non - write - back 
locked access ) are never taken by : 
1. Setting non - write - back lock disable bit ( e.g. , in TEST_ 
CTRL [ NON - WRITE - BACK LOCK DISABLE ] ) to “ on ” , 
2. Not disabling caches ( e.g. , not setting CRO.CD to " on " ) , 
3. Configuring processor reserved memory range register 
( PRMRR ) to be “ write - back ” always ( e.g. , by setting control 
register that that provide operating system software with 
control of how accesses to memory ranges by the processor 
are cached ) , 
4. If using EPT and enabling EPT A / D bits , then locating 
EPT paging structures in write - back memory , or 
5. If using posted interrupts then locating the posted inter 
rupt descriptor in write back memory instead of non - write 
back memory 
[ 0059 ] Table 1 below illustrates example cases where bus 
locks can come from non - write - back lock access for a bus 
( e.g. , for a read - modify - write type of memory request ) . Note 
that the below includes example instructions , and the pos 
sible format of instructions if discussed further below . 

TABLE 1 

EXAMPLE FLOWS / INSTRUCTIONS THAT CAN CAUSE A BUS LOCK 

CATEGORY INSTRUCTIONS CONDITIONS 

ARITHMETIC IF MAPPED TO NON 
WRITE - BACK 
MEMORY 

COMPARE / TEST IF MAPPED TO NON 
WRITE - BACK 
MEMORY 

EXCHANGE IF MAPPED TO NON 
WRITE - BACK 
MEMORY 

LOCK PREFIX + { ADD , SUBTRACT , 
AND , OR , XOR , ADD WITH CARRY 
( ADC ) , SUBTRACT WITH BORROW 
( SBB ) , INCREMENT , DECREMENT , 
NOT , NEGATION ( TWO'S 
COMPLEMENT NEGATION ) } 
LOCK + { BIT TEST AND 
COMPLEMENT ( BTC ) , BIT TEST 
AND RESET ( BTR ) , BIT TEST AND 
SET ( BTS ) } 
EXCHANGE ( XCHG ) , LOCK 
PREFIX + { EXCHANGE AND ADD 
( XADD ) / COMPARE AND 
EXCHANGE ( CMPXCHG ) / 
EXCHANGE ( XCHG ) } 
LOAD SEGMENT LIMIT ( LSL ) , 
LOAD ACCESS RIGHTS BYTE 
( LAR ) , VERIFY A SEGMENT FOR 
READING ( VERR ) , VERIFY A 
SEGMENT FOR WRITING ( VERW ) , 
LOAD POINTER USING DATA 
SEGMENT ( DS ) REGISTER ( LDS ) , 
LOAD POINTER USING EXTRA 
SEGMENT ( ES ) REGISTER ( LES ) , 
LOAD POINTER USING FS 
REGISTER ( LFS ) , LOAD POINTER 
USING GS REGISTER ( LGS ) , LOAD 

SEGMENTATION SETTING SEGMENT 
ACCESSED BIT IN 
DESCRIPTOR IN NON 
WRITE - BACK 
MEMORY 



US 2021/0096930 A1 Apr. 1 , 2021 
6 

TABLE 1 - continued 

EXAMPLE FLOWS / INSTRUCTIONS THAT CAN CAUSE A BUS LOCK 

CATEGORY INSTRUCTIONS CONDITIONS 

POINTER USING STACK SEGMENT 
( SS ) REGISTER ( LSS ) , MOVE DATA 
INTO DS REGISTER ( MOV DS ) , 
MOVE DATA INTO ES REGISTER 
( MOV ES ) , MOVE DATA INTO FS 
REGISTER ( MOV FS ) , MOVE DATA 
INTO GS REGISTER ( MOV GS ) , 
MOVE DATA INTO SS REGISTER 
( MOV SS ) , POP A VALUE FROM 
STACK INTO DS REGISTER ( POP 
DS ) , POP A VALUE FROM STACK 
INTO ES REGISTER ( POP ES ) , POP 
A VALUE FROM STACK INTO FS 
REGISTER ( POP FS ) , POP A VALUE 
FROM STACK INTO GS REGISTER 
( POP GS ) , AND POP A VALUE 
FROM STACK INTO SS REGISTER ( POP SS ) 
FAR CALL , FAR JUMP ( JMP ) , FAR 
RETURN ( RET ) , INTERRUPT 
RETURN ( IRET ) , CALL INTERRUPT 
HANDLER “ N ” WHERE N 
SPECIFIES THE INTERRUPT 
VECTOR ( INT N ) , INTERRUPT TO 
GENERATE A BREAKPOINT TRAP 
( INT3 ) , INTERRUPT TO GENERATE 
OVERFLOW TRAP IF OVERFLOW 
FLAG IS ONE ( INTO ) , INTERRUPT 
TO GENERATE A DEBUG TRAP 
( INT1 ) , CALL THROUGH 
INTERRUPT / TRAP GATE 
LOAD TASK REGISTER ( LTR ) , 
TASK SWITCH 

CALL / INTERRUPT / 
EXCEPTION 

SETTING SEGMENT 
ACCESSED BIT IN 
DESCRIPTOR IN NON 
WRITE - BACK 
MEMORY 

TASKING SETTING / CLEARING 
TASK STATE 
SEGMENT ( TSS ) BUSY 
WHEN TSS IN MON 
WRITE - BACK 
MEMORY SETTING 
SEGMENT ACCESSED 
BIT IN DESCRIPTOR 
IN NON - WRITE - BACK 
MEMORY 
PAGE TABLES IN 
NON - WRITE - BACK 
MEMORY 

PAGING 

ENCLAVE 

CODE FETCH ( E.G. , A BIT 
UPDATE ) , E.G. , 
INSTRUCTIONS THAT HAVE 
MEMORY OPERANDS 
( ACCESS / DIRTY UPDATE ON 
DATA LOAD / STORE / LWSI ) 
ENTER AN ENCLAVE ( ENCLU ) , 
ACTIVATE BLOCK CHECKING 
FOR ENCLAVE ( ENCLS ) , 
ASYNCHRONOUS ENCLAVE EXIT 
( AEX ) CAUSED BY EVENTS 
WHILE EXECUTING ENCLAVE 
CODE 
UPDATING THE POSTED 
INTERRUPT DESCRIPTOR USES 
LOCKED READ - MODIFY - WRITE 
FOR ATOMIC OPERATIONS 

IF PRESERVED 
MEMORY IS MAPPED 
IN NON - WRITE - BACK 
MEMORY 

POSTED 
INTERRUPTS 

POSTED INTERRUPT 
DESCRIPTOR IN NON 
WRITE - BACK 
MEMORY 

[ 0060 ] In certain embodiments , a control bit is added to 
control enabling and disabling of non - write - back locks ( e.g. , 
by executing a write MSR ( WRMSR ) instruction , e.g. , after 
a read MSR ( RDMSR ) instruction to read the contents of 
that MSR ) ( e.g. , TEST_CTRL MSR ( address 033H ) bit # 28 
in FIG . 2 ) . 
[ 0061 ] In certain embodiments , a capability bit is added to 
enumerate that existence of non - write - back lock disable 
ment feature , ( e.g. , in IA32_CORE_CAPABILITIES MSR 
( address OCFH ) bit # 4 in FIG . 3 ) . 
[ 0062 ] FIG . 2 illustrates an example format 200 for a 
memory control register ( e.g. , TEST_CTRL ) according to 

embodiments of the disclosure . Depicted format 200 
includes a register address 202 of hexadecimal 33H ( decimal 
51 ) . Format 200 includes bit 28 to control the enabling ( e.g. , 
when set to zero ) and disabling ( e.g. , when set to one ) of 
non - write - back locks . Depicted format 200 further includes 
reserved ( e.g. , unused ) bits 0 to 27 , bit 29 to enable align 
ment check ( #AC ( 0 ) ) for split locked access , e.g. , to cause 
an alignment check exception for split locked access at all 
current privilege levels ( CPLs ) irrespective of CRO.AM of 
EFLAGS.AC ( e.g. , if bits 29 and 31 are set , bit 29 takes 
precedence ) , bit 30 being reserved , and bit 31 to disable bus 
lock ( e.g. , LOCK # signal ) assertion for split locked access . 



US 2021/0096930 A1 Apr. 1 , 2021 
7 

disablement capability disabling ( e.g. , when set to zero ) of 
non - write - back locks . The capabilities bit may be pro 
grammed during manufacture , e.g. , and not changeable by a 
user . 

In one embodiment , a split lock is an atomic operation that 
is to access two cache lines that causes a bus lock while the 
two cache lines are accessed . The non - write - back lock of a 
bus discussed herein may be utilized for access to a single 
cache line of data or less ( e.g. , not a split lock ) . 
[ 0063 ] It should be understood that the numbers are 
examples , and other formats may be used ( e.g. , 64 bit 
registers instead of 32 bit registers ) . 
[ 0064 ] FIG . 3 illustrates an example format 300 for a 
capabilities register according to embodiments of the dis 
closure according to embodiments of the disclosure . 
Depicted format 300 includes a register address 302 of 
hexadecimal CFH ( decimal 207 ) . Format 300 includes bit 4 
to indicate when the corresponding component ( e.g. , core ) 
includes non - write - back lock disablement capability ( e.g. , 
when set to one ) or does not include non - write - back lock 

[ 0065 ] Depicted format 300 further includes reserved 
( e.g. , unused ) bits 0 to 3 , bit 5 to indicate ( e.g. , when set to 
one ) that the component ( e.g. , core ) supports ( e.g. , #AC ( O ) ) 
alignment check exceptions for split locked accesses , and 
bits 6 to 31 being reserved . 
[ 0066 ] It should be understood that the numbers are 
examples , and other formats may be used ( e.g. , 64 bit 
registers instead of 32 bit registers ) . 
[ 0067 ] FIG . 4 illustrates an example format for control 
registers ( e.g. , CR4 to CRO ) according to embodiments of 
the disclosure . 
[ 0068 ] Format for register CR4 may include one or more 
of the following fields in Table 2 . 

TABLE 2 

CR4 example format 

Bit Name Full Name Description 

O VME Virtual 8086 Mode Extensions 

1 PVI Protected - mode Virtual 
Interrupts 

2 TSD Time Stamp Disable 

3 DE Debugging Extensions 
4 PSE Page Size Extension 

If set , enables support for the virtual 
interrupt flag ( VIF ) in virtual - 8086 
mode . 
If set , enables support for the virtual 
interrupt flag ( VIF ) in protected 
mode . 
If set , RDTSC instruction can only 
be executed when in ring 0 , 
otherwise RDTSC can be used at 
any privilege level . 
If set , enables debug register based 
breaks on I / O space access . 
If unset , page size is 4 KiB , else 
page size is increased to 4 MiB 
If PAE is enabled or the processor is 
in x86-64 long mode this bit is 
ignored . 
If set , changes page table layout to 
translate 32 - bit virtual addresses into 
extended 36 - bit physical addresses . 
If set , enables machine check 
interrupts to occur . 
If set , address translations ( PDE or 
PTE records ) may be shared 
between address spaces . 
If set , RDPMC can be executed at 
any privilege level , else RDPMC 
can only be used in ring 0 . 
If set , enables Streaming SIMD 
Extensions ( SSE ) instructions and 
fast FPU save & restore . 
If set , enables unmasked SSE 
exceptions . 

5 PAE Physical Address Extension 

6 MCE Machine Check Exception 

7 PGE Page Global Enabled 

8 PCE Performance - Monitoring 
Counter enable 

9 OSFXSR 

10 OSXMMEXCPT 

Operating system support for 
FXSAVE and FXRSTOR 
instructions 
Operating System Support for 
Unmasked SIMD Floating 
Point Exceptions 
User - Mode Instruction 
Prevention 

11 UMEP If set , the SGDT , SIDT , SLDT , 
SMSW and STR instructions cannot 
be executed if CPL > 0 . 

12 Reserved 
13 VMXE Virtual Machine Extensions 

Enable 
Safer Mode Extensions Enable 

Enables VT - x 
x86 virtualization . 
Enables Trusted Execution 
Technology ( TXT ) 

14 SMXE 

16 FSGSBASE Enables the instructions 
RDFSBASE , RDGSBASE , 
WRFSBASE , and 
WRGSBASE . 
PCID Enable 17 PCIDE If set , enables process - context 

identifiers ( PCIDs ) . 
18 OSXSAVE XSAVE and Processor 

Extended States Enable 



US 2021/0096930 A1 Apr. 1 , 2021 
8 

TABLE 2 - continued 

CR4 example format 

Bit Name Full Name Description 
20 SMEP 

21 SMAP 

Supervisor Mode Execution 
Protection Enable 
Supervisor Mode Access 
Prevention Enable 
Protection Key Enable 

If set , execution of code in a 
higher ring generates a fault . 
If set , access of data in a higher ring 
generates a fault . 
Enables protection key 22 PKE 

[ 0069 ] Format for register CR3 may include one or more 
of the following : when virtual addressing is enabled ( e.g. , 
the PG bit is set in CRO ) , CR3 enables the processor to 
translate linear addresses into physical addresses by locating 
the page directory and page tables for the current task . As 
one example , the upper 20 bits of CR3 are the page directory 
base register ( PDBR ) which stores the physical address of 
the first page directory entry . If the PCIDE bit in CR4 is set , 
the lowest 12 bits are used for the process - context identifier 
( PCID ) . Bit 4 may store page - level cache disable ( PCD ) to 
control the memory type used to access the first paging 
structure of the current paging - structure hierarchy ( e.g. , and 
this bit 4 not being used if paging is disabled , with physical 
address extension ( PAE ) paging , or with four - level paging 
when CR4.PCIDE = 1 ) . Bit 3 may store page - level write 
through ( PWT ) to control the memory type used to access 
the first paging structure of the current paging - structure 
hierarchy ( e.g. , and this bit 4 not being used if paging is 
disabled , with physical address extension ( PAE ) paging , or 
with four - level paging when CR4.PCIDE = 1 ) . 
[ 0070 ] Format for register CR2 may be storage for a 
Page - Fault Linear Address ( PFLA ) , e.g. , when a page fault 
occurs , the address the program attempted to access is stored 
in the CR2 register . 
[ 0071 ] Format for register CR1 may be reserved , e.g. , the 
processor ( e.g. , CPU ) will throw an ( e.g. , #UD ) exception 
when trying to access it . 
[ 0072 ] Format for register CRO may include one or more 
of the following fields in Table 3 . 

[ 0073 ] FIG . 5 is a flow diagram according to embodiments 
of the disclosure . Depicted flow 500 includes setting a 
non - write - back lock disable bit in a control register of a 
plurality of logical processors of a processor 502 ; perform 
ing a respective operation with each of the plurality of 
logical processors of the processor that share a cache 
coupled to a memory via a bus 504 ; receiving a memory 
request from a logical processor of the plurality of logical 
processors for the memory with a memory controller 506 ; 
disabling a non - write - back lock access of the bus for a 
read - modify - write type of the memory request issued by the 
logical processor of the plurality of logical processors with 
the memory controller when the non - write - back lock disable 
bit is set to a first value 508 ; and implementing the non 
write - back lock access of the bus for the read - modify - write 
type of the memory request with the memory controller 
when the non - write - back lock disable bit is set to a second 
value 510 . 
[ 0074 ] Exemplary architectures , systems , etc. that the 
above may be used in are detailed below . 
[ 0075 ] At least some embodiments of the disclosed tech 
nologies can be described in view of the following 
examples : 
Example 1. An apparatus comprising : 
a plurality of logical processors ; 
a control register comprising a non - write - back lock disable 
bit ; 
a cache shared by the plurality of logical processors ; 

TABLE 3 

CRO example format 

Bit Name Full Name Description 

O PE 

1 MP 

2 EM 

3 TS 

4. ET 

Protected Mode If one , system is in protected mode , else system is in real 
Enable mode 
Monitor co- Controls interaction of WAIT / FWAIT instructions with TS 
processor flag in CRO 
Emulation If set , no x87 floating - point unit present , if clear , x87 FPU 

present 
Task switched Allows saving x87 task context upon a task switch only after 

x87 instruction used 
Extension type On the 386 , it allowed to specify whether the external math 

coprocessor was an 80287 or 80387 
Numeric error Enable internal x87 floating point error reporting when set , 

else enables PC style x87 error detection 
Write protect When set , the CPU can't write to read - only pages when 

privilege level is o 
Alignment mask Alignment check enabled if AM set , AC flag 

( in EFLAGS register ) set , and privilege level is 3 
Not - write through Globally enables / disable write - through caching 
Cache disable Globally enables / disable the memory cache 
Paging If one , enable paging and use the CR3 register , else disable 

paging . 

5 NE 

16 WP 

18 AM 

29 NW 
30 CD 
31 PG 



US 2021/0096930 A1 Apr. 1 , 2021 
9 

a bus to couple the cache to a memory to service a memory 
request for the memory from the plurality of logical pro 
cessors ; and 
a memory controller to disable a non - write - back lock access 
of the bus for a read - modify - write type of the memory 
request issued by a logical processor of the plurality of 
logical processors when the non - write - back lock disable bit 
is set to a first value , and implement the non - write - back lock 
access of the bus for the read - modify - write type of the 
memory request when the non - write - back lock disable bit is 
set to a second value . 
2. The apparatus of example 1 , wherein the memory con 
troller is to create a general protection fault to disable the 
non - write - back lock access . 
3. The apparatus of example 1 , wherein the control register 
is a memory control register . 
4. The apparatus of example 3 , wherein an address of the 
memory control register is thirty - three hexadecimal . 
5. The apparatus of example 1 , further comprising a capa 
bilities register comprising a capability bit that , when set to 
a first value , indicates the plurality of logical processors 
supports a non - write - back lock access disable feature , and , 
when set to a second value , indicates the plurality of logical 
processors does not support the non - write - back lock access 
disable feature . 
6. The apparatus of example 1 , wherein the memory con 
troller is to , when a cache disable bit is set to a value in a 
second control register to disable the cache , not disable the 
non - write - back lock access of the bus for the read - modify 
write type of the memory request issued by the logical 
processor of the plurality of logical processors when the 
non - write - back lock disable bit is set to the first value . 
7. The apparatus of example 1 , wherein the memory con 
troller is to , when extended page tables are enabled and 
memory type is set to non - write - back , not disable the 
non - write - back lock access of the bus for the read - modify 
write type of the memory request issued by the logical 
processor of the plurality of logical processors when the 
non - write - back lock disable bit is set to the first value . 
8. The apparatus of example 1 , wherein the plurality of 
logical processors is a plurality of processor cores . 
Example 9. A method comprising : 
setting a non - write - back lock disable bit in a control register 
of a plurality of logical processors of a processor ; 
performing a respective operation with each of the plurality 
of logical processors of the processor that share a cache 
coupled to a memory via a bus ; 
receiving a memory request from a logical processor of the 
plurality of logical processors for the memory with a 
memory controller ; 
disabling a non - write - back lock access of the bus for a 
read - modify - write type of the memory request issued by the 
logical processor of the plurality of logical processors with 
the memory controller when the non - write - back lock disable 
bit is set to a first value ; and 
implementing the non - write - back lock access of the bus for 
the read - modify - write type of the memory request with the 
memory controller when the non - write - back lock disable bit 
is set to a second value . 
10. The method of example 9 , wherein the disabling the 
non - write - back lock access comprises generating a general 
protection fault . 
11. The method of example 9 , wherein the control register is 
a memory control register . 

12. The method of example 11 , wherein an address of the 
memory control register is thirty - three hexadecimal . 
13. The method of example 9 , further comprising setting a 
capability bit of a capabilities register of the processor to a 
first value to indicate the plurality of logical processors 
supports a non - write - back lock access disable feature , and 
setting the capability bit to a second value to indicate the 
plurality of logical processors does not support the non 
write - back lock access disable feature . 
14. The method of example 9 , further comprising setting a 
cache disable bit in a second control register to a value to 
disable the cache , wherein the memory controller then does 
not disable the non - write - back lock access of the bus for the 
read - modify - write type of the memory request issued by the 
logical processor of the plurality of logical processors when 
the non - write - back lock disable bit is set to the first value . 
15. The method of example 9 , further comprising enabling 
extended page tables for the plurality of logical processors 
and setting memory type to non - write - back , wherein the 
memory controller then does not disable the non - write - back 
lock access of the bus for the read - modify - write type of the 
memory request issued by the logical processor of the 
plurality of logical processors when the non - write - back lock 
disable bit is set to the first value . 
16. The method of example 9 , wherein the plurality of 
logical processors is a plurality of processor cores . 
Example 17. A non - transitory machine readable medium 
that stores code that when executed by a machine causes the 
machine to perform a method comprising : 
setting a non - write - back lock disable bit in a control register 
of a plurality of logical processors of a processor ; 
performing a respective operation with each of the plurality 
of logical processors of the processor that share a cache 
coupled to a memory via a bus ; 
receiving a memory request from a logical processor of the 
plurality of logical processors for the memory with a 
memory controller ; 
disabling a non - write - back lock access of the bus for a 
read - modify - write type of the memory request issued by the 
logical processor of the plurality of logical processors with 
the memory controller when the non - write - back lock disable 
bit is set to a first value ; and 
implementing the non - write - back lock access of the bus for 
the read - modify - write type of the memory request with the 
memory controller when the non - write - back lock disable bit 
is set to a second value . 
18. The non - transitory machine readable medium of 
example 17 , wherein the disabling the non - write - back lock 
access comprises generating a general protection fault . 
19. The non - transitory machine readable medium of 
example 17 , wherein the control register is a memory control 
register . 
20. The non - transitory machine readable medium of 
example 19 , wherein an address of the memory control 
register is thirty - three hexadecimal . 
21. The non - transitory machine readable medium of 
example 17 , further comprising setting a capability bit of 
a capabilities register of the processor to a first value to 
indicate the plurality of logical processors supports a non 
write - back lock access disable feature , and setting the capa 
bility bit to a second value to indicate the plurality of logical 
processors does not support the non - write - back lock access 
disable feature . 



US 2021/0096930 A1 Apr. 1 , 2021 
10 

below . Embodiments of the instruction ( s ) may be executed 
on such systems , architectures , and pipelines , but are not 
limited to those detailed . 

Generic Vector Friendly Instruction Format 

22. The non - transitory machine readable medium of 
example 17 , further comprising setting a cache disable bit in 
a second control register to a value to disable the cache , 
wherein the memory controller then does not disable the 
non - write - back lock access of the bus for the read - modify 
write type of the memory request issued by the logical 
processor of the plurality of logical processors when the 
non - write - back lock disable bit is set to the first value . 
23. The non - transitory machine readable medium of 
example 17 , further comprising enabling extended page 
tables for the plurality of logical processors and setting 
memory type to non - write - back , wherein the memory con 
troller then does not disable the non - write - back lock access 
of the bus for the read - modify - write type of the memory 
request issued by the logical processor of the plurality of 
logical processors when the non - write - back lock disable bit 
is set to the first value . 
24. The non - transitory machine readable medium of 
example 17 , wherein the plurality of logical processors is a 
plurality of processor cores . 
[ 0076 ] In yet another embodiment , an apparatus comprises 
a data storage device that stores code that when executed by 
a hardware processor causes the hardware processor to 
perform any method disclosed herein . An apparatus may be 
as described in the detailed description . A method may be as 
described in the detailed description . 
[ 0077 ] An instruction set may include one or more instruc 
tion formats . A given instruction format may define various 
fields ( e.g. , number of bits , location of bits ) to specify , 
among other things , the operation to be performed ( e.g. , 
opcode ) and the operand ( s ) on which that operation is to be 
performed and / or other data field ( s ) ( e.g. , mask ) . Some 
instruction formats are further broken down though the 
definition of instruction templates ( or subformats ) . For 
example , the instruction templates of a given instruction 
format may be defined to have different subsets of the 
instruction format’s fields ( the included fields are typically 
in the same order , but at least some have different bit 
positions because there are less fields included ) and / or 
defined to have a given field interpreted differently . Thus , 
each instruction of an ISA is expressed using a given 
instruction format ( and , if defined , in a given one of the 
instruction templates of that instruction format ) and includes 
fields for specifying the operation and the operands . For 
example , an exemplary ADD instruction has a specific 
opcode and an instruction format that includes an opcode 
field to specify that opcode and operand fields to select 
operands ( sourcel / destination and source2 ) ; and an occur 
rence of this ADD instruction in an instruction stream will 
have specific contents in the operand fields that select 
specific operands . A set of SIMD extensions referred to as 
the Advanced Vector Extensions ( AVX ) ( AVX1 and AVX2 ) 
and using the Vector Extensions ( VEX ) coding scheme has 
been released and / or published ( e.g. , see Intel® 64 and 
IA - 32 Architectures Software Developer's Manual , Novem 
ber 2018 ; and see Intel® Architecture Instruction Set Exten 
sions Programming Reference , October 2018 ) . 

[ 0079 ] A vector friendly instruction format is an instruc 
tion format that is suited for vector instructions ( e.g. , there 
are certain fields specific to vector operations ) . While 
embodiments are described in which both vector and scalar 
operations are supported through the vector friendly instruc 
tion format , alternative embodiments use only vector opera 
tions the vector friendly instruction format . 
[ 0080 ] FIGS . 6A - 6B are block diagrams illustrating a 
generic vector friendly instruction format and instruction 
templates thereof according to embodiments of the disclo 
sure . FIG . 6A is a block diagram illustrating a generic vector 
friendly instruction format and class A instruction templates 
thereof according to embodiments of the disclosure ; while 
FIG . 6B is a block diagram illustrating the generic vector 
friendly instruction format and class B instruction templates 
thereof according to embodiments of the disclosure . Spe 
cifically , a generic vector friendly instruction format 600 for 
which are defined class A and class B instruction templates , 
both of which include no memory access 605 instruction 
templates and memory access 620 instruction templates . The 
term generic in the context of the vector friendly instruction 
format refers to the instruction format not being tied to any 
specific instruction set . 
[ 0081 ] While embodiments of the disclosure will be 
described in which the vector friendly instruction format 
supports the following : a 64 byte vector operand length ( or 
size ) with 32 bit ( 4 byte ) or 64 bit ( 8 byte ) data element 
widths ( or sizes ) ( and thus , a 64 byte vector consists of either 
16 doubleword - size elements or alternatively , 8 quadword 
size elements ) ; a 64 byte vector operand length ( or size ) with 
16 bit ( 2 byte ) or 8 bit ( 1 byte ) data element widths ( or 
sizes ) ; a 32 byte vector operand length ( or size ) with 32 bit 
( 4 byte ) , 64 bit ( 8 byte ) , 16 bit ( 2 byte ) , or 8 bit ( 1 byte ) data 
element widths ( or sizes ) ; and a 16 byte vector operand 
length ( or size ) with 32 bit ( 4 byte ) , 64 bit ( 8 byte ) , 16 bit 
( 2 byte ) , or 8 bit ( 1 byte ) data element widths ( or sizes ) ; 
alternative embodiments may support more , less and / or 
different vector operand sizes ( e.g. , 256 byte vector oper 
ands ) with more , less , or different data element widths ( e.g. , 
128 bit ( 16 byte ) data element widths ) . 
[ 0082 ] The class A instruction templates in FIG . 6A 
include : 1 ) within the no memory access 605 instruction 
templates there is shown a no memory access , full round 
control type operation 610 instruction template and a no 
memory access , data transform type operation 615 instruc 
tion template ; and 2 ) within the memory access 620 instruc 
tion templates there is shown a memory access , temporal 
625 instruction template and a memory access , non - tempo 
ral 630 instruction template . The class B instruction tem 
plates in FIG . 6B include : 1 ) within the no memory access 
605 instruction templates there is shown a no memory 
access , write mask control , partial round control type opera 
tion 612 instruction template and a no memory access , write 
mask control , vsize type operation 617 instruction template ; 
and 2 ) within the memory access 620 instruction templates 
there is shown a memory access , write mask control 627 
instruction template . 

Exemplary Instruction Formats 

[ 0078 ] Embodiments of the instruction ( s ) described herein 
may be embodied in different formats . Additionally , exem 
plary systems , architectures , and pipelines are detailed 



US 2021/0096930 A1 Apr. 1 , 2021 
11 

[ 0083 ] The generic vector friendly instruction format 600 
includes the following fields listed below in the order 
illustrated in FIGS . 6A - 6B . 
[ 0084 ] Format field 640 a specific value ( an instruction 
format identifier value ) in this field uniquely identifies the 
vector friendly instruction format , and thus occurrences of 
instructions in the vector friendly instruction format in 
instruction streams . As such , this field is optional in the 
sense that it is not needed for an instruction set that has only 
the generic vector friendly instruction format . 
[ 0085 ] Base operation field 642 — its content distinguishes 
different base operations . 
[ 0086 ] Register index field 644 its content , directly or 
through address generation , specifies the locations of the 
source and destination operands , be they in registers or in 
memory . These include a sufficient number of bits to select 
N registers from a PxQ ( e.g. 32x512 , 16x128 , 32x1024 , 
64x1024 ) register file . While in one embodiment N may be 
up to three sources and one destination register , alternative 
embodiments may support more or less sources and desti 
nation registers ( e.g. , may support up to two sources where 
one of these sources also acts as the destination , may support 
up to three sources where one of these sources also acts as 
the destination , may support up to two sources and one 
destination ) . 
[ 0087 ] Modifier field 646 — its content distinguishes 
occurrences of instructions in the generic vector instruction 
format that specify memory access from those that do not ; 
that is , between no memory access 605 instruction templates 
and memory access 620 instruction templates . Memory 
access operations read and / or write to the memory hierarchy 
( in some cases specifying the source and / or destination 
addresses using values in registers ) , while non - memory 
access operations do not ( e.g. , the source and destinations 
are registers ) . While in one embodiment this field also 
selects between three different ways to perform memory 
address calculations , alternative embodiments may support 
more , less , or different ways to perform memory address 
calculations . 
[ 0088 ] Augmentation operation field 650 — its content dis 
tinguishes which one of a variety of different operations to 
be performed in addition to the base operation . This field is 
context specific . In one embodiment of the disclosure , this 
field is divided into a class field 668 , an alpha field 652 , and 
a beta field 654. The augmentation operation field 650 
allows common groups of operations to be performed in a 
single instruction rather than 2 , 3 , or 4 instructions . 
[ 0089 ] Scale field 660 — its content allows for the scaling 
of the index field's content for memory address generation 
( e.g. , for address generation that uses 2scale * index + base ) . 
[ 0090 ] Displacement Field 662A — its content is used as 
part of memory address generation ( e.g. , for address gen 
eration that uses 2scale * index + base + displacement ) . 
[ 0091 ] Displacement Factor Field 662B ( note that the 
juxtaposition of displacement field 662A directly over dis 
placement factor field 662B indicates one or the other is 
used ) —its content is used as part of address generation ; it 
specifies a displacement factor that is to be scaled by the size 
of a memory access ( N ) —where N is the number of bytes in 
the memory access ( e.g. , for address generation that uses 
2scale * index + base + scaled displacement ) . Redundant low 
order bits are ignored and hence , the displacement factor 
field's content is multiplied by the memory operands total 
size ( N ) in order to generate the final displacement to be 

used in calculating an effective address . The value of N is 
determined by the processor hardware at runtime based on 
the full opcode field 674 ( described later herein ) and the data 
manipulation field 654C . The displacement field 662A and 
the displacement factor field 662B are optional in the sense 
that they are not used for the no memory access 605 
instruction templates and / or different embodiments may 
implement only one or none of the two . 
[ 0092 ] Data element width field 664 — its content distin 
guishes which one of a number of data element widths is to 
be used in some embodiments for all instructions ; in other 
embodiments for only some of the instructions ) . This field is 
optional in the sense that it is not needed if only one data 
element width is supported and / or data element widths are 
supported using some aspect of the opcodes . 
[ 0093 ] Write mask field 670 — its content controls , on a per 
data element position basis , whether that data element 
position in the destination vector operand reflects the result 
of the base operation and augmentation operation . Class A 
instruction templates support merging - writemasking , while 
class B instruction templates support both merging- and 
zeroing - writemasking . When merging , vector masks allow 
any set of elements in the destination to be protected from 
updates during the execution of any operation ( specified by 
the base operation and the augmentation operation ) ; in other 
one embodiment , preserving the old value of each element 
of the destination where the corresponding mask bit has a 0 . 
In contrast , when zeroing vector masks allow any set of 
elements in the destination to be zeroed during the execution 
of any operation ( specified by the base operation and the 
augmentation operation ) ; in one embodiment , an element of 
the destination is set to o when the corresponding mask bit 
has a 0 value . A subset of this functionality is the ability to 
control the vector length of the operation being performed 
( that is , the span of elements being modified , from the first 
to the last one ) ; however , it is not necessary that the elements 
that are modified be consecutive . Thus , the write mask field 
670 allows for partial vector operations , including loads , 
stores , arithmetic , logical , etc. While embodiments of the 
disclosure are described in which the write mask field's 670 
content selects one of a number of write mask registers that 
contains the write mask to be used ( and thus the write mask 
field's 670 content indirectly identifies that masking to be 
performed ) , alternative embodiments instead or additional 
allow the mask write field's 670 content to directly specify 
the masking to be performed . 
[ 0094 ] Immediate field 672 its content allows for the 
specification of an immediate . This field is optional in the 
sense that is it not present in an implementation of the 
generic vector friendly format that does not support imme 
diate and it is not present in instructions that do not use an 
immediate . 
[ 0095 ] Class field 668 its content distinguishes between 
different classes of instructions . With reference to FIGS . 
6A - B , the contents of this field select between class A and 
class B instructions . In FIGS . 6A - B , rounded corner squares 
are used to indicate a specific value is present in a field ( e.g. , 
class A 668A and class B 668B for the class field 668 
respectively in FIGS . 6A - B ) . 

Instruction Templates of Class A 
[ 0096 ] In the case of the non - memory access 605 instruc 
tion templates of class A , the alpha field 652 is interpreted 
as an RS field 652A , whose content distinguishes which one 



US 2021/0096930 A1 Apr. 1 , 2021 
12 

of the different augmentation operation types are to be 
performed ( e.g. , round 652A.1 and data transform 652A.2 
are respectively specified for the no memory access , round 
type operation 610 and the no memory access , data trans 
form type operation 615 instruction templates ) , while the 
beta field 654 distinguishes which of the operations of the 
specified type is to be performed . In the no memory access 
605 instruction templates , the scale field 660 , the displace 
ment field 662A , and the displacement scale filed 662B are 
not present . 

[ 0102 ] Vector memory instructions perform vector loads 
from and vector stores to memory , with conversion support . 
As with regular vector instructions , vector memory instruc 
tions transfer data from / to memory in a data element - wise 
fashion , with the elements that are actually transferred is 
dictated by the contents of the vector mask that is selected 
as the write mask . 

Memory Access Instruction Templates — Temporal 
[ 0103 ] Temporal data is data likely to be reused soon 
enough to benefit from caching . This is , however , a hint , and 
different processors may implement it in different ways , 
including ignoring the hint entirely . 

No - Memory Access Instruction Templates Full Round 
Control Type Operation 

Memory Access Instruction Templates — Non - Temporal 
[ 0104 ] Non - temporal data is data unlikely to be reused 
soon enough to benefit from caching in the 1st - level cache 
and should be given priority for eviction . This is , however , 
a hint , and different processors may implement it in different 
ways , including ignoring the hint entirely . 

Instruction Templates of Class B 

[ 0097 ] In the no memory access full round control type 
operation 610 instruction template , the beta field 654 is 
interpreted as a round control field 654A , whose content ( s ) 
provide static rounding . While in the described embodi 
ments of the disclosure the round control field 654A includes 
a suppress all floating point exceptions ( SAE ) field 656 and 
a round operation control field 658 , alternative embodiments 
may support may encode both these concepts into the same 
field or only have one or the other of these concepts / fields 
( e.g. , may have only the round operation control field 658 ) . 
[ 0098 ] SAE field 656 its content distinguishes whether 
or not to disable the exception event reporting ; when the 
SAE field's 656 content indicates suppression is enabled , a 
given instruction does not report any kind of floating - point 
exception flag and does not raise any floating point excep 
tion handler . 
[ 0099 ] Round operation control field 658 — its content 
distinguishes which one of a group of rounding operations to 
perform ( e.g. , Round - up , Round - down , Round - towards - zero 
and Round - to - nearest ) . Thus , the round operation control 
field 658 allows for the changing of the rounding mode on 
a per instruction basis . In one embodiment of the disclosure 
where a processor includes a control register for specifying 
rounding modes , the round operation control field's 650 
content overrides that register value . 

No Memory Access Instruction Templates Data Transform 
Type Operation 

[ 0100 ] In the no memory access data transform type 
operation 615 instruction template , the beta field 654 is 
interpreted as a data transform field 654B , whose content 
distinguishes which one of a number of data transforms is to 
be performed ( e.g. , no data transform , swizzle , broadcast ) . 
[ 0101 ] In the case of a memory access 620 instruction 
template of class A , the alpha field 652 is interpreted as an 
eviction hint field 652B , whose content distinguishes which 
one of the eviction hints is to be used in FIG . 6A , temporal 
652B.1 and non - temporal 652B.2 are respectively specified 
for the memory access , temporal 625 instruction template 
and the memory access , non - temporal 630 instruction tem 
plate ) , while the beta field 654 is interpreted as a data 
manipulation field 654C , whose content distinguishes which 
one of a number of data manipulation operations ( also 
known as primitives ) is to be performed ( e.g. , no manipu 
lation ; broadcast ; up conversion of a source ; and down 
conversion of a destination ) . The memory access 620 
instruction templates include the scale field 660 , and option 
ally the displacement field 662A or the displacement scale 
field 662B . 

[ 0105 ] In the case of the instruction templates of class B , 
the alpha field 652 is interpreted as a write mask control ( Z ) 
field 652C , whose content distinguishes whether the write 
masking controlled by the write mask field 670 should be a 
merging or a zeroing . 
[ 0106 ] In the case of the non - memory access 605 instruc 
tion templates of class B , part of the beta field 654 is 
interpreted as an RL field 657A , whose content distinguishes 
which one of the different augmentation operation types are 
to be performed ( e.g. , round 657A.1 and vector length 
( VSIZE ) 657A.2 are respectively specified for the no 
memory access , write mask control , partial round control 
type operation 612 instruction template and the no memory 
access , write mask control , VSIZE type operation 617 
instruction template ) , while the rest of the beta field 654 
distinguishes which of the operations of the specified type is 
to be performed . In the no memory access 605 instruction 
templates , the scale field 660 , the displacement field 662A , 
and the displacement scale filed 662B are not present . 
[ 0107 ] In the no memory access , write mask control , 
partial round control type operation 610 instruction tem 
plate , the rest of the beta field 654 is interpreted as a round 
operation field 659A and exception event reporting is dis 
abled ( a given instruction does not report any kind of 
floating - point exception flag and does not raise any floating 
point exception handler ) . 
[ 0108 ] Round operation control field 659A — just as round 
operation control field 658 , its content distinguishes which 
one of a group of rounding operations to perform ( e.g. , 
Round - up , Round - down , Round - towards - zero and Round 
to - nearest ) . Thus , the round operation control field 659 A 
allows for the changing of the rounding mode on a per 
instruction basis . In one embodiment of the disclosure where 
a processor includes a control register for specifying round 
ing modes , the round operation control field's 650 content 
overrides that register value . 
[ 0109 ] In the no memory access , write mask control , 
VSIZE type operation 617 instruction template , the rest of 
the beta field 654 is interpreted as a vector length field 659B , 



US 2021/0096930 A1 Apr. 1 , 2021 
13 

that selects the routines to execute based on the instructions 
supported by the processor which is currently executing the 
code . 

whose content distinguishes which one of a number of data 
vector lengths is to be performed on ( e.g. , 128 , 256 , or 512 
byte ) 
[ 0110 ] In the case of a memory access 620 instruction 
template of class B , part of the beta field 654 is interpreted 
as a broadcast field 657B , whose content distinguishes 
whether or not the broadcast type data manipulation opera 
tion is to be performed , while the rest of the beta field 654 
is interpreted the vector length field 659B . The memory 
access 620 instruction templates include the scale field 660 , 
and optionally the displacement field 662A or the displace 
ment scale field 662B . 

[ 0111 ] With regard to the generic vector friendly instruc 
tion format 600 , a full opcode field 674 is shown including 
the format field 640 , the base operation field 642 , and the 
data element width field 664. While one embodiment is 
shown where the full opcode field 674 includes all of these 
fields , the full opcode field 674 includes less than all of these 
fields in embodiments that do not support all of them . The 
full opcode field 674 provides the operation code ( opcode ) . 
[ 0112 ] The augmentation operation field 650 , the data 
element width field 664 , and the write mask field 670 allow 
these features to be specified on a per instruction basis in the 
generic vector friendly instruction format . 
[ 0113 ] The combination of write mask field and data 
element width field create typed instructions in that they 
allow the mask to be applied based on different data element 
widths . 

[ 0114 ] The various instruction templates found within 
class A and class B are beneficial in different situations . In 
some embodiments of the disclosure , different processors or 
different cores within a processor may support only class A , 
only class B , or both classes . For instance , a high perfor 
mance general purpose out - of - order core intended for gen 
eral - purpose computing may support only class B , a core 
intended primarily for graphics and / or scientific ( through 
put ) computing may support only class A , and a core 
intended for both may support both ( of course , a core that 
has some mix of templates and instructions from both 
classes but not all templates and instructions from both 
classes is within the purview of the disclosure ) . Also , a 
single processor may include multiple cores , all of which 
support the same class or in which different cores support 
different class . For instance , in a processor with separate 
graphics and general purpose cores , one of the graphics 
cores intended primarily for graphics and / or scientific com 
puting may support only class A , while one or more of the 
general purpose cores may be high performance general 
purpose cores with out of order execution and register 
renaming intended for general - purpose computing that sup 
port only class B. Another processor that does not have a 
separate graphics core , may include one more general pur 
pose in - order or out - of - order cores that support both class A 
and class B. Of course , features from one class may also be 
implement in the other class in different embodiments of the 
disclosure . Programs written in a high level language would 
be put ( e.g. , just in time compiled or statically compiled ) 
into an variety of different executable forms , including : 1 ) a 
form having only instructions of the class ( es ) supported by 
the target processor for execution ; or 2 ) a form having 
alternative routines written using different combinations of 
the instructions of all classes and having control flow code 

Exemplary Specific Vector Friendly Instruction Format 
[ 0115 ) FIG . 7 is a block diagram illustrating an exemplary 
specific vector friendly instruction format according to 
embodiments of the disclosure . FIG . 7 shows a specific 
vector friendly instruction format 700 that is specific in the 
sense that it specifies the location , size , interpretation , and 
order of the fields , as well as values for some of those fields . 
The specific vector friendly instruction format 700 may be 
used to extend the x86 instruction set , and thus some of the 
fields are similar or the same as those used in the existing 
x86 instruction set and extension thereof ( e.g. , AVX ) . This 
format remains consistent with the prefix encoding field , real 
opcode byte field , MOD R / M field , SIB field , displacement 
field , and immediate fields of the existing x86 instruction set 
with extensions . The fields from FIG . 6 into which the fields 
from FIG . 7 map are illustrated . 
[ 0116 ] It should be understood that , although embodi 
ments of the disclosure are described with reference to the 
specific vector friendly instruction format 700 in the context 
of the generic vector friendly instruction format 600 for 
illustrative purposes , the disclosure is not limited to the 
specific vector friendly instruction format 700 except where 
claimed . For example , the generic vector friendly instruction 
format 600 contemplates a variety of possible sizes for the 
various fields , while the specific vector friendly instruction 
format 700 is shown as having fields of specific sizes . By 
way of specific example , while the data element width field 
664 is illustrated as a one bit field in the specific vector 
friendly instruction format 700 , the disclosure is not so 
limited ( that is , the generic vector friendly instruction format 
600 contemplates other sizes of the data element width field 
664 ) . 
[ 0117 ] The generic vector friendly instruction format 600 
includes the following fields listed below in the order 
illustrated in FIG . 7A . 
[ 0118 ] EVEX Prefix ( Bytes 0-3 ) 702 — is encoded in a 
four - byte form . 
[ 0119 ] Format Field 640 ( EVEX Byte 0 , bits [ 7 : 0 ] ) the 
first byte ( EVEX Byte 0 ) is the format field 640 and it 
contains Ox62 ( the unique value used for distinguishing the 
vector friendly instruction format in one embodiment of the 
disclosure ) . 
[ 0120 ] The second - fourth bytes ( EVEX Bytes 1-3 ) include 
a number of bit fields providing specific capability . 
[ 0121 ] REX field 705 ( EVEX Byte 1 , bits [ 7-5 ] ) consists 
of a EVEX.R bit field ( EVEX Byte 1 , bit [ 7 ] -R ) , EVEX.X 
bit field ( EVEX byte 1 , bit [ 6 ] -X ) , and 657BEX byte 1 , 
bit [ 5 ] -B ) . The EVEX.R , EVEX.X , and EVEX.B bit fields 
provide the same functionality as the corresponding VEX bit 
fields , and are encoded using is complement form , i.e. 
ZMMO is encoded as 1111B , ZMM15 is encoded as 0000B . 
Other fields of the instructions encode the lower three bits of 
the register indexes as is known in the art ( rrr , xxx , and bbb ) , 
so that Rrrr , Xxxx , and Bbbb may be formed by adding 
EVEX.R , EVEX.X , and EVEX.B. 
[ 0122 ] REX ' field 610 this is the first part of the REX ' 
field 610 and is the EVEX.R ' bit field ( EVEX Byte 1 , bit 
[ 4 ] -R ' ) that is used to encode either the upper 16 or lower 16 
of the extended 32 register set . In one embodiment of the 
disclosure , this bit , along with others as indicated below , is 



US 2021/0096930 A1 Apr. 1 , 2021 
14 

stored in bit inverted format to distinguish ( in the well 
known x86 32 - bit mode ) from the BOUND instruction , 
whose real opcode byte is 62 , but does not accept in the 
MOD R / M field ( described below ) the value of 11 in the 
MOD field ; alternative embodiments of the disclosure do not 
store this and the other indicated bits below in the inverted 
format . A value of 1 is used to encode the lower 16 registers . 
In other words , R'Rrrr is formed by combining EVEX.R ' , 
EVEX.R , and the other RRR from other fields . 
[ 0123 ] Opcode map field 715 ( EVEX byte 1 , bits [ 3 : 0 ] 
mmmm ) its content encodes an implied leading opcode 
byte ( OF , OF 38 , or OF 3 ) . 
[ 0124 ] Data element width field 664 ( EVEX byte 2 , bit 
[ 7 ] -W ) —is represented by the notation EVEX.W. EVEX.W 
is used to define the granularity ( size ) of the datatype ( either 
32 - bit data elements or 64 - bit data elements ) . 
[ 0125 ] EVEX.vvvv 720 ( EVEX Byte 2 , bits [ 6 : 3 ] -vvvv ) 
the role of EVEX.vvv may include the following : 1 ) 
EVEX.vvw encodes the first source register operand , speci 
fied in inverted ( ls complement ) form and is valid for 
instructions with 2 or more source operands ; 2 ) EVEX.VVVV 
encodes the destination register operand , specified in 1 s 
complement form for certain vector shifts ; or 3 ) EVEX.vvvv 
does not encode any operand , the field is reserved and 
should contain 1111b . Thus , EVEX.vvvv field 720 encodes 
the 4 low - order bits of the first source register specifier 
stored in inverted ( 1 s complement ) form . Depending on the 
instruction , an extra different EVEX bit field is used to 
extend the specifier size to 32 registers . 
[ 0126 ] EVEX.O 668 Class field ( EVEX byte 2 , bit [ 2 ] 
U - If EVEX.0-0 , it indicates class A or EVEX.UO ; if 
EVEX.O = 1 , it indicates class B or EVEX.U1 . 
[ 0127 ] Prefix encoding field 725 ( EVEX byte 2 , bits 
[ 1 : 0 ) -pp ) provides additional bits for the base operation 
field . In addition to providing support for the legacy SSE 
instructions in the EVEX prefix format , this also has the 
benefit of compacting the SIMD prefix ( rather than requiring 
a byte to express the SIMD prefix , the EVEX prefix requires 
only 2 bits ) . In one embodiment , to support legacy SSE 
instructions that use a SIMD prefix ( 66H , F2H , F3H ) in both 
the legacy format and in the EVEX prefix format , these 
legacy SIMD prefixes are encoded into the SIMD prefix 
encoding field ; and at runtime are expanded into the legacy 
SIMD prefix prior to being provided to the decoder's PLA 
( so the PLA can execute both the legacy and EVEX format 
of these legacy instructions without modification ) . Although 
newer instructions could use the EVEX prefix encoding 
field's content directly as an opcode extension , certain 
embodiments expand in a similar fashion for consistency but 
allow for different meanings to be specified by these legacy 
SIMD prefixes . An alternative embodiment may redesign 
the PLA to support the 2 bit SIMD prefix encodings , and 
thus not require the expansion . 
[ 0128 ] Alpha field 652 ( EVEX byte 3 , bit [ 7 ] -EH ; also 
known as EVEX.EH , EVEX.rs , EVEX.RL , EVEX.write 
mask control , and EVEX.N ; also illustrated with an as 
previously described , this field is context specific . 
[ 0129 ] Beta field 654 ( EVEX byte 3 , bits [ 6 : 4 ] -SSS , also 
known as EVEX.S2-0 , EVEX.r2-0 , EVEX.rr1 , EVEX.LLO , 
EVEX.LLB ; also illustrated with BBB ) as previously 
described , this field is context specific . 
[ 0130 ] REX ' field 610_this is the remainder of the REX ' 
field and is the EVEX.V ' bit field ( EVEX Byte 3 , bit [ 3 ] -V ' ) 
that may be used to encode either the upper 16 or lower 16 

of the extended 32 register set . This bit is stored in bit 
inverted format . A value of 1 is used to encode the lower 16 
registers . In other words , V'VVVV is formed by combining 
EVEX.V ' , EVEX.VVVV . 
[ 0131 ] Write mask field 670 ( EVEX byte 3 , bits [ 2 : 0 ] 
kkk ) —its content specifies the index of a register in the write 
mask registers as previously described . In one embodiment 
of the disclosure , the specific value EVEX kkk = 000 has a 
special behavior implying no write mask is used for the 
particular instruction ( this may be implemented in a variety 
of ways including the use of a write mask hardwired to all 
ones or hardware that bypasses the masking hardware ) . 
[ 0132 ] Real Opcode Field 730 ( Byte 4 ) is also known as 
the opcode byte . Part of the opcode is specified in this field . 
[ 0133 ] MOD R / M Field 740 ( Byte 5 ) includes MOD field 
742 , Reg field 744 , and R / M field 746. As previously 
described , the MOD field's 742 content distinguishes 
between memory access and non - memory access operations . 
The role of Reg field 744 can be summarized to two 
situations : encoding either the destination register operand 
or a source register operand , or be treated as an opcode 
extension and not used to encode any instruction operand . 
The role of RM field 746 may include the following : 
encoding the instruction operand that references a memory 
address , or encoding either the destination register operand 
or a source register operand . 
[ 0134 ] Scale , Index , Base ( SIB ) Byte ( Byte 6 ) -As pre 
viously described , the scale field's 650 content is used for 
memory address generation . SIB.xxx 754 and SIB.bbb 
756 — the contents of these fields have been previously 
referred to with regard to the register indexes Xxxx and 
Bbbb . 
[ 0135 ] Displacement field 662A ( Bytes 7-10 ) —when 
MOD field 742 contains 10 , bytes 7-10 are the displacement 
field 662A , and it works the same as the legacy 32 - bit 
displacement ( disp32 ) and works at byte granularity . 
[ 0136 ] Displacement factor field 662B ( Byte 7 ) when 
MOD field 742 contains 01 , byte 7 is the displacement factor 
field 662B . The location of this field is that same as that of 
the legacy x86 instruction set 8 - bit displacement ( disp8 ) , 
which works at byte granularity . Since disp8 is sign 
extended , it can only address between -128 and 127 bytes 
offsets ; in terms of 64 byte cache lines , disp8 uses 8 bits that 
can be set to only four really useful values -128 , -64 , 0 , and 
64 ; since a greater range is often needed , disp32 is used ; 
however , disp32 requires 4 bytes . In contrast to disp8 and 
disp32 , the displacement factor field 662B is a reinterpre 
tation of disp8 ; when using displacement factor field 662B , 
the actual displacement is determined by the content of the 
displacement factor field multiplied by the size of the 
memory operand access ( N ) . This type of displacement is 
referred to as disp8 * N . This reduces the average instruction 
length ( a single byte of used for the displacement but with 
a much greater range ) . Such compressed displacement is 
based on the assumption that the effective displacement is 
multiple of the granularity of the memory access , and hence , 
the redundant low - order bits of the address offset do not 
need to be encoded . In other words , the displacement factor 
field 662B substitutes the legacy x86 instruction set 8 - bit 
displacement . Thus , the displacement factor field 662B is 
encoded the same way as an x86 instruction set 8 - bit 
displacement ( so no changes in the ModRM / SIB encoding 
rules ) with the only exception that disp8 is overloaded to 
disp8 * N . In other words , there are no changes in the 



US 2021/0096930 A1 Apr. 1 , 2021 
15 

Exemplary Register Architecture encoding rules or encoding lengths but only in the interpre 
tation of the displacement value by hardware ( which needs 
to scale the displacement by the size of the memory operand 
to obtain a byte - wise address offset ) . Immediate field 672 
operates as previously described . 
Full Opcode Field 

[ 0141 ] FIG . 8 is a block diagram of a register architecture 
800 according to one embodiment of the disclosure . In the 
embodiment illustrated , there are 32 vector registers 810 that 
are 512 bits wide ; these registers are referenced as zmmo 
through zmm31 . The lower order 256 bits of the lower 16 
zmm registers are overlaid on registers ymm0-16 . The lower 
order 128 bits of the lower 16 zmm registers ( the lower order 
128 bits of the ymm registers ) are overlaid on registers 
xmm0-15 . The specific vector friendly instruction format 
700 operates on these overlaid register file as illustrated in 
the below tables . 

[ 0137 ] FIG . 7B is a block diagram illustrating the fields of 
the specific vector friendly instruction format 700 that make 
up the full opcode field 674 according to one embodiment of 
the disclosure . Specifically , the full opcode field 674 
includes the format field 640 , the base operation field 642 , 
and the data element width ( W ) field 664. The base operation 
field 642 includes the prefix encoding field 725 , the opcode 
map field 715 , and the real opcode field 730 . Adjustable Vector 

Length Class Operations Registers 

A ( FIG . 6A ; 
U = 0 ) 

610 , 615 , 
625 , 630 

612 

Register Index Field 
[ 0138 ] FIG . 7C is a block diagram illustrating the fields of 
the specific vector friendly instruction format 700 that make 
up the register index field 644 according to one embodiment 
of the disclosure . Specifically , the register index field 644 
includes the REX field 705 , the REX ' field 710 , the MODR / 
M.reg field 744 , the MODR / M.r / m field 746 , the VVVV 
field 720 , xxx field 754 , and the bbb field 756 . 

B ( FIG . 6B ; 
U = 1 ) 

Instruction 
Templates 
that do not include 
the vector 
length 
field 659B 
Instruction 
templates that 
do include 
the vector 
length 
field 659B 

B ( FIG . 6B ; 617 , 627 

zmm registers 
( the vector 
length is 64 byte ) 
zmm registers 
( the vector 
length is 64 byte ) 
zmm , ymm , or 
xmm registers 
( the vector length 
is 64 byte , 32 byte , 
or 16 byte ) 
depending on the 
vector length 
field 659B 

U = 1 ) 

Augmentation Operation Field 
( 0139 ] FIG . 7D is a block diagram illustrating the fields of 
the specific vector friendly instruction format 700 that make 
up the augmentation operation field 650 according to one 
embodiment of the disclosure . When the class ( U ) field 668 
contains 0 , it signifies EVEX.UO ( class A 668A ) ; when it 
contains 1 , it signifies EVEX.U1 ( class B 668B ) . When U = 0 
and the MOD field 742 contains 11 ( signifying a no memory 
access operation ) , the alpha field 652 ( EVEX byte 3 , bit 
[ 7 ] -EH ) is interpreted as the rs field 652A . When the rs field 
652A contains a 1 ( round 652A.1 ) , the beta field 654 ( EVEX 
byte 3 , bits [ 6 : 4 ] -SSS ) is interpreted as the round control 
field 654A . The round control field 654A includes a one bit 
SAE field 656 and a two bit round operation field 658. When 
the rs field 652A contains a 0 ( data transform 652A.2 ) , the 
beta field 654 ( EVEX byte 3 , bits [ 6 : 4 ] -SSS ) is interpreted 
as a three bit data transform field 654B . When U = 0 and the 
MOD field 742 contains 00 , 01 , or 10 ( signifying a memory 
access operation ) , the alpha field 652 ( EVEX byte 3 , bit 
[ 7 ] -EH ) is interpreted as the eviction hint ( EH ) field 652B 
and the beta field 654 ( EVEX byte 3 , bits [ 6 : 4 ] -SSS ) is 
interpreted as a three bit data manipulation field 654C . 
[ 0140 ] When U = 1 , the alpha field 652 ( EVEX byte 3 , bit 
[ 7 ] -EH ) is interpreted as the write mask control ( Z ) field 
652C . When U = 1 and the MOD field 742 contains 11 
( signifying a no memory access operation ) , part of the beta 
field 654 ( EVEX byte 3 , bit [ 4 ] -So ) is interpreted as the RL 
field 657A ; when it contains a 1 ( round 657A.1 ) the rest of 
the beta field 654 ( EVEX byte 3 , bit [ 6-5 ] - S2-1 ) is inter 
preted as the round operation field 659A , while when the RL 
field 657A contains a 0 ( VSIZE 657.A2 ) the rest of the beta 
field 654 ( EVEX byte 3 , bit [ 6-5 ] - S2-1 ) is interpreted as the 
vector length field 659B ( EVEX byte 3 , bit [ 6-5 ] -L1 - o ) . 
When U = 1 and the MOD field 742 contains 00 , 01 , or 10 
( signifying a memory access operation ) , the beta field 654 
( EVEX byte 3 , bits [ 6 : 4 ] -SSS ) is interpreted as the vector 
length field 659B ( EVEX byte 3 , bit [ 6-5 ] -L1-0 ) and the 
broadcast field 657B ( EVEX byte 3 , bit [ 4 ] -B ) . 

[ 0142 ] In other words , the vector length field 659B selects 
between a maximum length and one or more other shorter 
lengths , where each such shorter length is half the length of 
the preceding length ; and instructions templates without the 
vector length field 659B operate on the maximum vector 
length . Further , in one embodiment , the class B instruction 
templates of the specific vector friendly instruction format 
700 operate on packed or scalar single / double - precision 
floating point data and packed or scalar integer data . Scalar 
operations are operations performed on the lowest order data 
element position in an zmm / ymm / xmm register ; the higher 
order data element positions are either left the same as they 
were prior to the instruction or zeroed depending on the 
embodiment . 
[ 0143 ] Write mask registers 815 — in the embodiment 
illustrated , there are 8 write mask registers ( k0 through k7 ) , 
each 64 bits in size . In an alternate embodiment , the write 
mask registers 815 are 16 bits in size . As previously 
described , in one embodiment of the disclosure , the vector 
mask register ko cannot be used as a write mask ; when the 
encoding that would normally indicate ko is used for a write 
mask , it selects a hardwired write mask of OxFFFF , effec 
tively disabling write masking for that instruction . 
[ 0144 ] General - purpose registers 825 — in the embodi 
ment illustrated , there are sixteen 64 - bit general - purpose 
registers that are used along with the existing x86 addressing 
modes to address memory operands . These registers are 
referenced by the names RAX , RBX , RCX , RDX , RBP , RSI , 
RDI , RSP , and R8 through R15 . 
[ 0145 ] Scalar floating point stack register file ( x87 stack ) 
845 , on which is aliased the MMX packed integer flat 
register file 850 in the embodiment illustrated , the x87 
stack is an eight - element stack used to perform scalar 
floating - point operations on 32 / 64 / 80 - bit floating point data 
using the x87 instruction set extension ; while the MMX 



US 2021/0096930 A1 Apr. 1 , 2021 
16 

registers are used to perform operations on 64 - bit packed 
integer data , as well as to hold operands for some operations 
performed between the MMX and XMM registers . 
[ 0146 ] Alternative embodiments of the disclosure may use 
wider or narrower registers . Additionally , alternative 
embodiments of the disclosure may use more , less , or 
different register files and registers . 

a 

Exemplary Core Architectures , Processors , and Computer 
Architectures 
[ 0147 ] Processor cores may be implemented in different 
ways , for different purposes , and in different processors . For 
instance , implementations of such cores may include : 1 ) a 
general purpose in - order core intended for general - purpose 
computing ; 2 ) a high performance general purpose out - of 
order core intended for general - purpose computing ; 3 ) a 
special purpose core intended primarily for graphics and / or 
scientific ( throughput ) computing . Implementations of dif 
ferent processors may include : 1 ) a CPU including one or 
more general purpose in - order cores intended for general 
purpose computing and / or one or more general purpose 
out - of - order cores intended for general - purpose computing ; 
and 2 ) a coprocessor including one or more special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) . Such different processors lead to different 
computer system architectures , which may include : 1 ) the 
coprocessor on a separate chip from the CPU ; 2 ) the 
coprocessor on a separate die in the same package as a CPU ; 
3 ) the coprocessor on the same die as a CPU ( in which case , 
such a coprocessor is sometimes referred to as special 
purpose logic , such as integrated graphics and / or scientific 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a 
system on a chip that may include on the same die the 
described CPU ( sometimes referred to as the application 
core ( s ) or application processor ( s ) ) , the above described 
coprocessor , and additional functionality . Exemplary core 
architectures are described next , followed by descriptions of 
exemplary processors and computer architectures . 

[ 0150 ] FIG . 9B shows processor core 990 including a 
front end unit 930 coupled to an execution engine unit 950 , 
and both are coupled to a memory unit 970. The core 990 
may be a reduced instruction set computing ( RISC ) core , 
complex instruction set computing ( CISC ) core , a very long 
instruction word ( VLIW ) core , or a hybrid or alternative 
core type . As yet another option , the core 990 may be a 
special - purpose core , such as , for example , a network or 
communication core , compression engine , coprocessor core , 
general purpose computing graphics processing unit 
( GPGPU ) core , graphics core , or the like . 
[ 0151 ] The front end unit 930 includes a branch prediction 
unit 932 coupled to an instruction cache unit 934 , which is 
coupled to an instruction translation lookaside buffer ( TLB ) 
936 , which is coupled to an instruction fetch unit 938 , which 
is coupled to a decode unit 940. The decode unit 940 ( or 
decoder or decoder unit ) may decode instructions ( e.g. , 
macro - instructions ) , and generate as an output one or more 
micro - operations , micro - code entry points , micro - instruc 
tions , other instructions , or other control signals , which are 
decoded from , or which otherwise reflect , or are derived 
from , the original instructions . The decode unit 940 may be 
implemented using various different mechanisms . Examples 
of suitable mechanisms include , but are not limited to , 
look - up tables , hardware implementations , programmable 
logic arrays ( PLAs ) , microcode read only memories 
( ROMs ) , etc. In one embodiment , the core 990 includes a 
microcode ROM or other medium that stores microcode for 
certain macro - instructions ( e.g. , in decode unit 940 or oth 
erwise within the front end unit 930 ) . The decode unit 940 
is coupled to a rename / allocator unit 952 in the execution 
engine unit 950 . 
[ 0152 ] The execution engine unit 950 includes the rename / 
allocator unit 952 coupled to a retirement unit 954 and a set 
of one or more scheduler unit ( s ) 956. The scheduler unit ( s ) 
956 represents any number of different schedulers , including 
reservations stations , central instruction window , etc. The 
scheduler unit ( s ) 956 is coupled to the physical register 
file ( s ) unit ( s ) 958. Each of the physical register file ( s ) units 
958 represents one or more physical register files , different 
ones of which store one or more different data types , such as 
scalar integer , scalar floating point , packed integer , packed 
floating point , vector integer , vector floating point status 
( e.g. , an instruction pointer that is the address of the next 
instruction to be executed ) , etc. In one embodiment , the 
physical register file ( s ) unit 958 comprises a vector registers 
unit , a write mask registers unit , and a scalar registers unit . 
These register units may provide architectural vector regis 
ters , vector mask registers , and general purpose registers . 
The physical register file ( s ) unit ( s ) 958 is overlapped by the 
retirement unit 954 to illustrate various ways in which 
register renaming and out - of - order execution may be imple 
mented ( e.g. , using a reorder buffer ( s ) and a retirement 
register file ( s ) ; using a future file ( s ) , a history buffer ( s ) , and 
a retirement register file ( s ) ; using a register maps and a pool 
of registers ; etc. ) . The retirement unit 954 and the physical 
register file ( s ) unit ( s ) 958 are coupled to the execution 
cluster ( s ) 960. The execution cluster ( s ) 960 includes a set of 
one or more execution units 962 and a set of one or more 
memory access units 964. The execution units 962 may 
perform various operations ( e.g. , shifts , addition , subtrac 
tion , multiplication ) and on various types of data ( e.g. , scalar 
floating point , packed integer , packed floating point , vector 
integer , vector floating point ) . While some embodiments 

Exemplary Core Architectures 

In - Order and Out - of - Order Core Block Diagram 
[ 0148 ] FIG . 9A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the disclosure . FIG . 9B is a block 
diagram illustrating both an exemplary embodiment of an 
in - order architecture core and an exemplary register renam 
ing , out - of - order issue / execution architecture core to be 
included in a processor according to embodiments of the 
disclosure . The solid lined boxes in FIGS . 9A - B illustrate 
the in - order pipeline and in - order core , while the optional 
addition of the dashed lined boxes illustrates the register 
renaming , out - of - order issue / execution pipeline and core . 
Given that the in - order aspect is a subset of the out - of - order 
aspect , the out - of - order aspect will be described . 
[ 0149 ] In FIG . 9A , a processor pipeline 900 includes a 
fetch stage 902 , a length decode stage 904 , a decode stage 
906 , an allocation stage 908 , a renaming stage 910 , a 
scheduling ( also known as a dispatch or issue ) stage 912 , a 
register read / memory read stage 914 , an execute stage 916 , 
a write back / memory write stage 918 , an exception handling 
stage 922 , and a commit stage 924 . 



US 2021/0096930 A1 Apr. 1 , 2021 
17 

sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyper - Threading tech 
nology ) . 
[ 0157 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in an in - order architecture . 
While the illustrated embodiment of the processor also 
includes separate instruction and data cache units 934/974 
and a shared L2 cache unit 976 , alternative embodiments 
may have a single internal cache for both instructions and 
data , such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 

may include a number of execution units dedicated to 
specific functions or sets of functions , other embodiments 
may include only one execution unit or multiple execution 
units that all perform all functions . The scheduler unit ( s ) 
956 , physical register file ( s ) unit ( s ) 958 , and execution 
cluster ( s ) 960 are shown as being possibly plural because 
certain embodiments create separate pipelines for certain 
types of data / operations ( e.g. , a scalar integer pipeline , a 
scalar floating point / packed integer / packed floating point / 
vector integer / vector floating point pipeline , and / or a 
memory access pipeline that each have their own scheduler 
unit , physical register file ( s ) unit , and / or execution cluster 
and in the case of a separate memory access pipeline , certain 
embodiments are implemented in which only the execution 
cluster of this pipeline has the memory access unit ( s ) 964 ) . 
It should also be understood that where separate pipelines 
are used , one or more of these pipelines may be out - of - order 
issue / execution and the rest in - order . 
[ 0153 ] The set of memory access units 964 is coupled to 
the memory unit 970 , which includes a data TLB unit 972 
coupled to a data cache unit 974 coupled to a level 2 ( L2 ) 
cache unit 976. In one exemplary embodiment , the memory 
access units 964 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 972 in the memory unit 970. The instruction 
cache unit 934 is further coupled to a level 2 ( L2 ) cache unit 
976 in the memory unit 970. The L2 cache unit 976 is 
coupled to one or more other levels of cache and eventually 
to a main memory . 
[ 0154 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 900 as follows : 1 ) the instruction 
fetch 938 performs the fetch and length decoding stages 902 
and 904 ; 2 ) the decode unit 940 performs the decode stage 
906 ; 3 ) the rename / allocator unit 952 performs the allocation 
stage 908 and renaming stage 910 ; 4 ) the scheduler unit ( s ) 
956 performs the schedule stage 912 ; 5 ) the physical register 
file ( s ) unit ( s ) 958 and the memory unit 970 perform the 
register read / memory read stage 914 ; the execution cluster 
960 perform the execute stage 916 ; 6 ) the memory unit 970 
and the physical register file ( s ) unit ( s ) 958 perform the write 
back / memory write stage 918 ; 7 ) various units may be 
involved in the exception handling stage 922 ; and 8 ) the 
retirement unit 954 and the physical register file ( s ) unit ( s ) 
958 perform the commit stage 924 . 
[ 0155 ] The core 990 may support one or more instructions 
sets ( e.g. , the x86 instruction set ( with some extensions that 
have been added with newer versions ) ; the MIPS instruction 
set of MIPS Technologies of Sunnyvale , Calif .; the ARM 
instruction set ( with optional additional extensions such as 
NEON ) of ARM Holdings of Sunnyvale , Calif . ) , including 
the instruction ( s ) described herein . In one embodiment , the 
core 990 includes logic to support a packed data instruction 
set extension ( e.g. , AVX1 , AVX2 ) , thereby allowing the 
operations used by many multimedia applications to be 
performed using packed data . 
[ 0156 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e.g. , time 

Specific Exemplary In - Order Core Architecture 
[ 0158 ] FIGS . 10A - B illustrate a block diagram of a more 
specific exemplary in - order core architecture , which core 
would be one of several logic blocks ( including other cores 
of the same type and / or different types ) in a chip . The logic 
blocks communicate through a high - bandwidth interconnect 
network ( e.g. , a ring network ) with some fixed function 
logic , memory I / O interfaces , and other necessary I / O logic , 
depending on the application . 
[ 0159 ] FIG . 10A is a block diagram of a single processor 
core , along with its connection to the on - die interconnect 
network 1002 and with its local subset of the Level 2 ( L2 ) 
cache 1004 , according to embodiments of the disclosure . In 
one embodiment , an instruction decode unit 1000 supports 
the x86 instruction set with a packed data instruction set 
extension . An L1 cache 1006 allows low - latency accesses to 
cache memory into the scalar and vector units . While in one 
embodiment ( to simplify the design ) , a scalar unit 1008 and 
a vector unit 1010 use separate register sets ( respectively , 
scalar registers 1012 and vector registers 1014 ) and data 
transferred between them is written to memory and then read 
back in from a level 1 ( L1 ) cache 1006 , alternative embodi 
ments of the disclosure may use a different approach ( e.g. , 
use a single register set or include a communication path that 
allow data to be transferred between the two register files 
without being written and read back ) . 
[ 0160 ] The local subset of the L2 cache 1004 is part of a 
global L2 cache that is divided into separate local subsets , 
one per processor core . Each processor core has a direct 
access path to its own local subset of the L2 cache 1004 . 
Data read by a processor core is stored in its L2 cache subset 
1004 and can be accessed quickly , in parallel with other 
processor cores accessing their own local L2 cache subsets . 
Data written by a processor core is stored in its own L2 
cache subset 1004 and is flushed from other subsets , if 
necessary . The ring network ensures coherency for shared 
data . The ring network is bi - directional to allow agents such 
as processor cores , L2 caches and other logic blocks to 
communicate with each other within the chip . Each ring 
data - path is 1012 - bits wide per direction . 
[ 0161 ] FIG . 10B is an expanded view of part of the 
processor core in FIG . 10A according to embodiments of the 
disclosure . FIG . 10B includes an L1 data cache 1006A part 
of the Ll cache 1004 , as well as more detail regarding the 
vector unit 1010 and the vector registers 1014. Specifically , 
the vector unit 1010 is a 16 - wide vector processing unit 
( VPU ) ( see the 16 - wide ALU 1028 ) , which executes one or 



US 2021/0096930 A1 Apr. 1 , 2021 
18 

[ 0166 ] The cores 1102A - N may be homogenous or het 
erogeneous in terms of architecture instruction set ; that is , 
two or more of the cores 1102A - N may be capable of 
execution the same instruction set , while others may be 
capable of executing only a subset of that instruction set or 
a different instruction set . 

more of integer , single - precision float , and double - precision 
float instructions . The VPU supports swizzling the register 
inputs with swizzle unit 1020 , numeric conversion with 
numeric convert units 1022A - B , and replication with repli 
cation unit 1024 on the memory input . Write mask registers 
1026 allow predicating resulting vector writes . 
[ 0162 ] FIG . 11 is a block diagram of a processor 1100 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the disclosure . The solid lined 
boxes in FIG . 11 illustrate a processor 1100 with a single 
core 1102A , a system agent 1110 , a set of one or more bus 
controller units 1116 , while the optional addition of the 
dashed lined boxes illustrates an alternative processor 1100 
with multiple cores 1102A - N , a set of one or more integrated 
memory controller unit ( s ) 1114 in the system agent unit 
1110 , and special purpose logic 1108 . 
[ 0163 ] Thus , different implementations of the processor 
1100 may include : 1 ) a CPU with the special purpose logic 
1108 being integrated graphics and / or scientific ( throughput ) 
logic ( which may include one or more cores ) , and the cores 
1102A - N being one or more general purpose cores ( e.g. , 
general purpose in - order cores , general purpose out - of - order 
cores , a combination of the two ) ; 2 ) a coprocessor with the 
cores 1102A - N being a large number of special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) ; and 3 ) a coprocessor with the cores 1102A - N 
being a large number of general purpose in - order cores . 
Thus , the processor 1100 may be a general - purpose proces 
sor , coprocessor or special - purpose processor , such as , for 
example , a network or communication processor , compres 
sion engine , graphics processor , GPGPU ( general purpose 
graphics processing unit ) , a high - throughput many inte 
grated core ( MIC ) coprocessor ( including 30 or more cores ) , 
embedded processor , or the like . The processor may be 
implemented on one or more chips . The processor 1100 may 
be a part of and / or may be implemented on one or more 
substrates using any of a number of process technologies , 
such as , for example , BiCMOS , CMOS , or NMOS . 
[ 0164 ] The memory hierarchy includes one or more levels 
of cache within the cores , a set or one or more shared cache 
units 1106 , and external memory ( not shown ) coupled to the 
set of integrated memory controller units 1114. The set of 
shared cache units 1106 may include one or more mid - level 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or 
other levels of cache , a last level cache ( LLC ) , and / or 
combinations thereof . While in one embodiment a ring 
based interconnect unit 1112 interconnects the integrated 
graphics logic 1108 , the set of shared cache units 1106 , and 
the system agent unit 1110 / integrated memory controller 
unit ( s ) 1114 , alternative embodiments may use any number 
of well - known techniques for interconnecting such units . In 
one embodiment , coherency is maintained between one or 
more cache units 1106 and cores 1102 - A - N . 
[ 0165 ] In some embodiments , one or more of the cores 
1102A - N are capable of multi - threading . The system agent 
1110 includes those components coordinating and operating 
cores 1102A - N . The system agent unit 1110 may include for 
example a power control unit ( PCU ) and a display unit . The 
PCU may be or include logic and components needed for 
regulating the power state of the cores 1102A - N and the 
integrated graphics logic 1108. The display unit is for 
driving one or more externally connected displays . 

Exemplary Computer Architectures 
[ 0167 ] FIGS . 12-15 are block diagrams of exemplary 
computer architectures . Other system designs and configu 
rations known in the arts for laptops , desktops , handheld 
PCs , personal digital assistants , engineering workstations , 
servers , network devices , network hubs , switches , embed 
ded processors , digital signal processors ( DSPs ) , graphics 
devices , video game devices , set - top boxes , micro control 
lers , cell phones , portable media players , hand held devices , 
and various other electronic devices , are also suitable . In 
general , a huge variety of systems or electronic devices 
capable of incorporating a processor and / or other execution 
logic as disclosed herein are generally suitable . 
[ 0168 ] Referring now to FIG . 12 , shown is a block dia 
gram of a system 1200 in accordance with one embodiment 
of the present disclosure . The system 1200 may include one 
or more processors 1210 , 1215 , which are coupled to a 
controller hub 1220. In one embodiment the controller hub 
1220 includes a graphics memory controller hub ( GMCH ) 
1290 and an Input / Output Hub ( IOH ) 1250 ( which may be 
on separate chips ) ; the GMCH 1290 includes memory and 
graphics controllers to which are coupled memory 1240 and 
a coprocessor 1245 ; the IOH 1250 is couples input / output 
( I / O ) devices 1260 to the GMCH 1290. Alternatively , one or 
both of the memory and graphics controllers are integrated 
within the processor ( as described herein ) , the memory 1240 
and the coprocessor 1245 are coupled directly to the pro 
cessor 1210 , and the controller hub 1220 in a single chip 
with the IOH 1250. Memory 1240 may include non - write 
back lock disablement code 1240A , for example , to store 
code that when executed causes a processor to perform any 
method of this disclosure . 
[ 0169 ] The optional nature of additional processors 1215 
is denoted in FIG . 12 with broken lines . Each processor 
1210 , 1215 may include one or more of the processing cores 
described herein and may be some version of the processor 
1100 . 
[ 0170 ] The memory 1240 may be , for example , dynamic 
random access memory ( DRAM ) , phase change memory 
( PCM ) , or a combination of the two . For at least one 
embodiment , the controller hub 1220 communicates with 
the processor ( s ) 1210 , 1215 via a multi - drop bus , such as a 
frontside bus ( FSB ) , point - to - point interface such as Quick 
path Interconnect ( QPI ) , or similar connection 1295 . 
[ 0171 ] In one embodiment , the coprocessor 1245 is a 
special - purpose processor , such as , for example , a high 
throughput MIC processor , a network or communication 
processor , compression engine , graphics processor , GPGPU , 
embedded processor , or the like . In one embodiment , con 
troller hub 1220 may include an integrated graphics accel 
erator . 
[ 0172 ] There can be a variety of differences between the 
physical resources 1210 , 1215 in terms of a spectrum of 
metrics of merit including architectural , microarchitectural , 
thermal , power consumption characteristics , and the like . 
[ 0173 ] In one embodiment , the processor 1210 executes 
instructions that control data processing operations of a 



US 2021/0096930 A1 Apr. 1 , 2021 
19 

general type . Embedded within the instructions may be 
coprocessor instructions . The processor 1210 recognizes 
these coprocessor instructions as being of a type that should 
be executed by the attached coprocessor 1245. Accordingly , 
the processor 1210 issues these coprocessor instructions ( or 
control signals representing coprocessor instructions ) on a 
coprocessor bus or other interconnect , to coprocessor 1245 . 
Coprocessor ( s ) 1245 accept and execute the received copro 
cessor instructions . 
[ 0174 ] Referring now to FIG . 13 , shown is a block dia 
gram of a first more specific exemplary system 1300 in 
accordance with an embodiment of the present disclosure . 
As shown in FIG . 13 , multiprocess essor system 1300 is a 
point - to - point interconnect system , and includes a first pro 
cessor 1370 and a second processor 1380 coupled via a 
point - to - point interconnect 1350. Each of processors 1370 
and 1380 may be some version of the processor 1100. In one 
embodiment of the disclosure , processors 1370 and 1380 are 
respectively processors 1210 and 1215 , while coprocessor 
1338 is coprocessor 1245. In another embodiment , proces 
sors 1370 and 1380 are respectively processor 1210 copro 
cessor 1245 . 
[ 0175 ] Processors 1370 and 1380 are shown including 
integrated memory controller ( IMC ) units 1372 and 1382 , 
respectively . Processor 1370 also includes as part of its bus 
controller units point - to - point ( P - P ) interfaces 1376 and 
1378 ; similarly , second processor 1380 includes P - P inter 
faces 1386 and 1388. Processors 1370 , 1380 may exchange 
information via a point - to - point ( P - P ) interface 1350 using 
P - P interface circuits 1378 , 1388. As shown in FIG . 13 , 
IMCs 1372 and 1382 couple the processors to respective 
memories , namely a memory 1332 and a memory 1334 , 
which may be portions of main memory locally attached to 
the respective processors . 
[ 0176 ] Processors 1370 , 1380 may each exchange infor 
mation with a chipset 1390 via individual P - P interfaces 
1352 , 1354 using point to point interface circuits 1376 , 
1394 , 1386 , 1398. Chipset 1390 may optionally exchange 
information with the coprocessor 1338 via a high - perfor 
mance interface 1339. In one embodiment , the coprocessor 
1338 a special - purpose processor , such as , for example , a 
high - throughput MIC processor , a network or communica 
tion processor , compression engine , graphics processor , 
GPGPU , embedded processor , or the like . 
[ 0177 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0178 ] Chipset 1390 may be coupled to a first bus 1316 via 
an interface 1396. In one embodiment , first bus 1316 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the present disclo 
sure is not so limited . 
[ 0179 ] As shown in FIG . 13 , various 1/0 devices 1314 
may be coupled to first bus 1316 , along with a bus bridge 
1318 which couples first bus 1316 to a second bus 1320. In 
one embodiment , one or more additional processor ( s ) 1315 , 
such as coprocessors , high - throughput MIC processors , 
GPGPU's , accelerators ( such as , e.g. , graphics accelerators 
or digital signal processing ( DSP ) units ) , field program 
mable gate arrays , or any other processor , are coupled to first 

bus 1316. In one embodiment , second bus 1320 may be a 
low pin count ( LPC ) bus . Various devices may be coupled to 
a second bus 1320 including , for example , a keyboard and / or 
mouse 1322 , communication devices 1327 and a storage 
unit 1328 such as a disk drive or other mass storage device 
which may include instructions / code and data 1330 , in one 
embodiment . Further , an audio I / O 1324 may be coupled to 
the second bus 1320. Note that other architectures are 
possible . For example , instead of the point - to - point archi 
tecture of FIG . 13 , a system may implement a multi - drop bus 
or other such architecture . 
[ 0180 ] Referring now to FIG . 14 , shown is a block dia 
gram of a second more specific exemplary system 1400 in 
accordance with an embodiment of the present disclosure 
Like elements in FIGS . 13 and 14 bear like reference 
numerals , and certain aspects of FIG . 13 have been omitted 
from FIG . 14 in order to avoid obscuring other aspects of 
FIG . 14 . 
[ 0181 ] FIG . 14 illustrates that the processors 1370 , 1380 
may include integrated memory and I / O control logic 
( " CL " ) 1372 and 1382 , respectively . Thus , the CL 1372 , 
1382 include integrated memory controller units and include 
I / O control logic . FIG . 14 illustrates that not only are the 
memories 1332 , 1334 coupled to the CL 1372 , 1382 , but also 
that I / O devices 1414 are also coupled to the control logic 
1372 , 1382. Legacy I / O devices 1415 are coupled to the 
chipset 1390 . 
[ 0182 ] Referring now to FIG . 15 , shown is a block dia 
gram of a SoC 1500 in accordance with an embodiment of 
the present disclosure . Similar elements in FIG . 11 bear like 
reference numerals . Also , dashed lined boxes are optional 
features on more advanced SoCs . In FIG . 15 , an interconnect 
unit ( s ) 1502 is coupled to : an application processor 1510 
which includes a set of one or more cores 202A - N and 
shared cache unit ( s ) 1106 ; a system agent unit 1110 ; a bus 
controller unit ( s ) 1116 ; an integrated memory controller 
unit ( s ) 1114 ; a set or one or more coprocessors 1520 which may include integrated graphics logic , an image processor , 
an audio processor , and a video processor ; an static random 
access memory ( SRAM ) unit 1530 ; a direct memory access 
( DMA ) unit 1532 ; and a display unit 1540 for coupling to 
one or more external displays . In one embodiment , the 
coprocessor ( s ) 1520 include a special - purpose processor , 
such as , for example , a network or communication proces 
sor , compression engine , GPGPU , a high - throughput MIC 
processor , embedded processor , or the like . 
[ 0183 ] Embodiments ( e.g. , of the mechanisms ) disclosed 
herein may be implemented in hardware , software , firm 
ware , or a combination of such implementation approaches . 
Embodiments of the disclosure may be implemented as 
computer programs or program code executing on program 
mable systems comprising at least one processor , a storage 
system ( including volatile and non - volatile memory and / or 
storage elements ) , at least one input device , and at least one 
output device . 
[ 0184 ] Program code , such as code 1330 illustrated in 
FIG . 13 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 
processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 



US 2021/0096930 A1 Apr. 1 , 2021 
20 

media may 

[ 0185 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
[ 0186 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores ” 
may be stored on a tangible , machine readable medium and 
supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0187 ] Such machine - readable storage 
include , without limitation , non - transitory , tangible arrange 
ments of articles manufactured or formed by a machine or 
device , including storage media such as hard disks , any 
other type of disk including floppy disks , optical disks , 
compact disk read - only memories ( CD - ROMs ) , compact 
disk rewritable’s ( CD - RWs ) , and magneto - optical disks , 
semiconductor devices such as read - only memories 
( ROMs ) , random access memories ( RAMs ) such as dynamic 
random access memories ( DRAMs ) , static random access 
memories ( SRAMs ) , erasable programmable read - only 
memories ( EPROMs ) , flash memories , electrically erasable 
programmable read - only memories ( EEPROMs ) , phase 
change memory ( PCM ) , magnetic or optical cards , or any 
other type of media suitable for storing electronic instruc 
tions . 
[ 0188 ] Accordingly , embodiments of the disclosure also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 

compiled using an x86 compiler 1604 to generate x86 binary 
code 1606 that may be natively executed by a processor with 
at least one x86 instruction set core 1616. The processor with 
at least one x86 instruction set core 1616 represents any 
processor that can perform substantially the same functions 
as an Intel® processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing ( 1 ) a 
substantial portion of the instruction set of the Intel® x86 
instruction set core or ( 2 ) object code versions of applica 
tions or other software targeted to run on an Intel® processor 
with at least one x86 instruction set core , in order to achieve 
substantially the same result as an Intel® processor with at 
least one x86 instruction set core . The x86 compiler 1604 
represents a compiler that is operable to generate x86 binary 
code 1606 ( e.g. , object code ) that can , with or without 
additional linkage processing , be executed on the processor 
with at least one x86 instruction set core 1616. Similarly , 
FIG . 16 shows the program in the high level language 1602 
may be compiled using an alternative instruction set com 
piler 1608 to generate alternative instruction set binary code 
1610 that may be natively executed by a processor without 
at least one x86 instruction set core 1614 ( e.g. , a processor 
with cores that execute the MIPS instruction set of MIPS 
Technologies of Sunnyvale , Calif . and / or that execute the 
ARM instruction set of ARM Holdings of Sunnyvale , 
Calif . ) . The instruction converter 1612 is used to convert the 
x86 binary code 1606 into code that may be natively 
executed by the processor without an x86 instruction set 
core 1614. This converted code is not likely to be the same 
as the alternative instruction set binary code 1610 because 
an instruction converter capable of this is difficult to make ; 
however , the converted code will accomplish the general 
operation and be made up of instructions from the alterna 
tive instruction set . Thus , the instruction converter 1612 
represents software , firmware , hardware , or a combination 
thereof that , through emulation , simulation or any other 
process , allows a processor or other electronic device that 
does not have an x86 instruction set processor or core to 
execute the x86 binary code 1606 . 
[ 0191 ] e - Filed via EFS - Web 59 Atty . Docket No .: 
42AC2139 - US 

Claims what is claimed is : 
1. An apparatus comprising : 
a plurality of logical processors ; 
a control register comprising a non - write - back lock dis 

able bit ; 
a cache shared by the plurality of logical processors ; 
a bus to couple the cache to a memory to service a 
memory request for the memory from the plurality of 
logical processors ; and 

a memory controller to disable a non - write - back lock 
access of the bus for a read - modify - write type of the 
memory request issued by a logical processor of the 
plurality of logical processors when the non - write - back 
lock disable bit is set to a first value , and implement the 
non - write - back lock access of the bus for the read 
modify - write type of the memory request when the 
non - write - back lock disable bit is set to a second value . 

2. The apparatus of claim 1 , wherein the memory con 
troller is to create a general protection fault to disable the 
non - write - back lock access . 

3. The apparatus of claim 1 , wherein the control register 
is a memory control register . 

Emulation ( Including Binary Translation , Code Morphing , 
etc. ) 
[ 0189 ] In some cases , an instruction converter may be 
used to convert an instruction from a source instruction set 
to a target instruction set . For example , the instruction 
converter may translate ( e.g. , using static binary translation , 
dynamic binary translation including dynamic compilation ) , 
morph , emulate , or otherwise convert an instruction to one 
or more other instructions to be processed by the core . The 
instruction converter may be implemented in software , hard 
ware , firmware , or a combination thereof . The instruction 
converter may be on processor , off processor , or part on and 
part off processor . 
[ 0190 ] FIG . 16 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the disclosure . 
In the illustrated embodiment , the instruction converter is a 
software instruction converter , although alternatively the 
instruction converter may be implemented in software , firm 
ware , hardware , or various combinations thereof . FIG . 16 
shows a program in a high level language 1602 may be 



US 2021/0096930 A1 Apr. 1 , 2021 
21 

4. The apparatus of claim 3 , wherein an address of the 
memory control register is thirty - three hexadecimal . 

5. The apparatus of claim 1 , further comprising a capa 
bilities register comprising a capability bit that , when set to 
a first value , indicates the plurality of logical processors 
supports a non - write - back lock access disable feature , and , 
when set to a second value , indicates the plurality of logical 
processors does not support the non - write - back lock access 
disable feature . 

6. The apparatus of claim 1 , wherein the memory con 
troller is to , when a cache disable bit is set to a value in a 
second control register to disable the cache , not disable the 
non - write - back lock access of the bus for the read - modify 
write type of the memory request issued by the logical 
processor of the plurality of logical processors when the 
non - write - back lock disable bit is set to the first value . 

7. The apparatus of claim 1 , wherein the memory con 
troller is to , when extended page tables are enabled and 
memory type is set to non - write - back , not disable the 
non - write - back lock access of the bus for the read - modify 
write type of the memory request issued by the logical 
processor of the plurality of logical processors when the 
non - write - back lock disable bit is set to the first value . 

8. The apparatus of claim 1 , wherein the plurality of 
logical processors is a plurality of processor cores . 

9. A method comprising : 
setting a non - write - back lock disable bit in a control 

register of a plurality of logical processors of a pro 
cessor ; 

performing a respective operation with each of the plu 
rality of logical processors of the processor that share 
a cache coupled to a memory via a bus ; 

receiving a memory request from a logical processor of 
the plurality of logical processors for the memory with 
a memory controller ; 

disabling a non - write - back lock access of the bus for a 
read - modify - write type of the memory request issued 
by the logical processor of the plurality of logical 
processors with the memory controller when the non 
write - back lock disable bit is set to a first value ; and 

implementing the non - write - back lock access of the bus 
for the read - modify - write type of the memory request 
with the memory controller when the non - write - back 
lock disable bit is set to a second value . 

10. The method of claim 9 , wherein the disabling the 
non - write - back lock access comprises generating a general 
protection fault . 

11. The method of claim 9 , wherein the control register is 
a memory control register . 

12. The method of claim 11 , wherein an address of the 
memory control register is thirty - three hexadecimal . 

13. The method of claim 9 , further comprising setting a 
capability bit of a capabilities register of the processor to a 
first value to indicate the plurality of logical processors 
supports a non - write - back lock access disable feature , and 
setting the capability bit to a second value to indicate the 
plurality of logical processors does not support the non 
write - back lock access disable feature . 

14. The method of claim 9 , further comprising setting a 
cache disable bit in a second control register to a value to 
disable the cache , wherein the memory controller then does 
not disable the non - write - back lock access of the bus for the 
read - modify - write type of the memory request issued by the 

logical processor of the plurality of logical processors when 
the non - write - back lock disable bit is set to the first value . 

15. The method of claim 9 , further comprising enabling 
extended page tables for the plurality of logical processors 
and setting memory type to non - write - back , wherein the 
memory controller then does not disable the non - write - back 
lock access of the bus for the read - modify - write type of the 
memory request issued by the logical processor of the 
plurality of logical processors when the non - write - back lock 
disable bit is set to the first value . 

16. The method of claim 9 , wherein the plurality of logical 
processors is a plurality of processor cores . 

17. A non - transitory machine readable medium that stores 
code that when executed by a machine causes the machine 
to perform a method comprising : 

setting a non - write - back lock disable bit in a control 
register of a plurality of logical processors of a pro 
cessor ; 

performing a respective operation with each of the plu 
rality of logical processors of the processor that share 
a cache coupled to a memory via a bus ; 

receiving a memory request from a logical processor of 
the plurality of logical processors for the memory with 
a memory controller , 

disabling a non - write - back lock access of the bus for a 
read - modify - write type of the memory request issued 
by the logical processor of the plurality of logical 
processors with the memory controller when the non 
write - back lock disable bit is set to a first value ; and 

implementing the non - write - back lock access of the bus 
for the read - modify - write type of the memory request 
with the memory controller when the non - write - back 
lock disable bit is set to a second value . 

18. The non - transitory machine readable medium of claim 
17 , wherein the disabling the non - write - back lock access 
comprises generating a general protection fault . 

19. The non - transitory machine readable medium of claim 
17 , wherein the control register is a memory control register . 

20. The non - transitory machine readable medium of claim 
19 , wherein an address of the memory control register is 
thirty - three hexadecimal . 

21. The non - transitory machine readable medium of claim 
17 , further comprising setting a capability bit of a capabili 
ties register of the processor to a first value to indicate the 
plurality of logical processors supports a non - write - back 
lock access disable feature , and setting the capability bit to 
a second value to indicate the plurality of logical processors 
does not support the non - write - back lock access disable 
feature . 

22. The non - transitory machine readable medium of claim 
17 , further comprising setting a cache disable bit in a second 
control register to a value to disable the cache , wherein the 
memory controller then does not disable the non - write - back 
lock access of the bus for the read - modify - write type of the 
memory request issued by the logical processor of the 
plurality of logical processors when the non - write - back lock 
disable bit is set to the first value . 

23. The non - transitory machine readable medium of claim 
17 , further comprising enabling extended page tables for the 
plurality of logical processors and setting memory type to 
non - write - back , wherein the memory controller then does 
not disable the non - write - back lock access of the bus for the 
read - modify - write type of the memory request issued by the 



US 2021/0096930 A1 Apr. 1 , 2021 
22 

logical processor of the plurality of logical processors when 
the non - write - back lock disable bit is set to the first value . 

24. The non - transitory machine readable medium of claim 
17 , wherein the plurality of logical processors is a plurality 
of processor cores . 


