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APPARATUSES, METHODS, AND SYSTEMS
FOR PROCESSOR NON-WRITE-BACK
CAPABILITIES

TECHNICAL FIELD

[0001] The disclosure relates generally to electronics, and,
more specifically, an embodiment of the disclosure relates to
a processor with non-write-back capabilities.

BACKGROUND

[0002] A processor, or set of processors, executes instruc-
tions from an instruction set, e.g., the instruction set archi-
tecture (ISA). The instruction set is the part of the computer
architecture related to programming, and generally includes
the native data types, instructions, register architecture,
addressing modes, memory architecture, interrupt and
exception handling, and external input and output (I/O). It
should be noted that the term instruction herein may refer to
a macro-instruction, e.g., an instruction that is provided to
the processor for execution, or to a micro-instruction, e.g.,
an instruction that results from a processor’s decoder decod-
ing macro-instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

[0004] FIG. 1 illustrates a hardware processor coupled to
a memory according to embodiments of the disclosure.
[0005] FIG. 2 illustrates an example format for a memory
control register according to embodiments of the disclosure.
[0006] FIG. 3 illustrates an example format for a capa-
bilities register according to embodiments of the disclosure
according to embodiments of the disclosure.

[0007] FIG. 4 illustrates an example format for control
registers (e.g., CR4 to CRO) according to embodiments of
the disclosure.

[0008] FIG. 5 is a flow diagram according to embodiments
of the disclosure.

[0009] FIG. 6A is a block diagram illustrating a generic
vector friendly instruction format and class A instruction
templates thereof according to embodiments of the disclo-
sure.

[0010] FIG. 6B is a block diagram illustrating the generic
vector friendly instruction format and class B instruction
templates thereof according to embodiments of the disclo-
sure.

[0011] FIG. 7Ais a block diagram illustrating fields for the
generic vector friendly instruction formats in FIGS. 6A and
6B according to embodiments of the disclosure.

[0012] FIG. 7B is a block diagram illustrating the fields of
the specific vector friendly instruction format in FIG. 7A that
make up a full opcode field according to one embodiment of
the disclosure.

[0013] FIG. 7C is a block diagram illustrating the fields of
the specific vector friendly instruction format in FIG. 7A that
make up a register index field according to one embodiment
of the disclosure.

[0014] FIG. 7D is a block diagram illustrating the fields of
the specific vector friendly instruction format in FIG. 7A that
make up the augmentation operation field 650 according to
one embodiment of the disclosure.

Apr. 1,2021

[0015] FIG. 8 is a block diagram of a register architecture
according to one embodiment of the disclosure

[0016] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the disclosure.

[0017] FIG. 9B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the disclosure.

[0018] FIG. 10A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network and with its local subset of the Level 2 (L.2) cache,
according to embodiments of the disclosure.

[0019] FIG. 10B is an expanded view of part of the
processor core in FIG. 10A according to embodiments of the
disclosure.

[0020] FIG. 11 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the disclosure.

[0021] FIG. 12 is a block diagram of a system in accor-
dance with one embodiment of the present disclosure.
[0022] FIG. 13 is a block diagram of a more specific
exemplary system in accordance with an embodiment of the
present disclosure.

[0023] FIG. 14, shown is a block diagram of a second
more specific exemplary system in accordance with an
embodiment of the present disclosure.

[0024] FIG. 15, shown is a block diagram of a system on
a chip (SoC) in accordance with an embodiment of the
present disclosure.

[0025] FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the disclosure.

DETAILED DESCRIPTION

[0026] In the following description, numerous specific
details are set forth. However, it is understood that embodi-
ments of the disclosure may be practiced without these
specific details. In other instances, well-known circuits,
structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.
[0027] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.
[0028] A (e.g., hardware) processor (e.g., having one or
more cores) may execute instructions (e.g., a thread of
instructions) to operate on data, for example, to perform
arithmetic, logic, or other functions. For example, software
may request an operation and a hardware processor (e.g., a
core or cores thereof) may perform the operation in response
to the request. In certain embodiment, a logical processor or



US 2021/0096930 Al

logical processors (e.g., of a central processing unit (CPU))
is to perform the operation in response to the request. A
logical processor may be a core. A plurality of logical
processors may be implemented on a single core, for
example, where the core’s components support multithread-
ing (e.g., executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyper-Threading technology).

[0029] In certain embodiments, a plurality of logical pro-
cessors performs operations. At least one of the logical
processors may perform a locked read-modify-write (RMW)
operation where the storage for the data to be read, then
modified, the written back in its modified state, is locked
from other logical processors modifying that storage during
the RMW operation. As one example, a first logical proces-
sor that is to modify data (e.g., a cache line of data) is to
assert a lock over the storage for that data, modifies the data
(e.g., one or more bits thereof), then writes the modified
version of the data back into the storage (e.g., the same
location that was read from), and then deasserts the lock,
e.g., to prevent another logical processor from performing a
write between the read and the write by the first logical
processor. Non-limiting examples of read-modify-write
types of memory requests that implement a lock (e.g., a bus
lock) are certain lock instructions and flows (e.g., ADD with
a lock prefix, updating segment access bits, or page tables
access/dirty bits).

[0030] In certain embodiments, a locked RMW operation
is for data that is stored in a cache (e.g., an L1 cache) shared
by a plurality of logical processors, so it only impacts
software running on same logical processors that share this
cache. However, in other embodiments, a non-write-back
lock is implemented for an RMW type of memory request to
the storage storing the data to be read and modified. In one
embodiment, a non-write-back lock is implemented because
the data to be read and modified is not stored within a (e.g.,
internal) cache of the logical processor to perform the RMW
operation, but is stored in memory separate from the cache
that is locked from other accesses by the non-write-back
lock. For example, locking a bus that couples a plurality of
logical processors to a memory.

[0031] However, in certain embodiments, the non-write-
back lock blocks all logical processors (e.g., that are coupled
to the memory via the bus that is locked) from accessing
memory till the RMW operation is completed. Having a
burst of bus locks by one of the logical processors thus
causes data starvation to the rest of the logical processors in
these embodiments. In a processor running real-time soft-
ware (e.g., a real-time operating system (RTOS)) and gen-
eral-purpose software (e.g., general purpose operating sys-
tem (GPOS)), memory requests from the general-purpose
software that cause issuance of non-write-back locks pre-
vents the real-time software from accessing memory, and
thus prevents real-time software from progressing in these
embodiments. In one embodiment, this happens in a system
including both RTOS and GPOS, where a GPOS configures
a page table to allow non-write-back (non-WB) access to
software. The embodiments herein thus are an improvement
to the functioning of the processor (e.g., of a computer) itself
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by allowing for the selective control of the implementation
or disabling of non-write-back locks as disclosed. With this
feature, an internet of things (IoT) system can be free of
these bus locks and will allow real-time software to run
without interference from other software on the processor
(e.g., CPU).

[0032] Certain embodiments herein provide a new archi-
tecture that allow software (e.g., an operating system) to
selectively disable non-write-back lock accesses (e.g., dis-
ables servicing the memory request that was to cause the
non-write-back lock), e.g., in contrast to just disabling all
types of locks. In one embodiment, a new model-specific-
register (MSR) bit is added, that when set to an “on” value,
is to cause the processor (e.g., CPU) to disable non-write-
back lock accesses, for example, by causing the generation
of a general protection (GP) fault when software issues a
non-WB lock access while this MSR bit is set to the “on”
value.

[0033] FIG. 1 illustrates a hardware processor 100 coupled
to a memory 102 according to embodiments of the disclo-
sure. Memory 102 may be system memory, e.g., separate
from a cache. Hardware processor 100 may include one or
more cores (e.g., cores 104-1 to 104-N, where N is any
integer greater than one). Each core may include one or
more logical processors. A single logical processor may be
a single core. A plurality of logical processors may be
implemented on a single core, for example, where the core’s
components support multithreading (e.g., executing two or
more parallel sets of operations or threads), and may do so
in a variety of ways including time sliced multithreading,
simultaneous multithreading (where a single physical core
provides a logical core for each of the threads that physical
core is simultaneously multithreading), or a combination
thereof (e.g., time sliced fetching and decoding and simul-
taneous multithreading thereafter such as in the Intel®
Hyper-Threading technology). A logical processor may
share access to certain components, e.g., cache(s) or
memory.

[0034] Hardware processor 100, as depicted in FIG. 1,
includes two cores, core 104-1 and core 104-N, which share
access to a higher level cache 128. Each core may execute
a plurality of hardware threads. For example, in an embodi-
ment with two logical processors being implemented by
each core, software entities, such as an operating system,
may view processor 100 as four separate logical processors,
while processor 100 is capable of executing four software
threads. Cores 104-A to 104-N may be symmetric cores as
shown or be asymmetric cores, e.g., cores with different
configurations, execution units, etc.

[0035] In certain embodiments, core 104-1 includes any
combination of data register or registers 106-1, control
register or registers 110-1, and capability register or registers
108-1. In one embodiment, data register 106-1 is used to
store data that is to be operated on. In one embodiment,
capability register 108-1 stores a bit or bits that each
represent the capabilities of that particular core, for example,
to indicate if the core (or all cores) supports non-write-back
lock disablement as discussed herein e.g., as depicted in
FIG. 3. In one embodiment, control register 110-1 stores a
bit or bits that each control whether certain functionality is
enabled for that core, for example, to turn on or off the
non-write-back lock disablement as discussed herein. In one
embodiment, control register 110-1 includes a memory
control register 112-1, e.g., as depicted in FIG. 2. In one
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embodiment, control register 110-1 includes other control
register or registers 114-1, e.g., as depicted in FIG. 4.
[0036] Depicted core 104-1 includes a branch target buffer
(BTB), instruction cache (i-cache), and/or instruction trans-
lation lookaside buffer (I-TLB) 116-1, e.g., with a BTB to
predict branches to be executed/taken, an instruction cache
to cache instructions (e.g., instruction from a higher level
cache and/or memory 102) and/or an I-TLB to store (e.g.,
linear to physical) address translation entries for instruc-
tions. In certain embodiments, a processor 100 capable of
speculative execution prefetches and speculatively executes
predicted branches.

[0037] Decoder 118-1 (e.g., decode circuit) is to decode an
instruction (e.g., received from fetching of the instruction)
into a decoded instruction. In one embodiment, processor
100 supports an Instruction Set Architecture (ISA) which
defines and specifies instructions that are decodable/execut-
able on processor 100.

[0038] Depicted core 104-1 includes a rename/allocator/
scheduler 120-1. In one embodiment, rename circuitry is a
register renamer to rename program/instruction reference
registers to other registers internal to processor 100. In one
embodiment, allocator circuitry is to allocate (e.g., reserve)
processor resources, such as execution units and/or reorder
buffers to track instruction results. In one embodiment,
scheduler circuitry is to schedule execution of the instruction
(e.g., microcode corresponding to the instruction) on the
processor resources (e.g., execution unit(s) 122-1).

[0039] In certain embodiments, instructions (e.g., micro-
code) are scheduled on execution units (e.g., execution
circuits) according to their type and/or availability. For
example, a floating point instruction is scheduled on a port
of an execution unit that has an available floating point
execution unit. Register files associated with the execution
units may also be included to store information instruction
processing results. Exemplary execution units include a
floating—point execution unit, an integer execution unit, a
jump execution unit, a load execution unit, a store execution
unit, or other execution units.

[0040] Depicted core 104-1 includes a reorder/retirement
unit 124-1. In one embodiment, reorder/retirement unit
124-1 includes components, such as the reorder buffers
mentioned above, load buffers, and store buffers, to support
out-of-order execution and later in-order retirement of
instructions executed out-of-order, e.g., where allocator and
rename circuitry also reserve other resources, such as reor-
der buffers to track instruction results.

[0041] In certain embodiments, core 104-N includes any
combination of data register or registers 106-N, control
register or registers 110-N, and capability register or regis-
ters 108-N. In one embodiment, data register 106-N is used
to store data that is to be operated on. In one embodiment,
capability register 108-N stores a bit or bits that each
represent the capabilities of that particular core, for example,
to indicate if the core (or all cores) supports non-write-back
lock disablement as discussed herein e.g., as depicted in
FIG. 3. In one embodiment, control register 110-N stores a
bit or bits that each control whether certain functionality is
enabled for that core, for example, to turn on or off the
non-write-back lock disablement as discussed herein. In one
embodiment, control register 110-N includes a memory
control register 112-N;, e.g., as depicted in FIG. 2. In one
embodiment, control register 110-N includes other control
register or registers 114-N, e.g., as depicted in FIG. 4.
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[0042] Depicted core 104-N includes a branch target buf-
fer (BTB), instruction cache (i-cache), and/or instruction
translation lookaside buffer (I-TLB) 116-N, e.g., with a BTB
to predict branches to be executed/taken, an instruction
cache (i-cache) to cache instructions (e.g., instruction from
a higher level cache and/or memory 102), and/or an I-TLB
to store (e.g., linear to physical) address translation entries
for instructions. In certain embodiments, a processor 100
capable of speculative execution prefetches and specula-
tively executes predicted branches.

[0043] Decoder 118-N (e.g., decode circuit) is to decode
an instruction (e.g., received from fetching of the instruc-
tion) into a decoded instruction. In one embodiment, pro-
cessor 100 supports an Instruction Set Architecture (ISA)
which defines and specifies instructions that are decodable/
executable on processor 100.

[0044] Depicted core 104-N includes a rename/allocator/
scheduler 120-N. In one embodiment, rename circuitry is a
register renamer to rename program/instruction reference
registers to other registers internal to processor 100. In one
embodiment, allocator circuitry is to allocate (e.g., reserve)
processor resources, such as execution units and/or reorder
buffers to track instruction results. In one embodiment,
scheduler circuitry is to schedule execution of the instruction
(e.g., microcode corresponding to the instruction) on the
processor resources (e.g., execution unit(s) 122-N).

[0045] In certain embodiments, instructions (e.g., micro-
code) are scheduled on execution units (e.g., execution
circuits) according to their type and/or availability. For
example, a floating—ypoint instruction is scheduled on a port
of an execution unit that has an available floating—ypoint
execution unit. Register files associated with the execution
units may also be included to store information instruction
processing results. Exemplary execution units include a
floating—point execution unit, an integer execution unit, a
jump execution unit, a load execution unit, a store execution
unit, or other execution units.

[0046] Depicted core 104-N includes a reorder/retirement
unit 124-N. In one embodiment, reorder/retirement unit
124-N includes components, such as the reorder buffers
mentioned above, load buffers, and store buffers, to support
out-of-order execution and later in-order retirement of
instructions executed out-of-order, e.g., where allocator and
rename circuitry also reserve other resources, such as reor-
der buffers to track instruction results.

[0047] Depicted core 104-1 includes a lower level data
cache (d-cache) and/or data translation lookaside buffer
(d-TLB), for example, with data cache to cache data (e.g.,
data from a higher level cache and/or memory 102) and/or
D-TLB to store (e.g., linear to physical) address translation
entries for stored data, e.g., coupled to a respective execu-
tion unit or units. Depicted processor 100 includes a higher
level (e.g., L2 or L3) cache 128. A cache is included in
certain embodiments to cache recently fetched and/or oper-
ated on elements. Note that higher-level may refer to cache
levels being further way from the execution unit(s). In one
embodiment, higher-level cache 128 is a second-level (L2)
data cache. In one embodiment, each data cache is to store
recently used/operated on elements, such as data operands,
which are potentially held in cache coherency states, such
as, but not limited to, modified, exclusive, shared, and
invalid (MESI) states. A D-TLB may store recent virtual (or
linear) to physical address translations. As a specific
example, a processor may include a page table structure to
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break physical memory into a plurality of virtual pages. Data
cache(s) may be utilized as a transactional memory or other
memory to track tentative accesses during execution of a
transaction. In one embodiment, page tables 136 and/or
segment descriptor tables are stored in memory 102, e.g.,
and cached in one or more caches.

[0048] Processor 100 may include a memory controller
130 (or a system on a chip (SoC) having processor 100 may
include a memory controller). In one embodiment, memory
controller 130 controls the memory accesses, e.g., to service
a miss of data in a cache by looking in a higher level cache(s)
and/or memory 102. In one embodiment, higher level cache
128 (e.g., and memory controller 130) are coupled to a bus
132. In FIG. 1, bus 132 includes a port 134 to memory 102.
Bus 132 may include other ports to communicate with
devices external to processor 100, such as memory 102, a
chipset, or other circuits. Memory 102 may be dedicated to
processor 100 or shared with other devices in a system.
Examples of memory 102 includes dynamic random access
memory (DRAM), static RAM (SRAM), non-volatile
memory (NV memory), etc. Bus 132 may include input/
output (I/O) buffers to transmit and receive bus signals on
the bus. Bus may be an interconnect.

[0049] In certain embodiments, a plurality of logical pro-
cessors (e.g., of a single core 104-1 or 104-N, of on a
plurality of cores 104-1 to 104-N) are performing opera-
tions. At least one of the logical processors may perform a
locked read-modify-write (RMW) operation where the stor-
age for the data to be read, then modified, the written back
in its modified state, is locked from other logical processors
modifying that storage during the RMW operation. As one
example, a first logical processor (e.g., of core 104-1) that is
to modify data (e.g., a cache line of data) is to assert a lock
over the storage for that data, modifies the data (e.g., one or
more bits thereof), then writes the modified version of the
data back into the storage (e.g., the same location that was
read from), and then de-asserts the lock, e.g., to prevent
another logical processor (e.g., of core 104-1 or of core
104-N) from performing a write between the read and the
write by the first logical processor. Non-limiting examples
of read-modify-write types of memory requests that imple-
ment a lock (e.g., a bus lock) are certain lock instructions
and flows (e.g., ADD with a lock prefix, updating segment
access bits, or page tables access/dirty bits).

[0050] In certain embodiments, a locked RMW operation
is for data that is stored in a cache (e.g., an L1 cache of core
104-1) shared by a plurality of logical processors (e.g., an L1
cache of core 104-1), so it only impacts software running on
same logical processors that share this cache. However, in
other embodiments, a non-write-back lock is implemented
for an RMW type of memory request to the storage storing
the data to be read and modified. In one embodiment, a
non-write-back lock is implemented because the data to be
read and modified is not stored within a (e.g., internal) cache
of the logical processor to perform the RMW operation, but
is stored in memory 102 separate from the cache that is
locked from other accesses by the non-write-back lock. For
example, locking a bus 132 that couples a plurality of logical
processors to a memory.

[0051] Inone embodiment, a locked RMW operation is for
data that is stored in a cache of core 104-1 or core 104-N
(e.g., higher level cache 128) shared by a plurality of logical
processors of core 104-1 or core 104-N, and the cache that
is locked from other accesses by a non-write-back lock of
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bus 132. Thus, in this embodiment, the non-write-back lock
blocks all logical processors or core 104-1 or core 104-N
from accessing memory till the RMW operation is com-
pleted. For example, where a first logical processor is
running real-time code and a second logical processor is
running general-purpose code, memory requests from the
general-purpose software that cause issuance of non-write-
back locks prevent the real-rime software from accessing
memory, and thus prevents real-time software from pro-
gressing in certain embodiments.

[0052] Certain embodiments herein provide a new archi-
tecture that allow software (e.g., an operating system) to
selectively disable non-write-back lock accesses (e.g., dis-
ables servicing the memory request that was to cause the
non-write-back lock), e.g., in contrast to just disabling all
types of locks. In one embodiment, a new bit is added in
control register 110-1 and/or control register 110-N (e.g.,
memory control register 112-1 and/or memory control reg-
ister 112-N), that when set to an “on” value instead of an
“off”” value, is to cause the processor (e.g., CPU) to disable
non-write-back lock accesses, for example, by causing the
generation of a general protection (GP) fault when software
issues a non-WB lock access while this MSR bit is set to the
“on” value. In one embodiment, each core includes its own
bit in its control register (e.g., memory control register), that
when set to an “on” value instead of an “off” value, is to
cause the core to disable non-write-back lock accesses for
that core (e.g., each logical processor implemented on that
core). In one embodiment, each core of multiple cores shares
a bit (or single field of multiple bits) in a shared control
register (e.g., memory control register), that when set to an
“on” value instead of an “off”” value, is to cause the cores to
disable non-write-back lock accesses for those cores (e.g.,
each logical processor implemented on those cores).

[0053] In certain embodiments, a memory request is sent
by a requesting entity, e.g., an execution unit sends a load
request or a store request. The memory request may a be a
read-modify-write type, e.g., that reads a value from storage
into an execution unit, modifies the value with the execution
unit, and then writes that modified value back into the
storage (e.g., the same storage location). In one embodi-
ment, a memory request is received by memory controller
130 (e.g., to access memory 102), and the memory controller
is to check if the control register (e.g., memory control
register) has the bit in that control register (e.g., memory
control register for a core that generated the memory
request) that is set to an “on” value instead of an “off” value,
is and thus cause the memory controller 130 to disable
non-write-back (e.g., noncached) lock accesses for the
memory 102 (e.g., by not allowing a bus lock of bus 132 for
that memory request). In one embodiment, a non-write-back
memory access is a memory access that is not serviceable
from cache (e.g., non-cachable), but is serviced from
memory 102.

[0054] In certain embodiments, memory requests for page
tables 136 and/or segment descriptor tables 138 are read-
modify-write types of memory requests, and thus may cause
a locking access (e.g., a non-write-back lock access) of bus
132. In certain embodiments, page tables 136 store a data
structure used by the virtual memory system in a computer
(e.g., operating system) to indicate the mapping between
virtual addresses and physical addresses to break physical
memory into a plurality of virtual pages. In one embodi-
ment, the physical address of the current page directory is
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stored in register CR3 (e.g., in FIG. 4), also may be referred
to as the page directory base register (PDBR). In certain
embodiments, segment descriptor tables 138 store a data
structure used by the virtual memory system in a computer
(e.g., operating system) to map a virtual (e.g., logical)
address into a physical (e.g., linear) address.

[0055] Registers may include one or more of (e.g., any
combination of): control registers (e.g., CRO through CR4)
determine the operating mode of the processor and the
characteristics of the currently executing task; memory
control registers may include one or more of memory
management registers (e.g., global descriptor table register
(GDTR), interrupt descriptor table register (IDTR), task
register, or local descriptor table register (LDTR) to specify
the locations of data structures used in protected mode
memory management; debug registers (e.g., DRO through
DR7) to control and allow monitoring of the processor’s
debugging operations; memory type range registers
(MTRRs) used to assign memory types to regions of
memory; or machine (e.g.,. model) specific registers (MSRs)
used to control and report on processor (e.g., per core)
performance (e.g., where MSRs, other than the time-stamp
counter, are to handle system related functions and are not
accessible to an application program). FIGS. 2-4 illustrate
various register formats that may be utilized.

[0056] In one embodiment, processor 100 is to disable a
non-write-back lock access of the bus by generating a fault
(e.g., interrupt) (for example, a general protection fault that
stops execution of the request for the lock of the bus and
sends an interrupt, e.g., to be read by the operating system),
for example, per logical processor or per core.

[0057] In certain embodiments, there are some cases
where it may be desirable for a processor (e.g., a CPU) to not
create a general protection fault even when a non-write-back
lock (e.g., lock access) of the bus (e.g., a locked RMW
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access) is detected and the non-write-back lock disable bit is
set (e.g.,, MEMORY_CONTROL[Non_WB_LOCK_DIS-
ABLE] bit is set):

1. When hardware and/or software has disabled cache (e.g.,
by setting bit CD in register CRO to “on”) so all access are
un-cacheable,

2. When memory of a protected container (e.g., enclave) is
used by memory encryption circuit 140 with non-write-back
memory type, e.g., preserved memory used for Intel® Soft-
ware Guard Extensions (SGX) is programmed with non-
write-back memory type,

3. Virtual Machine Monitor (VMM) enabled extended page
tables (EPT) and EPT Access/Dirty (A/D) and EPT memory
type (MEMTYPE) is non-write-back (non-WB), or

4. Posted interrupt descriptor if it is mapped to non-write-
back memory.

[0058] In certain embodiments hardware and/or software
can ensure that bus locks (as a result of a non-write-back
locked access) are never taken by:

1. Setting non-write-back lock disable bit (e.g., in TEST_
CTRL [NON-WRITE-BACK LOCK DISABLE]) to “on”,
2. Not disabling caches (e.g., not setting CR0.CD to “on”),
3. Configuring processor reserved memory range register
(PRMRR) to be “write-back™ always (e.g., by setting control
register that that provide operating system software with
control of how accesses to memory ranges by the processor
are cached),

4. If using EPT and enabling EPT A/D bits, then locating
EPT paging structures in write-back memory, or

5. If using posted interrupts then locating the posted inter-
rupt descriptor in write back memory instead of non-write-
back memory.

[0059] Table 1 below illustrates example cases where bus
locks can come from non-write-back lock access for a bus
(e.g., for a read-modity-write type of memory request). Note
that the below includes example instructions, and the pos-
sible format of instructions if discussed further below.

TABLE 1

EXAMPLE FLOWS/INSTRUCTIONS THAT CAN CAUSE A BUS LOCK

CATEGORY

INSTRUCTIONS CONDITIONS

ARITHMETIC

COMPARE/TEST

EXCHANGE

SEGMENTATION

LOCK PREFIX + {ADD, SUBTRACT,
AND, OR, XOR, ADD WITH CARRY
(ADC), SUBTRACT WITH BORROW
(SBB), INCREMENT, DECREMENT,
NOT, NEGATION (TWO’S
COMPLEMENT NEGATION)}

LOCK + {BIT TEST AND
COMPLEMENT (BTC), BIT TEST
AND RESET (BTR), BIT TEST AND
SET (BTS)}

EXCHANGE (XCHG), LOCK
PREFIX + {EXCHANGE AND ADD
(XADD)/COMPARE AND
EXCHANGE (CMPXCHG)/
EXCHANGE (XCHG)}

LOAD SEGMENT LIMIT (LSL),
LOAD ACCESS RIGHTS BYTE
(LAR), VERIFY A SEGMENT FOR
READING (VERR), VERIFY A
SEGMENT FOR WRITING (VERW),
LOAD POINTER USING DATA
SEGMENT (DS) REGISTER (LDS),
LOAD POINTER USING EXTRA
SEGMENT (ES) REGISTER (LES),
LOAD POINTER USING FS
REGISTER (LFS), LOAD POINTER
USING GS REGISTER (LGS), LOAD

IF MAPPED TO NON-
WRITE-BACK
MEMORY

IF MAPPED TO NON-
WRITE-BACK
MEMORY

IF MAPPED TO NON-
WRITE-BACK
MEMORY

SETTING SEGMENT
ACCESSED BIT IN
DESCRIPTOR IN NON-
WRITE-BACK
MEMORY
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TABLE 1-continued

EXAMPLE FLOWS/INSTRUCTIONS THAT CAN CAUSE A BUS LOCK

CATEGORY INSTRUCTIONS CONDITIONS
POINTER USING STACK SEGMENT
(SS) REGISTER (LSS), MOVE DATA
INTO DS REGISTER (MOV DS),
MOVE DATA INTO ES REGISTER
(MOV ES), MOVE DATA INTO FS
REGISTER (MOV FS), MOVE DATA
INTO GS REGISTER (MOV GS),
MOVE DATA INTO SS REGISTER
(MOV SS), POP A VALUE FROM
STACK INTO DS REGISTER (POP
DS), POP A VALUE FROM STACK
INTO ES REGISTER (POP ES), POP
A VALUE FROM STACK INTO FS
REGISTER (POP FS), POP A VALUE
FROM STACK INTO GS REGISTER
(POP GS), AND POP A VALUE
FROM STACK INTO SS REGISTER (POP SS)
CALL/INTERRUPT/  FAR CALL, FAR JUMP (IMP), FAR SETTING SEGMENT
EXCEPTION RETURN (RET), INTERRUPT ACCESSED BIT IN
RETURN (IRET), CALL INTERRUPT DESCRIPTOR IN NON-
HANDLER “N” WHERE N WRITE-BACK
SPECIFIES THE INTERRUPT MEMORY
VECTOR (INT N), INTERRUPT TO
GENERATE A BREAKPOINT TRAP
(INT3), INTERRUPT TO GENERATE
OVERFLOW TRAP IF OVERFLOW
FLAG IS ONE (INTO), INTERRUPT
TO GENERATE A DEBUG TRAP
(INT1), CALL THROUGH
INTERRUPT/TRAP GATE
TASKING LOAD TASK REGISTER (LTR), SETTING/CLEARING
TASK SWITCH TASK STATE
SEGMENT (TSS) BUSY
WHEN TSS IN MON-
WRITE-BACK
MEMORY SETTING
SEGMENT ACCESSED
BIT IN DESCRIPTOR
IN NON-WRITE-BACK
MEMORY
PAGING CODE FETCH (E.G., A BIT PAGE TABLES IN
UPDATE), E.G., NON-WRITE-BACK
INSTRUCTIONS THAT HAVE MEMORY
MEMORY OPERANDS
(ACCESS/DIRTY UPDATE ON
DATA LOAD/STORE/LWSI)
ENCLAVE ENTER AN ENCLAVE (ENCLU), IF PRESERVED
ACTIVATE BLOCK CHECKING MEMORY IS MAPPED
FOR ENCLAVE (ENCLS), IN NON-WRITE-BACK
ASYNCHRONOUS ENCLAVE EXIT MEMORY
(AEX) CAUSED BY EVENTS
WHILE EXECUTING ENCLAVE
CODE
POSTED UPDATING THE POSTED POSTED INTERRUPT
INTERRUPTS INTERRUPT DESCRIPTOR USES DESCRIPTOR IN NON-
LOCKED READ-MODIFY-WRITE WRITE-BACK
FOR ATOMIC OPERATIONS MEMORY

[0060] In certain embodiments, a control bit is added to
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embodiments of the disclosure. Depicted format 200

control enabling and disabling of non-write-back locks (e.g.,
by executing a write MSR (WRMSR) instruction, e.g., after
a read MSR (RDMSR) instruction to read the contents of
that MSR) (e.g., TEST_CTRL MSR (address 033H) bit #28
in FIG. 2).

[0061] In certain embodiments, a capability bit is added to
enumerate that existence of non-write-back lock disable-
ment feature, (e.g., in IA32_CORE_CAPABILITIES MSR
(address OCFH) bit #4 in FIG. 3).

[0062] FIG. 2 illustrates an example format 200 for a
memory control register (e.g., TEST_CTRL) according to

includes a register address 202 of hexadecimal 33H (decimal
51). Format 200 includes bit 28 to control the enabling (e.g.,
when set to zero) and disabling (e.g., when set to one) of
non-write-back locks. Depicted format 200 further includes
reserved (e.g., unused) bits 0 to 27, bit 29 to enable align-
ment check (#AC(0)) for split locked access, e.g., to cause
an alignment check exception for split locked access at all
current privilege levels (CPLs) irrespective of CR0.AM of
EFLAGS.AC (e.g., if bits 29 and 31 are set, bit 29 takes
precedence), bit 30 being reserved, and bit 31 to disable bus
lock (e.g., LOCK# signal) assertion for split locked access.
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In one embodiment, a split lock is an atomic operation that
is to access two cache lines that causes a bus lock while the
two cache lines are accessed. The non-write-back lock of a
bus discussed herein may be utilized for access to a single
cache line of data or less (e.g., not a split lock).

[0063] It should be understood that the numbers are
examples, and other formats may be used (e.g., 64 bit
registers instead of 32 bit registers).

[0064] FIG. 3 illustrates an example format 300 for a
capabilities register according to embodiments of the dis-
closure according to embodiments of the disclosure.
Depicted format 300 includes a register address 302 of
hexadecimal CFH (decimal 207). Format 300 includes bit 4
to indicate when the corresponding component (e.g., core)
includes non-write-back lock disablement capability (e.g.,
when set to one) or does not include non-write-back lock
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disablement capability disabling (e.g., when set to zero) of
non-write-back locks. The capabilities bit may be pro-
grammed during manufacture, e.g., and not changeable by a
user.

[0065] Depicted format 300 further includes reserved
(e.g., unused) bits 0 to 3, bit 5 to indicate (e.g., when set to
one) that the component (e.g., core) supports (e.g., #AC(0))
alignment check exceptions for split locked accesses, and
bits 6 to 31 being reserved.

[0066] It should be understood that the numbers are
examples, and other formats may be used (e.g., 64 bit
registers instead of 32 bit registers).

[0067] FIG. 4 illustrates an example format for control
registers (e.g., CR4 to CRO) according to embodiments of

the disclosure.
[0068]

Format for register CR4 may include one or more

of the following fields in Table 2.

TABLE 2

CR4 example format

Bit Name

Full Name

Description

0 VME

1 PVI

2 TSD

5 PAE

6 MCE

7 PGE

8 PCE

=]

OSFXSR

10 OSXMMEXCPT

11 UMEP

12 Reserved

13 VMXE

14 SMXE

16 FSGSBASE

17 PCIDE

18 OSXSAVE

Virtual 8086 Mode Extensions

Protected-mode Virtual
Interrupts

Time Stamp Disable

Debugging Extensions

Page Size Extension

Physical Address Extension

Machine Check Exception

Page Global Enabled

Performance-Monitoring
Counter enable

Operating system support for
FXSAVE and FXRSTOR
instructions

Operating System Support for
Unmasked SIMD Floating-
Point Exceptions

User-Mode Instruction
Prevention

Virtual Machine Extensions
Enable
Safer Mode Extensions Enable

Enables the instructions
RDFSBASE, RDGSBASE,
WRFSBASE, and
WRGSBASE.

PCID Enable

XSAVE and Processor
Extended States Enable

If set, enables support for the virtual
interrupt flag (VIF) in virtual-8086
mode.

If set, enables support for the virtual
interrupt flag (VIF) in protected
mode.

If set, RDTSC instruction can only
be executed when in ring 0,
otherwise RDTSC can be used at
any privilege level.

If set, enables debug register based
breaks on IO space access.

If unset, page size is 4 KiB, else
page size is increased to 4 MiB

If PAE is enabled or the processor is
in x86-64 long mode this bit is
ignored.

If set, changes page table layout to
translate 32-bit virtual addresses into
extended 36-bit physical addresses.
If set, enables machine check
interrupts to occur.

If set, address translations (PDE or
PTE records) may be shared
between address spaces.

If set, RDPMC can be executed at
any privilege level, else RDPMC
can only be used in ring 0.

If set, enables Streaming SIMD
Extensions (SSE) instructions and
fast FPU save & restore.

If set, enables unmasked SSE
exceptions.

If set, the SGDT, SIDT, SLDT,
SMSW and STR instructions cannot
be executed if CPL > 0.

Enables VT-x

x86 virtualization.
Enables Trusted Execution
Technology (TXT)

If set, enables process-context
identifiers (PCIDs).
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TABLE 2-continued
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CR4 example format

Bit Name Full Name Description

20 SMEP Supervisor Mode Execution If set, execution of code in a
Protection Enable higher ring generates a fault.

21 SMAP Supervisor Mode Access If set, access of data in a higher ring
Prevention Enable generates a fault.

22 PKE Protection Key Enable Enables protection key

[0069] Format for register CR3 may include one or more
of the following: when virtual addressing is enabled (e.g.,
the PG bit is set in CRO), CR3 enables the processor to
translate linear addresses into physical addresses by locating
the page directory and page tables for the current task. As
one example, the upper 20 bits of CR3 are the page directory
base register (PDBR) which stores the physical address of
the first page directory entry. If the PCIDE bit in CR4 is set,
the lowest 12 bits are used for the process-context identifier
(PCID). Bit 4 may store page-level cache disable (PCD) to
control the memory type used to access the first paging
structure of the current paging-structure hierarchy (e.g., and
this bit 4 not being used if paging is disabled, with physical
address extension (PAE) paging, or with four-level paging
when CR4.PCIDE=1). Bit 3 may store page-level write-
through (PWT) to control the memory type used to access
the first paging structure of the current paging-structure
hierarchy (e.g., and this bit 4 not being used if paging is
disabled, with physical address extension (PAE) paging, or
with four-level paging when CR4.PCIDE=1).

[0070] Format for register CR2 may be storage for a
Page-Fault Linear Address (PFLA), e.g., when a page fault
occurs, the address the program attempted to access is stored
in the CR2 register.

[0071] Format for register CR1 may be reserved, e.g., the
processor (e.g., CPU) will throw an (e.g., #UD) exception
when trying to access it.

[0072] Format for register CRO may include one or more
of the following fields in Table 3.

TABLE 3

[0073] FIG. 5is a flow diagram according to embodiments
of the disclosure. Depicted flow 500 includes setting a
non-write-back lock disable bit in a control register of a
plurality of logical processors of a processor 502; perform-
ing a respective operation with each of the plurality of
logical processors of the processor that share a cache
coupled to a memory via a bus 504; receiving a memory
request from a logical processor of the plurality of logical
processors for the memory with a memory controller 506;
disabling a non-write-back lock access of the bus for a
read-modify-write type of the memory request issued by the
logical processor of the plurality of logical processors with
the memory controller when the non-write-back lock disable
bit is set to a first value 508; and implementing the non-
write-back lock access of the bus for the read-modify-write
type of the memory request with the memory controller
when the non-write-back lock disable bit is set to a second
value 510.

[0074] Exemplary architectures, systems, etc. that the
above may be used in are detailed below.

[0075] At least some embodiments of the disclosed tech-
nologies can be described in view of the following
examples:

Example 1. An apparatus comprising:

a plurality of logical processors;

a control register comprising a non-write-back lock disable
bit;
a cache shared by the plurality of logical processors;

CRO example format

Bit Name Full Name Description

0 PE Protected Mode  If one, system is in protected mode, else system is in real

Enable mode
1 MP  Monitor co-

processor
2 EM  Emulation

flag in CRO

present
3 TS Task switched
x87 instruction used
4 ET Extension type
coprocessor was an 80287 or 80387
5 NE  Numeric error
else enables PC style x87 error detection
16 WP Write protect
privilege level is O

Controls interaction of WAIT/FWAIT instructions with TS

If set, no x87 floating-point unit present, if clear, x87 FPU
Allows saving x87 task context upon a task switch only after
On the 386, it allowed to specify whether the external math
Enable internal x87 floating point error reporting when set,

When set, the CPU can’t write to read-only pages when

18 AM  Alignment mask  Alignment check enabled if AM set, AC flag
(in EFLAGS register) set, and privilege level is 3
29 NW  Not-write through Globally enables/disable write-through caching
30 CD  Cache disable Globally enables/disable the memory cache
31 PG Paging If one, enable paging and use the CR3 register, else disable

paging.
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a bus to couple the cache to a memory to service a memory
request for the memory from the plurality of logical pro-
cessors; and

a memory controller to disable a non-write-back lock access
of the bus for a read-modify-write type of the memory
request issued by a logical processor of the plurality of
logical processors when the non-write-back lock disable bit
is set to a first value, and implement the non-write-back lock
access of the bus for the read-modify-write type of the
memory request when the non-write-back lock disable bit is
set to a second value.

2. The apparatus of example 1, wherein the memory con-
troller is to create a general protection fault to disable the
non-write-back lock access.

3. The apparatus of example 1, wherein the control register
is a memory control register.

4. The apparatus of example 3, wherein an address of the
memory control register is thirty-three hexadecimal.

5. The apparatus of example 1, further comprising a capa-
bilities register comprising a capability bit that, when set to
a first value, indicates the plurality of logical processors
supports a non-write-back lock access disable feature, and,
when set to a second value, indicates the plurality of logical
processors does not support the non-write-back lock access
disable feature.

6. The apparatus of example 1, wherein the memory con-
troller is to, when a cache disable bit is set to a value in a
second control register to disable the cache, not disable the
non-write-back lock access of the bus for the read-modify-
write type of the memory request issued by the logical
processor of the plurality of logical processors when the
non-write-back lock disable bit is set to the first value.

7. The apparatus of example 1, wherein the memory con-
troller is to, when extended page tables are enabled and
memory type is set to non-write-back, not disable the
non-write-back lock access of the bus for the read-modify-
write type of the memory request issued by the logical
processor of the plurality of logical processors when the
non-write-back lock disable bit is set to the first value.

8. The apparatus of example 1, wherein the plurality of
logical processors is a plurality of processor cores.
Example 9. A method comprising:

setting a non-write-back lock disable bit in a control register
of a plurality of logical processors of a processor;
performing a respective operation with each of the plurality
of logical processors of the processor that share a cache
coupled to a memory via a bus;

receiving a memory request from a logical processor of the
plurality of logical processors for the memory with a
memory controller;

disabling a non-write-back lock access of the bus for a
read-modify-write type of the memory request issued by the
logical processor of the plurality of logical processors with
the memory controller when the non-write-back lock disable
bit is set to a first value; and

implementing the non-write-back lock access of the bus for
the read-modify-write type of the memory request with the
memory controller when the non-write-back lock disable bit
is set to a second value.

10. The method of example 9, wherein the disabling the
non-write-back lock access comprises generating a general
protection fault.

11. The method of example 9, wherein the control register is
a memory control register.
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12. The method of example 11, wherein an address of the
memory control register is thirty-three hexadecimal.

13. The method of example 9, further comprising setting a
capability bit of a capabilities register of the processor to a
first value to indicate the plurality of logical processors
supports a non-write-back lock access disable feature, and
setting the capability bit to a second value to indicate the
plurality of logical processors does not support the non-
write-back lock access disable feature.

14. The method of example 9, further comprising setting a
cache disable bit in a second control register to a value to
disable the cache, wherein the memory controller then does
not disable the non-write-back lock access of the bus for the
read-modify-write type of the memory request issued by the
logical processor of the plurality of logical processors when
the non-write-back lock disable bit is set to the first value.
15. The method of example 9, further comprising enabling
extended page tables for the plurality of logical processors
and setting memory type to non-write-back, wherein the
memory controller then does not disable the non-write-back
lock access of the bus for the read-modify-write type of the
memory request issued by the logical processor of the
plurality of logical processors when the non-write-back lock
disable bit is set to the first value.

16. The method of example 9, wherein the plurality of
logical processors is a plurality of processor cores.
Example 17. A non-transitory machine readable medium
that stores code that when executed by a machine causes the
machine to perform a method comprising:

setting a non-write-back lock disable bit in a control register
of a plurality of logical processors of a processor;
performing a respective operation with each of the plurality
of logical processors of the processor that share a cache
coupled to a memory via a bus;

receiving a memory request from a logical processor of the
plurality of logical processors for the memory with a
memory controller;

disabling a non-write-back lock access of the bus for a
read-modify-write type of the memory request issued by the
logical processor of the plurality of logical processors with
the memory controller when the non-write-back lock disable
bit is set to a first value; and

implementing the non-write-back lock access of the bus for
the read-modify-write type of the memory request with the
memory controller when the non-write-back lock disable bit
is set to a second value.

18. The non-transitory machine readable medium of
example 17, wherein the disabling the non-write-back lock
access comprises generating a general protection fault.

19. The non-transitory machine readable medium of
example 17, wherein the control register is a memory control
register.

20. The non-transitory machine readable medium of
example 19, wherein an address of the memory control
register is thirty-three hexadecimal.

21. The non-transitory machine readable medium of
example 17, further comprising setting a capability bit of
a capabilities register of the processor to a first value to
indicate the plurality of logical processors supports a non-
write-back lock access disable feature, and setting the capa-
bility bit to a second value to indicate the plurality of logical
processors does not support the non-write-back lock access
disable feature.



US 2021/0096930 Al

22. The non-transitory machine readable medium of
example 17, further comprising setting a cache disable bit in
a second control register to a value to disable the cache,
wherein the memory controller then does not disable the
non-write-back lock access of the bus for the read-modify-
write type of the memory request issued by the logical
processor of the plurality of logical processors when the
non-write-back lock disable bit is set to the first value.

23. The non-transitory machine readable medium of
example 17, further comprising enabling extended page
tables for the plurality of logical processors and setting
memory type to non-write-back, wherein the memory con-
troller then does not disable the non-write-back lock access
of the bus for the read-modify-write type of the memory
request issued by the logical processor of the plurality of
logical processors when the non-write-back lock disable bit
is set to the first value.

24. The non-transitory machine readable medium of
example 17, wherein the plurality of logical processors is a
plurality of processor cores.

[0076] Inyetanother embodiment, an apparatus comprises
a data storage device that stores code that when executed by
a hardware processor causes the hardware processor to
perform any method disclosed herein. An apparatus may be
as described in the detailed description. A method may be as
described in the detailed description.

[0077] An instruction set may include one or more instruc-
tion formats. A given instruction format may define various
fields (e.g., number of bits, location of bits) to specify,
among other things, the operation to be performed (e.g.,
opcode) and the operand(s) on which that operation is to be
performed and/or other data field(s) (e.g., mask). Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to as
the Advanced Vector Extensions (AVX) (AVX1 and AVX2)
and using the Vector Extensions (VEX) coding scheme has
been released and/or published (e.g., see Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Novem-
ber 2018; and see Intel® Architecture Instruction Set Exten-
sions Programming Reference, October 2018).

Exemplary Instruction Formats

[0078] Embodiments of the instruction(s) described herein
may be embodied in different formats. Additionally, exem-
plary systems, architectures, and pipelines are detailed
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below. Embodiments of the instruction(s) may be executed
on such systems, architectures, and pipelines, but are not
limited to those detailed.

Generic Vector Friendly Instruction Format

[0079] A vector friendly instruction format is an instruc-
tion format that is suited for vector instructions (e.g., there
are certain fields specific to vector operations). While
embodiments are described in which both vector and scalar
operations are supported through the vector friendly instruc-
tion format, alternative embodiments use only vector opera-
tions the vector friendly instruction format.

[0080] FIGS. 6A-6B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments of the disclo-
sure. FIG. 6A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the disclosure; while
FIG. 6B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the disclosure. Spe-
cifically, a generic vector friendly instruction format 600 for
which are defined class A and class B instruction templates,
both of which include no memory access 605 instruction
templates and memory access 620 instruction templates. The
term generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set.

[0081] While embodiments of the disclosure will be
described in which the vector friendly instruction format
supports the following: a 64 byte vector operand length (or
size) with 32 bit (4 byte) or 64 bit (8 byte) data element
widths (or sizes) (and thus, a 64 byte vector consists of either
16 doubleword-size elements or alternatively, 8 quadword-
size elements); a 64 byte vector operand length (or size) with
16 bit (2 byte) or 8 bit (1 byte) data element widths (or
sizes); a 32 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data
element widths (or sizes); and a 16 byte vector operand
length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit
(2 byte), or 8 bit (1 byte) data element widths (or sizes);
alternative embodiments may support more, less and/or
different vector operand sizes (e.g., 256 byte vector oper-
ands) with more, less, or different data element widths (e.g.,
128 bit (16 byte) data element widths).

[0082] The class A instruction templates in FIG. 6A
include: 1) within the no memory access 605 instruction
templates there is shown a no memory access, full round
control type operation 610 instruction template and a no
memory access, data transform type operation 615 instruc-
tion template; and 2) within the memory access 620 instruc-
tion templates there is shown a memory access, temporal
625 instruction template and a memory access, non-tempo-
ral 630 instruction template. The class B instruction tem-
plates in FIG. 6B include: 1) within the no memory access
605 instruction templates there is shown a no memory
access, write mask control, partial round control type opera-
tion 612 instruction template and a no memory access, write
mask control, vsize type operation 617 instruction template;
and 2) within the memory access 620 instruction templates
there is shown a memory access, write mask control 627
instruction template.
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[0083] The generic vector friendly instruction format 600
includes the following fields listed below in the order
illustrated in FIGS. 6A-6B.

[0084] Format field 640—a specific value (an instruction
format identifier value) in this field uniquely identifies the
vector friendly instruction format, and thus occurrences of
instructions in the vector friendly instruction format in
instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only
the generic vector friendly instruction format.

[0085] Base operation field 642—its content distinguishes
different base operations.

[0086] Register index field 644—its content, directly or
through address generation, specifies the locations of the
source and destination operands, be they in registers or in
memory. These include a sufficient number of bits to select
N registers from a PxQ (e.g. 32x512, 16x128, 32x1024,
64x1024) register file. While in one embodiment N may be
up to three sources and one destination register, alternative
embodiments may support more or less sources and desti-
nation registers (e.g., may support up to two sources where
one of these sources also acts as the destination, may support
up to three sources where one of these sources also acts as
the destination, may support up to two sources and one
destination).

[0087] Modifier field 646—its content distinguishes
occurrences of instructions in the generic vector instruction
format that specify memory access from those that do not;
that is, between no memory access 605 instruction templates
and memory access 620 instruction templates. Memory
access operations read and/or write to the memory hierarchy
(in some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

[0088] Augmentation operation field 650—its content dis-
tinguishes which one of a variety of different operations to
be performed in addition to the base operation. This field is
context specific. In one embodiment of the disclosure, this
field is divided into a class field 668, an alpha field 652, and
a beta field 654. The augmentation operation field 650
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

[0089] Scale field 660—its content allows for the scaling
of the index field’s content for memory address generation
(e.g., for address generation that uses 2°°“**index+base).
[0090] Displacement Field 662A—its content is used as
part of memory address generation (e.g., for address gen-
eration that uses 2°°“**index+base+displacement).

[0091] Displacement Factor Field 662B (note that the
juxtaposition of displacement field 662A directly over dis-
placement factor field 662B indicates one or the other is
used)—its content is used as part of address generation; it
specifies a displacement factor that is to be scaled by the size
of'a memory access (N)—where N is the number of bytes in
the memory access (e.g., for address generation that uses
2*ealexindex+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
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used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 674 (described later herein) and the data
manipulation field 654C. The displacement field 662A and
the displacement factor field 662B are optional in the sense
that they are not used for the no memory access 605
instruction templates and/or different embodiments may
implement only one or none of the two.

[0092] Data element width field 664—its content distin-
guishes which one of a number of data element widths is to
be used (in some embodiments for all instructions; in other
embodiments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

[0093] Write mask field 670—its content controls, on a per
data element position basis, whether that data element
position in the destination vector operand reflects the result
of the base operation and augmentation operation. Class A
instruction templates support merging-writemasking, while
class B instruction templates support both merging- and
zeroing-writemasking. When merging, vector masks allow
any set of elements in the destination to be protected from
updates during the execution of any operation (specified by
the base operation and the augmentation operation); in other
one embodiment, preserving the old value of each element
of the destination where the corresponding mask bit has a 0.
In contrast, when zeroing vector masks allow any set of
elements in the destination to be zeroed during the execution
of any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
670 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
disclosure are described in which the write mask field’s 670
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask
field’s 670 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field’s 670 content to directly specify
the masking to be performed.

[0094] Immediate field 672—its content allows for the
specification of an immediate. This field is optional in the
sense that is it not present in an implementation of the
generic vector friendly format that does not support imme-
diate and it is not present in instructions that do not use an
immediate.

[0095] Class field 668—its content distinguishes between
different classes of instructions. With reference to FIGS.
6A-B, the contents of this field select between class A and
class B instructions. In FIGS. 6 A-B, rounded corner squares
are used to indicate a specific value is present in a field (e.g.,
class A 668A and class B 668B for the class field 668
respectively in FIGS. 6A-B).

Instruction Templates of Class A

[0096] In the case of the non-memory access 605 instruc-
tion templates of class A, the alpha field 652 is interpreted
as an RS field 652A, whose content distinguishes which one
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of the different augmentation operation types are to be
performed (e.g., round 652A.1 and data transform 652A.2
are respectively specified for the no memory access, round
type operation 610 and the no memory access, data trans-
form type operation 615 instruction templates), while the
beta field 654 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
605 instruction templates, the scale field 660, the displace-
ment field 662A, and the displacement scale filed 662B are
not present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

[0097] In the no memory access full round control type
operation 610 instruction template, the beta field 654 is
interpreted as a round control field 654 A, whose content(s)
provide static rounding. While in the described embodi-
ments of the disclosure the round control field 654 A includes
a suppress all floating point exceptions (SAE) field 656 and
a round operation control field 658, alternative embodiments
may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields
(e.g., may have only the round operation control field 658).

[0098] SAE field 656—its content distinguishes whether
or not to disable the exception event reporting; when the
SAE field’s 656 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler.

[0099] Round operation control field 658—its content
distinguishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 658 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the disclosure
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 650
content overrides that register value.

No Memory Access Instruction Templates—Data Transform
Type Operation

[0100] In the no memory access data transform type
operation 615 instruction template, the beta field 654 is
interpreted as a data transform field 654B, whose content
distinguishes which one of a number of data transforms is to
be performed (e.g., no data transform, swizzle, broadcast).

[0101] In the case of a memory access 620 instruction
template of class A, the alpha field 652 is interpreted as an
eviction hint field 652B, whose content distinguishes which
one of the eviction hints is to be used (in FIG. 6A, temporal
652B.1 and non-temporal 652B.2 are respectively specified
for the memory access, temporal 625 instruction template
and the memory access, non-temporal 630 instruction tem-
plate), while the beta field 654 is interpreted as a data
manipulation field 654C, whose content distinguishes which
one of a number of data manipulation operations (also
known as primitives) is to be performed (e.g., no manipu-
lation; broadcast; up conversion of a source; and down
conversion of a destination). The memory access 620
instruction templates include the scale field 660, and option-
ally the displacement field 662A or the displacement scale
field 662B.
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[0102] Vector memory instructions perform vector loads
from and vector stores to memory, with conversion support.
As with regular vector instructions, vector memory instruc-
tions transfer data from/to memory in a data element-wise
fashion, with the elements that are actually transferred is
dictated by the contents of the vector mask that is selected
as the write mask.

Memory Access Instruction Templates—Temporal

[0103] Temporal data is data likely to be reused soon
enough to benefit from caching. This is, however, a hint, and
different processors may implement it in different ways,
including ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

[0104] Non-temporal data is data unlikely to be reused
soon enough to benefit from caching in the 1st-level cache
and should be given priority for eviction. This is, however,
a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

[0105] In the case of the instruction templates of class B,
the alpha field 652 is interpreted as a write mask control (Z)
field 652C, whose content distinguishes whether the write
masking controlled by the write mask field 670 should be a
merging or a zeroing.

[0106] In the case of the non-memory access 605 instruc-
tion templates of class B, part of the beta field 654 is
interpreted as an RL field 657 A, whose content distinguishes
which one of the different augmentation operation types are
to be performed (e.g., round 657A.1 and vector length
(VSIZE) 657A.2 are respectively specified for the no
memory access, write mask control, partial round control
type operation 612 instruction template and the no memory
access, write mask control, VSIZE type operation 617
instruction template), while the rest of the beta field 654
distinguishes which of the operations of the specified type is
to be performed. In the no memory access 605 instruction
templates, the scale field 660, the displacement field 662A,
and the displacement scale filed 662B are not present.

[0107] In the no memory access, write mask control,
partial round control type operation 610 instruction tem-
plate, the rest of the beta field 654 is interpreted as a round
operation field 659A and exception event reporting is dis-
abled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating
point exception handler).

[0108] Round operation control field 659 A—just as round
operation control field 658, its content distinguishes which
one of a group of rounding operations to perform (e.g.,
Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 659A
allows for the changing of the rounding mode on a per
instruction basis. In one embodiment of the disclosure where
a processor includes a control register for specifying round-
ing modes, the round operation control field’s 650 content
overrides that register value.

[0109] In the no memory access, write mask control,
VSIZE type operation 617 instruction template, the rest of
the beta field 654 is interpreted as a vector length field 659B,
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whose content distinguishes which one of a number of data
vector lengths is to be performed on (e.g., 128, 256, or 512
byte).

[0110] In the case of a memory access 620 instruction
template of class B, part of the beta field 654 is interpreted
as a broadcast field 657B, whose content distinguishes
whether or not the broadcast type data manipulation opera-
tion is to be performed, while the rest of the beta field 654
is interpreted the vector length field 659B. The memory
access 620 instruction templates include the scale field 660,
and optionally the displacement field 662A or the displace-
ment scale field 662B.

[0111] With regard to the generic vector friendly instruc-
tion format 600, a full opcode field 674 is shown including
the format field 640, the base operation field 642, and the
data element width field 664. While one embodiment is
shown where the full opcode field 674 includes all of these
fields, the full opcode field 674 includes less than all of these
fields in embodiments that do not support all of them. The
full opcode field 674 provides the operation code (opcode).

[0112] The augmentation operation field 650, the data
element width field 664, and the write mask field 670 allow
these features to be specified on a per instruction basis in the
generic vector friendly instruction format.

[0113] The combination of write mask field and data
element width field create typed instructions in that they
allow the mask to be applied based on different data element
widths.

[0114] The various instruction templates found within
class A and class B are beneficial in different situations. In
some embodiments of the disclosure, different processors or
different cores within a processor may support only class A,
only class B, or both classes. For instance, a high perfor-
mance general purpose out-of-order core intended for gen-
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through-
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the disclosure). Also, a
single processor may include multiple cores, all of which
support the same class or in which different cores support
different class. For instance, in a processor with separate
graphics and general purpose cores, one of the graphics
cores intended primarily for graphics and/or scientific com-
puting may support only class A, while one or more of the
general purpose cores may be high performance general
purpose cores with out of order execution and register
renaming intended for general-purpose computing that sup-
port only class B. Another processor that does not have a
separate graphics core, may include one more general pur-
pose in-order or out-of-order cores that support both class A
and class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
disclosure. Programs written in a high level language would
be put (e.g., just in time compiled or statically compiled)
into an variety of different executable forms, including: 1) a
form having only instructions of the class(es) supported by
the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
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that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

Exemplary Specific Vector Friendly Instruction Format

[0115] FIG. 7 is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the disclosure. FIG. 7 shows a specific
vector friendly instruction format 700 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 700 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 6 into which the fields
from FIG. 7 map are illustrated.

[0116] It should be understood that, although embodi-
ments of the disclosure are described with reference to the
specific vector friendly instruction format 700 in the context
of the generic vector friendly instruction format 600 for
illustrative purposes, the disclosure is not limited to the
specific vector friendly instruction format 700 except where
claimed. For example, the generic vector friendly instruction
format 600 contemplates a variety of possible sizes for the
various fields, while the specific vector friendly instruction
format 700 is shown as having fields of specific sizes. By
way of specific example, while the data element width field
664 is illustrated as a one bit field in the specific vector
friendly instruction format 700, the disclosure is not so
limited (that is, the generic vector friendly instruction format
600 contemplates other sizes of the data element width field
664).

[0117] The generic vector friendly instruction format 600
includes the following fields listed below in the order
illustrated in FIG. 7A.

[0118] EVEX Prefix (Bytes 0-3) 702—is encoded in a
four-byte form.
[0119] Format Field 640 (EVEX Byte 0, bits [7:0])—the

first byte (EVEX Byte 0) is the format field 640 and it
contains 0x62 (the unique value used for distinguishing the
vector friendly instruction format in one embodiment of the
disclosure).

[0120] The second-fourth bytes (EVEX Bytes 1-3) include
a number of bit fields providing specific capability.

[0121] REX field 705 (EVEX Byte 1, bits [7-5])—consists
of a EVEX.R bit field (EVEX Byte 1, bit [7]-R), EVEX.X
bit field (EVEX byte 1, bit [6]-X), and 657BEX byte 1,
bit[5]-B). The EVEX.R, EVEX.X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using is complement form, i.e.
ZMMO is encoded as 1111B, ZMM15 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, xxx, and bbb),
so that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.

[0122] REX' field 610—this is the first part of the REX'
field 610 and is the EVEX.R' bit field (EVEX Byte 1, bit
[4]-R") that is used to encode either the upper 16 or lower 16
of the extended 32 register set. In one embodiment of the
disclosure, this bit, along with others as indicated below, is
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stored in bit inverted format to distinguish (in the well-
known x86 32-bit mode) from the BOUND instruction,
whose real opcode byte is 62, but does not accept in the
MOD R/M field (described below) the value of 11 in the
MOD field; alternative embodiments of the disclosure do not
store this and the other indicated bits below in the inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, R'Rrrr is formed by combining EVEX.R',
EVEX R, and the other RRR from other fields.

[0123] Opcode map field 715 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

[0124] Data element width field 664 (EVEX byte 2, bit
[7]-W)—is represented by the notation EVEX.W. EVEX. W
is used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).

[0125] EVEX.wvvv 720 (EVEX Byte 2, bits [6:3]-vvvv)—
the role of EVEX.vvvv may include the following: 1)
EVEX.vvvv encodes the first source register operand, speci-
fied in inverted (Is complement) form and is valid for
instructions with 2 or more source operands; 2) EVEX.vvvv
encodes the destination register operand, specified in 1 s
complement form for certain vector shifts; or 3) EVEX.vvvv
does not encode any operand, the field is reserved and
should contain 1111b. Thus, EVEX.vvvv field 720 encodes
the 4 low-order bits of the first source register specifier
stored in inverted (1 s complement) form. Depending on the
instruction, an extra different EVEX bit field is used to
extend the specifier size to 32 registers.

[0126] EVEX.0 668 Class field (EVEX byte 2, bit [2]-
U)—If EVEX.0=0, it indicates class A or EVEX.UO; if
EVEX.0=1, it indicates class B or EVEX.U1.

[0127] Prefix encoding field 725 (EVEX byte 2, bits
[1:0]-pp)—provides additional bits for the base operation
field. In addition to providing support for the legacy SSE
instructions in the EVEX prefix format, this also has the
benefit of compacting the SIMD prefix (rather than requiring
a byte to express the SIMD prefix, the EVEX prefix requires
only 2 bits). In one embodiment, to support legacy SSE
instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these
legacy SIMD prefixes are encoded into the SIMD prefix
encoding field; and at runtime are expanded into the legacy
SIMD prefix prior to being provided to the decoder’s PLA
(so the PLA can execute both the legacy and EVEX format
of these legacy instructions without modification). Although
newer instructions could use the EVEX prefix encoding
field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but
allow for different meanings to be specified by these legacy
SIMD prefixes. An alternative embodiment may redesign
the PLA to support the 2 bit SIMD prefix encodings, and
thus not require the expansion.

[0128] Alpha field 652 (EVEX byte 3, bit [7]-EH; also
known as EVEX EH, EVEX.s, EVEX RL, EVEX write
mask control, and EVEX.N; also illustrated with a)—as
previously described, this field is context specific.

[0129] Beta field 654 (EVEX byte 3, bits [6:4]-SSS, also
known as EVEX.s, ,, EVEXr, ,, EVEX.rrl, EVEX.LLO,
EVEX.LLB; also illustrated with PBpp)—as previously
described, this field is context specific.

[0130] REX' field 610—this is the remainder of the REX"
field and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V")
that may be used to encode either the upper 16 or lower 16
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of the extended 32 register set. This bit is stored in bit
inverted format. A value of 1 is used to encode the lower 16
registers. In other words, V'VVVV is formed by combining
EVEX.V', EVEX.vvvv.

[0131] Write mask field 670 (EVEX byte 3, bits [2:0]-
kkk)—its content specifies the index of a register in the write
mask registers as previously described. In one embodiment
of the disclosure, the specific value EVEX kkk=000 has a
special behavior implying no write mask is used for the
particular instruction (this may be implemented in a variety
of ways including the use of a write mask hardwired to all
ones or hardware that bypasses the masking hardware).
[0132] Real Opcode Field 730 (Byte 4) is also known as
the opcode byte. Part of the opcode is specified in this field.
[0133] MOD R/M Field 740 (Byte 5) includes MOD field
742, Reg field 744, and R/M field 746. As previously
described, the MOD field’s 742 content distinguishes
between memory access and non-memory access operations.
The role of Reg field 744 can be summarized to two
situations: encoding either the destination register operand
or a source register operand, or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 746 may include the following:
encoding the instruction operand that references a memory
address, or encoding either the destination register operand
or a source register operand.

[0134] Scale, Index, Base (SIB) Byte (Byte 6)—As pre-
viously described, the scale field’s 650 content is used for
memory address generation. SIBxxx 754 and SIB.bbb
756—the contents of these fields have been previously
referred to with regard to the register indexes Xxxx and
Bbbb.

[0135] Displacement field 662A (Bytes 7-10)—when
MOD field 742 contains 10, bytes 7-10 are the displacement
field 662A, and it works the same as the legacy 32-bit
displacement (disp32) and works at byte granularity.
[0136] Displacement factor field 662B (Byte 7)—when
MOD field 742 contains 01, byte 7 is the displacement factor
field 662B. The location of this field is that same as that of
the legacy x86 instruction set 8-bit displacement (disp8),
which works at byte granularity. Since disp8 is sign
extended, it can only address between —128 and 127 bytes
offsets; in terms of 64 byte cache lines, disp8 uses 8 bits that
can be set to only four really useful values —128, —-64, 0, and
64; since a greater range is often needed, disp32 is used;
however, disp32 requires 4 bytes. In contrast to disp8 and
disp32, the displacement factor field 662B is a reinterpre-
tation of disp8; when using displacement factor field 662B,
the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence,
the redundant low-order bits of the address offset do not
need to be encoded. In other words, the displacement factor
field 662B substitutes the legacy x86 instruction set 8-bit
displacement. Thus, the displacement factor field 662B is
encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
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encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset). Immediate field 672
operates as previously described.

Full Opcode Field

[0137] FIG. 7B is a block diagram illustrating the fields of
the specific vector friendly instruction format 700 that make
up the full opcode field 674 according to one embodiment of
the disclosure. Specifically, the full opcode field 674
includes the format field 640, the base operation field 642,
and the data element width (W) field 664. The base operation
field 642 includes the prefix encoding field 725, the opcode
map field 715, and the real opcode field 730.

Register Index Field

[0138] FIG. 7C is a block diagram illustrating the fields of
the specific vector friendly instruction format 700 that make
up the register index field 644 according to one embodiment
of the disclosure. Specifically, the register index field 644
includes the REX field 705, the REX' field 710, the MODR/
M.reg field 744, the MODR/M.r/m field 746, the VVVV
field 720, xxx field 754, and the bbb field 756.

Augmentation Operation Field

[0139] FIG. 7D is a block diagram illustrating the fields of
the specific vector friendly instruction format 700 that make
up the augmentation operation field 650 according to one
embodiment of the disclosure. When the class (U) field 668
contains 0, it signifies EVEX.UO (class A 668A); when it
contains 1, it signifies EVEX.U1 (class B 668B). When U=0
and the MOD field 742 contains 11 (signifying a no memory
access operation), the alpha field 652 (EVEX byte 3, bit
[7]-EH) is interpreted as the rs field 652A. When the rs field
652A contains a 1 (round 652A.1), the beta field 654 (EVEX
byte 3, bits [6:4]-SSS) is interpreted as the round control
field 654A. The round control field 654 A includes a one bit
SAE field 656 and a two bit round operation field 658. When
the rs field 652A contains a 0 (data transform 652A.2), the
beta field 654 (EVEX byte 3, bits [6:4]-SSS) is interpreted
as a three bit data transform field 654B. When U=0 and the
MOD field 742 contains 00, 01, or 10 (signifying a memory
access operation), the alpha field 652 (EVEX byte 3, bit
[7]-EH) is interpreted as the eviction hint (EH) field 652B
and the beta field 654 (EVEX byte 3, bits [6:4]-SSS) is
interpreted as a three bit data manipulation field 654C.
[0140] When U=1, the alpha field 652 (EVEX byte 3, bit
[7]-EH) is interpreted as the write mask control (Z) field
652C. When U=1 and the MOD field 742 contains 11
(signifying a no memory access operation), part of the beta
field 654 (EVEX byte 3, bit [4]-So) is interpreted as the RL
field 657A; when it contains a 1 (round 657A.1) the rest of
the beta field 654 (EVEX byte 3, bit [6-5]- S, ;) is inter-
preted as the round operation field 659A, while when the RL
field 657A contains a 0 (VSIZE 657.A2) the rest of the beta
field 654 (EVEX byte 3, bit [6-5]- S,_,) is interpreted as the
vector length field 659B (EVEX byte 3, bit [6-5]-L, ).
When U=1 and the MOD field 742 contains 00, 01, or 10
(signifying a memory access operation), the beta field 654
(EVEX byte 3, bits [6:4]-SSS) is interpreted as the vector
length field 659B (EVEX byte 3, bit [6-5]-L, o) and the
broadcast field 657B (EVEX byte 3, bit [4]-B).
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Exemplary Register Architecture

[0141] FIG. 8 is a block diagram of a register architecture
800 according to one embodiment of the disclosure. In the
embodiment illustrated, there are 32 vector registers 810 that
are 512 bits wide; these registers are referenced as zmmO
through zmm31. The lower order 256 bits of the lower 16
zmm registers are overlaid on registers ymmO0-16. The lower
order 128 bits of the lower 16 zmm registers (the lower order
128 bits of the ymm registers) are overlaid on registers
xmmO-15. The specific vector friendly instruction format
700 operates on these overlaid register file as illustrated in
the below tables.

Adjustable Vector

Length Class Operations Registers
Instruction A (FIG. 6A; 610, 615, zmm registers
Templates U=0) 625, 630  (the vector
that do not include length is 64 byte)
the vector B (FIG. 6B; 612 zmm registers
length U=1) (the vector
fleld 659B length is 64 byte)
Instruction B (FIG. 6B; 617, 627 zmm, ymm, or
templates that U=1) xmm registers
do include (the vector length
the vector is 64 byte, 32 byte,
length or 16 byte)
fleld 659B depending on the
vector length
fleld 659B
[0142] In other words, the vector length field 659B selects

between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 659B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
700 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

[0143] Write mask registers 815—in the embodiment
illustrated, there are 8 write mask registers (kO through k7),
each 64 bits in size. In an alternate embodiment, the write
mask registers 815 are 16 bits in size. As previously
described, in one embodiment of the disclosure, the vector
mask register kO cannot be used as a write mask; when the
encoding that would normally indicate kO is used for a write
mask, it selects a hardwired write mask of OxFFFF, effec-
tively disabling write masking for that instruction.

[0144] General-purpose registers 825—in the embodi-
ment illustrated, there are sixteen 64-bit general-purpose
registers that are used along with the existing x86 addressing
modes to address memory operands. These registers are
referenced by the names RAX, RBX, RCX, RDX, RBP, RSI,
RDI, RSP, and R8 through R15.

[0145] Scalar floating point stack register file (x87 stack)
845, on which is aliased the MMX packed integer flat
register file 850—in the embodiment illustrated, the x87
stack is an eight-element stack used to perform scalar
floating-point operations on 32/64/80-bit floating point data
using the x87 instruction set extension; while the MMX
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registers are used to perform operations on 64-bit packed
integer data, as well as to hold operands for some operations
performed between the MMX and XMM registers.

[0146] Alternative embodiments of the disclosure may use
wider or narrower registers. Additionally, alternative
embodiments of the disclosure may use more, less, or
different register files and registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

[0147] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

[0148] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the disclosure. FIG. 9B is a block
diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renam-
ing, out-of-order issue/execution architecture core to be
included in a processor according to embodiments of the
disclosure. The solid lined boxes in FIGS. 9A-B illustrate
the in-order pipeline and in-order core, while the optional
addition of the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline and core.
Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[0149] In FIG. 9A, a processor pipeline 900 includes a
fetch stage 902, a length decode stage 904, a decode stage
906, an allocation stage 908, a renaming stage 910, a
scheduling (also known as a dispatch or issue) stage 912, a
register read/memory read stage 914, an execute stage 916,
a write back/memory write stage 918, an exception handling
stage 922, and a commit stage 924.
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[0150] FIG. 9B shows processor core 990 including a
front end unit 930 coupled to an execution engine unit 950,
and both are coupled to a memory unit 970. The core 990
may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 990 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

[0151] The front end unit 930 includes a branch prediction
unit 932 coupled to an instruction cache unit 934, which is
coupled to an instruction translation lookaside buffer (TLB)
936, which is coupled to an instruction fetch unit 938, which
is coupled to a decode unit 940. The decode unit 940 (or
decoder or decoder unit) may decode instructions (e.g.,
macro-instructions), and generate as an output one or more
micro-operations, micro-code entry points, micro-instruc-
tions, other instructions, or other control signals, which are
decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decode unit 940 may be
implemented using various different mechanisms. Examples
of suitable mechanisms include, but are not limited to,
look-up tables, hardware implementations, programmable
logic arrays (PLAs), microcode read only memories
(ROMs), etc. In one embodiment, the core 990 includes a
microcode ROM or other medium that stores microcode for
certain macro-instructions (e.g., in decode unit 940 or oth-
erwise within the front end unit 930). The decode unit 940
is coupled to a rename/allocator unit 952 in the execution
engine unit 950.

[0152] The execution engine unit 950 includes the rename/
allocator unit 952 coupled to a retirement unit 954 and a set
of one or more scheduler unit(s) 956. The scheduler unit(s)
956 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 956 is coupled to the physical register
file(s) unit(s) 958. Each of the physical register file(s) units
958 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point—status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 958 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 958 is overlapped by the
retirement unit 954 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement unit 954 and the physical
register file(s) unit(s) 958 are coupled to the execution
cluster(s) 960. The execution cluster(s) 960 includes a set of
one or more execution units 962 and a set of one or more
memory access Units 964. The execution units 962 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
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may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
956, physical register file(s) unit(s) 958, and execution
cluster(s) 960 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 964).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0153] The set of memory access units 964 is coupled to
the memory unit 970, which includes a data TLB unit 972
coupled to a data cache unit 974 coupled to a level 2 (L2)
cache unit 976. In one exemplary embodiment, the memory
access units 964 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 972 in the memory unit 970. The instruction
cache unit 934 is further coupled to a level 2 (1.2) cache unit
976 in the memory unit 970. The .2 cache unit 976 is
coupled to one or more other levels of cache and eventually
to a main memory.

[0154] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 900 as follows: 1) the instruction
fetch 938 performs the fetch and length decoding stages 902
and 904; 2) the decode unit 940 performs the decode stage
906; 3) the rename/allocator unit 952 performs the allocation
stage 908 and renaming stage 910; 4) the scheduler unit(s)
956 performs the schedule stage 912; 5) the physical register
file(s) unit(s) 958 and the memory unit 970 perform the
register read/memory read stage 914; the execution cluster
960 perform the execute stage 916; 6) the memory unit 970
and the physical register file(s) unit(s) 958 perform the write
back/memory write stage 918; 7) various units may be
involved in the exception handling stage 922; and 8) the
retirement unit 954 and the physical register file(s) unit(s)
958 perform the commit stage 924.

[0155] The core 990 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 990 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0156] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
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sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyper-Threading tech-
nology).

[0157] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 934/974
and a shared L2 cache unit 976, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0158] FIGS. 10A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function
logic, memory 1/O interfaces, and other necessary I/O logic,
depending on the application.

[0159] FIG. 10A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 1002 and with its local subset of the Level 2 (L2)
cache 1004, according to embodiments of the disclosure. In
one embodiment, an instruction decode unit 1000 supports
the x86 instruction set with a packed data instruction set
extension. An L1 cache 1006 allows low-latency accesses to
cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1008 and
a vector unit 1010 use separate register sets (respectively,
scalar registers 1012 and vector registers 1014)and data
transferred between them is written to memory and then read
back in from a level 1 (LL1) cache 1006, alternative embodi-
ments of the disclosure may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

[0160] The local subset of the .2 cache 1004 is part of a
global 1.2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct
access path to its own local subset of the 1.2 cache 1004.
Data read by a processor core is stored in its [.2 cache subset
1004 and can be accessed quickly, in parallel with other
processor cores accessing their own local L2 cache subsets.
Data written by a processor core is stored in its own [.2
cache subset 1004 and is flushed from other subsets, if
necessary. The ring network ensures coherency for shared
data. The ring network is bi-directional to allow agents such
as processor cores, .2 caches and other logic blocks to
communicate with each other within the chip. Each ring
data-path is 1012-bits wide per direction.

[0161] FIG. 10B is an expanded view of part of the
processor core in FIG. 10A according to embodiments of the
disclosure. FIG. 10B includes an .1 data cache 1006 A part
of the LL1 cache 1004, as well as more detail regarding the
vector unit 1010 and the vector registers 1014. Specifically,
the vector unit 1010 is a 16-wide vector processing unit
(VPU) (see the 16-wide ALU 1028), which executes one or
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more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register
inputs with swizzle unit 1020, numeric conversion with
numeric convert units 1022A-B, and replication with repli-
cation unit 1024 on the memory input. Write mask registers
1026 allow predicating resulting vector writes.

[0162] FIG. 11 is a block diagram of a processor 1100 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the disclosure. The solid lined
boxes in FIG. 11 illustrate a processor 1100 with a single
core 1102A, a system agent 1110, a set of one or more bus
controller units 1116, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1100
with multiple cores 1102A-N, a set of one or more integrated
memory controller unit(s) 1114 in the system agent unit
1110, and special purpose logic 1108.

[0163] Thus, different implementations of the processor
1100 may include: 1) a CPU with the special purpose logic
1108 being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
1102A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1102A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1102A-N
being a large number of general purpose in-order cores.
Thus, the processor 1100 may be a general-purpose proces-
sor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte-
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 1100 may
be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0164] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 1106, and external memory (not shown) coupled to the
set of integrated memory controller units 1114. The set of
shared cache units 1106 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1112 interconnects the integrated
graphics logic 1108, the set of shared cache units 1106, and
the system agent unit 1110/integrated memory controller
unit(s) 1114, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1106 and cores 1102-A-N.

[0165] In some embodiments, one or more of the cores
1102A-N are capable of multi-threading. The system agent
1110 includes those components coordinating and operating
cores 1102A-N. The system agent unit 1110 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1102A-N and the
integrated graphics logic 1108. The display unit is for
driving one or more externally connected displays.
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[0166] The cores 1102A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1102A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

Exemplary Computer Architectures

[0167] FIGS. 12-15 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0168] Referring now to FIG. 12, shown is a block dia-
gram of a system 1200 in accordance with one embodiment
of the present disclosure. The system 1200 may include one
or more processors 1210, 1215, which are coupled to a
controller hub 1220. In one embodiment the controller hub
1220 includes a graphics memory controller hub (GMCH)
1290 and an Input/Output Hub (IOH) 1250 (which may be
on separate chips); the GMCH 1290 includes memory and
graphics controllers to which are coupled memory 1240 and
a coprocessor 1245; the IOH 1250 is couples input/output
(I/0) devices 1260 to the GMCH 1290. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1240
and the coprocessor 1245 are coupled directly to the pro-
cessor 1210, and the controller hub 1220 in a single chip
with the IOH 1250. Memory 1240 may include non-write-
back lock disablement code 1240A, for example, to store
code that when executed causes a processor to perform any
method of this disclosure.

[0169] The optional nature of additional processors 1215
is denoted in FIG. 12 with broken lines. Each processor
1210, 1215 may include one or more of the processing cores
described herein and may be some version of the processor
1100.

[0170] The memory 1240 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 1220 communicates with
the processor(s) 1210, 1215 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
path Interconnect (QPI), or similar connection 1295.
[0171] In one embodiment, the coprocessor 1245 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 1220 may include an integrated graphics accel-
erator.

[0172] There can be a variety of differences between the
physical resources 1210, 1215 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0173] In one embodiment, the processor 1210 executes
instructions that control data processing operations of a
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general type. Embedded within the instructions may be
coprocessor instructions. The processor 1210 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 1245. Accordingly,
the processor 1210 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1245.
Coprocessor(s) 1245 accept and execute the received copro-
cessor instructions.

[0174] Referring now to FIG. 13, shown is a block dia-
gram of a first more specific exemplary system 1300 in
accordance with an embodiment of the present disclosure.
As shown in FIG. 13, multiprocessor system 1300 is a
point-to-point interconnect system, and includes a first pro-
cessor 1370 and a second processor 1380 coupled via a
point-to-point interconnect 1350. Each of processors 1370
and 1380 may be some version of the processor 1100. In one
embodiment of the disclosure, processors 1370 and 1380 are
respectively processors 1210 and 1215, while coprocessor
1338 is coprocessor 1245. In another embodiment, proces-
sors 1370 and 1380 are respectively processor 1210 copro-
cessor 1245.

[0175] Processors 1370 and 1380 are shown including
integrated memory controller (IMC) units 1372 and 1382,
respectively. Processor 1370 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1376 and
1378; similarly, second processor 1380 includes P-P inter-
faces 1386 and 1388. Processors 1370, 1380 may exchange
information via a point-to-point (P-P) interface 1350 using
P-P interface circuits 1378, 1388. As shown in FIG. 13,
IMCs 1372 and 1382 couple the processors to respective
memories, namely a memory 1332 and a memory 1334,
which may be portions of main memory locally attached to
the respective processors.

[0176] Processors 1370, 1380 may each exchange infor-
mation with a chipset 1390 via individual P-P interfaces
1352, 1354 using point to point interface circuits 1376,
1394, 1386, 1398. Chipset 1390 may optionally exchange
information with the coprocessor 1338 via a high-perfor-
mance interface 1339. In one embodiment, the coprocessor
1338 a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0177] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0178] Chipset 1390 may be coupled to a first bus 1316 via
an interface 1396. In one embodiment, first bus 1316 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present disclo-
sure is not so limited.

[0179] As shown in FIG. 13, various I/O devices 1314
may be coupled to first bus 1316, along with a bus bridge
1318 which couples first bus 1316 to a second bus 1320. In
one embodiment, one or more additional processor(s) 1315,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
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bus 1316. In one embodiment, second bus 1320 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 1320 including, for example, a keyboard and/or
mouse 1322, communication devices 1327 and a storage
unit 1328 such as a disk drive or other mass storage device
which may include instructions/code and data 1330, in one
embodiment. Further, an audio I/O 1324 may be coupled to
the second bus 1320. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 13, a system may implement a multi-drop bus
or other such architecture.

[0180] Referring now to FIG. 14, shown is a block dia-
gram of a second more specific exemplary system 1400 in
accordance with an embodiment of the present disclosure
Like elements in FIGS. 13 and 14 bear like reference
numerals, and certain aspects of FIG. 13 have been omitted
from FIG. 14 in order to avoid obscuring other aspects of
FIG. 14.

[0181] FIG. 14 illustrates that the processors 1370, 1380
may include integrated memory and I/O control logic
(“CL”) 1372 and 1382, respectively. Thus, the CL 1372,
1382 include integrated memory controller units and include
1/O control logic. FIG. 14 illustrates that not only are the
memories 1332, 1334 coupled to the CL. 1372, 1382, but also
that 1/0O devices 1414 are also coupled to the control logic
1372, 1382. Legacy /O devices 1415 are coupled to the
chipset 1390.

[0182] Referring now to FIG. 15, shown is a block dia-
gram of a SoC 1500 in accordance with an embodiment of
the present disclosure. Similar elements in FIG. 11 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 15, an interconnect
unit(s) 1502 is coupled to: an application processor 1510
which includes a set of one or more cores 202A-N and
shared cache unit(s) 1106; a system agent unit 1110; a bus
controller unit(s) 1116; an integrated memory controller
unit(s) 1114; a set or one or more coprocessors 1520 which
may include integrated graphics logic, an image processor,
an audio processor, and a video processor; an static random
access memory (SRAM) unit 1530; a direct memory access
(DMA) unit 1532; and a display unit 1540 for coupling to
one or more external displays. In one embodiment, the
coprocessor(s) 1520 include a special-purpose processor,
such as, for example, a network or communication proces-
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

[0183] Embodiments (e.g., of the mechanisms) disclosed
herein may be implemented in hardware, software, firm-
ware, or a combination of such implementation approaches.
Embodiments of the disclosure may be implemented as
computer programs or program code executing on program-
mable systems comprising at least one processor, a storage
system (including volatile and non-volatile memory and/or
storage elements), at least one input device, and at least one
output device.

[0184] Program code, such as code 1330 illustrated in
FIG. 13, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.
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[0185] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0186] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0187] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0188] Accordingly, embodiments of the disclosure also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

Emulation (Including Binary Translation, Code Morphing,
etc.)

[0189] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0190] FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the disclosure.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 16
shows a program in a high level language 1602 may be
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compiled using an x86 compiler 1604 to generate x86 binary
code 1606 that may be natively executed by a processor with
at least one x86 instruction set core 1616. The processor with
at least one x86 instruction set core 1616 represents any
processor that can perform substantially the same functions
as an Intel® processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel® x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel® processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel® processor with at
least one x86 instruction set core. The x86 compiler 1604
represents a compiler that is operable to generate x86 binary
code 1606 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1616. Similarly,
FIG. 16 shows the program in the high level language 1602
may be compiled using an alternative instruction set com-
piler 1608 to generate alternative instruction set binary code
1610 that may be natively executed by a processor without
at least one x86 instruction set core 1614 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1612 is used to convert the
x86 binary code 1606 into code that may be natively
executed by the processor without an x86 instruction set
core 1614. This converted code is not likely to be the same
as the alternative instruction set binary code 1610 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1612
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1606.

[0191] e-Filed via EFS-Web 59 Atty. Docket No.:
42AC2139-US

Claims what is claimed is:

1. An apparatus comprising:

a plurality of logical processors;

a control register comprising a non-write-back lock dis-
able bit;

a cache shared by the plurality of logical processors;

a bus to couple the cache to a memory to service a
memory request for the memory from the plurality of
logical processors; and

a memory controller to disable a non-write-back lock
access of the bus for a read-modify-write type of the
memory request issued by a logical processor of the
plurality of logical processors when the non-write-back
lock disable bit is set to a first value, and implement the
non-write-back lock access of the bus for the read-
modify-write type of the memory request when the
non-write-back lock disable bit is set to a second value.

2. The apparatus of claim 1, wherein the memory con-

troller is to create a general protection fault to disable the
non-write-back lock access.

3. The apparatus of claim 1, wherein the control register

is a memory control register.
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4. The apparatus of claim 3, wherein an address of the
memory control register is thirty-three hexadecimal.

5. The apparatus of claim 1, further comprising a capa-
bilities register comprising a capability bit that, when set to
a first value, indicates the plurality of logical processors
supports a non-write-back lock access disable feature, and,
when set to a second value, indicates the plurality of logical
processors does not support the non-write-back lock access
disable feature.

6. The apparatus of claim 1, wherein the memory con-
troller is to, when a cache disable bit is set to a value in a
second control register to disable the cache, not disable the
non-write-back lock access of the bus for the read-modify-
write type of the memory request issued by the logical
processor of the plurality of logical processors when the
non-write-back lock disable bit is set to the first value.

7. The apparatus of claim 1, wherein the memory con-
troller is to, when extended page tables are enabled and
memory type is set to non-write-back, not disable the
non-write-back lock access of the bus for the read-modify-
write type of the memory request issued by the logical
processor of the plurality of logical processors when the
non-write-back lock disable bit is set to the first value.

8. The apparatus of claim 1, wherein the plurality of
logical processors is a plurality of processor cores.

9. A method comprising:

setting a non-write-back lock disable bit in a control

register of a plurality of logical processors of a pro-
cessor;
performing a respective operation with each of the plu-
rality of logical processors of the processor that share
a cache coupled to a memory via a bus;

receiving a memory request from a logical processor of
the plurality of logical processors for the memory with
a memory controller;

disabling a non-write-back lock access of the bus for a
read-modify-write type of the memory request issued
by the logical processor of the plurality of logical
processors with the memory controller when the non-
write-back lock disable bit is set to a first value; and

implementing the non-write-back lock access of the bus
for the read-modify-write type of the memory request
with the memory controller when the non-write-back
lock disable bit is set to a second value.

10. The method of claim 9, wherein the disabling the
non-write-back lock access comprises generating a general
protection fault.

11. The method of claim 9, wherein the control register is
a memory control register.

12. The method of claim 11, wherein an address of the
memory control register is thirty-three hexadecimal.

13. The method of claim 9, further comprising setting a
capability bit of a capabilities register of the processor to a
first value to indicate the plurality of logical processors
supports a non-write-back lock access disable feature, and
setting the capability bit to a second value to indicate the
plurality of logical processors does not support the non-
write-back lock access disable feature.

14. The method of claim 9, further comprising setting a
cache disable bit in a second control register to a value to
disable the cache, wherein the memory controller then does
not disable the non-write-back lock access of the bus for the
read-modify-write type of the memory request issued by the
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logical processor of the plurality of logical processors when
the non-write-back lock disable bit is set to the first value.

15. The method of claim 9, further comprising enabling
extended page tables for the plurality of logical processors
and setting memory type to non-write-back, wherein the
memory controller then does not disable the non-write-back
lock access of the bus for the read-modify-write type of the
memory request issued by the logical processor of the
plurality of logical processors when the non-write-back lock
disable bit is set to the first value.

16. The method of claim 9, wherein the plurality of logical
processors is a plurality of processor cores.

17. A non-transitory machine readable medium that stores
code that when executed by a machine causes the machine
to perform a method comprising:

setting a non-write-back lock disable bit in a control

register of a plurality of logical processors of a pro-
cessor;
performing a respective operation with each of the plu-
rality of logical processors of the processor that share
a cache coupled to a memory via a bus;

receiving a memory request from a logical processor of
the plurality of logical processors for the memory with
a memory controller;

disabling a non-write-back lock access of the bus for a
read-modify-write type of the memory request issued
by the logical processor of the plurality of logical
processors with the memory controller when the non-
write-back lock disable bit is set to a first value; and

implementing the non-write-back lock access of the bus
for the read-modify-write type of the memory request
with the memory controller when the non-write-back
lock disable bit is set to a second value.

18. The non-transitory machine readable medium of claim
17, wherein the disabling the non-write-back lock access
comprises generating a general protection fault.

19. The non-transitory machine readable medium of claim
17, wherein the control register is a memory control register.

20. The non-transitory machine readable medium of claim
19, wherein an address of the memory control register is
thirty-three hexadecimal.

21. The non-transitory machine readable medium of claim
17, further comprising setting a capability bit of a capabili-
ties register of the processor to a first value to indicate the
plurality of logical processors supports a non-write-back
lock access disable feature, and setting the capability bit to
a second value to indicate the plurality of logical processors
does not support the non-write-back lock access disable
feature.

22. The non-transitory machine readable medium of claim
17, further comprising setting a cache disable bit in a second
control register to a value to disable the cache, wherein the
memory controller then does not disable the non-write-back
lock access of the bus for the read-modify-write type of the
memory request issued by the logical processor of the
plurality of logical processors when the non-write-back lock
disable bit is set to the first value.

23. The non-transitory machine readable medium of claim
17, further comprising enabling extended page tables for the
plurality of logical processors and setting memory type to
non-write-back, wherein the memory controller then does
not disable the non-write-back lock access of the bus for the
read-modify-write type of the memory request issued by the
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logical processor of the plurality of logical processors when
the non-write-back lock disable bit is set to the first value.

24. The non-transitory machine readable medium of claim
17, wherein the plurality of logical processors is a plurality
of processor cores.
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