a9 United States
a2y Patent Application Publication o) Pub. No.: US 2024/0265561 A1l

US 20240265561A1

Gallo et al. 43) Pub. Date: Aug. 8, 2024
(54) MESH RECONSTRUCTION USING GO6F 18214 (2006.01)
DATA-DRIVEN PRIORS GO6N 20/00 (2006.01)
(71) Applicant: NVIDIA Corporation, Santa Clara, CA GO6T 15/10 (2006.01)
(US) GO6T 17/20 (2006.01)
. (52) US. CL
(72) Inventors: Orazio Gallo, Santa Cruz, CA (US); CPC oo GO6T 7/55 (2017.01); GOGF 17/16
Abhishek Badki, Goleta, CA (US) (2013.01); GOGF 18/214 (2023.01); GO6N
. 20/00 (2019.01); GO6T 15/10 (2013.01); GO6T
(21) Appl. No.: 18/638,346 177205 (2013.01)
(22) Filed: Apr. 17, 2024
Related U.S. Application Data 57 ABSTRACT
(63) Continuation of application No. 16/226,329, filed on
Dec. 19, 2018, now Pat. No. 11,995,854. One embodiment of a method includes predicting one or
A . . more three-dimensional (3D) mesh representations based on
Publication Classification . s 1. -
a plurality of digital images, wherein the one or more 3D
(51) Int. CL mesh representations are refined by minimizing at least one
GO6T 7/55 (2006.01) difference between the one or more 3D mesh representations
GO6F 17/16 (2006.01) and the plurality of digital images.
124
Training Engine
Training Mashes
S
Encoder
204 \ 200
Latent Vectors VAE
210
Reconstructed Meshes
2
¥
124
Exacution Engine
~pei Laient Vector e Latent Vector (-8
Valus Values
J
; 222
218 - 218 . Geometric
Mesh o Meshiets =1 Constraints
Y ?
Y 258
<20 !mma_g—es
l Poses
Objact

Patent Application Publication Aug. 8,2024 Sheet 1 of 8 US 2024/0265561 A1

Computing Device 100

Memory 116

Training Engine 122

i Storage 114

Execution Engine 12

i i

interconnect (Bus) 112

% i i
¥

Processor(s) HQ Device Netwaork
102 interface 104 interface 106

4 4
Y v

To Network 11

VO Devices 108

FIG. 1

Patent Application Publication

Aug. 8,2024 Sheet 2 of 8

US 2024/0265561 Al

122

Training Engine

Training Mashes

208

Laten

NS

04

ctors

L

{ Ve
g

200
" VAE

206
Decoder
v

!

Reconstructed Meshes

218

144

Execution Engine

W a

Latent VecClor el

212 214
Latent Vector fege—i
Value Values
218 — 218 :
Mesh Mashieis
220
Posas

222
Geomestric
Consiraints

Patent Application Publication Aug. 8,2024 Sheet 3 of 8 US 2024/0265561 A1

Generate a machine learning model as a variational
autcencoder that learns {o reconstruct a set of
fraining meshes inputied into the variational
autoencoder
302

!

Execute the machine learning model to produce a
mesh of an object from a first value of g vector in a
latent space
304

!

Refine the mesh of the object by selecting a second
value of the vecior in the latent space based on one
or more geometric constraints associated with a set
of image observations of the object
306

!

Store the mesh in association with the object
308

Patent Application Publication Aug. 8,2024 Sheet 4 of 8 US 2024/0265561 A1

Apply an encoder to multiple orderings of
points in a training mesh to generate
intermediate representations of the
multiple orderings of points
402

Y

Average the intermediate representations
into a standardized value of a vectorin a
latent space
404

‘

Train a decoder in the variational
autoencoder 1o reconstruct the training
mesh from the standardized vaiue
406

!

Train an encoder in the variational
autoencoder to generate the standardized
value from each ordering of points in the
fraining mesh
408

Patent Application Publication

Aug. 8,2024 Sheet 5 of 8

System
Memaory

204

US 2024/0265561 Al

i

E

Network
Adapter

218

FIG. 5

Parallel Processing
Subsysiem
CPU E\Jiemcry 512
507 et Bridge § ¥
= 203
o A Display
Communication Communication ¥ Device
Path Fath 510
506 513
input Devices
¥ 508
& 3
O Bridge
207 »
Add-in Card Switch Add-in Card
520 516 221

Patent Application Publication Aug. 8,2024 Sheet 6 of 8 US 2024/0265561 A1
ToiFrom
Memory Bridge
505
4 Communication Path
T — B3
¥ PPU g2
VO Unit s Host Interface 808
802
Front End 812
X
Task/Work Uit 607
Processing Cluster Array 830
GPC Se GPC S p—— GPC
8080 8081 T 808(C-1)
e 3 Crossbar Unit 610
) T Y
l Memory Interface
¥ g14 ¥
Partition Partition Partition
Unit Unit Urit
815(0) 8i5(1) 815(0B-1
) Y F 3
¥ W W
DRAM DRAM DRAM
[S1s10IE0, 880{1) 680(0-1)

PP Memory 804

US 2024/0265561 Al

Aug. 8,2024 Sheet 7 of 8

Patent Application Publication

18]
UM

JBOSS0IT
Bin
PL9
aoBLalL)

S

oz7
1A

AJCWBIN
WoI4/0 1

& gm& 808 804D
pug gio
WU JBSS0ID
CL
52 567
dOwesd [IBQSS0IT
M UCHNGIESI MIOAA
2, A
GEl
ayoe’ 9 L1
A ® & > i
% P
\ ULl
— NS
DA .
winy >
BIMXa

S0l

sabeuriy suladid

808
OdO

4

A 4
L08
HUN SHOM ASE |
WoL4/0 1

sayoe”y 77
WA/ 1

Patent Application Publication Aug. 8,2024 Sheet 8 of 8 US 2024/0265561 A1
g SOC Integrated Circuit h
800

Application Graphics
Processors Processors
802 804
image Video
Processors Processors
806 808
Serial Display Display
interface 846 interface
914 — 820

Memory Fiash
824 824
Son o

US 2024/0265561 Al

MESH RECONSTRUCTION USING
DATA-DRIVEN PRIORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 16/226,329, filed on Dec. 19, 2018, entitled
“MESH RECONSTRUCTION USING DATA-DRIVEN
PRIORS.” The subject matter of this related application is
hereby incorporated herein by reference.

BACKGROUND

[0002] Multiple view stereovision (MVS) techniques
involve constructing three-dimensional (3D) surfaces from a
number of overlapping two-dimensional (2D) images of an
object. Such techniques may estimate the most likely 3D
shape from the 2D images based on assumptions related to
textures, viewpoints, lighting, and/or other conditions under
which the images were taken. Given a set of images of an
object and corresponding assumptions, MVS uses stereo
correspondence among the images to reconstruct the 3D
geometry of the scene captured by the images.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] So that the manner in which the above recited
features of the various embodiments can be understood in
detail, a more particular description of the inventive con-
cepts, briefly summarized above, may be had by reference to
various embodiments, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments of
the inventive concepts and are therefore not to be considered
limiting of scope in any way, and that there are other equally
effective embodiments.

[0004] FIG. 1 is a block diagram illustrating a system
configured to implement one or more aspects of various
embodiments.

[0005] FIG. 2 is a more detailed illustration of the training
engine and execution engine of FIG. 1, according to various
embodiments.

[0006] FIG. 3 is a flow diagram of method steps for
performing mesh reconstruction using data-driven priors,
according to various embodiments.

[0007] FIG. 4 is a flow diagram of method steps for
training a machine learning model to learn data-driven mesh
priors, according to various embodiments.

[0008] FIG. 5 is a block diagram illustrating a computer
system configured to implement one or more aspects of
various embodiments.

[0009] FIG. 6 is a block diagram of a parallel processing
unit (PPU) included in the parallel processing subsystem of
FIG. 5, according to various embodiments.

[0010] FIG. 7 is a block diagram of a general processing
cluster (GPC) included in the parallel processing unit (PPU)
of FIG. 6, according to various embodiments.

[0011] FIG. 8 is a block diagram of an exemplary system
on a chip (SoC) integrated circuit, according to various
embodiments.

DETAILED DESCRIPTION

[0012] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing of the various embodiments. However, it will be appar-

Aug. 8,2024

ent to one of skilled in the art that the inventive concepts
may be practiced without one or more of these specific
details.

System Overview

[0013] FIG. 1 illustrates a computing device 100 config-
ured to implement one or more aspects of various embodi-
ments. In one embodiment, computing device 100 may be a
desktop computer, a laptop computer, a smart phone, a
personal digital assistant (PDA), tablet computer, or any
other type of computing device configured to receive input,
process data, and optionally display images, and is suitable
for practicing one or more embodiments. Computing device
100 is configured to run a training engine 122 and execution
engine 124 that reside in a memory 116. It is noted that the
computing device described herein is illustrative and that
any other technically feasible configurations fall within the
scope of the present disclosure.

[0014] In one embodiment, computing device 100
includes, without limitation, an interconnect (bus) 112 that
connects one or more processing units 102, an input/output
(I/0) device interface 104 coupled to one or more input/
output (I/0) devices 108, memory 116, a storage 114, and a
network interface 106. Processing unit(s) 102 may be any
suitable processor implemented as a central processing unit
(CPU), a graphics processing unit (GPU), an application-
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), an artificial intelligence (Al) accelerator, any
other type of processing unit, or a combination of different
processing units, such as a CPU configured to operate in
conjunction with a GPU. In general, processing unit(s) 102
may be any technically feasible hardware unit capable of
processing data and/or executing software applications. Fur-
ther, in the context of this disclosure, the computing ele-
ments shown in computing device 100 may correspond to a
physical computing system (e.g., a system in a data center)
or may be a virtual computing instance executing within a
computing cloud.

[0015] In one embodiment, I/O devices 108 include
devices capable of providing input, such as a keyboard, a
mouse, a touch-sensitive screen, and so forth, as well as
devices capable of providing output, such as a display
device. Additionally, I/O devices 108 may include devices
capable of both receiving input and providing output, such
as a touchscreen, a universal serial bus (USB) port, and so
forth. /O devices 108 may be configured to receive various
types of input from an end-user (e.g., a designer) of com-
puting device 100, and to also provide various types of
output to the end-user of computing device 100, such as
displayed digital images or digital videos or text. In some
embodiments, one or more of I/O devices 108 are configured
to couple computing device 100 to a network 110.

[0016] Inone embodiment, network 110 is any technically
feasible type of communications network that allows data to
be exchanged between computing device 100 and external
entities or devices, such as a web server or another net-
worked computing device. For example, network 110 may
include a wide area network (WAN), a local area network
(LAN), a wireless (WiFi) network, and/or the Internet,
among others.

[0017] In one embodiment, storage 114 includes non-
volatile storage for applications and data, and may include
fixed or removable disk drives, flash memory devices, and
CD-ROM, DVD-ROM, Blu-Ray, HD-DVD, or other mag-

US 2024/0265561 Al

netic, optical, or solid state storage devices. Training engine
122 and execution engine 124 may be stored in storage 114
and loaded into memory 116 when executed.

[0018] In one embodiment, memory 116 includes a ran-
dom access memory (RAM) module, a flash memory unit, or
any other type of memory unit or combination thereof.
Processing unit(s) 102, I/O device interface 104, and net-
work interface 106 are configured to read data from and
write data to memory 116. Memory 116 includes various
software programs that can be executed by processor(s) 102
and application data associated with said software programs,
including training engine 122 and execution engine 124.
[0019] In one embodiment, training engine 122 generates
one or more machine learning models for performing mesh
reconstruction using data-driven priors. Each machine learn-
ing model may learn priors related to vertices, edges,
corners, faces, polygons, surfaces, shapes, and/or other
attributes of two-dimensional (2D) and/or three-dimensional
(3D) meshes. For example, each machine learning model
may include a variational autoencoder (VAE) that learns to
convert input meshes into latent vectors and reconstruct the
meshes from the latent vectors.

[0020] Inone embodiment, execution engine 124 executes
the machine learning models to perform mesh reconstruction
using the mesh priors learned by the machine learning
models. Continuing with the above example, execution
engine 124 may input an initial value of the latent vector into
the decoder of the VAE to produce an initial estimate of a
mesh. Execution engine 124 may refine the mesh by select-
ing subsequent values of the latent vector based on geomet-
ric constraints associated with a set of image observations of
an object. In various embodiments, the subsequent values of
the latent vector are selected to minimize errors between the
mesh and the image observations, thus allowing the mesh to
approximate the shape of the object. Training engine 122
and execution engine 124 are described in further detail
below with respect to FIG. 2.

Mesh Reconstruction Using Data-Driven Priors

[0021] FIG. 2 is a more detailed illustration of training
engine 122 and execution engine 124 of FIG. 1, according
to various embodiments. In the embodiment shown, training
engine 122 creates a machine learning model that learns to
reconstruct a set of training meshes 208 by learning and/or
encoding priors associated with training meshes 208. For
example, the machine learning model may learn, from
training meshes 208, a number of “basic types™ related to
vertices, edges, corners, faces, triangles, polygons, surfaces,
shapes, and/or other attributes of 2D and/or 3D meshes.
[0022] In one embodiment, execution engine 124 uses the
machine learning model to perform inverse rendering of an
object 260 captured in a set of images 258 into a corre-
sponding mesh 216. For example, execution engine 124 may
use the machine learning model to estimate a 3D mesh 216
of object from 2D images 258 that capture multiple views
and/or multiple illuminations of object 260. Thus, images
258 may represent ground truth image observations of object
260.

[0023] Machine learning models created by training
engine 122 can include any technically feasible form of
machine learning model. For example, the machine learning
models may include recurrent neural networks (RNNs),
convolutional neural networks (CNNs), deep neural net-
works (DNNs), deep convolutional networks (DCNs), deep

Aug. 8,2024

belief networks (DBNs), restricted Boltzmann machines
(RBMs), long-short-term memory (LSTM) units, gated
recurrent units (GRUs), generative adversarial networks
(GANs), self-organizing maps (SOMs), and/or other types
of artificial neural networks or components of artificial
neural networks. In another example, the machine learning
models may include functionality to perform clustering,
principal component analysis (PCA), latent semantic analy-
sis (LSA), Word2vec, and/or another unsupervised learning
technique. In a third example, the machine learning models
may include regression models, support vector machines,
decision trees, random forests, gradient boosted trees, naive
Bayes classifiers, Bayesian networks, hierarchical models,
and/or ensemble models.

[0024] Insome embodiments, the machine learning model
created by training engine 122 includes a VAE 200, which
includes an encoder 202 and a decoder 206. For example,
training engine 122 may input 2D and/or 3D training meshes
208 into encoder 202, and encoder 202 may “encode”
training meshes 208 into latent vectors 204 (e.g., scalars,
geometric vectors, tensors, and/or other geometric objects)
within a latent space of lower dimensionality than training
meshes 208. A decoder 206 in VAE 200 may “decode” latent
vectors 204 into higher dimensionality reconstructed meshes
210 that substantially reproduce training meshes 208.
[0025] In various embodiments, training meshes 208 may
include collections of 2D and/or 3D points, representations
of edges between pairs of points, and/or representations of
triangles, polygons, and/or other shapes formed by the
points and edges. Edges and/or shapes in training meshes
208 may be encoded in orderings of the points within
training meshes 208. For example, a 2D mesh may be
parameterized as an ordered set of points, with each adjacent
pair of points in the ordered set connected by an edge
between the points. In another example, a 3D mesh may be
parameterized using one or more triangle strips, triangle
fans, and/or other representations of triangles within the
mesh.

[0026] In one or more embodiments, training engine 122
configures VAE 200 to encode training meshes 208 in a way
that is unaffected by the parameterization of training meshes
208 inputted into encoder 202. In these embodiments, train-
ing engine 122 inputs multiple ordered sets of points in each
training mesh into encoder 202 and standardizes the output
of encoder 202 from the multiple ordered sets of points.
Thus, training engine 122 may decouple the parameteriza-
tions of training meshes 208 from the latent space of VAE
200 into which training meshes 208 are encoded.

[0027] Inone embodiment, ordered sets of points inputted
into encoder 202 may include all possible orderings of
points in a training mesh, a randomly selected subset of
possible orderings of points in the training mesh, and/or any
other combination of orderings of points in the training
mesh. For example, training engine 122 may generate dif-
ferent ordered sets of points in a 2D mesh of a polygon by
selecting different vertices of the polygon and/or various
points along edges between the vertices as starting points in
the ordered sets. In another example, training engine 122
may generate two different orderings of points in the 2D
mesh from the same starting point by traversing the mesh in
the clockwise and counterclockwise directions beginning at
the starting point.

[0028] In one embodiment, training engine 122 trains a
different encoder that is not in VAE 200 to generate inter-

US 2024/0265561 Al

mediate representations of ordered sets of points and/or
other parameterizations of training meshes 208. In one
embodiment, training engine 122 averages and/or otherwise
aggregates the intermediate representations into a standard-
ized value in the latent space, such that the standardized
value defines the mean and standard deviation from which
the output of encoder 202 is sampled.

[0029] In one embodiment, training engine 122 inputs the
output sampled using the standardized value into decoder
206 to obtain reconstructed meshes 210 as output of decoder
206. Training engine 122 also computes an error between
each training mesh and a corresponding reconstructed mesh
as the minimum error between an ordering of points in the
training mesh inputted into encoder 202 and the outputted
ordering of points from decoder 206. For example, training
engine 122 may compute the minimum error based on the
intersection of points in the training mesh and reconstructed
mesh, a Chamfer distance between the training mesh and
reconstructed mesh, an earth mover’s distance, and/or
another measure of distance, similarity, and/or dissimilarity
between the points, edges, shapes, and/or other attributes of
the training mesh and reconstructed mesh.

[0030] In one embodiment, training engine 122 uses the
error between each training mesh and the corresponding
reconstructed mesh to update the parameters of encoder 202
and decoder 206. For example, training engine 122 may
backpropagate the error across the layers and/or parameters
of decoder 206 so that decoder 206 learns to decode the
reconstructed mesh from the sampled output of encoder 202.
Training engine 122 may also backpropagate the error across
the layers and/or parameters of encoder 202 so that encoder
202 learns to produce a consistent latent vector representa-
tion (e.g., mean and standard deviation vectors) for different
orderings of points in the corresponding training mesh.

[0031] In one embodiment, training engine 122 trains
decoder 206 to generate reconstructed meshes 210 from
training meshes 208 at varying resolutions until a desired
mesh resolution is reached. For example, decoder 206 may
include a number of neural network layers, with each layer
producing a reconstructed mesh with a higher number of
vertices than the previous layer (e.g., by adding vertices to
the centers of edges and/or polygon faces in the mesh from
the previous layer). In one embodiment, during training of
decoder 206, training engine 122 may compare a coarse
reconstructed mesh produced by the first layer of decoder
206 with the corresponding training mesh and update param-
eters of the first layer to reduce the error between the vertices
of the reconstructed mesh and corresponding vertices of the
training mesh. Training engine 122 may repeat the process
with subsequent layers of decoder 206, which upsample the
reconstructed mesh from the previous layer, until the output
layer of decoder 206 and/or the desired reconstructed mesh
resolution is reached.

[0032] By performing a “coarse to fine” autoencoding of
training meshes 208, training engine 122 may allow the
coarse mesh from the first layer of decoder 206 to be defined
in a given reference coordinate frame and subsequent refine-
ments to the coarse mesh from subsequent layers of decoder
206 to be defined in relative terms with respect to the coarse
mesh. As a result, the refinements and, in turn, most of the
reconstructed mesh may be independent of the reference
frame or global pose of the object. This allows decoder 206
to learn variations in reference coordinate system across

Aug. 8,2024

meshes more easily and/or potentially omit estimation of
global pose during generation of reconstructed meshes 210.
[0033] In the embodiment shown, execution engine 124
executes one or more portions of VAE 200 to produce a
mesh 216 of an object 260 from a latent vector value 212 of
a vector in the latent space of VAE 200 and images 258 of
object 260. For example, execution engine 124 may input
latent vector value 212 into decoder 206 to generate mesh
216 as a decoded representation of the vector.

[0034] More specifically, in one embodiment, execution
engine 124 varies latent vector value 212 inputted into
decoder 206 with fixed parameters to generate mesh 216 so
that mesh 216 reproduces an object 260 captured in a set of
images 258. In one or more embodiments, images 258 are
associated with a set of assumptions that allow mesh 216 to
be reconstructed base on images 258. For example, images
258 may be associated with known camera poses that
generate multiple views of object 260, multiple lighting
conditions that allow object 260 to be captured under
different illuminations, and/or Lambertian surfaces on object
260 that have isotropic luminance (i.e., surfaces with uni-
form brightness from any direction of view).

[0035] In one embodiment, execution engine 124 initially
selects latent vector value 212 based on one or more criteria.
For example, execution engine 124 may randomly select the
initial latent vector value 212 and/or set the initial latent
vector value 212 to a default latent vector value associated
with decoder 206. In another example, execution engine 124
may set the initial latent vector value 212 based on sparse
features extracted from 2D images 258 (e.g., features
extracted using a scale-invariant feature transform (SIFT)
technique, a corner detection technique, and/or another
image feature detection technique). Execution engine 124
may use the sparse features to generate the initial latent
vector value 212 by estimating 3D locations of the sparse
features based on the assumptions associated with images
258, inputting the locations into encoder 202, and obtaining
the initial latent vector value 212 based on output from
encoder 202.

[0036] In one embodiment, execution engine 124 uses
assumptions associated with images 258 to determine geo-
metric constraints 222 associated with object 260, which
may include constraints related to the shape and/or geometry
of object 260. Execution engine 124 also refines mesh 216
by updating latent vector value 212 based on mesh 216 and
geometric constraints 222.

[0037] In one embodiment, execution engine 124 uses
geometric constraints 222 to calculate one or more errors
associated with mesh 216 and updates latent vector value
212 based on gradients associated with the errors. For
example, execution engine 124 may use known camera
poses and/or lighting conditions associated with images 258
to back-project an image from a first camera to mesh 216
and project a warped image back to a second camera.
Execution engine 124 may calculate a photometric error
and/or silhouette error between the warped image and a
corresponding image observation of object 260 from images
258 (e.g., an image of object 260 taken from the second
camera’s location and/or under the same lighting conditions
used to produce the warped image). Execution engine 124
may use gradients associated with the photometric and/or
silhouette error to modify latent vector value 212 so that
mesh 216 better approximates the shape of object 260.
Execution engine 124 may also repeat the process, thus

US 2024/0265561 Al

iteratively updating latent vector value 212 to search the
latent space associated with VAE 200 and using decoder 206
to generate a more accurate mesh 216 from latent vector
value 212 until mesh 216 is a substantially accurate repre-
sentation of object 260.

[0038] In one embodiment, execution engine 124 gener-
ates warped images of mesh 216 for comparison to ground
truth images 258 of object 260 by casting a ray from the first
camera toward mesh 216, selecting the ray’s closest point of
intersection on mesh 216, and casting another ray from the
point of intersection to the second camera. During this
process, a face of mesh 216 may be represented as a binary
indicator function in an image, where the face is “visible” in
the image at locations where rays from the corresponding
camera intersect with the face and invisible otherwise.
Because the indicator function is binary and includes an
abrupt change from “seen” pixels of the face to “unseen”
pixels elsewhere, the image may be non-differentiable,
which may interfere with generating gradients that are used
to update latent vector value 212.

[0039] Inone or more embodiments, execution engine 124
generates images of mesh 216 using differentiable indicator
functions that smooth the transition between visible and
invisible portions of faces in mesh 216. For example, a face
in mesh 216 may have an indicator function that shows the
face as “visible” wherever a ray from a camera intersects the
face, invisible where a ray from the camera does not
intersect the face, and smoothly but quickly transitioning
between visible and invisible in the vicinity of the border
between the two.

[0040] When mesh 216 is generated from a single latent
vector value 212 inputted into decoder, decoder 206 may be
required to learn the prior for the entire object 260. As a
result, execution engine 124 may be capable of generating
mesh 216 as an accurate reconstruction of object 260 only
when object 260 belongs to the distribution of training
meshes 208 used to produce VAE 200.

[0041] Inone or more embodiments, execution engine 124
reduces the number and/or complexity of mesh priors
learned by decoder 206 by dividing mesh 216 into multiple
smaller meshlets 218 that represent different portions of
mesh 218. For example, execution engine 124 may generate
each meshlet as one or more polygons, surfaces, and/or
shapes in mesh 216. Each meshlet may be defined using
more basic priors than a much larger mesh 216 of object 260,
which may allow the priors to be generalized to a greater
variety of objects and/or shapes. Each meshlet may also
encompass a different part of mesh 218, and meshlets 218
may be combined to produce mesh 218.

[0042] As with generation of mesh 216 from a single
latent vector value 212 inputted into decoder 206, in one
embodiment, execution engine 124 inputs multiple latent
vector values 214 into decoder 206 to generate multiple
corresponding meshlets 218 as output from decoder 206.
Execution engine 124 may similarly update latent vector
values 214 to enforce subsets of geometric constraints 222
associated with individual meshlets 218 and/or reduce errors
between meshlets 218 and the corresponding portions of
object 260. For example, execution engine 124 may map a
meshlet to a portion of object 260 and use images 258
containing the portion to determine geometric constraints
222 associated with the portion. Execution engine 124 may
use geometric constraints 222 to generate errors between the

Aug. 8,2024

meshlet and images 258 and perform gradient descent on the
latent vector value used to produce the meshlet based on the
errors.

[0043] In the embodiment shown, meshlets 218 are addi-
tionally associated with poses 220 that project meshlets 218
back into mesh 216. For example, the shape and/or geometry
of each meshlet may be generated from a point in the latent
space of VAE 200. Each meshlet may also be associated with
one or more custom poses 220 (e.g., one or more rotations,
translations, and/or other transformations) that align the
global pose of images 258 and/or mesh 216 with the
canonical pose of the meshlet learned by decoder 206.
[0044] In one embodiment, execution engine 124 uses
gradients and/or errors associated with geometric constraints
222 to update both latent vector values 214 of meshlets 218
and poses 220 that transform meshlets 218 into their corre-
sponding positions and/or orientations in mesh 216. For
example, object 260 may include a rectangular surface with
four right-angle corners. During reconstruction of mesh 216
for object 260, execution engine 124 may use geometric
constraints 222 to identify a value in the latent space
associated with VAE 200 that produces a meshlet with a
right-angle corner and learn four different poses 220 that
map the meshlet to the four corners of the rectangular
surface.

[0045] In one embodiment, execution engine 124 itera-
tively increases a resolution of meshlets 218 to meet geo-
metric constraints 222. For example, execution engine 124
may use a first layer of decoder 206 to generate an initial
coarse mesh 216 that matches low-resolution images 258 of
object 260. Execution engine 124 may use subsequent layers
of decoder 206 to upsample the coarse mesh 216 into
increasingly small and numerous meshlets 218. At each
layer of decoder 206, execution engine 124 may perform
gradient descent on latent vector values 214 used to produce
meshlets 218 and poses 220 of meshlets 218 with respect to
the coarse mesh until the desired mesh 216 and/or meshlet
resolution is reached.

[0046] In one embodiment, execution engine 124 recon-
structs mesh 216 from meshlets 218 and the corresponding
poses 220 and stores the reconstructed mesh 216 in asso-
ciation with object 260. For example, execution engine 124
may apply poses 220 to the corresponding meshlets 218 to
map the points in the canonical poses of meshlets 218 to
their locations in mesh 216. Execution engine 124 may then
render the completed mesh 216 and/or store the points in
mesh 216 under an identifier for object 260, with images 258
of object 260, and/or with other metadata for object 260.
[0047] FIG. 3 is a flow diagram of method steps for
performing mesh reconstruction using data-driven priors,
according to various embodiments. Although the method
steps are described in conjunction with the systems of FIGS.
1 and 2, persons skilled in the art will understand that any
system configured to perform the method steps in any order
falls within the scope of the present disclosure.

[0048] As shown, training engine 122 generates 302 a
machine learning model as a VAE that learns to reconstruct
a set of training meshes inputted into the VAE, as described
in further detail below with respect to FIG. 4. In various
embodiments, the training meshes may include 2D and/or
3D meshes and/or meshlets.

[0049] Next, execution engine 124 executes 304 the
machine learning model to produce a mesh of an object from
a first value of a vector in a latent space. For example,

US 2024/0265561 Al

execution engine 124 may select the first value of the vector
as a random value, a default value, a value that is based on
a set of image observations of the object, and/or a value that
is based on sparse features extracted from the image obser-
vations. Execution engine 124 may input the first value into
a decoder in the VAE and obtain the mesh as output from the
decoder. The similarity of the mesh to the object may be
affected by the criteria used to select the first value of the
vector (e.g., a first value of the vector that reflects sparse
features from the image observations is likely to produce a
mesh that is more similar to the object than a first value of
the vector that is selected randomly).

[0050] Execution engine 124 refines 306 the mesh of the
object by selecting a second value of the vector in the latent
space based on one or more geometric constraints associated
with the image observations of the object. For example,
execution engine 124 may use known camera poses and/or
lighting conditions under which the image observations
were made to project and/or back-project warped images of
the mesh. Execution engine 124 may also calculate photo-
metric and/or silhouette errors between the warped images
of the mesh and corresponding image observations (e.g.,
image observations made under the same camera poses
and/or lighting conditions). Execution engine 124 may then
use gradients associated with the errors and constant param-
eters of the machine learning model to update the value of
the vector.

[0051] In another example, execution engine 124 may
project and/or divide the mesh into a set of meshlets that
represent different portions of the mesh. For each meshlet,
execution engine 124 may select a value of the vector in the
latent space to learn a prior for a portion of the mesh
represented by the meshlet. Execution engine 124 may also
learn a custom pose of the meshlet that maps the meshlet
into a position and/or orientation within the mesh and/or
aligns a global pose of the image observations with the
canonical pose of the meshlet learned by the machine
learning model. Execution engine 124 may then reconstruct
the mesh from the set of meshlets by using the custom poses
of the meshlets to map points in the meshlets into the
reference system of the mesh.

[0052] Finally, execution engine 124 stores 308 the mesh
in association with the object. For example, execution
engine 124 may store the points in mesh 216 under an
identifier for the object, with images of the object, and/or
with other metadata for the object.

[0053] FIG. 4 is a flow diagram of method steps for
training a machine learning model to learn data-driven mesh
priors, according to various embodiments. Although the
method steps are described in conjunction with the systems
of FIGS. 1 and 2, persons skilled in the art will understand
that any system configured to perform the method steps in
any order falls within the scope of the present disclosure.

[0054] As shown, training engine 122 applies 402 an
encoder to multiple orderings of points in a training mesh to
generate intermediate representations of the multiple order-
ings of points. For example, training engine 122 may select
a random subset of all possible orderings of points in the
training mesh as input to the encoder. The encoder may
“encode” each ordering of points into a vector in a latent
space.

[0055] Next, training engine 122 averages 404 the inter-
mediate representations into a standardized value of a vector

Aug. 8,2024

in the latent space. The standardized value may define the
mean and standard deviation vectors outputted by an
encoder in a VAE.

[0056] Training engine 122 then trains 406 a decoder in
the VAE to reconstruct the training mesh from the standard-
ized value. Training engine 122 also optionally trains 408 an
encoder in the VAE to generate the standardized value from
each ordering of points in the training mesh. For example,
training engine 122 may calculate an error between the
reconstructed mesh and the training mesh as the minimum
error between an ordering of points in the training mesh
inputted into the encoder and the outputted ordering of
points from the decoder. The error may be based on an
intersection of points between the training mesh and recon-
structed mesh, a distance metric between the training mesh
and reconstructed mesh, and/or other measures of similarity
or dissimilarity between the training mesh and reconstructed
mesh. Training engine 122 may backpropagate the error
across the layers and/or parameters of the decoder so that the
decoder learns to reconstruct the training mesh based on the
standardized value. Training engine 122 may also back-
propagate the error across the layers and/or parameters of
the encoder so that the encoder learns to output the stan-
dardized value for different orderings of points in the cor-
responding training mesh.

Example Hardware Architecture

[0057] FIG. 5 is a block diagram illustrating a computer
system 500 configured to implement one or more aspects of
various embodiments. In some embodiments, computer sys-
tem 500 is a server machine operating in a data center or a
cloud computing environment that provides scalable com-
puting resources as a service over a network. In some
embodiments, computer system 500 implements the func-
tionality of computing device 100 of FIG. 1.

[0058] In various embodiments, computer system 500
includes, without limitation, a central processing unit (CPU)
502 and a system memory 504 coupled to a parallel pro-
cessing subsystem 512 via a memory bridge 505 and a
communication path 513. Memory bridge 505 is further
coupled to an I/O (input/output) bridge 507 via a commu-
nication path 506, and I/O bridge 507 is, in turn, coupled to
a switch 516.

[0059] Inone embodiment, I/O bridge 507 is configured to
receive user input information from optional input devices
508, such as a keyboard or a mouse, and forward the input
information to CPU 502 for processing via communication
path 506 and memory bridge 505. In some embodiments,
computer system 500 may be a server machine in a cloud
computing environment. In such embodiments, computer
system 500 may not have input devices 508. Instead, com-
puter system 500 may receive equivalent input information
by receiving commands in the form of messages transmitted
over a network and received via the network adapter 518. In
one embodiment, switch 516 is configured to provide con-
nections between 1/O bridge 507 and other components of
the computer system 500, such as a network adapter 518 and
various add-in cards 520 and 521.

[0060] In one embodiment, I/O bridge 507 is coupled to a
system disk 514 that may be configured to store content and
applications and data for use by CPU 502 and parallel
processing subsystem 512. In one embodiment, system disk
514 provides non-volatile storage for applications and data
and may include fixed or removable hard disk drives, flash

US 2024/0265561 Al

memory devices, and CD-ROM (compact disc read-only-
memory), DVD-ROM (digital versatile disc-ROM), Blu-
ray, HD-DVD (high definition DVD), or other magnetic,
optical, or solid state storage devices. In various embodi-
ments, other components, such as universal serial bus or
other port connections, compact disc drives, digital versatile
disc drives, film recording devices, and the like, may be
connected to I/O bridge 507 as well.

[0061] In various embodiments, memory bridge 505 may
be a Northbridge chip, and /O bridge 507 may be a
Southbridge chip. In addition, communication paths 506 and
513, as well as other communication paths within computer
system 500, may be implemented using any technically
suitable protocols, including, without limitation, AGP (Ac-
celerated Graphics Port), HyperTransport, or any other bus
or point-to-point communication protocol known in the art.
[0062] In some embodiments, parallel processing subsys-
tem 512 comprises a graphics subsystem that delivers pixels
to an optional display device 510 that may be any conven-
tional cathode ray tube, liquid crystal display, light-emitting
diode display, or the like. In such embodiments, the parallel
processing subsystem 512 incorporates circuitry optimized
for graphics and video processing, including, for example,
video output circuitry. As described in greater detail below
in conjunction with FIGS. 6 and 7, such circuitry may be
incorporated across one or more parallel processing units
(PPUs), also referred to herein as parallel processors,
included within parallel processing subsystem 512.

[0063] In other embodiments, the parallel processing sub-
system 512 incorporates circuitry optimized for general
purpose and/or compute processing. Again, such circuitry
may be incorporated across one or more PPUs included
within parallel processing subsystem 512 that are configured
to perform such general purpose and/or compute operations.
In yet other embodiments, the one or more PPUs included
within parallel processing subsystem 512 may be configured
to perform graphics processing, general purpose processing,
and compute processing operations. System memory 504
includes at least one device driver configured to manage the
processing operations of the one or more PPUs within
parallel processing subsystem 512.

[0064] In various embodiments, parallel processing sub-
system 512 may be integrated with one or more of the other
elements of FIG. 5 to form a single system. For example,
parallel processing subsystem 512 may be integrated with
CPU 502 and other connection circuitry on a single chip to
form a system on chip (SoC).

[0065] In one embodiment, CPU 502 is the master pro-
cessor of computer system 500, controlling and coordinating
operations of other system components. In one embodiment,
CPU 502 issues commands that control the operation of
PPUs. In some embodiments, communication path 513 is a
PCI Express link, in which dedicated lanes are allocated to
each PPU, as is known in the art. Other communication
paths may also be used. PPU advantageously implements a
highly parallel processing architecture. A PPU may be
provided with any amount of local parallel processing
memory (PP memory).

[0066] It will be appreciated that the system shown herein
is illustrative and that variations and modifications are
possible. The connection topology, including the number
and arrangement of bridges, the number of CPUs 502, and
the number of parallel processing subsystems 512, may be
modified as desired. For example, in some embodiments,

Aug. 8,2024

system memory 504 could be connected to CPU 502 directly
rather than through memory bridge 505, and other devices
would communicate with system memory 504 via memory
bridge 505 and CPU 502. In other embodiments, parallel
processing subsystem 512 may be connected to 1/O bridge
507 or directly to CPU 502, rather than to memory bridge
505. In still other embodiments, /O bridge 507 and memory
bridge 505 may be integrated into a single chip instead of
existing as one or more discrete devices. Lastly, in certain
embodiments, one or more components shown in FIG. 5
may not be present. For example, switch 516 could be
eliminated, and network adapter 518 and add-in cards 520,
521 would connect directly to /O bridge 507.

[0067] FIG. 6 is a block diagram of a parallel processing
unit (PPU) 602 included in the parallel processing subsys-
tem 512 of FIG. 5, according to various embodiments.
Although FIG. 6 depicts one PPU 602, as indicated above,
parallel processing subsystem 512 may include any number
of PPUs 602. As shown, PPU 602 is coupled to a local
parallel processing (PP) memory 604. PPU 602 and PP
memory 604 may be implemented using one or more
integrated circuit devices, such as programmable processors,
application specific integrated circuits (ASICs), or memory
devices, or in any other technically feasible fashion.

[0068] In some embodiments, PPU 602 comprises a
graphics processing unit (GPU) that may be configured to
implement a graphics rendering pipeline to perform various
operations related to generating pixel data based on graphics
data supplied by CPU 502 and/or system memory 504.
When processing graphics data, PP memory 604 can be used
as graphics memory that stores one or more conventional
frame buffers and, if needed, one or more other render
targets as well. Among other things, PP memory 604 may be
used to store and update pixel data and deliver final pixel
data or display frames to an optional display device 510 for
display. In some embodiments, PPU 602 also may be
configured for general-purpose processing and compute
operations. In some embodiments, computer system 500
may be a server machine in a cloud computing environment.
In such embodiments, computer system 500 may not have a
display device 510. Instead, computer system 500 may
generate equivalent output information by transmitting com-
mands in the form of messages over a network via the
network adapter 518.

[0069] In some embodiments, CPU 502 is the master
processor of computer system 500, controlling and coordi-
nating operations of other system components. In one
embodiment, CPU 502 issues commands that control the
operation of PPU 602. In some embodiments, CPU 502
writes a stream of commands for PPU 602 to a data structure
(not explicitly shown in either FIG. 5 or FIG. 6) that may be
located in system memory 504, PP memory 604, or another
storage location accessible to both CPU 502 and PPU 602.
A pointer to the data structure is written to a command
queue, also referred to herein as a pushbuffer, to initiate
processing of the stream of commands in the data structure.
In one embodiment, the PPU 602 reads command streams
from the command queue and then executes commands
asynchronously relative to the operation of CPU 502. In
embodiments where multiple pushbuffers are generated,
execution priorities may be specified for each pushbuffer by
an application program via device driver to control sched-
uling of the different pushbuffers.

US 2024/0265561 Al

[0070] In one embodiment, PPU 602 includes an I/O
(input/output) unit 605 that communicates with the rest of
computer system 500 via the communication path 513 and
memory bridge 505. In one embodiment, I/O unit 605
generates packets (or other signals) for transmission on
communication path 513 and also receives all incoming
packets (or other signals) from communication path 513,
directing the incoming packets to appropriate components of
PPU 602. For example, commands related to processing
tasks may be directed to a host interface 606, while com-
mands related to memory operations (e.g., reading from or
writing to PP memory 604) may be directed to a crossbar
unit 610. In one embodiment, host interface 606 reads each
command queue and transmits the command stream stored
in the command queue to a front end 612.

[0071] As mentioned above in conjunction with FIG. 5,
the connection of PPU 602 to the rest of computer system
500 may be varied. In some embodiments, parallel process-
ing subsystem 512, which includes at least one PPU 602, is
implemented as an add-in card that can be inserted into an
expansion slot of computer system 500. In other embodi-
ments, PPU 602 can be integrated on a single chip with a bus
bridge, such as memory bridge 505 or I/O bridge 507. Again,
in still other embodiments, some or all of the elements of
PPU 602 may be included along with CPU 502 in a single
integrated circuit or system of chip (SoC).

[0072] In one embodiment, front end 612 transmits pro-
cessing tasks received from host interface 606 to a work
distribution unit (not shown) within task/work unit 607. In
one embodiment, the work distribution unit receives point-
ers to processing tasks that are encoded as task metadata
(TMD) and stored in memory. The pointers to TMDs are
included in a command stream that is stored as a command
queue and received by the front end unit 612 from the host
interface 606. Processing tasks that may be encoded as
TMDs include indices associated with the data to be pro-
cessed as well as state parameters and commands that define
how the data is to be processed. For example, the state
parameters and commands could define the program to be
executed on the data. Also for example, the TMD could
specify the number and configuration of the set of CTAs.
Generally, each TMD corresponds to one task. The task/
work unit 607 receives tasks from the front end 612 and
ensures that GPCs 608 are configured to a valid state before
the processing task specified by each one of the TMDs is
initiated. A priority may be specified for each TMD that is
used to schedule the execution of the processing task.
Processing tasks also may be received from the processing
cluster array 630. Optionally, the TMD may include a
parameter that controls whether the TMD is added to the
head or the tail of a list of processing tasks (or to a list of
pointers to the processing tasks), thereby providing another
level of control over execution priority.

[0073] In one embodiment, PPU 602 implements a highly
parallel processing architecture based on a processing clus-
ter array 630 that includes a set of C general processing
clusters (GPCs) 608, where C=1. Each GPC 608 is capable
of executing a large number (e.g., hundreds or thousands) of
threads concurrently, where each thread is an instance of a
program. In various applications, different GPCs 608 may be
allocated for processing different types of programs or for
performing different types of computations. The allocation
of GPCs 608 may vary depending on the workload arising
for each type of program or computation.

Aug. 8,2024

[0074] In one embodiment, memory interface 614
includes a set of D of partition units 615, where D=1. Each
partition unit 615 is coupled to one or more dynamic random
access memories (DRAMs) 620 residing within PPM
memory 604. In some embodiments, the number of partition
units 615 equals the number of DRAMs 620, and each
partition unit 615 is coupled to a different DRAM 620. In
other embodiments, the number of partition units 615 may
be different than the number of DRAMs 620. Persons of
ordinary skill in the art will appreciate that a DRAM 620
may be replaced with any other technically suitable storage
device. In operation, various render targets, such as texture
maps and frame buffers, may be stored across DRAMs 620,
allowing partition units 615 to write portions of each render
target in parallel to efficiently use the available bandwidth of
PP memory 604.

[0075] In one embodiment, a given GPC 608 may process
data to be written to any of the DRAMs 620 within PP
memory 604. In one embodiment, crossbar unit 610 is
configured to route the output of each GPC 608 to the input
of any partition unit 615 or to any other GPC 608 for further
processing. GPCs 608 communicate with memory interface
614 via crossbar unit 610 to read from or write to various
DRAMSs 620. In some embodiments, crossbar unit 610 has
a connection to I/O unit 605, in addition to a connection to
PP memory 604 via memory interface 614, thereby enabling
the processing cores within the different GPCs 608 to
communicate with system memory 504 or other memory not
local to PPU 602. In the embodiment of FIG. 6, crossbar unit
610 is directly connected with /O unit 605. In various
embodiments, crossbar unit 610 may use virtual channels to
separate traffic streams between the GPCs 608 and partition
units 615.

[0076] Inone embodiment, GPCs 608 can be programmed
to execute processing tasks relating to a wide variety of
applications, including, without limitation, linear and non-
linear data transforms, filtering of video and/or audio data,
modeling operations (e.g., applying laws of physics to
determine position, velocity and other attributes of objects),
image rendering operations (e.g., tessellation shader, vertex
shader, geometry shader, and/or pixel/fragment shader pro-
grams), general compute operations, etc. In operation, PPU
602 is configured to transfer data from system memory 504
and/or PP memory 604 to one or more on-chip memory
units, process the data, and write result data back to system
memory 504 and/or PP memory 604. The result data may
then be accessed by other system components, including
CPU 502, another PPU 602 within parallel processing
subsystem 512, or another parallel processing subsystem
512 within computer system 500.

[0077] In one embodiment, any number of PPUs 602 may
be included in a parallel processing subsystem 512. For
example, multiple PPUs 602 may be provided on a single
add-in card, or multiple add-in cards may be connected to
communication path 513, or one or more of PPUs 602 may
be integrated into a bridge chip. PPUs 602 in a multi-PPU
system may be identical to or different from one another. For
example, different PPUs 602 might have different numbers
of processing cores and/or different amounts of PP memory
604. In implementations where multiple PPUs 602 are
present, those PPUs may be operated in parallel to process
data at a higher throughput than is possible with a single
PPU 602. Systems incorporating one or more PPUs 602 may
be implemented in a variety of configurations and form

US 2024/0265561 Al

factors, including, without limitation, desktops, laptops,
handheld personal computers or other handheld devices,
servers, workstations, game consoles, embedded systems,
and the like.

[0078] FIG. 7 is a block diagram of a general processing
cluster (GPC) 608 included in the parallel processing unit
(PPU) 602 of FIG. 6, according to various embodiments. As
shown, the GPC 608 includes, without limitation, a pipeline
manager 705, one or more texture units 715, a preROP unit
725, a work distribution crossbar 730, and an L1.5 cache
735.

[0079] Inone embodiment, GPC 608 may be configured to
execute a large number of threads in parallel to perform
graphics, general processing and/or compute operations. As
used herein, a “thread” refers to an instance of a particular
program executing on a particular set of input data. In some
embodiments, single-instruction, multiple-data (SIMD)
instruction issue techniques are used to support parallel
execution of a large number of threads without providing
multiple independent instruction units. In other embodi-
ments, single-instruction, multiple-thread (SIMT) tech-
niques are used to support parallel execution of a large
number of generally synchronized threads, using a common
instruction unit configured to issue instructions to a set of
processing engines within GPC 608. Unlike a SIMD execu-
tion regime, where all processing engines typically execute
identical instructions, SIMT execution allows different
threads to more readily follow divergent execution paths
through a given program. Persons of ordinary skill in the art
will understand that a SIMD processing regime represents a
functional subset of a SIMT processing regime.

[0080] In one embodiment, operation of GPC 608 is
controlled via a pipeline manager 705 that distributes pro-
cessing tasks received from a work distribution unit (not
shown) within task/work unit 607 to one or more streaming
multiprocessors (SMs) 710. Pipeline manager 705 may also
be configured to control a work distribution crossbar 730 by
specifying destinations for processed data output by SMs
710.

[0081] In various embodiments, GPC 608 includes a set of
M of SMs 710, where M=1. Also, each SM 710 includes a
set of functional execution units (not shown), such as
execution units and load-store units. Processing operations
specific to any of the functional execution units may be
pipelined, which enables a new instruction to be issued for
execution before a previous instruction has completed
execution. Any combination of functional execution units
within a given SM 710 may be provided. In various embodi-
ments, the functional execution units may be configured to
support a variety of different operations including integer
and floating point arithmetic (e.g., addition and multiplica-
tion), comparison operations, Boolean operations (AND,
OR, 50R), bit-shifting, and computation of various alge-
braic functions (e.g., planar interpolation and trigonometric,
exponential, and logarithmic functions, etc.). Advanta-
geously, the same functional execution unit can be config-
ured to perform different operations.

[0082] In various embodiments, each SM 710 includes
multiple processing cores. In one embodiment, the SM 710
includes a large number (e.g., 128, etc.) of distinct process-
ing cores. Each core may include a fully-pipelined, single-
precision, double-precision, and/or mixed precision process-
ing unit that includes a floating point arithmetic logic unit
and an integer arithmetic logic unit. In one embodiment, the

Aug. 8,2024

floating point arithmetic logic units implement the IEEE
754-2008 standard for floating point arithmetic. In one
embodiment, the cores include 64 single-precision (32-bit)
floating point cores, 64 integer cores, 32 double-precision
(64-bit) floating point cores, and 8 tensor cores.

[0083] In one embodiment, tensor cores configured to
perform matrix operations, and, in one embodiment, one or
more tensor cores are included in the cores. In particular, the
tensor cores are configured to perform deep learning matrix
arithmetic, such as convolution operations for neural net-
work training and inferencing. In one embodiment, each
tensor core operates on a 4x4 matrix and performs a matrix
multiply and accumulate operation D=AxB+C, where A, B,
C, and D are 4x4 matrices.

[0084] In one embodiment, the matrix multiply inputs A
and B are 16-bit floating point matrices, while the accumu-
lation matrices C and D may be 16-bit floating point or
32-bit floating point matrices. Tensor Cores operate on
16-bit floating point input data with 32-bit floating point
accumulation. The 16-bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32-bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply. In
practice, Tensor Cores are used to perform much larger
two-dimensional or higher dimensional matrix operations,
built up from these smaller elements. An API, such as
CUDA 9 C++ API, exposes specialized matrix load, matrix
multiply and accumulate, and matrix store operations to
efficiently use tensor cores from a CUDA-C++ program. At
the CUDA level, the warp-level interface assumes 16x16
size matrices spanning all 32 threads of the warp.

[0085] Neural networks rely heavily on matrix math
operations, and complex multi-layered networks require
tremendous amounts of floating-point performance and
bandwidth for both efficiency and speed. In various embodi-
ments, with thousands of processing cores, optimized for
matrix math operations, and delivering tens to hundreds of
TFLOPS of performance, the SMs 710 provide a computing
platform capable of delivering performance required for
deep neural network-based artificial intelligence and
machine learning applications.

[0086] In various embodiments, each SM 710 may also
comprise multiple special function units (SFUs) that per-
form special functions (e.g., attribute evaluation, reciprocal
square root, and the like). In one embodiment, the SFUs may
include a tree traversal unit configured to traverse a hierar-
chical tree data structure. In one embodiment, the SFUs may
include texture unit configured to perform texture map
filtering operations. In one embodiment, the texture units are
configured to load texture maps (e.g., a 2D array of texels)
from memory and sample the texture maps to produce
sampled texture values for use in shader programs executed
by the SM. In various embodiments, each SM 710 also
comprises multiple load/store units (LLSUs) that implement
load and store operations between the shared memory/L.1
cache and register files internal to the SM 710.

[0087] In one embodiment, each SM 710 is configured to
process one or more thread groups. As used herein, a “thread
group” or “warp” refers to a group of threads concurrently
executing the same program on different input data, with one
thread of the group being assigned to a different execution
unit within an SM 710. A thread group may include fewer
threads than the number of execution units within the SM
710, in which case some of the execution may be idle during

US 2024/0265561 Al

cycles when that thread group is being processed. A thread
group may also include more threads than the number of
execution units within the SM 710, in which case processing
may occur over consecutive clock cycles. Since each SM
710 can support up to G thread groups concurrently, it
follows that up to G*M thread groups can be executing in
GPC 608 at any given time.

[0088] Additionally, in one embodiment, a plurality of
related thread groups may be active (in different phases of
execution) at the same time within an SM 710. This collec-
tion of thread groups is referred to herein as a “cooperative
thread array” (“CTA”) or “thread array.” The size of a
particular CTA is equal to m*k, where k is the number of
concurrently executing threads in a thread group, which is
typically an integer multiple of the number of execution
units within the SM 710, and m is the number of thread
groups simultaneously active within the SM 710. In some
embodiments, a single SM 710 may simultaneously support
multiple CTAs, where such CTAs are at the granularity at
which work is distributed to the SMs 710.

[0089] In one embodiment, each SM 710 contains a level
one (L.1) cache or uses space in a corresponding [.1 cache
outside of the SM 710 to support, among other things, load
and store operations performed by the execution units. Each
SM 710 also has access to level two (L.2) caches (not shown)
that are shared among all GPCs 608 in PPU 602. The 1.2
caches may be used to transfer data between threads. Finally,
SMs 710 also have access to off-chip “global” memory,
which may include PP memory 604 and/or system memory
504. It is to be understood that any memory external to PPU
602 may be used as global memory. Additionally, as shown
in FIG. 7, a level one-point-five (L.1.5) cache 735 may be
included within GPC 608 and configured to receive and hold
data requested from memory via memory interface 614 by
SM 710. Such data may include, without limitation, instruc-
tions, uniform data, and constant data. In embodiments
having multiple SMs 710 within GPC 608, the SMs 710 may
beneficially share common instructions and data cached in
L1.5 cache 735.

[0090] In one embodiment, each GPC 608 may have an
associated memory management unit (MMU) 720 that is
configured to map virtual addresses into physical addresses.
In various embodiments, MMU 720 may reside either within
GPC 608 or within the memory interface 614. The MMU
720 includes a set of page table entries (PTEs) used to map
a virtual address to a physical address of a tile or memory
page and optionally a cache line index. The MMU 720 may
include address translation lookaside buffers (TLB) or
caches that may reside within SMs 710, within one or more
L1 caches, or within GPC 608.

[0091] Inone embodiment, in graphics and compute appli-
cations, GPC 608 may be configured such that each SM 710
is coupled to a texture unit 715 for performing texture
mapping operations, such as determining texture sample
positions, reading texture data, and filtering texture data.

[0092] In one embodiment, each SM 710 transmits a
processed task to work distribution crossbar 730 in order to
provide the processed task to another GPC 608 for further
processing or to store the processed task in an 1.2 cache (not
shown), parallel processing memory 604, or system memory
504 via crossbar unit 610. In addition, a pre-raster operations
(preROP) unit 725 is configured to receive data from SM
710, direct data to one or more raster operations (ROP) units

Aug. 8,2024

within partition units 615, perform optimizations for color
blending, organize pixel color data, and perform address
translations.

[0093] It will be appreciated that the architecture
described herein is illustrative and that variations and modi-
fications are possible. Among other things, any number of
processing units, such as SMs 710, texture units 715, or
preROP units 725, may be included within GPC 608.
Further, as described above in conjunction with FIG. 6, PPU
602 may include any number of GPCs 608 that are config-
ured to be functionally similar to one another so that
execution behavior does not depend on which GPC 608
receives a particular processing task. Further, each GPC 608
operates independently of the other GPCs 608 in PPU 602
to execute tasks for one or more application programs.
[0094] FIG. 8 is a block diagram of an exemplary system
on a chip (SoC) integrated circuit 800, according to various
embodiments. SoC integrated circuit 800 includes one or
more application processors 802 (e.g., CPUs), one or more
graphics processors 804 (e.g., GPUs), one or more image
processors 806, and/or one or more video processors 808.
SoC integrated circuit 800 also includes peripheral or bus
components such as a serial interface controller 814 that
implements Universal Serial Bus (USB), Universal Asyn-
chronous Receiver/Transmitter (UART), Serial Peripheral
Interface (SPI), Secure Digital Input Output (SDIO), inter-
IC sound (I*S), and/or Inter-Integrated Circuit (I*C). SoC
integrated circuit 800 additionally includes a display device
818 coupled to a display interface 820 such as high-defini-
tion multimedia interface (HDMI) and/or a mobile industry
processor interface (MIPI). SoC integrated circuit 800 fur-
ther includes a Flash memory subsystem 824 that provides
storage on the integrated circuit, as well as a memory
controller 822 that provides a memory interface for access to
memory devices.

[0095] In one or more embodiments, SoC integrated cir-
cuit 800 is implemented using one or more types of inte-
grated circuit components. For example, SoC integrated
circuit 800 may include one or more processor cores for
application processors 802 and/or graphics processors 804.
Additional functionality associated with serial interface con-
troller 814, display device 818, display interface 820, image
processors 806, video processors 808, Al acceleration,
machine vision, and/or other specialized tasks may be pro-
vided by application-specific integrated circuits (ASICs),
application-specific standard parts (ASSPs), field-program-
mable gate arrays (FPGAs), and/or other types of custom-
ized components.

[0096] Insum, the disclosed techniques use a VAE to learn
priors associated with meshes and/or portions of meshes. A
decoder in the VAE is used to generate additional meshes of
objects by searching the latent space of the VAE for latent
vector values that reduce errors between the meshes and
image observations of the objects. Each mesh may also be
subdivided into meshlets, and shapes and poses of the
meshlets may be individually refined to meet geometric
constraints associated with the image observations before
the meshlets are combined back into the mesh.

[0097] One technological advantage of the disclosed tech-
niques is that mesh priors learned by the VAE are used to
perform inverse rendering of objects in a way that enforces
geometric constraints associated with image observations of
the objects. Another technological advantage of the dis-
closed techniques includes reduced complexity associated

US 2024/0265561 Al

with estimating the global pose of the objects by performing
coarse-to-fine rendering of the meshes. A third technological
advantage of the disclosed techniques is increased general-
izability and reduced complexity in reconstructing the
meshes through the division of the meshes into meshlets.
Consequently, the disclosed techniques provide technologi-
cal improvements in machine learning models, computer
systems, applications, and/or techniques for performing
mesh reconstruction.

[0098] 1. In some embodiments, a processor comprises
logic to predict one or more three-dimensional (3D) mesh
representations based on a plurality of digital images,
wherein the one or more 3D mesh representations are refined
by minimizing a difference between the one or more 3D
mesh representations and the plurality of digital images.
[0099] 2. The processor of clause 1, wherein predicting the
one or more 3D mesh representations based on the plurality
of digital images comprises executing a machine learning
model to produce a mesh of an object from a first value in
a latent space; and refining the mesh of the object by
selecting a second value in the latent space based on one or
more geometric constraints associated with the plurality of
digital images of the object.

[0100] 3. The processor of clauses 1-2, wherein refining
the mesh of the object comprises selecting the first value;
calculating an error between the mesh and the plurality of
digital images of the object; and performing gradient descent
on the first value with parameters of the machine learning
model to reduce the error.

[0101] 4. The processor of clauses 1-3, wherein selecting
the first value comprises at least one of randomizing the first
value, selecting the first value based on the set of image
observations, and initializing the first value based on sparse
features extracted from the set of image observations.
[0102] 5. The processor of clauses 1-4, wherein refining
the mesh of the object comprises dividing the mesh into a set
of' meshlets; for each meshlet in the set of meshlets, selecting
the second value in the latent space to learn a prior for a
portion of the mesh represented by the meshlet; and recon-
structing the mesh from the set of meshlets.

[0103] 6. The processor of clauses 1-5, wherein refining
the mesh of the object further comprises, for each meshlet in
the set of meshlets, learning a custom pose of the meshlet
that aligns a global pose of the images with a canonical pose
of the meshlet.

[0104] 7. The processor of clauses 1-6, wherein refining
the mesh of the object further comprises iteratively increas-
ing a resolution of the set of meshlets to meet the one or
more geometric constraints.

[0105] 8. The processor of clauses 1-7, wherein the logic
further generates the machine learning model as a varia-
tional autoencoder to reconstruct a set of training meshes
inputted into the variational autoencoder.

[0106] 9. The processor of clauses 1-8, wherein generating
the machine learning model comprises for each training
mesh in the set of training meshes, aggregating multiple
orderings of points in the training mesh into a standardized
value in the latent space; and training a decoder in the
variational autoencoder to reconstruct the training mesh
from the standardized value.

[0107] 10. The processor of clauses 1-9, wherein aggre-
gating the multiple orderings of points in the training mesh
into the standardized value comprises applying an encoder
to the multiple orderings of points to generate intermediate

Aug. 8,2024

representations of the multiple orderings of points; and
averaging the intermediate representations into the standard-
ized value.

[0108] 11. In some embodiments, a method comprises
predicting one or more three-dimensional (3D) mesh repre-
sentations based on a plurality of digital images, wherein the
one or more 3D mesh representations are refined by mini-
mizing at least one difference between the one or more 3D
mesh representations and the plurality of digital images.

[0109] 12. The method of clause 11, wherein predicting
the one or more 3D mesh representations based on the
plurality of digital images comprises executing a machine
learning model to produce a mesh of an object from a first
value in a latent space; and refining the mesh of the object
by selecting a second value in the latent space based on one
or more geometric constraints associated with the plurality
of digital images of the object.

[0110] 13. The method of clauses 11-12, further compris-
ing generating the machine learning model as a variational
autoencoder to reconstruct a set of training meshes inputted
into the variational autoencoder.

[0111] 14. The method of clauses 11-13, wherein gener-
ating the machine learning model comprises for each train-
ing mesh in the set of training meshes, aggregating multiple
orderings of points in the training mesh into a standardized
value in the latent space; and training a decoder in the
variational autoencoder to reconstruct the training mesh
from the standardized value.

[0112] 15. The method of clauses 11-14, wherein aggre-
gating the multiple orderings of points in the training mesh
into the standardized value comprises applying an encoder
to the multiple orderings of points to generate intermediate
representations of the multiple orderings of points; and
averaging the intermediate representations into the standard-
ized value.

[0113] 16. In some embodiments, a non-transitory com-
puter readable medium store instructions that, when
executed by a processor, cause the processor to at least
execute a machine learning model to produce a mesh of an
object from a first value in a latent space; refine the mesh of
the object by selecting a second value in the latent space
based on one or more geometric constraints associated with
a set of image observations of the object; and store the mesh
in association with the object.

[0114] 17. The non-transitory computer readable medium
of clause 16, wherein refining the mesh of the object
comprises selecting the first value; and performing gradient
descent on the first value with parameters of the machine
learning model to reduce an error between the mesh and the
set of image observations.

[0115] 18. The non-transitory computer readable medium
of clauses 16-17, wherein the error comprises at least one of
a photometric error and a silhouette error.

[0116] 19. The non-transitory computer readable medium
of clauses 16-18, wherein refining the mesh of the object
comprises dividing the mesh into a set of meshlets; for each
meshlet in the set of meshlets, selecting the second value in
the latent space to learn a prior for a portion of the mesh
represented by the meshlet; and reconstructing the mesh
from the set of meshlets.

[0117] 20. The non-transitory computer readable medium
of clauses 16-19, wherein refining the mesh of the object

US 2024/0265561 Al

further comprises iteratively increasing a resolution of the
set of meshlets to meet the one or more geometric con-
straints.

[0118] Any and all combinations of any of the claim
elements recited in any of the claims and/or any elements
described in this application, in any fashion, fall within the
contemplated scope of the present embodiments and pro-
tection.

[0119] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.
[0120] Aspects of the present embodiments may be
embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module” or “system.” In addition, any
hardware and/or software technique, process, function, com-
ponent, engine, module, or system described in the present
disclosure may be implemented as a circuit or set of circuits.
Furthermore, aspects of the present disclosure may take the
form of a computer program product embodied in one or
more computer readable medium(s) having computer read-
able program code embodied thereon.

[0121] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0122] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine. The instructions, when executed via
the processor of the computer or other programmable data
processing apparatus, enable the implementation of the

Aug. 8,2024

functions/acts specified in the flowchart and/or block dia-
gram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable gate arrays.

[0123] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0124] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A processor, comprising:

one or more circuits to use one or more neural networks

to modify one or more three-dimensional (3D) mesh
representations of one or more images of one or more
objects based, at least in part, on one or more differ-
ences between the one or more 3D mesh representa-
tions and the one or more images of the one or more
objects.

2. The processor of claim 1, wherein the one or more
circuits are to use the one or more neural networks to
estimate the one or more 3D mesh representations of an
object using one or more 2-dimensional (2D) images com-
prising two or more views of the object.

3. The processor of claim 1, wherein the one or more
circuits are to use the one or more neural networks to
generate the one or more 3D mesh representations of an
object using one or more latent vector values in latent space
and the one or more images of the one or more objects.

4. The processor of claim 1, wherein the one or more
circuits are to:

identify one or more geometric constraints corresponding

to an object of the one or more objects; and

use the one or more neural networks to modify the one or

more 3D representations by updating latent vector
values based on the one or more 3D mesh representa-
tions and the one or more geometric constraints.

5. The processor of claim 1, wherein the one or more
circuits are to use the one or more neural networks to modify
one or more portions of the one or more 3D mesh repre-
sentations corresponding to the one or more portions of the
one or more objects.

US 2024/0265561 Al

6. The processor of claim 1, wherein the one or more 3D
mesh representations are modified by using an error between
the one or more 3D mesh representations and one or more
corresponding reconstructed meshes to update one or more
parameters of the one or more neural networks.

7. The processor of claim 1, wherein the one or more 3D
mesh representations are modified by using one or more
reconstructed meshes at varying resolutions until a desired
resolution of the one or more 3D mesh representations is
reached.

8. The processor of claim 1, wherein the one or more 3D
mesh representations are modified by generating set of
reconstructed meshes with increasing number of vertices
and comparing the set of reconstructed meshes to the one or
more 3D mesh representations to reduce an error between
the set of reconstructed meshes and the one or more 3D
mesh representations.

9. A method, comprising:

using one or more NNs to modify one or more three-

dimensional (3D) mesh representations of one or more
images of one or more objects based, at least in part, on
one or more differences between the one or more 3D
mesh representations and the one or more images of the
one or more objects.

10. The method of claim 9, further comprising extracting
a value representing one or more features of the one or more
objects and using the value to cause the one or more neural
networks to generate the one or more 3D mesh representa-
tions.

11. The method of claim 9, wherein the one or more
differences comprises an error between warped images of
the one or more 3D mesh representations and the one or
more images.

12. The method of claim 9, further comprising generating
a set of meshlets from the one or more 3D mesh represen-
tations, wherein each meshlet of the set of meshlets repre-
senting a different portion of the one or more 3D mesh
representations.

13. The method of claim 9, wherein using the one or more
neural networks to modify the one or more 3D mesh
representations comprises reconstructing the one or more 3D
mesh representations from a set of meshlets representing
different portions of the one or more objects.

14. The method of claim 9, further comprising using the
one or more neural networks to estimate the one or more 3D
mesh representations of an object using one or more two-
dimensional (2D) images comprising two or more illumi-
nations of the object.

Aug. 8,2024

15. A non-transitory computer readable medium storing
instructions that, when executed by a processor, cause the
processor to at least:

use one or more neural networks to modify one or more

three-dimensional (3D) mesh representations of one or
more images of one or more objects based, at least in
part, on one or more differences between the one or
more 3D mesh representations and the one or more
images of the one or more objects.

16. The non-transitory computer readable medium of
claim 15, wherein the instructions, when executed by the
processor, further cause the processor to at least:

use a decoder to generate the one or more 3D mesh

representations of an object, wherein the decoder
receives one or more latent vector values as input and
generates a decoded representation of the one or more
latent vector values.

17. The non-transitory computer readable medium of
claim 15, wherein the one or more 3D mesh representations
are modified by increasing a resolution of the one or more
3D mesh representations using geometric constraints
imposed on the one or more objects, and wherein the
geometric constraints correspond to one or more conditions
of a set of conditions under which the one or more images
were captured.

18. The non-transitory computer readable medium of
claim 15, wherein the one or more 3D mesh representations
are modified by increasing a resolution of the one or more
3D mesh representations by iteratively increasing a number
of meshlets of a set of meshlets used to reconstruct the one
or more 3D mesh representations, wherein each meshlet of
the set of meshlets representing a portion of the one or more
3D mesh representations.

19. The non-transitory computer readable medium of
claim 15, wherein the neural network is trained to modify
the one or more 3D mesh representations by generating one
or more 3D mesh representations and one or more recon-
structed meshes generated based on the one or more 3D
mesh representations, and minimizing an error between each
of the one or more 3D mesh representations and a corre-
sponding reconstructed mesh of the one or more recon-
structed meshes.

20. The non-transitory computer readable medium of
claim 15, wherein the one or more differences comprises
reducing an error between the one or more 3D mesh repre-
sentations and the one or more images of the one or more
objects.

