a9 United States
a2y Patent Application Publication o) Pub. No.: US 2024/0291753 A1l

US 20240291753A1

Miriyala et al. (43) Pub. Date: Aug. 29, 2024
(54) POLICY ENFORCEMENT FOR BARE HO4L 45/586 (2006.01)
METAL SERVERS BY TOP OF RACK HO4L 45/74 (2006.01)
SWITCHES (52) US. CL
CPC ... HO4L 45/34 (2013.01); HO4L 12/4641
(71) Applicant: Juniper Networks, Inc., Sunnyvale, (2013.01); HO4L 45/566 (2013.01); HO4L
CA (US) 45/586 (2013.01); HO4L 45/74 (2013.01)
(72) Inventors: Prasad Miriyala, San Jose, CA (US);
Wen Lin, Andover, MA (US); Suresh (57) ABSTRACT
Palguna Krishnan, Fremont, CA (US);
SelvaKumar Sivaraj, Sunnyvale, CA
(US); Kumuthini Ratnasingham, A plurality of sw1t.ches may be arrapged a.ccor.dlng to a spine
Saratoga, CA (US) and leaf topology in which gach spine switch is connected to
all leaf switches. A leaf switch includes a memory config-
(21) Appl. No.: 18/657,426 ured to store a plurality of policies, each of the plurality of
. policies being associated with a respective source identifier
(22) Filed: May 7, 2024 value and a respective destination address; a network inter-
Related U.S. Application Data face communica.tively coupleq to .one.of the spine switches;
and a processor implemented in circuitry and configured to:
(63) Continuation of application No. 17/305,117, filed on receive a packet from the spine switch via the network
Jun. 30, 2021, now Pat. No. 12,021,740. interface, the packet being encapsulated with a Virtual
(60) Provisional application No. 63/194,724, filed on May Extensible Local Area
28, 2021. Network (VXLAN) header; extract a source identifier value
Publication Classification from the VXLAN header; determine a destination address
for the packet; determine a policy of the plurality of policies
(51) Int. CL to apply to the packet according to the source identifier value
HO4L 45/00 (2006.01) and the destination address;
HO4L 12/46 (2006.01) and apply the policy to the packet.

CUSTOMERS

i

SERVICE PROVIDER NETWORK

DATA CENTER
10X

DATA CENTER
10A

IP FABRIC
20
CHASSIS CHASSIS CHASSIS
SWITCH | Joe | SWITCH | S0t swivcH
ADMINISTRATOR 184 12 18y
u
-
VIRT‘UAL TOR TOR o
NETWORK SWITCH | gee | SWITCH | oqe|SWITCH
CONTROLLER T L T »m 12
,2_2_ }_\“".. ___‘___,./.J -------- *'\ ------ ,«/ \\ /)
~~~~~~~~~~~~~ “~~ SUBNET " SUBNET TsuBKEY
1 N b4
“'- T —
L U D
SERVER SERVER BMS
12A 290 12X 28




Patent Application Publication

11
C CUSTOMERS )/

Aug. 29,2024 Sheet 1 of 7

US 2024/0291753 Al

8
DATA CENTER 7/
10X

DATA CENTER

10B
SERVICE PROVIDER NETWORK
7
DATA CENTER
10A
IP FABRIC
20

=

CHASSIS | [ CHASSIS RGeS

SWITCH | oog7] SWITCH [0337 switek

ADMINISTRATOR 184 184 18Y
24
NETWORK SWITCH | oee sv;:g;:u eee | SWITCH
CONTROLLER L 164 | L JON et 162,
_2_2 \_\,_,.-_ —~---""“/" """""""" '\.-\ ...... // \\ //
N ~~ " SUBNET "1 "suBNET [SUBNET
S SR 1 N Z
N T -
| T
SERVER SERVER BMS
12A soe 12X 28

FIG. 1




Patent Application Publication  Aug. 29, 2024 Sheet 2 of 7 US 2024/0291753 A1

VIRTUAL NETWORK | _
CONTROLLER |~

10A
POLICY '/

CONTROLLER
z IP FABRIC
20
o
CHASSIS SWITCH CHASSIS SWITCH coe CHASSIS SWITCH
18A (1 X 18M 18Y
14 <
TOR SWITCH
TOR SWITCH TOR SWITCH 16z
16A ( X 1 ) 16N 'YY
L( ! { ! ACLS
“Spo SUBNET1 -7 O~ SUBNET2 __-7 50
k- - f ~~~~~~~ -
e 12X [ ,
4L—£&-—C— N ~ . SUBNET3 _ //
ERVER X S i
VN AGENT
35X
o000 a0 Yy Y

" BMS

VIRTUAL 28

ROUTER

30X

FIG. 2




US 2024/0291753 Al

Aug. 29,2024 Sheet 3 of 7

Patent Application Publication

ey

vie
NOILLONAO¥UC

D

h g3Im

@zo_t\o:ﬂ_%

acic
ONIDVIS

J0E ———

{SINOILYDIdaY

g01¢
ININJOTIAIC
a0l
AFLINDD ViVd
®
®
L
X061
H3IN3O VivQ

mwcm aroe
_n_.e. g3m

~ =i
| (SINOILY D IddY

T
., Yric
ﬂ, NOILLONGO¥d
i ;X; it . ;
~ !
> 3
\
v80¢e Y
viva \
< / VZiE
\ ONIOVIS
> N
\ ~
1dv a3M
\_ (SINOILY Ot IddY
VOLE
JINIFNJOTIAIA
Vol
1/ \ AILNIO Viva
00¢ (¥4
sannod Y3ATIONINOD
w801 AI10d




Patent Application Publication  Aug. 29, 2024 Sheet 4 of 7 US 2024/0291753 A1

NETWORK SWITCH DEVICE
100
FORWARDING ENGINE
104
TCAM MEMORY
110
. > VXLAN
FIB PROCESSING
112 UNIT
S—f 120
TN
S
POLICIES
114
SOURCE
TAGS
116
NIC NIC NiC
102A 102B o0 102N

FIG. 4



Patent Application Publication  Aug. 29, 2024 Sheet 5 of 7 US 2024/0291753 A1

v/~130
FLAGS RESERVED FIELD
132 134
VXLAN SEGMENT IDENTIFIER RESERVED FIELD
136 138
FIG. 5A
140
o
FLAGS SOURCE TAG RESERVED FIELD
142 144 146
VXLAN SEGMENT IDENTIFIER RESERVED FIELD
148 150
FIG. 5B
v/—450
FLAGS RESERVED FIELD
152 154
VXLAN SEGMENT IDENTIFIER SOURCE TAG
156 158

FIG. 5C



Patent Application Publication

Aug. 29,2024 Sheet 6 of 7

US 2024/0291753 Al

RECEIVE PACKET FROM
EXTERNAL SERVER

180
/

'

DETERMINE SOURCE PORT
FOR PACKET

182
/

!

DETERMINE SOURCE
IDENTIFIER FROM
SOURCE PORT

—184

v

ADD SOURCE IDENTIFIER TO
VXLAN HEADER OF PACKET

186
/

'

FORWARD PACKET
TO SPINE SWITCH

FIG. 6



Patent Application Publication  Aug. 29, 2024 Sheet 7 of 7 US 2024/0291753 A1

190
RECEIVE PACKET /
FROM SPINE SWITCH

y

DETERMINE SOURCE /1 92
IDENTIFIER FROM VXLAN
HEADER OF PACKET

v

DETERMINE DESTINATION /194
IP ADDRESS OF PACKET

v

DETERMINE POLICY FROM |/~ 196
SOURCE IDENTIFIER AND
DESTINATION IP ADDRESS

:

APPLY POLICY TO PACKET

FIG. 7



US 2024/0291753 Al

POLICY ENFORCEMENT FOR BARE
METAL SERVERS BY TOP OF RACK
SWITCHES

[0001] This application is a Continuation of U.S. applica-
tion Ser. No. 17/305,117, filed Jun. 30, 2021, which claims
the benefit of U.S. Provisional Patent Application No.
63/194,724, filed May 28, 2021, the entire contents of which
is incorporated herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates to computer networks and,
more specifically, to policy management for computer net-
works.

BACKGROUND

[0003] Virtualized data centers are becoming a core foun-
dation of the modern information technology (IT) infrastruc-
ture. In particular, modern data centers have extensively
utilized virtualized environments in which virtual hosts,
such virtual machines or containers, are deployed and
executed on an underlying compute platform of physical
computing devices.

[0004] Virtualization with large scale data center can
provide several advantages. One advantage is that virtual-
ization can provide significant improvements to efficiency.
As the underlying physical computing devices (i.e., servers)
have become increasingly powerful with the advent of
multicore microprocessor architectures with a large number
of cores per physical CPU, virtualization becomes easier and
more efficient. A second advantage is that virtualization
provides significant control over the infrastructure. As
physical computing resources become fungible resources,
such as in a cloud-based computing environment, provision-
ing and management of the compute infrastructure becomes
easier. Thus, enterprise IT staff often prefer virtualized
compute clusters in data centers for their management
advantages in addition to the efficiency and increased return
on investment (ROI) that virtualization provides.

SUMMARY

[0005] In general, this disclosure describes techniques for
determining a policy to apply to packets received by an
egress leaf switch of a set of switches arranged according to,
e.g., a spine and leaf topology. The switches of a spine and
leaf topology may also be referred to as chassis switches
(spine switches) and top-of-rack (TOR) switches (leaf
switches). Leaf switches of the topology may store data for
determining policies to apply to packets to be output from
the spine and leaf topology in ternary content-addressable
memory (TCAM). In general, TCAM is expensive and
draws a high amount of power for a switch. The techniques
of this disclosure may be used to reduce an amount of
TCAM required to store policies in a leaf switch.

[0006] In particular, rather than storing a mapping from a
hardware source port by which an ingress switch device
receives a packet and a destination address for the packet to
policies, the techniques of this disclosure including storing
mappings from a source identifier (also referred to herein as
a “source tag”) and destination address to policies. The
source identifier may represent a category for an application,
where there may be a relatively small number of categories.
For example, the categories may include Web, Application,

Aug. 29, 2024

and Database. A relatively large number of source ports may
be mapped to each category, where there may be a direct
correspondence between applications and source ports. As
development of an application progresses, the source port
associated with the application may be updated. For
example, the application may be executed on a different
server, coupled to an ingress switch device via a different
hardware port. Different categories of applications may be
associated with different levels of security to be applied to
packets from the applications. By using a combination of
source identifier and destination address, the number of
TCAM entries in a leaf switch for policy enforcement may
be greatly reduced, because the TCAM does not need to
store separate TCAM entries that map every source port,
source address/subnet, source VLAN, or any combination
thereof to the policy.

[0007] An ingress leaf switch may determine a hardware
source port by which a packet is received, then determine a
source identifier to which the source port is mapped. The
ingress leaf switch may then add the source identifier to a
Virtual Extensible Local Area Network (VXLAN) header of
the packet and forward the packet to a spine switch of the
spine and leaf topology. The spine switch may further
forward the packet to an egress leaf switch of the spine and
leaf'topology. The egress leaf switch may be configured with
data mapping source identifiers and destination addresses to
policies in TCAM thereof. Thus, when the egress leaf switch
receives the packet from the spine switch, the egress leaf
switch may determine a policy to apply to the packet from
the source identifier of the VXL AN header and a destination
address for the packet. The egress leaf switch may then
apply the policy to the packet, e.g., to forward the packet or
to drop the packet.

[0008] In one example, a method includes receiving, by a
leaf switch of a plurality of switches arranged according to
a spine and leaf topology, a packet from a spine switch of the
plurality of switches, the packet being encapsulated with a
Virtual Extensible Local Area Network (VXLAN) header;
extracting, by the leaf switch, a source identifier value from
the VXLAN header; determining, by the leaf switch, a
destination address for the packet; determining, by the leaf
switch, a policy to apply to the packet according to the
source identifier value and the destination address; and
applying, by the leaf switch, the policy to the packet.
[0009] In another example, a leaf switch device of a
plurality of switches arranged according to a spine and leaf
topology includes a memory configured to store a plurality
of policies, each of the plurality of policies being associated
with a respective source identifier value and a respective
destination address; a network interface communicatively
coupled to a spine switch of the plurality of switches; and a
processor implemented in circuitry and configured to:
receive a packet from the spine switch via the network
interface, the packet being encapsulated with a Virtual
Extensible Local Area Network (VXL AN) header; extract a
source identifier value from the VXLAN header; determine
a destination address for the packet; determine a policy of
the plurality of policies to apply to the packet according to
the source identifier value and the destination address; and
apply the policy to the packet.

[0010] In another example, a computer-readable storage
medium includes instructions that cause a processor of a leaf
switch device of a plurality of switches arranged according
to a spine and leaf topology to: receive a packet from a spine



US 2024/0291753 Al

switch of the plurality of switches, the packet being encap-
sulated with a Virtual Extensible Local Area Network
(VXLAN) header; extract a source identifier value from the
VXLAN header; determine a destination address for the
packet; determine a policy of the plurality of policies to
apply to the packet according to the source identifier value
and the destination address; and apply the policy to the
packet.

[0011] In another example, a method includes receiving,
by a leaf switch of a plurality of switches arranged according
to a spine and leaf topology, data mapping a plurality of
hardware source ports to a source identifier value from a
controller device for the plurality of switches; receiving, by
the leaf switch, a packet from a network device separate
from the plurality of switches; determining, by the leaf
switch, a hardware source port of the leaf switch by which
the packet was received; using, by the leaf switch, the data
mapping the plurality of source ports to the source identifier
value to determine that the source port is mapped to the
source identifier value; adding, by the leaf switch, the source
identifier value to a VXLAN header for the packet; and
forwarding, by the leaf switch, the packet including the
source identifier value to a spine switch of the plurality of
switches.

[0012] In another example, a leaf switch device of a
plurality of switch devices arranged according to a spine and
leaf topology includes a memory configured to store data
mapping a plurality of hardware source ports to a source
identifier value received from a controller device for the
plurality of switches; receive a packet from a network device
separate from the plurality of switches; determine a hard-
ware source port of the leaf switch device by which the
packet was received; use the data mapping the plurality of
source ports to the source identifier value to determine that
the source port is mapped to the source identifier value; add
the source identifier value to a VXLAN header for the
packet; and forward the packet including the source identi-
fier value to a spine switch of the plurality of switches.
[0013] In another example, a computer-readable storage
medium includes instructions that, when executed, cause a
processor of a leaf switch device of a plurality of switch
devices arranged according to a spine and leaf topology to:
receive data mapping a plurality of hardware source ports to
a source identifier value from a controller device for the
plurality of switches; receive a packet from a network device
separate from the plurality of switches; determine a hard-
ware source port of the leaf switch device by which the
packet was received; use the data mapping the plurality of
source ports to the source identifier value to determine that
the source port is mapped to the source identifier value; add
the source identifier value to a VXLAN header for the
packet; and forward the packet including the source identi-
fier value to a spine switch of the plurality of switches.
[0014] The details of one or more examples are set forth
in the accompanying drawings and the description below.
Other features, objects, and advantages will be apparent
from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 is a block diagram illustrating an example
network having a data center in which examples of the
techniques described herein may be implemented.

[0016] FIG. 2 is a block diagram illustrating an example
implementation of the data center of FIG. 1 in further detail.

Aug. 29, 2024

[0017] FIG. 3 is a block diagram illustrating an example of
a plurality of data centers in which examples of the tech-
niques described herein may be implemented.

[0018] FIG. 4 is a block diagram illustrating an example
network switch device according to the techniques of this
disclosure.

[0019] FIG. 5A is a conceptual diagram illustrating a
Virtual Extensible Local Area Network (VXL AN) header,
while FIGS. 5B and 5C are conceptual diagrams illustrating
example VXLAN headers including source tags (source
identifiers) according to various examples of the techniques
of this disclosure.

[0020] FIG. 6 is a flowchart illustrating an example
method of adding a source tag (identifier) to a received
packet according to the techniques of this disclosure.
[0021] FIG. 7 is a flowchart illustrating an example
method of applying a policy to a packet according to a
source identifier and a destination address of a packet in
accordance with the techniques of this disclosure.

DETAILED DESCRIPTION

[0022] FIG. 1 is a block diagram illustrating an example
network system in which examples of the techniques
described herein may be implemented. Network system 2 in
the example of FIG. 1 includes data centers 10A-10X
(collectively, “data centers 10”) interconnected with one
another and with customer networks associated with cus-
tomers 11 via a service provider network 7. In general, each
data center 10 provides an operating environment for appli-
cations and services for customers 11 coupled to the data
center by service provider network 7. Data centers 10 may,
for example, host infrastructure equipment, such as network-
ing and storage systems, redundant power supplies, and
environmental controls. Service provider network 7 may be
coupled to one or more networks administered by other
providers, and may thus form part of a large-scale public
network infrastructure, e.g., the Internet.

[0023] In some examples, each data center 10 may repre-
sent one of many geographically distributed network data
centers. As illustrated in the example of FIG. 1, each of data
centers 10 may represent a facility that provides network
services for customers 11. Customers 11 may be collective
categories such as enterprises and governments or individu-
als. For example, a network data center may host web
services for several enterprises and end users. Other exem-
plary services may include data storage, virtual private
networks, traffic engineering, file service, data mining, sci-
entific-or super-computing, and so on. In some embodi-
ments, each of data centers 10 may be individual network
servers, network peers, or otherwise.

[0024] In this example, each of data centers 10 includes a
set of storage systems and application servers 12A-12X
(herein, “servers 12”") interconnected via high-speed switch
fabric 14 provided by one or more tiers of physical network
switches and routers. Switch fabric 14 is provided by a set
of interconnected top-of-rack (TOR) switches 16A-16Z
(collectively, “TOR switches 16) coupled to a distribution
layer of chassis switches 18A-18M (collectively, “chassis
switches 18”). Switch fabric 14 may be configured as, and
alternatively referred to as, a spine and leaf topology, where
TOR switches 16 may represent leaf switches and chassis
switches 18 may represent spine switches. Although not
shown, each of data centers 10 may also include, for
example, one or more non-edge switches, routers, hubs,



US 2024/0291753 Al

gateways, security devices such as firewalls, intrusion detec-
tion, and/or intrusion prevention devices, servers, computer
terminals, laptops, printers, databases, wireless mobile
devices such as cellular phones or personal digital assistants,
wireless access points, bridges, cable modems, application
accelerators, or other network devices.

[0025] In this example, TOR switches 16 and chassis
switches 18 provide servers 12 with redundant (multi-
homed) connectivity to IP fabric 20 and service provider
network 7. Chassis switches 18 aggregate traffic flows and
provides high-speed connectivity between TOR switches 16.
TOR switches 16 may be network devices that provide layer
two (e.g., MAC) and/or layer 3 (e.g., IP) routing and/or
switching functionality. TOR switches 16 and chassis
switches 18 may each include one or more processors and a
memory, and that are capable of executing one or more
software processes. Chassis switches 18 are coupled to 1P
fabric 20, which performs layer 3 routing to route network
traffic between data centers 10 and customers 11 by service
provider network 7.

[0026] Virtual network controller 22 (“VNC”) provides a
logically and in some cases physically centralized controller
for facilitating operation of one or more virtual networks
within each of data centers 10, such as data center 10A, in
accordance with one or more techniques of this disclosure.
In some examples, virtual network controller 22 may oper-
ate in response to configuration input received from network
administrator 24. Additional information regarding virtual
network controller 22 operating in conjunction with other
devices of data center 10A or other software-defined net-
work is found in International Application Number PCT/
US2013/044378, filed Jun. 5, 2013, and entitled “PHYSI-
CAL PATH DETERMINATION FOR VIRTUAL
NETWORK PACKET FLOWS,” which is incorporated by
reference as if fully set forth herein.

[0027] In some examples, the traffic between any two
network devices, such as between network devices within IP
fabric 20 (not shown), between servers 12 and customers 11,
or between servers 12, for example, can traverse the physical
network using many different paths. A packet flow (or
“flow”) can be defined by the five values used in a header of
a packet, or “five-tuple,” i.e., the protocol, source IP address,
destination IP address, source port and destination port that
are used to route packets through the physical network. For
example, the protocol specifies the communications proto-
col, such as TCP or UDP, and source port and destination
port refer to source and destination ports of the connection.
[0028] A set of one or more packet data units (PDUs) that
include a packet header specifying a particular five-tuple
represent a flow. Flows may be broadly classified using any
parameter of a PDU, such as source and destination data link
(e.g., MAC) and network (e.g., IP) addresses, a Virtual Local
Area Network (VLAN) tag, transport layer information, a
Multiprotocol Label Switching (MPLS) or Generalized
MPLS (GMPLS) label, and an ingress port of a network
device receiving the flow. For example, a flow may be all
PDUs transmitted in a Transmission Control Protocol (TCP)
connection, all PDUs sourced by a particular MAC address
or IP address, all PDUs having the same VL AN tag, or all
PDUs received at the same switch port. A flow may be
additionally or alternatively defined by an Application Iden-
tifier (AppID) that is determined by a virtual router agent or
other entity that identifies, e.g., using a port and protocol list
or deep packet inspection (DPI), a type of service or

Aug. 29, 2024

application associated with the flow in that the flow trans-
ports application data for the type of service or application.
[0029] In some examples, each of data centers 10 may
implement different policies within different computing
environments according to the needs of the particular envi-
ronment. For example, a development environment, a stag-
ing environment, and a production environment of data
center 10A may each have different requirements for various
policies for the network, such as firewall, network, applica-
tion, and/or global policies.

[0030] Furthermore, multiple data centers 10 across dif-
ferent geographic locations may implement different poli-
cies within each of their respective internal computing
environments due to different customer requirements, net-
working resources and configurations, etc. If each comput-
ing environment within each of data centers 10 were to
independently manage its own policies, an administrator
may have difficulty ensuring that each policy meets security,
reliability, and quality requirements. Furthermore, if each
computing environment within each data center were to
independently manage its own policies, upgrading one or
more of the policies across the multiple data centers may
become cumbersome or unmanageable.

[0031] As such, network system 8 may implement a
scalable, multi-dimensional policy framework to support
flexible application of policies for controlling network traffic
among workloads executing within one or more computing
environments for data centers 10 that may be categorized
along multiple different dimensions. Such categories may
include applications, deployments, application tiers, geo-
graphic sites, virtual networks, virtual machines, interfaces,
projects, security requirements, quality requirements, physi-
cal devices, such as routers or switches, users, and/or
compliance requirements, to provide a few examples. Each
type of category represents a dimension for workloads that
generate or process network traffic of data centers 10. In
some examples, the policy framework described herein
permits administrator 24 to tag objects that execute or
otherwise process workloads with specific dimensions
across multiple levels.

[0032] In various examples, policy controller 23 distrib-
utes policy rules including tags for objects at a project level.
However, policy controller 23 may additionally or alterna-
tively distributing policy rules including tags specifying
various different object levels, such as a global environment
level, a project level, a virtual network level, a virtual
machine level, or an interface level.

[0033] Policy controller 23 may use a plurality of con-
figuration objects to implement the one or more policies. As
one example, policy controller 23 may apply a first set of
configuration objects at a global level. The first set configu-
ration objects includes global application policy sets, global
firewall policies, global firewall rules, and global tags across
a plurality of levels and/or categories. Policy controller 23
distributes, for example to the virtual routers, the first set of
configuration objects at the global level. Policy controller 23
matches global tags associated with global application
policy sets, global firewall policies, and global firewall rules
to objects tagged with the global tags. Based on the global
application policy sets, global firewall policies, and global
firewall rules, policy controller 23 allows or blocks network
traffic between interfaces of the objects tagged with the
global tags. The interfaces may be virtual machine interfaces
(VMIs), for instance, or switch interfaces of switches 16, 18.



US 2024/0291753 Al

[0034] Policy controller 23 may apply a second set of
configuration objects at a project level. The second set of
policy rules may include project-specific application policy
sets, firewall policies, firewall rules, and tags across a
plurality of levels. Policy controller 23 distributes the sec-
ond set of configuration objects at the project level. Policy
controller 23 matches project tags associated with project-
specific application policy sets, firewall policies, and fire-
wall rules to objects tagged with the project tags. Based on
the project-specific application policy sets, firewall policies,
and firewall rules, policy controller 23 allows or blocks
network traffic between interfaces of the objects tagged with
the project tags.

[0035] In further examples, policy controller 23 may
specify lower-level configuration objects, such as applica-
tion policy sets, firewall policies, firewall rules, and tags
defined at a virtual network-specific level, a virtual machine-
specific level, and/or an interface-specific level. By doing
so, policy controller 23 may apply a hierarchical set of
policies to a plurality of objects within one or more data
centers 10. Thus, the techniques of the disclosure allow for
distribution of simplified traffic policies that are scalable and
robust across many different types of deployments and
execution environments. Additional description is found in
U.S. patent application Ser. No. 15/819,522, filed Nov. 22,
2017 and entitled “Scalable Policy Management for Virtual
Networks,” which is incorporated by reference in its
entirety.

[0036] As described herein, a “tag” may refer to a data
structure that provides information to categorize an object
according to a particular value or set of values. A tag may
include a tag identifier (ID). In one example, tags map
security requirements for the corresponding objects. Tags
may be predefined (e.g., such as a tag for an application,
deployment, application tier, or geographic site), or may be
implicitly assigned during provisioning (e.g., a tag describ-
ing infrastructure, a rack, a cluster, or a data center which is
provisioned to support the application). In some examples,
multiple tags are applied to a single object (e.g., an “appli-
cation” and “geographic site” tag may be applied to a single
virtual machine), but the object may only have a single tag
per type and/or category. In further examples, a user may
define “labels™ to be used as keys for the key/value pairs of
tags such that the user may customize or create his or her
own categories for tagging objects. Furthermore, as used
herein, “tagging” an object refers to categorizing the object
in a category specified by a tag included in a policy rule. A
source tag, also referred to herein as a source identifier, may
represent a category for an application, where various cat-
egories of applications may be associated with different
levels of security operations to be applied to packets origi-
nating from applications of that category.

[0037] Policies may be expressed along multiple dimen-
sions in terms of tags corresponding to categories to which
the tagged objects correspond. Distributed VN agents
executing on computing devices that host the workloads,
e.g., one or more of servers 12, may then apply the policies
to tagged objects that are members of categories to allow or
deny a traffic flow between the objects tagged with one or
more categories for one or more dimensions. At least in
some cases, the VN agents apply the policies at the interface
level of one or more virtual machines to permit or block
network traffic flowing to and/or from interfaces of the one
or more virtual machines.

Aug. 29, 2024

[0038] In some examples, an extension of a Border Gate-
way Protocol (BGP) is provided for communicating the
policy framework between categories. For example, a VN
agent may receive, from a policy controller executed as one
example by virtual network controller 22, a BGP message
that includes an extended community specifying one or
more policy rules, each policy rule including one or more
tags that include tag identifiers (which are converted from
the key/value pairs) corresponding to categories that include
the tagged objects. Further, each policy rule of the one or
more policy rules may specity whether to permit or block
network traffic between objects tagged by the one or more
tags. Additional information with respect to the implemen-
tation of BGP extended communities is described in “BGP
Extended Communities Attribute,” RFC 4360, Internet
Engineering Task Force (IETF), February 2006, available at
https://tools.ietf.org/rfc/rfc4360, the entire contents of which
is incorporated herein by reference.

[0039] In this respect, scalable deployment of policies
across different environments may be achieved within a
plurality of data centers 10 in a manner that potentially
reduces the complexity and simplifies management of such
policies within the plurality of data centers 10. More infor-
mation concerning policy distribution can be found in above
noted U.S. patent application Ser. No. 15/819,522, entitled
“SCALABLE POLICY MANAGEMENT FOR VIRTUAL
NETWORKS,” filed Nov. 21, 2017.

[0040] However, the scalable policy deployment may not
accommodate all of the various environments present in data
centers and other networks. As further shown in the example
of FIG. 1, switch fabric 14 may include additional TOR
switches 16A-16Z that interface with so-called bare metal
servers (“BMS”) 28. BMS 28 may represent a server dedi-
cated for use by a single customer, which may also be called
a “single-tenant server.” Unlike servers 12 in which multiple
customers (or, again, in other words, “tenants™) may interact
with the same physical hardware, i.e., server 12, to interface
with their individually allocated virtual router, BMS 28 is
dedicated for use only by a single customer.

[0041] BMS 28 may provide dedicated hardware for use
by the single customer to avoid so-called “noisy neighbor
problems” that occur in multi-tenant servers 12. That is,
while each customer may receive a dedicated virtual router
that generally is not impacted by operation of any other
dedicated virtual routers by one of multi-tenant servers 12,
in certain contexts, the other virtual routers may consume
resources (e.g., processor cycles, memory, bandwidth, etc.)
that would have otherwise been available for another cus-
tomer’s virtual routers, thereby degrading the performance
of the remaining virtual routers (much as a noisy neighbor
may create problems for other residents, hence the name
“noisy neighbor problems”). As such, BMS 28 may provide
a dedicated hardware environment that avoids such noisy
neighbor problems, and thereby potentially ensures that the
customer processing demands are more likely to be met. One
premise driving the use of BMS 28 therefore lies in exclu-
sivity, and as a result, some data center operators may not
allow BMS 28 to execute the above noted VN agents
responsible for enforcing the policies within BMS 28.
[0042] Furthermore, certain devices may not support all of
the features enabled by the scalable policy deployment
discussed above. As an example, some network devices may
only support basic firewall functions, and not full featured
firewall functions enabled through use of the scalable policy



US 2024/0291753 Al

deployment discussed above, thereby detracting from the
usefulness of the policy deployment.

[0043] In operation, virtual network controller 22 may
obtain a policy to be enforced by TOR switch 167 coupled
to BMS 28. Virtual network controller 22 may obtain the
policy from a database or other memory and/or storage
device. Administrator 24 may specify the policy or other-
wise generate the policy.

[0044] Virtual network controller 22 may next convert the
policy into configuration data supported by TOR switch
16Z. As described above, the policy may include an intent-
based policy that, for firewall or other security services, may
identify flows that are to be blocked from reaching BMS 28
and/or transmitted from BMS 28. The intent-based policy
may also identify flows that are permitted to reach BMS 28
and/or transmitted from BMS 28. Virtual network controller
22 may convert the intent-based policies into configuration
data representative of access control lists (ACLs) that are
supported by TOR switch 167.

[0045] The access control lists may include one or more
entries that each identifies a flow, and an action to be
performed with respect to the identified flow (such as “drop”
or “forward”). In accordance with the techniques of this
disclosure, the data identifying a flow may include a source
identifier (also referred to herein as a “source tag”) and a
destination Internet protocol (IP) address. In particular,
when one of TOR switches 16 A-16N receives a packet from
a respective one of servers 12, the one of TOR switches
16A-16N may add a source identifier to a Virtual Extensible
Local Area Network (VXLAN) header of the packet. The
source identifier may correspond to a value representing a
category for an application that generated the packet, e.g.,
“development,”“‘staging,” ‘production,” or the like.

[0046] TOR switches 16 may be configured with mapping
data that maps source ports thereof by which packets are
received to respective source identifiers. Various applica-
tions of a common category may be executed by a server
connected to one of TOR switches 16 via a particular
hardware port of the one of TOR switches 16. Each of the
applications may be assigned to a category, e.g., a stage of
development for the applications. Virtual network controller
22 may be configured to distribute the source identifiers to
TOR switches 16. Thus, TOR switches 16 may add a source
identifier (source tag) to a VXLAN header for the packets.
[0047] Virtual network controller 22 may also configure
TOR switches 16, such as TOR switch 16Z, to enforce an
ACL (policy) with respect to network traffic directed to
external servers, such as, for example, BMS 28. That is,
TOR switch 167, once configured according to the configu-
ration data, may apply the ACLs to any flows received by the
TOR switch 167 in order to enforce the policy in support of
BMS 28. Similarly, other TOR switches 16 may also be
configured to enforce similar policies, albeit with respect to
other servers 12 (or other bare metal servers not shown in
FIG. 1). Thus, the same TOR switch may act as both an
ingress switch and an egress switch, where when acting as
an ingress switch, the TOR switch may add a source
identifier (source tag) to a VXLAN header of a received
packet, and when acting as an egress switch, the TOR switch
may enforce a policy indicated by a combination of the
source identifier and a destination IP address.

[0048] In particular, TOR switches 16, such as TOR
switch 167, may store data defining the policies (e.g., ACL.
entries) in ternary content addressable memory (TCAM).

Aug. 29, 2024

TCAM is relatively expensive and provides high speed
search for data stored therein. Due to the expense of TCAM,
reducing TCAM consumption can reduce the expense of a
corresponding device, e.g., TOR switch 16Z. By storing
policies associated with source identifiers (representing a
category for a corresponding application) and a destination
IP address, the number of policies/ACL entries to be stored
in TCAM of TOR switches 16 may be reduced. Thus, the
techniques of this disclosure may reduce the expense of
TOR switches that perform policy enforcement on traffic to
be sent to, e.g., a BMS or other server device. Moreover,
TCAM generally requires additional circuitry for each entry
thereof, which may further increase physical hardware size,
electricity consumption, and heat production of TCAM
relative to other types of memory. As such, reducing the
amount of TCAM consumed, e.g., according to the tech-
niques of this disclosure, may also reduce physical hardware
size, electricity consumption, and heat production.

[0049] In particular, if a policy were mapped from a source
port and destination IP address to a policy, the amount of
TCAM consumed to store such mapping data would be
significant. By contrast, the techniques of this disclosure
allow for a many-to-one mapping of source ports to appli-
cation categories. There may be many thousands of source
ports mapped to a single application category. Thus, by
storing data mapping source identifiers and destination 1P
addresses to a policy (e.g., an ACL entry), the techniques of
this disclosure may significantly reduce TCAM consump-
tion, while still maintaining the high speed search access
provided by TCAM for performing policy enforcement.

[0050] FIG. 2 is a block diagram illustrating an example
implementation of data center 10A of FIG. 1 in further
detail. In the example of FIG. 2, data center 10A includes an
overlay network that extends switch fabric 14 from physical
switches 16, 18 to software or “virtual” switches 30A-30X
(collectively, “virtual routers 30” or “VR 307). Virtual
routers 30 dynamically create and manage one or more
virtual networks 34 usable for communication between
application instances. In one example, virtual routers 30
execute the virtual network as an overlay network, which
provides the capability to decouple an application’s virtual
address from a physical address (e.g., IP address) of the one
of servers 12A-12X (“servers 12”) on which the application
is executing. Each virtual network may use its own address-
ing and security scheme and may be viewed as orthogonal
from the physical network and its addressing scheme. Vari-
ous processes may be used to transport packets within and
across virtual networks 34 over the physical network. In
some examples, virtual networks 34 may provide multicast
service without requiring multicast support in the underlying
physical network.

[0051] Each virtual router 30 may execute within a hyper-
visor, a host operating system or other component of each of
servers 12. Each of servers 12 may represent an x86 or other
general-purpose server, or a special-purpose server, capable
of executing workloads (WL) 37. In the example of FIG. 2,
virtual router 30A executes within hypervisor 31, also often
referred to as a virtual machine manager (VMM) and may be
denoted as “HV” in the example of FIG. 2, which provides
a virtualization platform that allows multiple operating
systems to concurrently execute within one of servers 12. In
the example of FIG. 2, virtual router 30A manages virtual
networks (VN) 34, each of which provides a network
environment for execution of one or more virtual machines



US 2024/0291753 Al

(VMs) (that may execute one or more of WLs 37) within the
virtualization platform provided by hypervisor 31. Each VM
is associated with one of the virtual networks and may
represent tenant VMs running customer applications such as
Web servers, database servers, enterprise applications, or
hosting virtualized services used to create service chains. In
some cases, any one or more of servers 12 or another
computing device may host customer applications directly,
i.e., not as virtual machines. In some cases, some of the VMs
may represent containers, another form of virtualized execu-
tion environment. That is, both virtual machines and con-
tainer are examples of virtualized execution environments
for executing workloads.

[0052] In general, each WL 37 may be any type of
software application and may be assigned a virtual address
for use within a corresponding virtual network 34, where
each of the virtual networks may be a different virtual subnet
provided by virtual router 30A. A WL 37 may be assigned
its own virtual layer three (L3) IP address, for example, for
sending and receiving communications but may be unaware
of an IP address of the physical server 12A on which the
virtual machine is executing. In this way, a “virtual address”
is an address for an application that differs from the logical
address for the underlying, physical computer system, e.g.,
server 12A in the example of FIG. 1 or 2.

[0053] In one implementation, each of servers 12 includes
a corresponding one of virtual network (VN) agents 35A-
35X (collectively, “VN agents 35”) that controls the overlay
of virtual networks 34 and that coordinates the routing of
data packets within server 12. In general, each VN agent 35
communicates with virtual network controller 22, which
generates commands to control routing of packets through
data center 10A. VN agents 35 may operate as a proxy for
control plane messages between WLs 37 and virtual network
controller 22. For example, a WL 37 may request to send a
message using its virtual address via the VN agent 35A, and
VN agent 35A may in turn send the message and request that
a response to the message be received for the virtual address
of one of WLs 27 that originated the first message. In some
cases, a WL 37 may invoke a procedure or function call
presented by an application programming interface of VN
agent 35A, and the VN agent 35A may handle encapsulation
of the message, including addressing. Each VN agent 35
may also apply one or more policies to one or more
categories, as described in more detail below.

[0054] In one example, network packets, e.g., layer three
(L3) IP packets or layer two (L.2) Ethernet packets generated
or consumed by the instances of applications executed by
virtual machines 36 within the virtual network domain may
be encapsulated in another packet (e.g., another IP or Eth-
ernet packet) that is transported by the physical network.
The packet transported in a virtual network may be referred
to herein as an “inner packet” while the physical network
packet may be referred to herein as an “outer packet” or a
“tunnel packet.” Encapsulation and/or de-capsulation of
virtual network packets within physical network packets
may be performed within virtual routers 30, e.g., within the
hypervisor or the host operating system running on each of
servers 12. As another example, encapsulation and de-
capsulation functions may be performed at the edge of
switch fabric 14 at a first-hop TOR switch 16 that is one hop
removed from the application instance that originated the
packet. This functionality is referred to herein as tunneling
and may be used within data center 10A to create one or

Aug. 29, 2024

more overlay networks. Besides IPinlIP, other example tun-
neling protocols that may be used include IP over GRE,
VXLAN, MPLS over GRE, MPLS over UDP, etc.

[0055] As noted above, virtual network controller 22
provides a logically centralized controller for facilitating
operation of one or more virtual networks within data center
10A. Virtual network controller 22 may, for example, main-
tain a routing information base, e.g., one or more routing
tables that store routing information for the physical network
as well as one or more overlay networks of data center 10A.
Switches 16, 18 and virtual routers 30 may also maintain
routing information, such as one or more routing and/or
forwarding tables.

[0056] Inone example, virtual router 30A of hypervisor 31
implements a network forwarding table (NFT) 32 for each
virtual network 34. In general, each NFT 32 stores forward-
ing information for the corresponding virtual network 34
and identifies where data packets are to be forwarded and
whether the packets are to be encapsulated in a tunneling
protocol, such as with a tunnel header that may include one
or more headers for different layers of the virtual network
protocol stack.

[0057] As further shown in the example of FIG. 2, virtual
network controller 22 includes a policy controller 23. Policy
controller 23 may represent a unit configured to tag a
plurality of objects across a plurality of levels. In some
examples, the plurality of levels include a level of an object,
such as a global environment level, a project level, a virtual
network level, a virtual machine level, or an interface level
of the object. Policy controller 23 may also, in some
instances, tag the plurality of objects across a plurality of
categories. In some examples, the plurality of categories
include applications executing within VMs 36, deploy-
ments, application tiers, geographic sites, virtual networks,
WLs 37, interfaces, projects, security requirements, quality
requirements, users, or compliance requirements.

[0058] In some examples, policy controller 23 further
distributes, to respective VN agents 35, a plurality of poli-
cies. Each policy of the plurality of policies includes one or
more policy rules for controlling network traffic. Each policy
rule of the plurality of policy rules specifies one or more
tags, each tag further specifying one or more dimensions of
the categories.

[0059] Upon receiving the plurality of policies, each VN
agent 35 applies the one or more policy rules of each of the
plurality of policies to tagged objects corresponding to tags
of the one or more policy rules to control network traffic
between the tagged objects. For example, VN agents 35
under the direction of policy controller 23 express the one or
more policy rules at logical interfaces of WLs 37 that are
tagged with tags corresponding to tags of the one or more
policy rules. VN agents 35 permit or block network traffic to
and/or from the logical interfaces based on the one or more
policy rules.

[0060] In some examples, policy controller 23 distributes
one or more policy rules via Border Gateway Protocol
(BGP). Such a BGP message may include an action for a
particular traffic flow, such as allowing or denying the flow
and a list of one or more destination protocols and ports for
application of the specified action. In such an example, the
BGP message may further specify one or more tags (as a tag
identifier-ID) for an object as an extended community for
BGP. Additional information with respect to BGP is
described in “BGP MPLS-Based Ethernet VPN,” RFC 7432,



US 2024/0291753 Al

Internet Engineering Task Force (IETF), February 2015,
available at https://tools.ietf.org/html/rfc7432, the entire
contents of which is incorporated herein by reference.
[0061] As further shown in the example of FIG. 2, policy
controller 23 may distribute policy rules in the form of
access control lists (ACLS) 50. Policy controller 23 may
convert the above described policies into ACLs 50, and then
deploy ACLs 50 (which may represent one or more policy
rules) to TOR switch 16Z. TOR switch 167 may then apply
ACLs 50 to network traffic destined for BMS 28. BMS 28
may, given the restrictive execution environment, only
execute WLs 37 (and in some instances, not even WLs 37)
but not, as shown in the example of FIG. 2, a virtual router
30 or VN agent 35. In accordance with the techniques of this
disclosure, ACLs 50 may include data mapping a source
identifier and destination IP address to a policy (e.g., an ACL
entry). Such data may be stored in TCAM of TOR switch
167.

[0062] FIG. 3 is a block diagram illustrating an example of
a plurality of data centers 10 in which examples of the
techniques described herein may be implemented. Each of
data centers 10A-10X (collectively “datacenters 10”) may
operate in a substantially similar fashion to datacenters 10 of
FIG. 1 and FIG. 2. In some examples, one or more of
datacenters 10 implements a cloud environment executing
Openstack, while in another example, one or more of data
centers 10 is a cloud environment executing Kubernetes,
while in yet another example, one or more of data centers 10
implements a cloud environment executing Amazon Web
Services, while in yet another example, one or more of data
centers 10 executes on “bare metal” infrastructure. In some
examples, each of data centers 10 executes a different
infrastructure than each other data center 10.

[0063] In the example of FIG. 3, each of data centers 10
comprises a database 308 and three different environments:
a development environment 310, a staging environment 312,
and a production environment 314. Each environment of
each data center 10 is capable of executing one or more
applications 302A-302D (collectively, “applications 302”),
such as application 302A executing within development
environment 310A of data center 10A, application 302B
executing within production environment 314A of data
center 10A, application 302C executing within development
environment 310B of data center 10B, and application 302D
executing within staging environment 312B of data center
10B. In one example, each application 302 is an instance of
the same type of finance application.

[0064] Policies as described herein are robust and exten-
sible for application in many different types of cloud envi-
ronments described above.

[0065] Within an environment, each application may
include a plurality of processes and sub-processes. In the
example of FIG. 3, application 302A of development envi-
ronment 310A executes web process 304A and Application
Program Interface (API) process 306A. Further, application
302B of production environment 314A executes web pro-
cess 304B and API process 306B. Application 302C of
development environment 310B executes web process 304C
and API process 306C. Still further, application 302D of
staging environment 312B executes web process 304D and
API process 306D. However, in other examples, each appli-
cation 302 of a respective environment 310A, 312A, 314A,
310B, 312B, or 314B may execute additional or different
processes than each other application 302. Furthermore, in

Aug. 29, 2024

some examples, the applications executed within each
respective environment 310A, 310B, 312A, 312B, 314A,
and 314B may be similar or different from the applications
executed within each other environment 310A, 310B, 312A,
312B, 314A, and 314B.

[0066] It may be desirable to ensure that processes 304,
306 of each application 302 of a respective environment
310, 312, 314 does not exchange network traffic with
processes 304, 306 of an application 302 within a different
environment 310, 312, 314, while still permitting network
traffic to flow between different processes 304, 306 within
the same application 302. For example, an administrator
may desire to allow network traffic between web process
304A and API process 306A because each of web process
304 A and API process 306A operate within the same appli-
cation 302A within development environment 310A. Fur-
ther, the administrator may desire to prevent network traffic
between web process 304A (e.g., operating within develop-
ment environment 310A of data center 10A) and API
process 306B (e.g., operating within production environ-
ment 314A of data center 10A) or between web process
304A (e.g., operating within development environment
310A of data center 10A) and API process 306C (e.g.,
operating within development environment 310B of data
center 10B). Further, an administrator may desire to permit
processes 304, 306 executing within an application 302
within the same data center 10 to access the same database
308, regardless of the specific environment 310, 312, or 314
within which the particular application 302 executes. For
example, an administrator may desire to allow API process
306A executing within application 302A and API process
306B executing within application 302B to each access
database 308A.

[0067] The administrator may also desire to allocate dif-
ferent port ranges for use by each of application 302A,
application 302B, application 302C, and/or application
302D to satisty various security requirements, quality
requirements, compliance requirements, or user require-
ments. Thus, if the administrator were to implement a single
application-specific firewall policy (e.g., a firewall policy
specific to the application type of each of applications 302A,
302B, 302C, and 302D), the firewall policy may not function
as intended because each of applications 302A, 302B, 302C,
and 302D use different port ranges. Furthermore, if the
administrator were to independently manage network traffic
policies for each process 304, 306 within each application
302 within each environment 312, 312, and 314 within each
data center 10, the administrator may have difficulty ensur-
ing that each network traffic policy meets security, reliabil-
ity, and quality requirements. Furthermore, upgrading one or
more of the policies across multiple data centers 10 may
become cumbersome or unmanageable.

[0068] According to the techniques of this disclosure,
applications within development environments 310 (e.g.,
applications 302A, 302C) may be associated with source
ports that are mapped to a “development” source identifier
(source tag); applications within staging environments 312
(e.g., applications 302D) may be associated with source
ports that are mapped to a “staging” source identifier (source
tag); and applications within production environment 314
(e.g., applications 302B) may be associated with source
ports that are mapped to a “production” source identifier
(source tag).



US 2024/0291753 Al

[0069] FIG. 4 is a block diagram illustrating an example
network switch device 100 according to the techniques of
this disclosure. In this example, network switch device 100
includes forwarding engine 104, network interface cards
(NICs) 102A-102N (NICs 102), Virtual Extensible Local
Area Network (VXLAN) processing unit 120, and source
tags memory 116. NICs 104 include network interfaces
configured to exchange packets using links of an underlying
physical network. Such network interfaces may be, for
example, Ethernet interfaces.

[0070] Forwarding engine 104 in this example includes
Ternary Content-Addressable Memory (TCAM) memory
110. In other examples, forwarding engine 104 may include
other types of high-speed memory, such as Reduced-La-
tency Dynamic Random Access Memory (RLDRAM) or
Synchronous Dynamic Random Access Memory (SDRAM).
In the example of FIG. 4, TCAM memory 110 stores
forwarding information base (FIB) 112 and policies 114.
FIB 112 represents a forwarding table mapping data of
received packets to “next hops,” corresponding to one of
NICs 102. In general, when network switch device 100
receives a packet via one of NICs 102, forwarding engine
104 may use FIB 112 to determine a different one of NICs
102 by which to forward the packet.

[0071] In this example, network switch device 100 may
represent a leaf switch device of a spine and leaf topology.
For example, network switch device 100 may correspond to
one of TOR switches 16 of FIGS. 1 and 2. Each of NICs 102
may include one or more hardware ports by which to
physically interface with other network devices. Certain
NICs of NICs 102 may be coupled to spine switches (e.g.,
one of chassis switches 18 of FIGS. 1 and 2), while other
NICs of NICs 102 may be coupled to devices external to the
spine and leaf topology (switch fabric 14 of FIGS. 1 and 2).
For example, servers 12 and BMS 28 of FIGS. 1 and 2 may
be considered to be devices external to the spine and leaf
topology.

[0072] Network switch device 100 may receive data defin-
ing mappings from hardware source ports thereof (e.g.,
hardware ports of NICs 102) to source tags and store such
data in source tags 116. In general, the source ports may
correspond to various applications that may generate pack-
ets. As explained above with respect to FIG. 3, an applica-
tion may be assigned to an application category, where the
possible categories may include, for example, applications
in development, applications in a staging area, or applica-
tions in production. Thus, an application may be executed by
a device coupled to network switch device 100 via a
particular hardware source port of one of NICs 102. Source
tags 116 represent the various categories for the applica-
tions. Accordingly, source tags 116 may include data map-
ping ports for applications that are currently assigned to the
“development” category to a “development” source identi-
fier (or source tag). Likewise, source tags 116 may include
data mapping ports for applications that are currently
assigned to the “staging” category to a “staging” source
identifier/tag. Similarly, source tags 116 may include data
mapping ports for applications that are currently assigned to
the “production” category to a “production” source identi-
fier/tag.

[0073] Thus, when network switch device 100 receives a
packet via one of NICs 102 that corresponds to a device
external to the spine and leaf topology (i.e., outside of the
switch fabric), FIB 112 may indicate that the packet is to be

Aug. 29, 2024

sent to VXL AN processing unit 120 to be encapsulated with
a VXLAN header. For example, FIB 112 may map a “next
hop” of the packet to a logical interface associated with
VXLAN processing unit 120.

[0074] In accordance with the techniques of this disclo-
sure, VXL AN processing unit 120 may determine a source
tag (or source identifier) to be added to the VXIL.AN header
using data of source tags 116. For example, the packet may
have originated from an application of a particular category,
e.g., an application in a “development” category, a “staging”
category, or a “production” category. VXLAN processing
unit 120 may determine a source port by which the packet
was received, which corresponds to the application that
produced the packet. VXLAN processing unit 120 may
perform a lookup in source tags 116 using the source port to
determine a source identifier to be added to the VXLAN
header of the packet. VXLAN processing unit 120 may
further determine a VXLAN segment identifier for the
packet using other mapping data (not shown in FIG. 4)
according to conventional VXL AN techniques.

[0075] After constructing the VXILAN header and encap-
sulating the packet with the VXLAN header, VXLAN
processing unit 120 may send the packet back to forwarding
engine 104. Forwarding engine 104 may then send the
packet to one of NICs 102 according to the VXLAN
segment identifier of the VXLAN header, to direct the
packet to a spine switch (e.g., one of chassis switches 18 of
FIGS. 1 and 2).

[0076] On the other hand, when network switch device
100 receives a VXLAN packet from a spine switch of the
switch fabric, forwarding engine 104 may send the packet to
VXLAN processing unit 120 to extract a source identifier
(source tag) from the VXLAN header of the packet. For-
warding engine 104 may then determine a destination IP
address for the packet and perform a lookup in policies 114
using the source identifier from the VXL AN header and the
destination IP address. That is, policies 114 may map the
combination of the source identifier (source tag) and desti-
nation IP address to a particular policy. Such policy may be
to forward the packet normally, drop the packet, send the
packet to a device that performs additional security (e.g.,
deep packet inspection, a firewall, or the like), or other such
policies. Thus, network switch device 100 may perform the
policy to which the source identifier and destination IP
address are mapped in policies 114.

[0077] FIG. 5A is a conceptual diagram illustrating a
Virtual Extensible Local Area Network (VXL AN) header,
while FIGS. 5B and 5C are conceptual diagrams illustrating
example VXLAN headers including source tags (source
identifiers) according to various examples of the techniques
of this disclosure.

[0078] FIG. 5A depicts VXLAN header 130 including
flags 132, VXLAN segment identifier 136, and reserved
fields 134, 138. In accordance with Mahalingam et al.,
“Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” Request for Comments 7348 (RFC
7348), August 2014, available at datatracker.ietf.org/doc/
html/rfc7348 (hereinafter, “RFC 7348”), flags 132 includes
eight bits, including four reserved bits, one [-bit (which must
be set to 1 for a valid VXLAN Network Identifier (VNI)),
and three more reserved bits after the [-bit. VXL AN segment
identifier 136, per RFC 7348, is a 24-bit value that desig-
nates an individual VXLAN overlay network on which



US 2024/0291753 Al

communicating virtual machines (VMs) are situated. In
general, reserved fields 134, 138 include 24 bits and 8 bits,
respectively, that are reserved for future use.

[0079] In accordance with the techniques of this disclo-
sure, a source identifier (or source tag) may be specified in
one of reserved fields 134, 138. FIG. 5B depicts one
example VXL AN header 140 including flags 142, source tag
144, reserved field 146, VXL AN segment identifier 148, and
reserved field 150. In general, flags 142 may correspond to
flags 132 of FIG. 5A and VXLAN segment identifier 148
may correspond to VXLAN segment identifier 136 of FIG.
5A. Source tag 144 may include a number of bits up to 24
bits. Thus, reserved field 146 may be excluded (if source tag
144 has 24 bits) or have a number of bits that is the
difference between 24 bits and the number of bits included
in source tag 144.

[0080] FIG. 5C depicts another example VXL AN header
150 including flags 152, source tag reserved field 154,
VXLAN segment identifier 156, and source tag 158. In
general, flags 152 may correspond to flags 132 of FIG. 5A
and VXLAN segment identifier 156 may correspond to
VXLAN segment identifier 136 of FIG. 5A. Source tag 158
in this example includes eight bits to specify a source
identifier for a packet encapsulated by VXL AN header 150.

[0081] In the example of FIGS. 5B and 5C, source tag 144
and source tag 158 include values for a source identifier (or
source tag) representing a source application from which a
packet encapsulated by a corresponding one of VXLAN
header 140 or VXL AN header 150 originates. For example,
one of TOR switches 16, network switch device 100, or
other ingress leaf switch of a spine and leaf topology may
add a value for source tag 144 or source tag 158 to the
VXLAN header. As discussed above, the source tag value
may represent a category for the source application. In
particular, the ingress leaf switch device may determine the
value for the source tag from, e.g., source tags 116 (FIG. 4)
that map a hardware source port by which the packet was
received to a corresponding source identifier specifying a
category for the application. Similarly, according to the
techniques of this disclosure, an egress leaf switch device
may determine a policy to apply to the packet from the value
of source tag 144 or source tag 158 and a destination IP
address for the packet, e.g., according to policies 114 of FIG.
4.

[0082] FIG. 6 is a flowchart illustrating an example
method of adding a source identifier to a received packet
according to the techniques of this disclosure. The method of
FIG. 6 may generally be performed by an ingress leaf switch
device, such as one of TOR switches 16 of FIGS. 1 and 2 or
network switch device 100 of FIG. 4. The leaf switch device
may act as an ingress to a spine and leaf topology when
receiving a packet from a device outside of the spine and leaf
topology, such as one of servers 12 or BMS 28 of FIGS. 1
and 2. For purposes of example and explanation, the method
of FIG. 6 is explained with respect to TOR switch 16A of
FIGS. 1 and 2. The same switch may act as both an ingress
and an egress switch for different packets or packet flows.

[0083] Initially, TOR switch 16A may be configured by,
e.g., policy controller 23 with data that maps hardware
source ports by which packets are received to source iden-
tifiers. TOR switch 16A receives a packet from an external
server (180), such as server 12A. TOR switch 16 A may

Aug. 29, 2024

determine the hardware source port by which the packet was
received. Thus, TOR switch 16 A may determine the source
port for the packet (182).

[0084] TOR switch 16 A may then use data such as source
tags 116 (FIG. 4) that maps source ports to source tags (or
source identifiers) to determine a source identifier from the
source port (184). TOR switch 16 A may then add the source
identifier to the VXLLAN header of the packet (186), e.g., as
shown in FIGS. 5B or 5C. TOR switch 16A may then
determine a next hop for the packet, e.g., using a destination
port (VXLAN port) according to data of FIB 112 (FIG. 4).
The destination port may be specified in the outer UDP
header of the packet. The next hop generally corresponds to
a spine switch, such as one of chassis switches 18 of FIGS.
1 and 2. TOR switch 16 A may then forward the packet to the
spine switch (188).

[0085] In this manner, the method of FIG. 6 represents an
example of a method including receiving, by an ingress leaf
switch of a plurality of switches arranged according to a
spine and leaf topology, data mapping a plurality of source
ports to a source identifier value from a controller device for
the plurality of switches; receiving a packet from a network
device separate from the plurality of switches; determining,
by the leaf switch, a hardware source port of the leaf switch
by which the second packet was received; using, by the leaf
switch, the data mapping the plurality of source ports to the
second source identifier value to determine that the source
port is mapped to the second source identifier value; adding,
by the leaf switch, the second source identifier value to a
second VXL AN header for the second packet; and forward-
ing, by the leaf switch, the second packet including the
second source identifier value to a second spine switch of the
plurality of switches.

[0086] FIG. 7 is a flowchart illustrating an example
method of applying a policy to a packet according to a
source identifier and a destination address of a packet in
accordance with the techniques of this disclosure. The
method of FIG. 7 may generally be performed by an egress
leaf switch device, such as one of TOR switches 16 of FIGS.
1 and 2 or network switch device 100 of FIG. 4. The leaf
switch device may act as an egress to a spine and leaf
topology when receiving a packet from a spine switch of the
spine and leaf topology, such as one of chassis switches 18.
For purposes of example and explanation, the method of
FIG. 7 is explained with respect to TOR switch 16Z of FIGS.
1 and 2. However, the same switch may act as both an
ingress and an egress switch for different packets or packet
flows. Thus, for example, TOR switch 16A or TOR switch
167 may perform the methods of FIGS. 6 and 7 for different
packets of different packet flows, depending on whether the
packets are received from a device outside of the spine and
leaf topology or from a spine switch of the spine and leaf
topology.

[0087] In this example, TOR switch 16Z receives a packet
from one of chassis switches 18 (i.e., a spine switch) (190).
TOR switch 167 may then determine a source identifier
(source tag) from a VXLAN header of the packet (192). For
example, TOR switch 167 may parse data of the VXLAN
header as shown in FIGS. 5B and 5C to extract the source
identifier from the VXLAN header. TOR switch 167 may
also determine a destination IP address of the packet (194),
e.g., from an outer IPv4 header of the packet.

[0088] TOR switch 16Z may then determine a policy from
the source identifier and the destination IP address (196). For



US 2024/0291753 Al

example, TOR switch 167 may determine one of ACLs 50
using the source identifier and the destination IP address as
shown in FIG. 2 or policies 114 as shown in FIG. 4. As noted
above, policies 114 (or ACLs 50) may be stored in TCAM
memory. By storing the policies or ACLs associated with
destination IP addresses and source identifiers, instead of
source ports, the amount of TCAM memory consumed by
the policies/ACLs may be significantly reduced. TOR switch
167 may then apply the determined policy to the packet
(198).

[0089] In this manner, the method of FIG. 7 represents an
example of a method including receiving, by a leaf switch of
a plurality of switches arranged according to a spine and leaf
topology, a packet from a spine switch of the plurality of
switches, the packet being encapsulated with a Virtual
Extensible Local Area Network (VXL AN) header; extract-
ing, by the leaf switch, a source identifier value from the
VXLAN header; determining, by the leaf switch, a destina-
tion address for the packet; determining, by the leaf switch,
a policy to apply to the packet according to the source
identifier value and the destination address; and applying, by
the leaf switch, the policy to the packet.

[0090] The techniques described in this disclosure may be
implemented, at least in part, in hardware, software, firm-
ware or any combination thereof. For example, various
aspects of the described techniques may be implemented
within one or more processors, including one or more
microprocessors, digital signal processors (DSPs), applica-
tion specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), or any other equivalent integrated or
discrete logic circuitry, as well as any combinations of such
components. The term “processor” or “processing circuitry”
may generally refer to any of the foregoing logic circuitry,
alone or in combination with other logic circuitry, or any
other equivalent circuitry. A control unit comprising hard-
ware may also perform one or more of the techniques of this
disclosure.

[0091] Such hardware, software, and firmware may be
implemented within the same device or within separate
devices to support the various operations and functions
described in this disclosure. In addition, any of the described
units, modules or components may be implemented together
or separately as discrete but interoperable logic devices.
Depiction of different features as modules or units is
intended to highlight different functional aspects and does
not necessarily imply that such modules or units must be
realized by separate hardware or software components.
Rather, functionality associated with one or more modules
or units may be performed by separate hardware or software
components, or integrated within common or separate hard-
ware or software components.

[0092] The techniques described in this disclosure may
also be embodied or encoded in a computer-readable
medium, such as a computer-readable storage medium,
containing instructions. Instructions embedded or encoded
in a computer-readable medium may cause a programmable
processor, or other processor, to perform the method, e.g.,
when the instructions are executed. Computer-readable
media may include non-transitory computer-readable stor-
age media and transient communication media. Computer
readable storage media, which is tangible and non-transitory,
may include random access memory (RAM), read only
memory (ROM), programmable read only memory
(PROM), erasable programmable read only memory

Aug. 29, 2024

(EPROM), electronically erasable programmable read only
memory (EEPROM), flash memory, a hard disk, a CD-
ROM, a floppy disk, a cassette, magnetic media, optical
media, or other computer-readable storage media. It should
be understood that the term “computer-readable storage
media” refers to physical storage media, and not signals,
carrier waves, or other transient media.

[0093] Various examples have been described. These and
other examples are within the scope of the following claims.

What is claimed is:

1. A method comprising:

receiving, by a leaf switch of a plurality of switches

arranged according to a spine and leaf topology, a
packet from a spine switch of the plurality of switches,
the packet being encapsulated with a Virtual Extensible
Local Area Network (VXL AN) header;

extracting, by the leaf switch, a source identifier value

from the VXLAN header;

determining, by the leaf switch, a destination address for

the packet;

determining, by the leaf switch, a policy to apply to the

packet according to the source identifier value and the
destination address; and

applying, by the leaf switch, the policy to the packet.

2. The method of claim 1, further comprising storing, by
the leaf switch, a plurality of policies, including the deter-
mined policy, in ternary content-addressable memory
(TCAM) of the leaf switch, each of the plurality of policies
being associated with a respective source identifier value
and a respective destination address.

3. The method of claim 1, further comprising receiving,
by the leaf switch, data defining a plurality of policies,
including the determined policy, from a controller device for
the plurality of switches, each of the plurality of policies
being associated with a respective source identifier value
and a respective destination address.

4. The method of claim 1, wherein extracting the source
identifier value from the VXLAN header comprises:

parsing eight flag bits of the VXLAN header;
extracting the source identifier value from bits of the
VXLAN header following the eight flag bits; and

parsing a VXLAN Network Identifier (VNI) value from
bits of the VXLAN header following the source iden-
tifier value.

5. The method of claim 1, wherein extracting the source
identifier value from the VXLAN header comprises:

parsing eight flag bits of the VXLAN header;

parsing reserved bits of the VXL AN header following the

eight flag bits;

parsing a VXLAN Network Identifier (VNI) value from

bits of the VXL AN header following the reserved bits;
and

extracting the source identifier value from bits of the

VXLAN header following the VNI value.

6. The method of claim 1, wherein the source identifier
value represents a category for a source application that
generated the packet.

7. The method of claim 1, wherein the packet comprises
a first packet, wherein the spine switch comprises a first
spine switch, wherein the VXTL.AN header comprises a first
VXLAN header, and wherein the source identifier value
comprises a first source identifier value, the method further
comprising:



US 2024/0291753 Al

receiving, by the leaf switch, data mapping a plurality of
hardware source ports to a second source identifier
value from a controller device for the plurality of
switches;
receiving, by the leaf switch, a second packet from the
network device separate from the plurality of switches,
the second packet being different than the first packet;
determining, by the leaf switch, a hardware source port of
the leaf switch by which the second packet was
received;
using, by the leaf switch, the data mapping the plurality of
source ports to the second source identifier value to
determine that the source port is mapped to the second
source identifier value;
adding, by the leaf switch, the second source identifier
value to a second VXLAN header for the second
packet; and
forwarding, by the leaf switch, the second packet includ-
ing the second source identifier value to a second spine
switch of the plurality of switches.
8. A leaf switch device of a plurality of switches arranged
according to a spine and leaf topology, the leaf switch device
comprising:
a memory configured to store a plurality of policies, each
of the plurality of policies being associated with a
respective source identifier value and a respective des-
tination address;
a network interface communicatively coupled to a spine
switch of the plurality of switches; and
a processor implemented in circuitry and configured to:
receive a packet from the spine switch via the network
interface, the packet being encapsulated with a Vir-
tual Extensible Local Area Network (VXLAN)
header;

extract a source identifier value from the VXLAN
header;

determine a destination address for the packet;

determine a policy of the plurality of policies to apply
to the packet according to the source identifier value
and the destination address; and

apply the policy to the packet.

9. The leaf switch device of claim 8, wherein the memory
comprises ternary content-addressable memory (TCAM).

10. The leaf switch device of claim 8, wherein the
processor is further configured to receive data defining the
plurality of policies from a controller device for the plurality
of switches.

11. The leaf switch device of claim 8, wherein to extract
the source identifier value from the VXLAN header, the
processor is configured to:

parse eight flag bits of the VXLAN header;

extract the source identifier value from bits of the
VXLAN header following the eight flag bits; and

parse a VXL AN Network Identifier (VNI) value from bits
of the VXL AN header following the source identifier
value.

12. The leaf switch device of claim 8, wherein to extract
the source identifier value from the VXLAN header, the
processor is configured to:

parse eight flag bits of the VXLAN header;

parse reserved bits of the VXL AN header following the
eight flag bits;

parse a VXL AN Network Identifier (VNI) value from bits
of the VXL AN header following the reserved bits; and

Aug. 29, 2024

extract the source identifier value from bits of the
VXLAN header following the VNI value.

13. The leaf switch device of claim 8, wherein the source
identifier value represents a category for a source application
that generated the packet.

14. The leaf switch device of claim 8, wherein the packet
comprises a first packet, wherein the spine switch comprises
a first spine switch, wherein the VXIL.AN header comprises
a first VXLAN header, wherein the source identifier value
comprises a first source identifier value, and wherein the
processor is further configured to:

receive data mapping a plurality of source ports to a

second source identifier value from a controller device
for the plurality of switches;

receive a second packet from the network device separate

from the plurality of switches, the second packet being
different than the first packet;

determine a hardware source port of the leaf switch by

which the second packet was received;

use the data mapping the plurality of source ports to the

second source identifier value to determine that the
source port is mapped to the second source identifier
value;
add the second source identifier value to a second
VXL AN header for the second packet; and

forward the second packet including the second source
identifier value to a second spine switch of the plurality
of switches.

15. A non-transitory computer-readable storage medium
comprising instructions that, when executed, cause a pro-
cessor of a leaf switch device of a plurality of switches
arranged according to a spine and leaf topology to:

receive a packet from a spine switch of the plurality of

switches, the packet being encapsulated with a Virtual
Extensible Local Area Network (VXLAN) header;
extract a source identifier value from the VXLAN header;
determine a destination address for the packet;
determine a policy of the plurality of policies to apply to
the packet according to the source identifier value and
the destination address; and
apply the policy to the packet.
16. The non-transitory computer-readable storage
medium of claim 15, further comprising instructions that
cause the processor to store a plurality of policies, including
the determined policy, in ternary content-addressable
memory (TCAM) of the leaf switch device, each of the
plurality of policies being associated with a respective
source identifier value and a respective destination address.
17. The non-transitory computer-readable storage
medium of claim 15, further comprising instructions that
cause the processor to receive data defining the plurality of
policies from a controller device for the plurality of
switches.
18. The non-transitory computer-readable storage
medium of claim 15, wherein the instructions that cause the
processor to extract the source identifier value from the
VXLAN header comprise instructions that cause the pro-
cessor to:
parse eight flag bits of the VXL AN header;
extract the source identifier value from bits of the
VXLAN header following the eight flag bits; and

parse a VXLLAN Network Identifier (VNI) value from bits
of the VXL AN header following the source identifier
value.



US 2024/0291753 Al

19. The non-transitory computer-readable storage
medium of claim 15, wherein the instructions that cause the
processor to extract the source identifier value from the
VXLAN header comprise instructions that cause the pro-
cessor to:

parse eight flag bits of the VXLAN header;

parse reserved bits of the VXL AN header following the

eight flag bits;

parse a VXL AN Network Identifier (VNI) value from bits

of the VXL AN header following the reserved bits; and
extract the source identifier value from bits of the
VXLAN header following the VNI value.

20. The non-transitory computer-readable storage
medium of claim 15, wherein the packet comprises a first
packet, wherein the spine switch comprises a first spine
switch, wherein the VXL AN header comprises a first
VXLAN header, wherein the source identifier value com-
prises a first source identifier value, and wherein the pro-
cessor is further configured to:

Aug. 29, 2024

receive data mapping a plurality of source ports to a
second source identifier value from a controller device
for the plurality of switches;

receive a second packet from the network device separate
from the plurality of switches, the second packet being
different than the first packet;

determine a hardware source port of the leaf switch by
which the second packet was received;

use the data mapping the plurality of source ports to the
second source identifier value to determine that the
source port is mapped to the second source identifier
value;

add the second source identifier value to a second
VXL AN header for the second packet; and

forward the second packet including the second source
identifier value to a second spine switch of the plurality
of switches.



