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SYSTEM AND METHOD FOR IMAGE
SEGMENTATION FROM SPARSE PARTICLE
IMPINGEMENT DATA

RELATED APPLICATION

[0001] The present application is the U.S. National Phase
Application under 35 U.S.C. § 371 of International Appli-
cation No. PCT/CA2021/050458, filed Apr. 6, 2021, which
claims priority to Canadian Patent Application serial number
3,078,085, entitled “SYSTEM AND METHOD FOR
IMAGE SEGMENTATION FROM SPARSE PARTICLE
IMPINGEMENT DATA”, filed Apr. 9, 2020. The disclosure
of'each of which is herein fully incorporated by reference in
their entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to imaging tech-
niques, and, in particular, to a system and method for image
segmentation.

BACKGROUND

[0003] For many raster-based imaging applications, such
as electron microscopy, a bottleneck of imaging throughput
may be long data acquisition times. A potential avenue to
increase image acquisition speeds is to acquire partial data
and/or images, and employ computational algorithms to
construct a more complete image. However, doing so from
sparsely sampled data in a fashion that meets requisite
standards of accuracy, spatial resolution, and low noise
remains a challenge.

[0004] Image fusion provides an approach to reducing
noise in images while seeking to maintain desirable image
properties, such as high image contrast. For instance, Milillo
[MILILLO, T. et al., “Image fusion combining SEM and
ToF-SIMS images,” Surface and Interface Analysis, 47,
371-376 (2015)] improved a SEM image by combining
SEM data with optical microscopy using computational
algorithms. Similarly, Tarolli [TAROLLI, J. G. et al.,
“Improving secondary ion mass spectrometry image quality
with image fusion,” Journal of the American Society for
Mass Spectrometry, 25, 2154-2162 (2014)] demonstrated an
improved quality of secondary ion mass spectrometry
images without sacrificing chemical specificity through
image fusion with the higher intensity, and hence spatial
resolution, of electron microscopy images.

[0005] In some applications, images may require segmen-
tation, wherein labels are assigned to different pixels of an
image such that pixels with the same label share similar
characteristics to, for instance, separate different phases of
an image. Various approaches of segmentation have been
proposed for different applications. For instance, SEM
images of porous materials can be segmented based on an
algorithm that detects and allocates structures based on their
last occurrence in the z-direction, followed by local thresh-
olding, as presented by Salzer [SALZER, M., et al., “A
two-stage approach to the segmentation of FIB-SEM images
ot highly porous materials,” Materials Characterization, 69,
115-126 (2012)]. Alternatively, biological samples such as
red blood cells can be segmented using contour fitting and
filtering, as shown by Vromen and McCane [VROMEN, J.,
MCCANE, B., “Red blood cell segmentation from SEM
images,” 2009 24th International Conference Image and
Vision Computing New Zealand, 44-49, 1IEEE (2009)].
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While Sim [SIM, K., et al., “Canny optimization technique
for electron microscope image colourization,” Journal of
Microscopy, 232, 313-334 (2008)] employed a combination
of Canny edge detection, optimisation and supervised seg-
mentation, which requires initial user input, and Kreshuk
[KRESHUK, A., et al., “Automated detection and segmen-
tation of synaptic contacts in nearly isotropic serial electron
microscopy images,” PloS ONE, 6, €24899. (2011)] dem-
onstrated segmentation through machine learning tech-
niques, which require training data sets, these approaches to
segmentation may be prohibitively time-consuming for
many applications. Another common approach to segmen-
tation is a combination of thresholding, filtering, and region
growing, such as the process described by Yang and Buen-
feld [YANG, R., BUENFELD, N. “Binary segmentation of
aggregate in SEM image analysis of concrete,” Cement and
Concrete Research 31, 437-441 (2001)].

[0006] This background information is provided to reveal
information believed by the applicant to be of possible
relevance. No admission is necessarily intended, nor should
be construed, that any of the preceding information consti-
tutes prior art or forms part of the general common knowl-
edge in the relevant art.

SUMMARY

[0007] The following presents a simplified summary ofthe
general inventive concepts described herein to provide a
basic understanding of some aspects of the disclosure. This
summary is not an extensive overview of the disclosure. It
is not intended to restrict key or critical elements of embodi-
ments of the disclosure or to delineate their scope beyond
that which is explicitly or implicitly described by the fol-
lowing description and claims.

[0008] A need exists for a system and method image
segmentation that overcome some of the drawbacks of
known techniques, or at least, provides a useful alternative
thereto. Some aspects of this disclosure provide examples of
such processes and systems.

[0009] In accordance with one aspect, there is provided a
method for segmenting a plurality of features of a substrate
from sparse imaging data, the method comprising: imping-
ing the substrate surface with a particle beam at each of a
plurality of sensing locations, said plurality of sensing
locations defining a subset of locations within an area of
interest of the substrate surface, measuring at each of said
plurality of sensing locations, by each of at least two particle
sensors, an intensity value associated with post-impinge-
ment particles resulting from said impinging, calculating, for
each sensing location, a measured intensity based on the
intensity value of the sensing location, calculating, for each
of a plurality of estimated locations defining a further subset
of said area of interest, a corresponding estimated intensity
based on at least one of the following corresponding to one
or more locations proximal to said estimated location: one or
more proximal measured intensities, and one or more proxi-
mal estimated intensities, and segmenting each of said
plurality of estimated locations, based on said corresponding
estimated intensity, and each of said sensing locations, based
on said corresponding measured intensity, to correspond to
one of the plurality of features.

[0010] In some embodiments, calculating the measured
intensity is further based on at least one of the following
corresponding to one or more locations proximal to the
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sensing location: one or more proximal measured intensities,
and one or more proximal estimated intensities.

[0011] In some embodiments, calculating a measured
intensity and said calculating a corresponding estimated
intensity comprises solving an optimisation problem.
[0012] In some embodiments, the measured intensity is
determined from a combination of intensity values measured
by said two or more particle sensors.

[0013] In some embodiments, each estimated intensity is
calculated based on a distance between the corresponding
estimated location and each location of the one or more
proximal measured intensities and one or more proximal
estimated intensities used in calculating the estimated inten-
sity.

[0014] In some embodiments, each said estimated inten-
sity is related to a noise characteristic of said measured
intensities as measured by one of said at least two particle
sensors.

[0015] In some embodiments, the segmenting comprises
calculating a greyscale value at each of said estimated
locations.

[0016] In some embodiments, the segmenting comprises
solving an optimisation problem.

[0017] In some embodiments, the optimisation problem
comprises a penalty function.

[0018] In some embodiments, the penalty function is
related to an expected intensity corresponding to each of the
plurality of features of the substrate.

[0019] In some embodiments, the calculation of estimated
intensities includes an initial guess for said segmenting
estimated intensities to correspond to one of the plurality of
features.

[0020] In some embodiments, a plurality of segmented
images is generated, each of said plurality of segmented
images corresponding to a designated layer of the substrate.
[0021] In some embodiments, the segmented images are
vertically aligned to determine interconnections therebe-
tween in said substrate.

[0022] In some embodiments, the method further com-
prises generating a segmented image illustrating connectiv-
ity of components of said substrate.

[0023] In some embodiments, the plurality of sensing
locations comprises one or more lines.

[0024] In some embodiments, the one or more lines are
oriented in more than one direction.

[0025] In some embodiments, the one or more lines are
rotated relative to an orientation one or more of the substrate
surface features.

[0026] In some embodiments, the plurality of sensing
locations comprises a Lissajous pattern.

[0027] In some embodiments, the plurality of sensing
locations comprises an optimised pattern.

[0028] In some embodiments, the measuring by each of at
least two particle sensors is performed simultaneously.
[0029] Insome embodiments, the particle beam comprises
an electron beam.

[0030] In some embodiments, the two or more particle
sensors comprise two or more of an in-lens sensor, a
backscattered electron sensor, a segmented backscatter
detector, and an Everhart-Thornley detector.

[0031] In some embodiments, the post-impingement par-
ticles comprise at least one of primary electrons and sec-
ondary electrons.
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[0032] In accordance with another aspect, there is pro-
vided a method for segmenting a plurality of features of a
substrate from sparse imaging data, the substrate comprising
a plurality of features, the method comprising: impinging
the substrate surface with a particle beam at each of a
plurality of sensing locations, said plurality of sensing
locations defining a subset of locations within an area of
interest of the substrate surface, measuring at each of said
plurality of sensing locations using a particle sensor an
intensity value associated with post-impingement particles
resulting from said impinging, calculating, for each sensing
location, a measured intensity based on the intensity value of
the sensing location, calculating, for each of a plurality of
estimated locations defining a further subset of said area of
interest, a corresponding estimated intensity based on at
least one of the following corresponding to one or more
locations proximal to said estimated location: one or more
proximal measured intensities, and one or more proximal
estimated intensities, and segmenting each of said plurality
of estimated locations, based on said corresponding esti-
mated intensity, and each of said sensing locations, based on
said corresponding measured intensity, to correspond to one
of the plurality of features.

[0033] In some embodiments, calculating the measured
intensity is further based on at least one of the following
corresponding to one or more locations proximal to the
sensing location: one or more proximal measured intensities,
and one or more proximal estimated intensities.

[0034] In some embodiments, calculating a measured
intensity and said calculating a corresponding estimated
intensity comprises solving an optimisation problem.
[0035] In some embodiments, each estimated intensity is
calculated based on a distance between the corresponding
estimated location and each location of the one or more
proximal measured intensities and one or more proximal
estimated intensities used in calculating the estimated inten-
sity.

[0036] In some embodiments, the estimated intensity is
calculated, at least in part, based on a noise property of said
measured intensities.

[0037] In some embodiments, the segmenting comprises
calculating a greyscale value at each of said estimated
locations.

[0038] In some embodiments, the segmenting comprises
solving an optimisation problem.

[0039] In some embodiments, the optimisation problem
comprises a penalty function.

[0040] In some embodiments, the penalty function is
related to an expected intensity corresponding to each of the
plurality of features of the substrate.

[0041] In some embodiments, the calculation of estimated
intensities includes an initial guess for said segmenting
estimated intensities to correspond to one of the plurality of
features.

[0042] In some embodiments, method further comprises
generating a plurality of segmented images, each of said
plurality of segmented images corresponding to a designated
layer of the substrate.

[0043] In some embodiments, the method further com-
prises vertically aligning said plurality of segmented images
to determine interconnections therebetween in said sub-
strate.
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[0044] In some embodiments, the method further com-
prises generating a segmented image illustrating connectiv-
ity of components of said substrate.

[0045] In some embodiments, the plurality of sensing
locations comprises one or more lines.

[0046] In some embodiments, the one or more lines are
oriented in more than one direction.

[0047] In some embodiments, the one or more lines are
rotated relative to an orientation one or more of the substrate
surface features.

[0048] In some embodiments, the plurality of sensing
locations comprises a Lissajous pattern.

[0049] In some embodiments, the plurality of sensing
locations comprises an optimised pattern.

[0050] Insome embodiments, the particle beam comprises
an electron beam.

[0051] In some embodiments, the particle sensor com-
prises one of an in-lens sensor, a backscattered electron
sensor, a segmented backscatter detector, and an Everhart-
Thornley detector.

[0052] In some embodiments, the post-impingement par-
ticles comprise at least one of primary electrons and sec-
ondary electrons.

[0053] In accordance with another aspect, there is pro-
vided a system for segmenting a plurality of features of a
substrate from sparse imaging data, the substrate comprising
a plurality of features, the system comprising: a digital
application operable to receive as input sparse imaging data
related to an intensity value, as measured by each of at least
two particle sensors, associated with post-impingement par-
ticles resulting from impingement of the substrate surface
with a particle beam at each of a plurality of sensing
locations, said plurality of sensing locations defining a
subset of locations within an area of interest of the substrate,
said digital application further operable to calculate, for each
sensing location, a measured intensity based on the intensity
value of the sensing location, calculate, for each of a
plurality of estimated locations defining a further subset of
said area of interest, a corresponding estimated intensity
based on at least one of the following corresponding to one
or more locations proximal to said estimated location: one or
more proximal measured intensities, and one or more proxi-
mal estimated intensities, and segment each of said plurality
of estimated locations, based on said corresponding esti-
mated intensity, and each of said sensing locations, based on
said corresponding measured intensity, to correspond to one
of the plurality of features.

[0054] In some embodiments, the calculation of the mea-
sured intensity is further based on at least one of the
following corresponding to one or more locations proximal
to the sensing location: one or more proximal measured
intensities, and one or more proximal estimated intensities.
[0055] In some embodiments, calculating said measured
intensity and said corresponding estimated intensity com-
prises digitally solving an optimisation problem.

[0056] In some embodiments, the measured intensity is
determined from a combination of intensity values measured
by said two or more particle sensors.

[0057] In some embodiments, each said estimated inten-
sity is calculated based on a distance between the corre-
sponding estimated location and each location of the one or
more proximal measured intensities and one or more proxi-
mal estimated intensities used in calculating the estimated
intensity.
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[0058] In some embodiments, each said estimated inten-
sity is related to a noise characteristic of said measured
intensities as measured by one of said at least two particle
sensors.

[0059] In some embodiments, the digital application is
operable to calculate a greyscale value at each of said
estimated locations for segmentation.

[0060] In some embodiments, the digital application is
operable to segment said estimated intensities via solving an
optimisation problem.

[0061] In some embodiments, the optimisation problem
comprises a penalty function.

[0062] In some embodiments, the penalty function is
related to an expected intensity corresponding to each of the
plurality of features of the substrate.

[0063] In some embodiments, the calculation of estimated
intensities includes an initial guess for said segmenting
estimated intensities to correspond to one of the plurality of
features.

[0064] In some embodiments, the system is further oper-
able to generate a plurality of segmented images, each of
said plurality of segmented images corresponding to a
designated layer of the substrate.

[0065] In some embodiments, the system is further oper-
able to vertically align said plurality of segmented images to
determine interconnections therebetween in said substrate.
[0066] In some embodiments, the system is further oper-
able to generate a segmented image illustrating connectivity
of components of said substrate.

[0067] In some embodiments, the plurality of sensing
locations comprises one or more lines.

[0068] In some embodiments, the one or more lines are
oriented in more than one direction.

[0069] In some embodiments, the one or more lines are
rotated relative to an orientation one or more of the substrate
surface features.

[0070] In some embodiments, the plurality of sensing
locations comprises a Lissajous pattern.

[0071] In some embodiments, the plurality of sensing
locations comprises an optimised pattern.

[0072] Insome embodiments, the particle beam comprises
an electron beam.

[0073] In some embodiments, the two or more particle
sensors comprise two or more of an in-lens sensor, a
backscattered electron sensor, a segmented backscatter
detector, and an Everhart-Thornley detector.

[0074] In some embodiments, the post-impingement par-
ticles comprise at least one of primary electrons and sec-
ondary electrons.

[0075] In some embodiments, the system further com-
prises an apparatus operable to impinge the substrate with a
particle beam and comprising said two or more particle
sensors.

[0076] In some embodiments, the apparatus is a scanning
electron microscope, and transmission electron microscope,
or a tunneling electron microscope.

[0077] In accordance with another aspect, there is pro-
vided a system for segmenting a plurality of features of a
substrate from sparse imaging data, the substrate comprising
a plurality of features, the system comprising: a digital
application operable to receive as input sparse imaging data
related to an intensity value, as measured by a particle
sensor, associated with post-impingement particles resulting
from impingement of the substrate surface with a particle
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beam at each of a plurality of sensing locations, said
plurality of sensing locations defining a subset of locations
within an area of interest of the substrate, said digital
application further operable to calculate, for each sensing
location, a measured intensity based on the intensity value of
the sensing location, calculate, for each of a plurality of
estimated locations defining a further subset of said area of
interest, a corresponding estimated intensity based on at
least one of the following corresponding to one or more
locations proximal to said estimated location: one or more
proximal measured intensities, and one or more proximal
estimated intensities, and segment each of said plurality of
estimated locations, based on said corresponding estimated
intensity, and each of said sensing locations, based on said
corresponding measured intensity, to correspond to one of
the plurality of features.

[0078] In some embodiments, calculating the measured
intensity is further based on at least one of the following
corresponding to one or more locations proximal to the
sensing location: one or more proximal measured intensities,
and one or more proximal estimated intensities.

[0079] In some embodiments, calculating the measured
intensity and said corresponding estimated intensity com-
prises digitally solving an optimisation problem.

[0080] In some embodiments, each estimated intensity is
calculated based on a distance between the corresponding
estimated location and each location of the one or more
proximal measured intensities and one or more proximal
estimated intensities used in calculating the estimated inten-
sity.

[0081] In some embodiments, the estimated intensity is
calculated, at least in part, based on a noise property of said
measured intensities.

[0082] In some embodiments, the digital application is
operable to segment said estimated intensities by calculating
a greyscale value at each of said estimated locations.
[0083] In some embodiments, the digital application is
operable to segment said estimated intensities by solving an
optimisation problem.

[0084] In some embodiments, the optimisation problem
comprises a penalty function.

[0085] In some embodiments, the penalty function is
related to an expected intensity corresponding to each of the
plurality of features of the substrate.

[0086] In some embodiments, the calculation of estimated
intensities includes an initial guess for said segmenting
estimated intensities to correspond to one of the plurality of
features.

[0087] In some embodiments, the digital application is
further operable to generate a plurality of segmented images,
each of said plurality of segmented images corresponding to
a designated layer of the substrate.

[0088] In some embodiments, the digital application is
further operable to vertically align said plurality of seg-
mented images to determine interconnections therebetween
in said substrate.

[0089] In some embodiments, the system is further oper-
able to generate a segmented image illustrating connectivity
of components of said substrate.

[0090] In some embodiments, the plurality of sensing
locations comprises one or more lines.

[0091] In some embodiments, the one or more lines are
oriented in more than one direction.
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[0092] In some embodiments, the one or more lines are
rotated relative to an orientation one or more of the surface
features.

[0093] In some embodiments, the plurality of sensing
locations comprises a Lissajous pattern.

[0094] In some embodiments, the plurality of sensing
locations comprises an optimised pattern.

[0095] Insome embodiments, the particle beam comprises
an electron beam.

[0096] In some embodiments, the particle sensor com-
prises one of an in-lens sensor, a backscattered electron
sensor, a segmented backscatter detector, and an Everhart-
Thornley detector.

[0097] In some embodiments, the post-impingement par-
ticles comprise at least one of primary electrons and sec-
ondary electrons.

[0098] In some embodiments, the system further com-
prises an apparatus operable to impinge the substrate with a
particle beam and comprising said particle sensor.

[0099] In some embodiments, the apparatus is an electron
microscope.
[0100] Other aspects, features and/or advantages will

become more apparent upon reading of the following non-
restrictive description of specific embodiments thereof,
given by way of example only with reference to the accom-
panying drawings.

BRIEF DESCRIPTION OF THE FIGURES

[0101] Several embodiments of the present disclosure will
be provided, by way of examples only, with reference to the
appended drawings, wherein:

[0102] FIGS. 1A and 1B are images of a substrate seg-
mented using two variations of thresholding;

[0103] FIG. 2A is a SEM image of a substrate, and FIG.
2B is a representation of the image of FIG. 2A processed
using an edge detection process;

[0104] FIG. 3 is a schematic of a cross-section of a
microchip, in accordance with various embodiments;
[0105] FIGS. 4A and 4B are SEM images of a substrate
acquired using a backscattered electron detector and an
in-lens detector, respectively, in accordance with various
embodiments;

[0106] FIGS. 5A and 5B are partial images of a substrate
acquired using every fourth line scan of a backscattered
electron detector and an in-lens detector, respectively, in
accordance with various embodiments;

[0107] FIG. 6 is a plot of a function for weighting values
of neighbouring pixels in an optimisation problem, in accor-
dance with at least one of the various embodiments;
[0108] FIGS. 7A and 7B are images of solutions to an
optimisation problem seeded with partial images acquired
by a backscattered electron detector and an in-lens detector,
respectively, in accordance with various embodiments;
[0109] FIGS. 8A, 8B, and 8C are plots of sample noise, a
fast Fourier transform of noise, and a model corresponding
to noise from a sample, respectively, in accordance with
various embodiments;

[0110] FIG. 9is a plot of a function used in an optimisation
problem that may be solved for segmenting an image, in
accordance with various embodiments;

[0111] FIG. 10A is an image that is reconstructed from
every fourth line scan of a substrate by solving an optimi-
sation problem, and FIG. 10B is a segmented image gener-
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ated by solving an optimisation problem seeded with the
image of FIG. 10A as an initial guess, in accordance with
various embodiments;

[0112] FIG. 11A is backscattered electron image of a
substrate, FIGS. 11B and 11C are partial images with every
fourth line scan of the substrate of FIG. 11A as acquired by
a backscattered electron detector and an in-lens detector,
respectively, and FIG. 11D is an image of the substrate that
is reconstructed from the images in FIGS. 11B and 11C, in
accordance with various embodiments;

[0113] FIGS. 12A to 12D are segmented images of the
reconstructed image of FIG. 11D as generated by solving an
optimisation problem using the parameter sets shown in the
corresponding respective tables;

[0114] FIG. 13A is backscattered electron image of a
substrate, FIGS. 13B and 13C are partial images with every
second line scan of the substrate of FIG. 13A as acquired by
a backscattered electron detector and an in-lens detector,
respectively, and FIG. 13D is an image of the substrate that
is reconstructed from the images in FIGS. 11B and 11C, in
accordance with various embodiments;

[0115] FIGS. 14A to 14D are segmented images of the
reconstructed image of FIG. 13D as generated by solving an
optimisation problem using the parameter sets shown in the
corresponding respective tables;

[0116] FIG. 15 is a schematic diagram of an exemplary
process flow for image segmentation from partial image data
from more than one detector, in accordance with at least one
embodiment; and

[0117] FIG. 16 is a schematic diagram of an exemplary
process for generating a segmented image from a partial
image acquired from a detector, in accordance with various
embodiments.

[0118] Flements in the several figures are illustrated for
simplicity and clarity and have not necessarily been drawn
to scale. For example, the dimensions of some of the
elements in the figures may be emphasised relative to other
elements for facilitating understanding of the various pres-
ently disclosed embodiments. Also, common, but well-
understood elements that are useful or necessary in com-
mercially feasible embodiments are often not depicted in
order to facilitate a less obstructed view of these various
embodiments of the present disclosure.

DETAILED DESCRIPTION

[0119] Various implementations and aspects of the speci-
fication will be described with reference to details discussed
below. The following description and drawings are illustra-
tive of the specification and are not to be construed as
limiting the specification. Numerous specific details are
described to provide a thorough understanding of various
implementations of the present specification. However, in
certain instances, well-known or conventional details are not
described in order to provide a concise discussion of imple-
mentations of the present specification.

[0120] Various apparatuses and processes will be
described below to provide examples of implementations of
the system disclosed herein. No implementation described
below limits any claimed implementation and any claimed
implementations may cover processes or apparatuses that
differ from those described below. The claimed implemen-
tations are not limited to apparatuses or processes having all
of the features of any one apparatus or process described
below or to features common to multiple or all of the
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apparatuses or processes described below. It is possible that
an apparatus or process described below is not an imple-
mentation of any claimed subject matter.

[0121] Furthermore, numerous specific details are set forth
in order to provide a thorough understanding of the imple-
mentations described herein. However, it will be understood
by those skilled in the relevant arts that the implementations
described herein may be practiced without these specific
details. In other instances, well-known methods, procedures
and components have not been described in detail so as not
to obscure the implementations described herein.

[0122] In this specification, elements may be described as
“configured to” perform one or more functions or “config-
ured for” such functions. In general, an element that is
configured to perform or configured for performing a func-
tion is enabled to perform the function, or is suitable for
performing the function, or is adapted to perform the func-
tion, or is operable to perform the function, or is otherwise
capable of performing the function.

[0123] It is understood that for the purpose of this speci-
fication, language of “at least one of X, Y, and Z” and “one
or more of X, Y and Z” may be construed as X only, Y only,
Z only, or any combination of two or more items X, Y, and
Z (e.g., XYZ, XY, YZ, 77, and the like). Similar logic may
be applied for two or more items in any occurrence of “at
least one . . . ” and “one or more . . . ” language.

[0124] Unless defined otherwise, all technical and scien-
tific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
invention belongs.

[0125] Throughout the specification and claims, the fol-
lowing terms take the meanings explicitly associated herein,
unless the context clearly dictates otherwise. The phrase “in
one of the embodiments™ or “in at least one of the various
embodiments” as used herein does not necessarily refer to
the same embodiment, though it may. Furthermore, the
phrase “in another embodiment” or “in some embodiments™
as used herein does not necessarily refer to a different
embodiment, although it may. Thus, as described below,
various embodiments may be readily combined, without
departing from the scope or spirit of the innovations dis-
closed herein.

[0126] In addition, as used herein, the term “or” is an
inclusive “or” operator, and is equivalent to the term “and/
or,” unless the context clearly dictates otherwise. The term
“based on” is not exclusive and allows for being based on
additional factors not described, unless the context clearly
dictates otherwise. In addition, throughout the specification,
the meaning of “a,” “an,” and “the” include plural refer-
ences, unless the context clearly dictates otherwise. The
meaning of “in” includes “in” and “on.”

[0127] The term “comprising” as used herein will be
understood to mean that the list following is non-exhaustive
and may or may not include any other additional suitable
items, for example one or more further feature(s), compo-
nent(s) and/or element(s) as appropriate.

[0128] The systems and methods described herein pro-
vide, in accordance with different embodiments, different
examples in which images may be segmented using com-
putational analysis algorithms. In some embodiments, such
segmentation may be performed on images computationally
completed from sparse data sets and/or partial images using
processes and systems that are described below. While some
examples herein described may make reference to images or
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partial images acquired from scanning electron microscopy
data, the skilled artisan will appreciate that the systems and
processes herein disclosed may also be applied to other
imaging applications, such as those in which raster-imaging
of a sample is performed, and/or those in which data is
acquired by, for instance, other ion-beam, topographical, or
optical imaging platforms, non-limiting examples of which
may include, but are not limited to, a transmission electron
microscope (TEM), an atomic force microscope (AFM), a
confocal microscope, or the like.

[0129] As the process of raster imaging may be time
consuming, collecting partial noisy images and completing
them using computational optimisation may increase image
acquisition speeds. For example, and in accordance with at
least one of the various embodiments herein described,
collecting every nth line of data from an otherwise typical
electron microscopy imaging protocol may decrease an
acquisition time by a factor of n (e.g. acquiring every fourth
line of data from a substrate using a SEM may decrease the
acquisition time by a factor of 4). Furthermore, such com-
putational optimisation protocols may, in accordance with
various embodiments, be tailored for additional applica-
tions. For instance, if image segmentation is desirable, an
optimisation problem to be solved computationally may
contain additional terms and/or variables so related to be
considered during optimisation.

[0130] Various computational approaches exist to solving
the issue of “in-filling” partial images. However, associated
respective disadvantages limit their applicability for various
situations. For instance, classical image processing uses a
toolbox of procedures for operating on sets of pixels which
are iterated over single pixels or regions. These methods
may use global information like a pixel-value histogram in
deciding what operations to perform or to control the
operation of a protocol. Examples of such classical process-
ing operations include filtering, interpolation, region shrink-
ing, and the like. Some methods may be sophisticated, and
may borrow from the other methods, operating, in some
instances, in frequency space, use geometric information
including ‘snakes’, and the like. While such approaches are
usually efficient in that each step is readily understood, and
therefore easier to tune and to debug, a disadvantage of
classical methods may be that each process may add and/or
remove information, which may be lost for subsequent
processing steps. For example, initial filtering to remove
apparent noise may suppress data related to a feature of
interest, resulting in a loss of ability for subsequent pro-
cesses to characterise that feature.

[0131] Model-based processes typically comprise a statis-
tical model from which likely physical parameters to have
produced the observed data are extracted. Examples of
model-based processes may include, but are not limited to
maximum likelihood estimates, Bayesian estimates, and the
like. An advantage of these models is that they may simul-
taneously take many or all relevant probabilities into
account, including measurement error, observed material
property and geometric distributions, expected outcomes,
and the like. It is often therefore less likely that one aspect
of a model will effectively erase information useful to
another aspect, although it may still be possible that practical
computational methods will have the same effect in the case
of nonlinear models. Furthermore, another advantage of
model-based approaches is that, in many cases, one can use
the same model to predict the accuracy of the output, and
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even use this information to design more effective scanning
techniques. On the other hand, model-based methods may
require experts to define a model and with reasonable
understanding of the mechanism.

[0132] Optimisation protocols may also comprise machine
learning methods. Rather than beginning with an under-
standing of the relevant physics and/or framework of a
system, such processes may use generic models which have
proven themselves in other applications. Resulting models
may be extremely complex. However, the end user often
need not understand results to apply them. An advantage is
that they can be constructed quickly, and do not require an
understanding of statistics or optimisation, and may, in many
cases, outperform expert models, especially where no con-
vincing model exists. However, disadvantages may include
that such systems may often produce incorrect results, may
be susceptible to distorted data, do not generally give any
warning when they are used on data for which they are not
trained, require a high amount of computation, and typically
require significant human-curated data.

[0133] While various approaches have been proposed for
image segmentation, they may typically be application-
specific, with variable performance and applicability based
on needs and substrate characteristics. For instance, while
thresholding (i.e. assigning a label to a pixel of an image
based on, for instance, a threshold intensity value) may
successfully be employed on low-noise SEM images, it may
perform poorly on images containing a higher degree of
noise. An example of this is shown in FIGS. 1A and 1B
comprising SEM images of wires on a circuit board or
integrated circuit. FIG. 1A shows examples (circles indi-
cated by arrows) of instances where thresholding may assign
improper labels to pixels due to noise. Similarly, attempts to
remove noise, such as through the application of a Gaussian
filter, may result in reduced contrast, and/or cause separate
parts of an image to appear connected, as shown in the
connected wire components of the SEM image of FIG. 1B.
[0134] Similarly, while Canny edge detection used in
combination with thresholding may be suitable for imaging
certain objects, such red blood cells, this method may not
perform well, or may require too much user input and/or
time, for segmenting the many various layers of a PCB
board or computer chip. An example of a deficiency of this
approach is shown in FIG. 2, where a noisy SEM image in
FIG. 2A results in poor Canny edge detection, the results of
which are shown in FIG. 2B.

[0135] Automated approaches to image segmentation, and
particularly automated approaches that may be successfully
employed in a short amount of time, have much potential
value in applications of, for instance, reverse engineering.
For instance, integrated circuits for in computer-based sys-
tems typically comprise many layers, and often have three
distinguishable components: silicon without metal, metal
wires under a layer of silicon, and metal vias (through-plane
wires connecting different layers of an integrated circuit).
FIG. 3 shows a schematic of a typical example of such a
structure, in this case with five layers of metallisation (image
license is under Creative Commons Attribution 2.5 Generic
by https://commons.wikimedia.org/wiki/User:Cepheiden).
To image such samples, upper layers may be cut away to a
horizontal plane which intersects the vias, followed by
polishing of the samples. As vias connect wires in upper and
lower metallisation layers, they may appear “inside” wires in
resulting images. Metal of the vias may be exposed by such
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processes, and may result in vias being very bright features
of resultant images. It would therefore be advantageous to be
able to rapidly acquire SEM images on a layer-by-layer
basis, and perform an accurate segmentation of the such
images in order to reverse engineer connections between
various wire components.

[0136] While the skilled artisan will appreciate the that
systems and methods herein described apply to a broad
range of imaging applications, various exemplary embodi-
ments of the disclosure will now be provided in the context
of integrated circuit images using SEM images, and/or
partial SEM images or data. Various examples may include
the use of various ion detectors or other raster-based imaging
techniques. Non-limiting examples of such detectors may
include backscattered electron (BSE) detectors, secondary
electron (SE) detectors, Everhart-Thornley (E-T) detectors,
through-lens detectors (TTL), in-lens detectors, AFMs, or
the like.

[0137] With reference to FIGS. 4 to 14, various embodi-
ments will now be described which utilise partial images
acquired from an in-lens and a BSE detector. In accordance
with some embodiments, images or partial images may be
collected simultaneously so that data from each respective
detector is aligned. However, the skilled artisan will appre-
ciate that embodiments herein disclosed which utilise a
plurality of partial images for segmentation purposes may
also acquire images serially, for instance using a single
detector. Furthermore, aspects of the disclosure may apply to
systems wherein a single partial image is acquired, or
conversely, more than two images, while remaining within
the scope of the disclosure.

[0138] FIGS. 4A and 4B show SEM images of the same
portion of a circuit chip using a backscattered electron
detector (BSD) and in-lens detector, respectively. In this
example, and in accordance with at least one embodiment,
images were simultaneously collected with detectors rotated
30° relative to the orientation of the sample components. In
accordance with some embodiments, such a configuration
may be employed in the process of acquiring partial images
so as to maintain a high degree of information about the
extent of the components being imaged.

[0139] As can be seen in FIGS. 4A and 4B, images from
different detectors may have different noise and signal
contrast. The process of image fusion may allow for the
combination of, for instance, respective advantages of the
two images. For instance, in accordance with at least one
embodiment, one may employ an algorithm to utilise the
high contrast of a BSD image and the noise characteristics
(e.g. white noise) of an in-lens detector image. In the
following examples and description, and in accordance with
various embodiments, images will be reconstructed for
segmentation from partial data of such images. An example
of such partial data is shown in FIGS. 5A and 5B, where only
every fourth line of a typical raster scan in an SEM using a
BSD and in-lens detector, respectively, is shown.

[0140] An approach to image segmentation from partial
data, such as that shown in FIG. 5A or FIG. 5B, may be, in
accordance with various embodiments, related to solving an
optimisation problem(s). The following description begins
with a simple exemplary optimisation problem, and adds
complexity in steps. A first step may be, in accordance with
one embodiment, solving the following optimisation prob-
lem.
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[0141] In this example, V, ; is the pixel of a reconstructed
image at position (i, j), I, ;. ; ;1 the corresponding pixel in
the (partial) in-lens detector image, S is the set of scanned
pixel positions, W, . is a 2D array of weights for neigh-
bourhood comparisons, and o, is a penalty parameter which
determines the trade-off between fitting the data and the
smoothness of a resultant image. The regularisation term,
Z e v Wil Vi =V J-)2 penalises differences
between a pixel and its neighbours. In accordance with some
embodiments, and in several of the subsequent examples,
neighbours up to a distance of 9 may be considered, and may
be of the function type of illustrated in FIG. 6, where the
height of the surface plot is the weight of their difference in
value to the central pixel. However, the skilled artisan will
appreciate that other penalty functions known in the art may
be employed within solving an optimisation problem with-
out departing from the scope of this disclosure.

[0142] In accordance with various embodiments, pixels of
a reconstructed image V,; may, in addition to referring to
pixel locations that were not measured (i.e. do not corre-
spond to a “measured location”, also herein referred to as an
“estimated location™), they may additionally refer to pixel
values that have been measured. That is, in some embodi-
ments, despite a pixel location being associated with a
measured value, this value may be modified and/or over-
written (also herein referred to as “estimated”) in solving an
optimisation problem.

[0143] In accordance with various embodiments, FIG. 7A
and FIG. 7B show the result of solving the optimisation
problem described above for the partial images shown in
FIGS. 5A and 5B, respectively. The resulting images may be
relatively smooth, with less noticeable noise. However,
image quality may still be insufficient for segmentation
applications. As such, and in accordance with at least one
embodiment, image fusion may be introduced into the
optimisation problem.

[0144] As mentioned above, different detectors may have
different sensing properties. For instance, a BSD image
typically has a higher contrast than an in-lens image, but
may have non-white noise, as shown in FIG. 8A. A Fourier
transform of a line of this noise (FIG. 8B) shows that noise
may appear as if it is low-pass filtered. If noise is asymmet-
ric, as it is in this example, it may in some cases be modeled
as a decaying exponential. For example, and in accordance
with at least one embodiment, the noise of a BSD image may
be modeled as the following expression.

0 x=5
&) = 205410 s

[0145] In some cases, the noise may be modeled as a
Gaussian with a standard deviation of approximately 2,
which may result in the shape in FIG. 8C. In this example,
this function is termed B. In accordance with some embodi-
ments, the image generated in an optimisation problem like
that discussed above may be filtered by convolving the
image with B symbolically as, in accordance with some

embodiments, ¥,B,V,,, .. The difference between this con-
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volution and the BSD image may therefore be noise with the
same characteristic. Such a convolution of the difference
may be considered to be a weighting of the noise by its
expected spectrum, in accordance with some embodiments,
and may be added to the in-lens term to create an optimi-
sation problem which may perform image fusion through
solving the following optimisation problem.

minZ Vis —Iin—lens,i,j)z + Z ZBk[IBSD,i,j - ZB]‘ Vi+k,j)2 +
v *
Alz Z Wi’,j’(Vm’,ﬁ/ - Vi,j)z
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[0146] If a goal is image segmentation of a completed
image, in accordance with some embodiments, a segmen-
tation penalty term may also be introduced into an optimi-
sation problem. FIG. 9 shows a non-limiting example of
such a segmentation penalty term. In this instance, the
penalty function is a sixth order polynomial formed by the
product of three parabolas. While the skilled artisan will
appreciate that a host of various other penalty functions may
be employed, it may be advantageous to use such a term due
to its simplicity which containing three minima. In accor-
dance with some embodiments, the minima may be adjusted
in a penalty function to correspond to values b, d, and v,
which can be tuned based on a particular application. The
skilled artisan will be appreciated that such values can be
found empirically for, for instance, a given set of materials,
or solved for theoretically, simulated, chosen through some
optimisation process, or the like. In the following example
of reverse-engineering an integrated circuit, these greyscale
values correspond to those of silicon, buried metallisation,
and vias. In some embodiments these values may be chosen
to average pixel values, while in others they may be different
from the average in order to produce a higher quality
segmentation. For instance, the following exemplary
embodiments employ values that do not necessarily relate to
the average normalised pixel values.

[0147] An example penalty function for segmentation may
therefore, in some embodiments, be of the following form.

> Vg =P Wiy = dP (Vg —0)?
LJ

[0148] In accordance with some embodiments, various
segmentation optimisation problems may be non-linear, and
may benefit from solving algorithms comprising more than
one step. In some embodiments, solving a first optimisation
problem may provide a solution from which a second
optimisation problem may obtain an initial guess. For
instance, a first optimisation problem may provide an initial
completed image guess from a partial data set or partial
image, and a second optimisation step may use this initial
guess to perform a segmentation. One example, in accor-
dance with at least one embodiment, would be to solve the
following problem first, which may be quadratic and insen-
sitive to an initial guess. This problem may be interchange-
ably referred to throughout the disclosure as a “first prob-
lem”, or “first optimisation problem,” or “first step.”
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[0149] In some embodiments, this may be followed by a
second step, which, in accordance with some embodiments,
may be sensitive to a starting guess, and may comprise a
non-convex problem, non-quadratic optimisation problem
resembling the following equation set, which is herein
interchangeably referred to as a “second problem”, or “seg-
mentation problem,” or “second optimisation problem,” or
“second step.”

= ieS,j k

Z Vg = Tintens.if)* + Z ZBk(IBSD,i,j - ZBk Vi+k,j)z +
X

MY Wy (Vv oy = Vgl + 0y Uy =P iy = (Vi =0
Li (7.7 )eN L

[0150] In the abovementioned embodiments, two param-
eters A, and A, may be chosen or solved to control the weight
and/or relative weight of the penalty functions. For example,
in some embodiments, increasing the parameter A, may
increase the smoothness (or blurriness) of a resultant image
from a first optimisation step. If increased to a significant
extent, this may even result in all pixels being assigned to a
single segment upon completion of the second step. Increas-
ing A, on the other hand, may increase the attraction of pixel
values to the assigned segment values (i.e. b, d, v). In such
a situation, if A, is too large, the solution after the second
step mentioned above may resemble a rounded-off version
of the initial guess from the first step, lowering the relative
importance of the smoothing penalty (i.e. the fit-to-data term
may be relatively ignored).

[0151] In accordance with some embodiments, segmenta-
tion problems may be solved in two broad optimisation
solution steps, as described above. However, in some
embodiments, additional steps may also be performed that
remain within the scope of this disclosure. For instance, it
may be advantageous to normalise pixel intensity values
prior to solving an optimisation problem. For example, if
both an BSD and in-lens detector acquired partial images
(e.g. acquired every nth line across a sample), one may first
normalise Izg, and I, ... pixel values to be in a specific
range (e.g. between 0 and 2), in accordance with at least one
embodiment.

[0152] The results of the two broad optimisation problems
following a normalisation of pixel intensities to be within
the range [0, 2] are shown in FIG. 10. In this example, and
in accordance with various embodiments, every fourth line
scan of an integrated circuit in an SEM from a BSD detector
and in-lens detector were provided as input. FIG. 10A shows
a completed image from every fourth line scan from the first
optimisation problem, while FIG. 10B shows a segmented
image following the second optimisation problem, which
was seeded with the solution from the first step as an initial
guess (i.e. the second step was given FIG. 10A as an initial
guess), in accordance with at least one embodiment. In this
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example, the second step was given the parameters b=0,
d=1, v=2, »,=40 000, and A,=100 000.

[0153] In some embodiments, such as in applications of,
for instance, segmenting images of integrated circuits or
other electronic devices, connectivity between components
may be more important in an output segmented image than
the actual dimensions or thickness of individual compo-
nents. For instance, in the upper layers of computer chips,
wires may be thicker with more space between them, which
may result in higher quality segmentation than with lower
layers of a chip where components are more densely packed.
For instance, when wires are quite close to each other, partial
SEM images or line scans may not produce a distinct enough
intensity change between wires to resolve them (i.e. the
greyscale value between wires may never reach an expected
value of b).

[0154] FIGS. 11A to 11D show an example of an inte-
grated circuit densely packed with wires, in accordance with
one embodiment. In this example, FIG. 11A shows a BSD
image of the sample. FIGS. 11B and 11C show partial
images of one fourth of the line scans, as acquired by the
BSD and an in-lens detector, respectively. The result of
solving the first optimisation problem described above is
shown in FIG. 11D.

[0155] The results of a second optimisation step using the
image shown in FIG. 11D as an initial guess are shown for
various parameter sets in FIG. 12. In accordance with one
embodiment, a “default” parameter set may be those shown
in the table of FIG. 12A. In this example, however, false
connections are shown in the resultant segmented image of
FIG. 12A. In accordance with various embodiments, the
parameter sets can be tuned, either manually by a user or
automatically, to adjust optimisation for wire thickness,
boundary smoothness, connectivity, and the like. Examples
of such embodiments are shown in FIGS. 12B to 12D. For
instance, modifying the greyscale values associate with
background (e.g. silicon) and wires (i.e. b and d, in this
example, respectively) can adjust the apparent thickness and
connectivity of wires. In this example, FIG. 12D shows a
parameter set with relatively high background and wire
greyscale values, which produces a segmented image that
has fully resolved wires, in accordance with one embodi-
ment.

[0156] For certain image completion and/or segmentation
applications, and in accordance with various embodiments,
optimisation solutions may be improved by acquiring an
increased amount of data points (e.g. every second or third
line rather than every fourth line in an SEM raster scan, for
instance). FIG. 13 shows SEM imaging of the same sample
as FIG. 11, but in this case, FIGS. 13B and 13C show pixel
intensities for every second line acquired from SEM imag-
ing using a BSD detector and in-lens detector, respectively,
rather than every fourth line, as shown in FIG. 11. The
completed image from a first optimisation step is shown in
FIG. 13D. Segmented images resulting from solving a
second optimisation problem using different segmentation
parameters are shown in FIGS. 14A to 14D, which used as
an initial guess the completed image of FIG. 13D. As with
the previous embodiment, this example, which began using
every second line scan from BSD and in-lens detectors, also
provides a segmented image with fully resolved wires with
the parameter set shown in FIG. 14D.

[0157] The various non-limiting embodiments described
in FIGS. 4 to 14 are further schematically illustrated in FIG.

Jun. 22, 2023

15. In this exemplary process diagram, two detectors 1502
and 1504 acquire partial image data, which is utilised by a
first optimisation problem algorithm 1510 in order to gen-
erate a more complete image. Exemplary functions in prob-
lem 1510 may include, but are not limited to, in-filling 1514,
image fusion 1512, and the like. In accordance with various
embodiments, a solution to the first problem 1510 may
provide an image 1520, which, may serve as an initial guess
to a subsequent second optimisation problem 1530. Non-
limiting examples of functions that may optionally be
included in the second problem 1530 are those that were
initially included in the first problem 1510, such as image
fusion terms 1532 or image infilling/adjustment terms 1534,
as well as terms and/or parameters related to image seg-
mentation 1536. In accordance with various embodiments, a
solution to the second optimisation problem may comprise
a segmented image 1540.

[0158] Various embodiments of the present disclosure
relate to an optimisation model(s) for estimating a segmen-
tation image based on partial image data. In yet other
embodiments, complete image data can be used with various
segmentation algorithms herein disclosed, or images com-
pleted from partial data can be used in similar segmentation
algorithms. In some embodiments, (partial) image data may
be acquired in one or more SEM detectors, non-limiting
examples of which may include backscattered electron
detectors and/or secondary electron detectors. In some
embodiments, a single detector may be used to acquire
multiple data sets for the same regions of a sample. For
instance, one embodiment may comprise a BSD detector
acquiring data from the same line locations of a sample
sequentially at different angles, from which optimisation
algorithms similar to those disclosed may perform image
fusion, completion and segmentation. In other embodiments,
more than one of the same type of detector can be employed
for sensing, or various combinations of detectors can be
employed, either in parallel (simultaneously) or sequentially
(e.g. two BSE detectors, and one SE detector). In other
embodiments, a single detector (e.g. a BSD) can be used to
sparsely sample data from a surface to be imaged, and the
sparsely sampled data can then be used in optimisation
solutions as herein described.

[0159] As such, various elements represented in FIG. 15
may be removed, altered, or added to, in accordance with
various embodiments. In one embodiment, a detector, such
as a SEM detector, may sparsely sample a substrate surface
to obtain a partial image 1610. The partial image may serve
as input for a function or series of functions that may provide
as higher degree of resolution by, for instance, in-filling via
an optimisation problem, in element 1620. Either simulta-
neously or subsequently, a problem may be algorithmically,
iteratively, or otherwise digitally processed as in step 1630
to provide an output image 1640 which is segmented into a
designated number of components. For example, a micro-
chip may be partially imaged in 1610 using a BSD detector,
while a segmented image is output at 1640 which comprises
three colours corresponding to silicon, wires, and vias.

[0160] Yet other embodiments may also employ various
scan patterns to obtain partial or complete datasets and/or
images. For instance, while the abovementioned examples
present embodiments wherein data was utilised in optimi-
sation problems from parallel lines of SEM scanning of
samples, other embodiments may include, but are not lim-
ited to, scanning every nth line in alternating directions (e.g.
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in the positive horizontal direction, then the negative x-di-
rection), performing line scans first horizontally separated a
distance y followed by vertical line scans spaced by x,
scanning in Lissajous patterns, measuring in random sample
regions (e.g. sampling in random seclected regions that
comprise 10% of a sample surface), or other forms of sparse
sampling or downsampling, which may, for instance,
improve resultant images and/or solutions to the optimisa-
tion problems herein described, or reduce sampling time
while providing adequate quality and noise properties of
resultant images.

[0161] In yet other embodiments, images may be con-
structed of various dimensions. For instance, while the
abovementioned embodiments described segmenting a 2D
surface, 3D segmentation could also be performed using the
methods and systems herein described. For example, acquir-
ing data from the same sample regions from different angles
could be used to reconstruct 3D topologies, for instance
using “(de)shadowing” techniques, various forms of which
will be appreciated by the skilled artisan. In other embodi-
ments, 3D topologies may be recreated from sets of 2D
segmented images, for instance by stacking segmented 2D
images to reconstruct a 3D substrate, such as a microchip.
[0162] Invarious embodiments, various regularisation and
cost functions may be applied in optimisation problems,
examples of which may include, but are not limited to,
squared-difference-of-neighbours regularisation, n-degree
polynomials and/or L-curve parameter selection.

[0163] Insome measurement schemes, data acquired from
various detectors may be a function of energies involved in
measurements. For example, relatively higher beam energies
in SEM measurements, such as those produced at higher
operating voltages, may allow electrons to penetrate samples
to a higher degree. Such data may provide, in accordance
with at least one embodiment, information about a sample
volume and/or interaction volume, rather than just sample
surface. Similarly, voltages may be reduced in some
embodiments where only data related to a sample surface
layer may be desired. In various embodiments, different
measurement energies and electric fields may be employed
to extract various datasets, which can be used individually or
in combination in optimisation problems such as those
herein disclosed. Such data provided by tuning of various
sensing parameters, such as voltage, could be employed, in
various embodiments, to construct 2D and/or 3D models of
a sample, for instance, in reverse-engineering applications.
[0164] In various other embodiments, sampling patterns
(e.g. lines) may be selected based on a relative orientation of
sample features. For instance, in circuit board or integrated
circuit reverse-engineering applications, if wires in a sample
are oriented horizontally, line patterns may be chosen to be
slightly askew from horizontal (e.g. 3 degrees to 20 degrees
rotated from horizontal) in order to produce higher quality
completed images and/or segmented images. Such skew
angles may be arbitrarily chosen, empirically determined
based on sample properties, optimised for either manually or
algorithmically, or the like. Similarly, for a given scan
pattern, a sample may be rotated in some embodiments to
produce an offset in feature angles relative a scan pattern, or
relative to designated Cartesian coordinate axes.

[0165] The skilled artisan will appreciate that while some
of the embodiments herein described employed algorithms
written in Python using Pyomo in combination with Ipopt,
various computational languages, packages, operating sys-
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tem, algorithms with improved computational speed, and the
like, may be employed in various embodiments without
departing from the scope of this disclosure.

[0166] While the present disclosure describes various
embodiments for illustrative purposes, such description is
not intended to be limited to such embodiments. On the
contrary, the applicant’s teachings described and illustrated
herein encompass various alternatives, modifications, and
equivalents, without departing from the embodiments, the
general scope of which is defined in the appended claims.
Except to the extent necessary or inherent in the processes
themselves, no particular order to steps or stages of methods
or processes described in this disclosure is intended or
implied. In many cases the order of process steps may be
varied without changing the purpose, effect, or import of the
methods described.

[0167] Information as herein shown and described in
detail is fully capable of attaining the above-described object
of the present disclosure, the presently preferred embodi-
ment of the present disclosure, and is, thus, representative of
the subject matter which is broadly contemplated by the
present disclosure. The scope of the present disclosure fully
encompasses other embodiments which may become appar-
ent to those skilled in the art, and is to be limited, accord-
ingly, by nothing other than the appended claims, wherein
any reference to an element being made in the singular is not
intended to mean “one and only one” unless explicitly so
stated, but rather “one or more.” All structural and functional
equivalents to the elements of the above-described preferred
embodiment and additional embodiments as regarded by
those of ordinary skill in the art are hereby expressly
incorporated by reference and are intended to be encom-
passed by the present claims. Moreover, no requirement
exists for a system or method to address each and every
problem sought to be resolved by the present disclosure, for
such to be encompassed by the present claims. Furthermore,
no element, component, or method step in the present
disclosure is intended to be dedicated to the public regard-
less of whether the element, component, or method step is
explicitly recited in the claims. However, that various
changes and modifications in form, material, work-piece,
and fabrication material detail may be made, without depart-
ing from the spirit and scope of the present disclosure, as set
forth in the appended claims, as may be apparent to those of
ordinary skill in the art, are also encompassed by the
disclosure.

What is claimed is:
1. A method for segmenting a plurality of features of a
substrate from sparse imaging data, the method comprising:
impinging the substrate surface with a particle beam at
each of a plurality of sensing locations, said plurality of
sensing locations defining a subset of locations within
an area of interest of the substrate surface;

measuring at each of said plurality of sensing locations,
by each of at least two particle sensors, an intensity
value associated with post-impingement particles
resulting from said impinging;

calculating, for each sensing location, a measured inten-
sity based on the intensity value of the sensing location;

calculating, for each of a plurality of estimated locations
defining a further subset of said area of interest, a
corresponding estimated intensity based on at least one
of the following corresponding to one or more locations
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proximal to said estimated location: one or more proxi-
mal measured intensities, and one or more proximal
estimated intensities; and

segmenting each of said plurality of estimated locations,

based on said corresponding estimated intensity, and
each of said sensing locations, based on said corre-
sponding measured intensity, to correspond to one of
the plurality of features.

2. The method of claim 1, wherein said calculating the
measured intensity is further based on at least one of the
following corresponding to one or more locations proximal
to the sensing location: one or more proximal measured
intensities, and one or more proximal estimated intensities.

3. The method of either one of claim 1 or claim 2, wherein
said calculating a measured intensity and said calculating a
corresponding estimated intensity comprises solving an
optimisation problem.

4. The method of any one of claims 1 to 3, wherein said
measured intensity is determined from a combination of
intensity values measured by said two or more particle
Sensors.

5. The method of any one of claims 1 to 4, wherein each
said estimated intensity is calculated based on a distance
between the corresponding estimated location and each
location of the one or more proximal measured intensities
and one or more proximal estimated intensities used in
calculating the estimated intensity.

6. The method of any one of claims 1 to 5, wherein each
said estimated intensity is related to a noise characteristic of
said measured intensities as measured by one of said at least
two particle sensors.

7. The method of any one of claims 1 to 6, wherein said
segmenting comprises calculating a greyscale value at each
of said estimated locations.

8. The method of any one of claims 1 to 7, wherein said
segmenting comprises solving an optimisation problem.

9. The method of claim 8, wherein said optimisation
problem comprises a penalty function.

10. The method of claim 9, wherein said penalty function
is related to an expected intensity corresponding to each of
the plurality of features of the substrate.

11. The method of either one of claim 9 or claim 10,
wherein said calculation of estimated intensities includes an
initial guess for said segmenting estimated intensities to
correspond to one of the plurality of features.

12. The method of any one of claims 1 to 11, further
comprising generating a plurality of segmented images, each
of said plurality of segmented images corresponding to a
designated layer of the substrate.

13. The method of claim 12, further comprising:

vertically aligning said plurality of segmented images to

determine interconnections therebetween in said sub-
strate.

14. The method of any one of claims 1 to 13, further
comprising generating a segmented image illustrating con-
nectivity of components of said substrate.

15. The method of any one of claims 1 to 14, wherein said
plurality of sensing locations comprises one or more lines.

16. The method of claim 15, wherein said one or more
lines are oriented in more than one direction.

17. The method of either one of claim 15 or claim 16,
wherein said one or more lines are rotated relative to an
orientation one or more of the substrate surface features.
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18. The method of any one of claims 1 to 14, wherein said
plurality of sensing locations comprises a Lissajous pattern.

19. The method of any one of claims 1 to 14, wherein said
plurality of sensing locations comprises an optimised pat-
tern.

20. The method of any one of claims 1 to 19, wherein said
measuring by each of at least two particle sensors is per-
formed simultaneously.

21. The method of any one of claims 1 to 20, wherein said
particle beam comprises an electron beam.

22. The method of claim 21, wherein said two or more
particle sensors comprise two or more of an in-lens sensor,
a backscattered electron sensor, a segmented backscatter
detector, and an Everhart-Thornley detector.

23. The method of either one of claim 21 or claim 22,
wherein said post-impingement particles comprise at least
one of primary electrons and secondary electrons.

24. A method for segmenting a plurality of features of a
substrate from sparse imaging data, the substrate comprising
a plurality of features, the method comprising:

impinging the substrate surface with a particle beam at

each of a plurality of sensing locations, said plurality of
sensing locations defining a subset of locations within
an area of interest of the substrate surface;

measuring at each of said plurality of sensing locations

using a particle sensor an intensity value associated
with post-impingement particles resulting from said
impinging;
calculating, for each sensing location, a measured inten-
sity based on the intensity value of the sensing location;

calculating, for each of a plurality of estimated locations
defining a further subset of said area of interest, a
corresponding estimated intensity based on at least one
of the following corresponding to one or more locations
proximal to said estimated location: one or more proxi-
mal measured intensities, and one or more proximal
estimated intensities; and

segmenting each of said plurality of estimated locations,

based on said corresponding estimated intensity, and
each of said sensing locations, based on said corre-
sponding measured intensity, to correspond to one of
the plurality of features.

25. The method of claim 24, wherein said calculating the
measured intensity is further based on at least one of the
following corresponding to one or more locations proximal
to the sensing location: one or more proximal measured
intensities, and one or more proximal estimated intensities.

26. The method of either one of claim 24 or claim 25,
wherein said calculating a measured intensity and said
calculating a corresponding estimated intensity comprises
solving an optimisation problem.

27. The method of any one of claims 24 to 26, wherein
each said estimated intensity is calculated based on a dis-
tance between the corresponding estimated location and
each location of the one or more proximal measured inten-
sities and one or more proximal estimated intensities used in
calculating the estimated intensity.

28. The method of any one of claims 24 to 27, wherein
said estimated intensity is calculated, at least in part, based
on a noise property of said measured intensities.

29. The method of any one of claims 24 to 28, wherein
said segmenting comprises calculating a greyscale value at
each of said estimated locations.
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30. The method of any one of claims 24 to 29, wherein
said segmenting comprises solving an optimisation problem.

31. The method of claim 30, wherein said optimisation
problem comprises a penalty function.

32. The method of claim 31, wherein said penalty function
is related to an expected intensity corresponding to each of
the plurality of features of the substrate.

33. The method of either one of claim 31 or claim 32,
wherein said calculation of estimated intensities includes an
initial guess for said segmenting estimated intensities to
correspond to one of the plurality of features.

34. The method of any one of claims 24 to 33, further
comprising generating a plurality of segmented images, each
of said plurality of segmented images corresponding to a
designated layer of the substrate.

35. The method of claim 34, further comprising:

vertically aligning said plurality of segmented images to
determine interconnections therebetween in said sub-
strate.

36. The method of any one of claims 24 to 35, further
comprising generating a segmented image illustrating con-
nectivity of components of said substrate.

37. The method of any one of claims 24 to 36, wherein
said plurality of sensing locations comprises one or more
lines.

38. The method of claim 37, wherein said one or more
lines are oriented in more than one direction.

39. The method of either one of claim 37 or claim 38,
wherein said one or more lines are rotated relative to an
orientation one or more of the substrate surface features.

40. The method of any one of claims 24 to 36, wherein
said plurality of sensing locations comprises a Lissajous
pattern.

41. The method of any one of claims 24 to 36, wherein
said plurality of sensing locations comprises an optimised
pattern.

42. The method of any one of claims 24 to 41, wherein
said particle beam comprises an electron beam.

43. The method of claim 42, wherein said particle sensor
comprises one of an in-lens sensor, a backscattered electron
sensor, a segmented backscatter detector, and an Everhart-
Thornley detector.

44. The method of either one of claim 42 or claim 43,
wherein said post-impingement particles comprise at least
one of primary electrons and secondary electrons.

45. A system for segmenting a plurality of features of a
substrate from sparse imaging data, the substrate comprising
a plurality of features, the system comprising:

a digital application operable to receive as input sparse
imaging data related to an intensity value, as measured
by each of at least two particle sensors, associated with
post-impingement particles resulting from impinge-
ment of the substrate surface with a particle beam at
each of a plurality of sensing locations, said plurality of
sensing locations defining a subset of locations within
an area of interest of the substrate, said digital appli-
cation further operable to:

calculate, for each sensing location, a measured intensity
based on the intensity value of the sensing location;

calculate, for each of a plurality of estimated locations
defining a further subset of said area of interest, a
corresponding estimated intensity based on at least one
of' the following corresponding to one or more locations
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proximal to said estimated location: one or more proxi-
mal measured intensities, and one or more proximal
estimated intensities; and

segment each of said plurality of estimated locations,

based on said corresponding estimated intensity, and
each of said sensing locations, based on said corre-
sponding measured intensity, to correspond to one of
the plurality of features.

46. The system of claim 45, wherein the calculation of the
measured intensity is further based on at least one of the
following corresponding to one or more locations proximal
to the sensing location: one or more proximal measured
intensities, and one or more proximal estimated intensities.

47. The system of either one of claim 45 or claim 46,
wherein calculating said measured intensity and said corre-
sponding estimated intensity comprises digitally solving an
optimisation problem.

48. The system of any one of claims 45 to 47, wherein said
measured intensity is determined from a combination of
intensity values measured by said two or more particle
sensors.

49. The system of any one of claims 45 to 48, wherein
each said estimated intensity is calculated based on a dis-
tance between the corresponding estimated location and
each location of the one or more proximal measured inten-
sities and one or more proximal estimated intensities used in
calculating the estimated intensity.

50. The system of any one of claims 45 to 49, wherein
each said estimated intensity is related to a noise character-
istic of said measured intensities as measured by one of said
at least two particle sensors.

51. The system of any one of claims 45 to 50, wherein said
digital application is operable to calculate a greyscale value
at each of said estimated locations for segmentation.

52. The system of any one of claims 45 to 51, wherein said
digital application is operable to segment said estimated
intensities via solving an optimisation problem.

53. The system of claim 52, wherein said optimisation
problem comprises a penalty function.

54. The system of claim 53, wherein said penalty function
is related to an expected intensity corresponding to each of
the plurality of features of the substrate.

55. The system of either one of claim 53 or claim 54,
wherein said calculation of estimated intensities includes an
initial guess for said segmenting estimated intensities to
correspond to one of the plurality of features.

56. The system of any one of claims 45 to 55, further
operable to generate a plurality of segmented images, each
of said plurality of segmented images corresponding to a
designated layer of the substrate.

57. The system of claim 56, further operable to vertically
align said plurality of segmented images to determine inter-
connections therebetween in said substrate.

58. The system of any one of claims 45 to 57, further
operable to generate a segmented image illustrating connec-
tivity of components of said substrate.

59. The system of any one of claims 45 to 58, wherein said
plurality of sensing locations comprises one or more lines.

60. The system of claim 59, wherein said one or more
lines are oriented in more than one direction.

61. The system of either one of claim 59 or claim 60,
wherein said one or more lines are rotated relative to an
orientation one or more of the substrate surface features.
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62. The system of any one of claims 45 to 58, wherein said
plurality of sensing locations comprises a Lissajous pattern.

63. The system of any one of claims 45 to 58, wherein said
plurality of sensing locations comprises an optimised pat-
tern.

64. The system of any one of claims 45 to 63, wherein said
particle beam comprises an electron beam.

65. The system of claim 64, wherein said two or more
particle sensors comprise two or more of an in-lens sensor,
a backscattered electron sensor, a segmented backscatter
detector, and an Everhart-Thornley detector.

66. The system of either one of claim 64 or claim 65,
wherein said post-impingement particles comprise at least
one of primary electrons and secondary electrons.

67. The system of any one of claims 45 to 66, further
comprising an apparatus operable to impinge the substrate
with a particle beam and comprising said two or more
particle sensors.

68. The system of claim 67, wherein said apparatus is a
scanning electron microscope, and transmission electron
microscope, or a tunneling electron microscope.

69. A system for segmenting a plurality of features of a
substrate from sparse imaging data, the substrate comprising
a plurality of features, the system comprising:

a digital application operable to receive as input sparse
imaging data related to an intensity value, as measured
by a particle sensor, associated with post-impingement
particles resulting from impingement of the substrate
surface with a particle beam at each of a plurality of
sensing locations, said plurality of sensing locations
defining a subset of locations within an area of interest
of the substrate, said digital application further oper-
able to:

calculate, for each sensing location, a measured intensity
based on the intensity value of the sensing location;

calculate, for each of a plurality of estimated locations
defining a further subset of said area of interest, a
corresponding estimated intensity based on at least one
of' the following corresponding to one or more locations
proximal to said estimated location: one or more proxi-
mal measured intensities, and one or more proximal
estimated intensities; and

segment each of said plurality of estimated locations,
based on said corresponding estimated intensity, and
each of said sensing locations, based on said corre-
sponding measured intensity, to correspond to one of
the plurality of features.

70. The system of claim 69, wherein said calculate the
measured intensity is further based on at least one of the
following corresponding to one or more locations proximal
to the sensing location: one or more proximal measured
intensities, and one or more proximal estimated intensities.

71. The system of either one of claim 69 or claim 70,
wherein calculating said measured intensity and said corre-
sponding estimated intensity comprises digitally solving an
optimisation problem.

72. The system of any one of claims 69 to 71, wherein
each said estimated intensity is calculated based on a dis-
tance between the corresponding estimated location and
each location of the one or more proximal measured inten-

Jun. 22, 2023

sities and one or more proximal estimated intensities used in
calculating the estimated intensity.

73. The system of any one of claims 69 to 72, wherein said
estimated intensity is calculated, at least in part, based on a
noise property of said measured intensities.

74. The system of any one of claims 69 to 73, wherein the
digital application is operable to segment said estimated
intensities by calculating a greyscale value at each of said
estimated locations.

75. The system of any one of claims 69 to 74, wherein the
digital application is operable to segment said estimated
intensities by solving an optimisation problem.

76. The system of claim 75, wherein said optimisation
problem comprises a penalty function.

77. The system of claim 76, wherein said penalty function
is related to an expected intensity corresponding to each of
the plurality of features of the substrate.

78. The system of either one of claim 76 or claim 77, said
calculation of estimated intensities includes an initial guess
for said segmenting estimated intensities to correspond to
one of the plurality of features.

79. The system of any one of claims 69 to 78, wherein the
digital application is further operable to generate a plurality
of segmented images, each of said plurality of segmented
images corresponding to a designated layer of the substrate.

80. The system of claim 79, wherein the digital applica-
tion is further operable to vertically align said plurality of
segmented images to determine interconnections therebe-
tween in said substrate.

81. The system any one of claims 69 to 80, further
operable to generate a segmented image illustrating connec-
tivity of components of said substrate.

82. The system of any one of claims 69 to 81, wherein said
plurality of sensing locations comprises one or more lines.

83. The system of claim 82, wherein said one or more
lines are oriented in more than one direction.

84. The system of either one of claim 82 or claim 83,
wherein said one or more lines are rotated relative to an
orientation one or more of the surface features.

85. The system of any one of claims 69 to 81, wherein said
plurality of sensing locations comprises a Lissajous pattern.

86. The system of any one of claims 69 to 81, wherein said
plurality of sensing locations comprises an optimised pat-
tern.

87. The system of any one of claims 69 to 86, wherein said
particle beam comprises an electron beam.

88. The system of claim 87, wherein said particle sensor
comprises one of an in-lens sensor, a backscattered electron
sensor, a segmented backscatter detector, and an Everhart-
Thornley detector.

89. The system of either one of claim 42 or claim 43,
wherein said post-impingement particles comprise at least
one of primary electrons and secondary electrons.

90. The system of any one of claims 69 to 89, further
comprising an apparatus operable to impinge the substrate
with a particle beam and comprising said particle sensor.

91. The system of claim 90, wherein said apparatus is an
electron microscope.



