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57 ABSTRACT

Presented herein are methods and systems directed to analy-
sis of features, mutations, and genome sequences. Analysis
of genetic features can identify strongly or weakly causative
deleterious mutations.
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IDENTIFYING GENOME FEATURES IN
HEALTH AND DISEASE

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

[0001] This application claims priority to U.S. Provisional
App. No. 63/323,287, filed Mar. 24, 2022, and to U.S.
Provisional App. No. 63/355,957, Filed Jun. 27, 2022. Any
and all applications for which a foreign or domestic priority
claim is identified in the Application Data Sheet as filed with
the present application are hereby incorporated by reference
under 37 CFR 1.57.

BACKGROUND OF THE INVENTION

[0002] The ability to sequence a genome faster and
cheaper using novel Next Generation Sequencing (NGS)
technology is revolutionizing the field of Precision Medi-
cine. This field is expected to improve the diagnosis and
treatment of numerous diseases based on the genome
sequence of an individual. In addition, basic and clinical
research in this field have been expanding due to the rapid
advancements of NGS technologies.

[0003] Research in any field progresses based on the
findings that have been described in previously published
research articles. The research community relies on the easy
availability of these publications in user friendly platforms.
There are several public resources, such as PUBMED and
Google Scholar, as well as commercial resources that collect
and enable the search and retrieval of biomedical and life
sciences literature. Most of these sources allow the searching
of publications based on defined search terms and the years
of publications, and provide the results as a set of publica-
tions that fulfill these criteria. Each of these resources
provide several functionalities for searching and viewing the
results.

[0004] In addition to these capabilities, the field of Preci-
sion Medicine will benefit from the ability to analyze the
results further in advanced ways, running instant meta-
analysis using extant results. Such work requires searching
beyond the general capabilities of data retrieval and viewing
the publications based on search terms including genes,
mutations and disease. The present disclosure describes a
platform for fulfilling advanced research needs, and includes
research tools for analyzing various genetic loci. Surpris-
ingly, this sophistication of next generation analysis tools
will provide innovative and sophisticated capabilities that
will help clinical researchers, and clinicians at the point of
care, with deeper insights for improved diagnosis and treat-
ment of diseases.

SUMMARY OF THE INVENTION

[0005] Embodiments describing systems and methods for
the analysis of features, mutations, and their effects in the
genome that are responsible for wellness and disease are
presented. In one embodiment, methodologies for the iden-
tification of statistical features of disease-causing mutations
that are published in the literature, through novel ‘statistical
graphing’ approaches, are provided. These features are
employed in building algorithms for determining the del-
eteriousness and disease causality of a genetic mutation.
This system is termed Gene Disease Mutation Analysis
Platform™ (GDMAP™),
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[0006] In some embodiments, a method of analysis of
features, mutations, and genomes is presented, the method
comprising receiving a plurality of nucleotides comprising a
genetic element in a gene, calculating the frequency of
mutations of a nucleotide at a position within the genetic
element, wherein the nucleotide at the position within the
genetic element is replaced by an alternative nucleotide,
calculating the total number of mutations for the sequence
length of the genetic element, and calculating a deleterious-
ness score for each position based on the frequency of
mutations.

[0007] In some embodiments, a method of analysis of
features, mutations, and genomes is presented, the method
comprising collecting one or more publications, wherein the
one or more publications are associated with data compris-
ing genes, and mutations, or diseases, identifying the data
comprising genes and retrieving at least one genetic ele-
ment, wherein the at least one genetic element comprises a
5' UTR, a promoter, an enhancer, a silencer, an exon, an
intron, a coding sequence, a non-protein coding RNA, a
splice acceptor, a splice donor, a branch point site, a 3'-UTR,
a Kozak sequence, or a poly-A addition site, determining the
similarity scores of each of the genetic elements, comparing
the similarity scores of genetic elements with a reference
sequence for the corresponding element, and assessing the
effect of mutation or disease.

[0008] In some embodiments, a method to analyze data
sets to combine genetic features and compare similarity
scores to one or more genetic elements serves to identify real
exons in an uncharacterized genomic sequence. The product
is a complete gene comprising of consecutive exons that
would lead to a complete protein. This system is named
SpliceCodeTM

[0009] In some embodiments, a computer implemented
method for comparing similarity scores is presented, the
method comprising receiving a nucleotide sequence from a
reference genome comprising at least one genetic element,
wherein the at least one genetic element is selected from a
list comprising: a 5'-UTR, a promoter, an enhancer, a
silencer, an exon, an intron, a coding sequence, a non-
protein coding RNA, a splice acceptor, a splice donor, a
branch point site, a 3'-UTR, a Kozak sequence, a poly-A
addition site or signal, or a cryptic version thereof, deter-
mining a first exon from the nucleotide sequence, wherein
the first exon begins with an initiator codon, wherein the first
exon ends with a donor sequence, determining a middle
exon from the nucleotide sequence, determining a last exon
from the nucleotide sequence, and annotating splicing and
regulatory elements based on position weight matrix scores
or similarity scores.

[0010] In some aspects, the techniques described herein
relate to a method of analysis of features, mutations, genes,
and genomes, the method including: receiving a plurality of
nucleotides including a genetic element in a gene, wherein
the plurality of nucleotides are assigned a position, wherein
the plurality of nucleotides are arranged in a sequence;
calculating a frequency of mutations for each position within
the genetic element based on publications, wherein the
nucleotide at the position within the genetic element is
replaced by an alternative nucleotide; calculating the total
number of mutations for the sequence length of the genetic
element; and generating a deleteriousness score for each
specific position based on the frequency of mutations at that
position relative to the total number of mutations.
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[0011] In some aspects, the techniques described herein
relate to a method for identifying a gene in a raw DNA
sequence, the method including, receiving a nucleotide
sequence from a reference genome, the reference genome
including at least one genetic element, wherein the at least
one genetic element is selected from a list including: a
5'-UTR, a promoter, an enhancer, a silencer, an exon, an
intron, a coding sequence, a non-protein coding RNA, a
splice acceptor, a splice donor, a branch point site, a 3'-UTR,
a Kozak sequence, a poly-A addition site or signal, or a
cryptic version thereof; identifying a first exon from the
nucleotide sequence, wherein the first exon begins with an
initiator codon, wherein the first exon ends with a first donor
sequence, and the first exon is bounded by an open reading
frame (ORF); identifying one or more middle exons from
the nucleotide sequence, wherein the middle exon starts with
a first acceptor sequence and ends with a second donor
sequence, and the middle exon is bounded by the open
reading frame (ORF); identifying a last exon from the
nucleotide sequence, wherein the last exon starts with an
acceptor sequence and ends with a stop codon, and the last
exon is bounded by the open reading frame (ORF); and,
annotating the splicing and regulatory elements within the
gene based on similarity scores or position weight matrix
scores.

[0012] In some aspects, the techniques described herein
relate to a computer implemented method, including, receiv-
ing a nucleotide string including at least one genetic ele-
ment, the at least one genetic element selected from one of:
a 5'-UTR, a promoter, an enhancer, a silencer, an exon, an
intron, a coding sequence, a non-protein coding RNA, a
splice acceptor, a splice donor, a branch point site, a 3'-UTR,
a Kozak sequence, a poly-A addition site or signal, or a
cryptic version thereof, from a known protein coding gene,
or a regulatory, splicing, or functional element of a non-
protein coding RNA gene from a reference genome; gener-
ating one or more modified nucleotide strings, wherein each
base on the one or more modified nucleotide strings is
replaced compared to the nucleotide string, wherein replac-
ing each base includes converting each base to a non-
identical nucleotide; for the at least one genetic element,
calculating the similarity score of the element for every one
of the one or more modified nucleotide strings; determining
overall deleteriousness by comparing the similarity scores
for the at least one genetic element for every one of the one
or more modified nucleotide strings and for the nucleotide
string; assigning a molecular effect, the molecular effect
selected from one or more of: abolition, reduction or
enhancement of transcription or translation, exon skipping,
intron retention, cryptic exon creation or partial exon dele-
tion due to the deleterious mutation; and storing the infor-
mation of the molecular effect for every one or more
modified nucleotide strings in a memory.

[0013] In some aspects, the techniques described herein
relate to a computer implemented method for automatically
assessing genomic features including: receiving an input
dataset including one or more regulatory and/or one or more
splicing elements in a gene set; generating one or more
similarity scores for the one or more regulatory and/or one
or more splicing elements; generating one or more patho-
genic or strength altering mutations, wherein generating one
or more pathogenic or strength altering mutations involves
calculating pathogenicity of known mutations in the one or
more regulatory and/or one or more splicing elements, and
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the difference between the scores before and after mutation;
training an artificial intelligence program with the one or
more regulatory and/or one or more splicing elements,
wherein the one or more similarity scores are within a preset
range; training the artificial intelligence program with
known pathogenic or strength altering mutations in splicing
or regulatory elements in a set of genes with known splicing
and regulatory elements, genomic positions, and similarity
scores; generating an output dataset of splicing or regulatory
elements, wherein the input dataset includes a new set of
genes; and generating pathogenic or strength altering muta-
tions for the new set of genes.

[0014] In some embodiments, one or more rare variants or
mutations in one or more genetic features in one or more
genes in a genome that would have an effect on the pro-
cessing of a gene into a protein, such as transcription,
splicing, transport of mRNA from the cell nucleus into the
cytoplasm, and translation into the protein are identified,
from among one or more variants that occur in the human
population. Advantageously, the described method may lead
to rapid identification of causative genes and mutations that
lead to disease and drug response phenotypes from a patient.
This system is named Rapid Whole Genome Interpreta-
tion™ (rWGI). In some embodiments, described herein is a
computer implemented method for interpreting a genome
comprising, receiving a nucleotide string comprising at least
one genetic element, wherein the at least one genetic ele-
ment comprises: a 5'-UTR, a promoter, an enhancer, a
silencer, an exon, intron, a coding sequence, a non-protein
coding RNA, a splice acceptor, a splice donor. a branch point
site, a 3'-UTR, a Kozak sequence, a poly-A addition site or
signal, or a cryptic version thereof, for each base in the
nucleotide string, generating at least one alternative nucleo-
tide, thereby generating at least one alternative nucleotide
string, wherein for each base in the alternative nucleotide
string, the nucleotide differs compared to the same position
of the nucleotide string, calculating a similarity score for the
at least one genetic element for the nucleotide string, and all
alternative nucleotide string(s), and calculating downstream
molecular effects,

[0015] In some embodiments, AI/ML systems are trained
to recognize certain sequence and structural features for
gene regulation (gene expression), splicing, mRNA trans-
port, and translation. The described AI/ML systems are also
trained to recognize alternative genome features due to
mutations at one or more positions of genetic elements
within one or more genes with or without relevance to
disease causation. The trained systems and models are
applicable in real patient data to reveal genetic causes of
disease and drug responses. Various steps of the AI/ML
training, testing and arriving at the implementable models
with various objectives are described. This system is named
Genome Artificial Intelligence (GenomeAI™). These and
other embodiments are described in more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1A illustrates the distribution of mutations at
different sequence positions of a genetic element, say donor.
[0017] FIG. 1B illustrates the distribution of mutations at
different sequence positions of a genetic element, say accep-
tor.

[0018] FIG. 2 illustrates the distribution of pathogenic
mutations changing from one base into other bases in the
donors of genes.
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[0019] FIG. 3 illustrates the distribution of pathogenic
mutations changing from one base into other bases in the
acceptors of genes.

[0020] FIG. 4 illustrates the position weight matrix of a
particular genetic element, donor.

[0021] FIG. 5 illustrates the position weight matrix of a
particular genetic element, acceptor.

[0022] FIG. 6 illustrates the distribution of different types
of regulatory and splicing aberrations caused due to muta-
tions in regulatory and splicing elements in various genes
that are reported in publications.

[0023] FIG. 7 illustrates the distribution of mutations
within TP53, a known oncogene, collected from published
articles in the literature.

[0024] FIG. 8 illustrates the distribution of mutations
within a particular genetic element within TP53.

[0025] FIG. 9illustrates the relative frequency distribution
of publications regarding differing genetic elements in vari-
ous diseases.

[0026] FIG. 10 illustrates pathogenic mutations occurring
in the non-allowable region of the variable amino acid
sequence signature.

[0027] FIG. 11 is a block diagram depicting an embodi-
ment(s) of a computer hardware system configured to run
software for implementing one or more embodiments of
systems, devices, and methods for genome analysis.
[0028] FIG. 12 is an embodiment of a method to analyze
and visualize one or more genetic elements.

[0029] FIG. 13 is a block diagram depicting an embodi-
ment(s) of a computer hardware system configured to run
software for implementing one or more embodiments of
systems, devices, and methods for genome analysis.
[0030] FIG. 14 is an embodiment of a method to analyze
and visualize one or more genetic elements.

[0031] FIG. 15 is an embodiment of a method to analyze
and visualize one or more genetic elements.

DETAILED DESCRIPTION

[0032] Searching for the genes and mutations that cause a
disease is only the first step in understanding the disease.
Enabling the understanding of how a mutation causes a gene
to become defective, and how this defective gene leads to
disease, can be significantly more beneficial to decipher the
causation of a disease. Moreover, differing publications
describe different genes and mutations that cause different
diseases. Depicting the mutations on the structure of a gene
on the sequence of the corresponding elements such as the
coding sequence and the different elements representing the
regulatory and splicing processes, and computing the fre-
quencies of the molecular changes due to mutations in the
various genetic elements and their sequences, may reveal
important insights. These insights will be key to understand-
ing the involvement of the defects in different elements in
their ability to cause the gene to become defective, resulting
in a defective protein that ultimately leads to disease.

[0033] Mutations in different elements cause different
molecular effects to the primary RNA transcript, spliced
mRNA, and the protein, during the different steps of tran-
scription, splicing, polyadenylation, transport of the mRNA
from the nucleus to cytoplasm, and the translation of the
mRNA into a protein. The tabular and statistical-graphical
(graphstats or stat-graph) depiction of the particular muta-
tions on the structures and sequences of the different ele-
ments of a gene will enable the deeper understanding of
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disease causation. The analytical and visualization capabili-
ties of the structural and functional implications of the
mutations and their aberrations on the transcripts, mRNA,
and protein, will be a boon to the researchers and practicing
clinicians in achieving their goals of understanding the
disease causation. Such a system will further enable the
comprehension of the disease processes in a given patient
with a particular disease, and aid in the precise diagnosis and
treatment of disease.

[0034] In addition to representing the statistics of muta-
tions on the different elements on the gene structure,
described herein is a system to represent the statistics of the
different mutations in the different sequence positions of
every genetic element in described genes, populated from
the collected data of disease causing mutations from across
a large population of patients exhibiting different diseases
from scientific publications. Further, determining the vari-
ous methodologies in which the different mutations in the
different elements of a gene lead to the aberrations in the
various steps of gene expression regulation, transcription
initiation and termination, splicing, polyadenylation, nRNA
transport, translation initiation and termination, and other
processing steps of the primary transcript and the mRNA,
will be immensely helpful in understanding the causation of
every disease, therapeutic effect, and pharmacogenomic
indication.

[0035] The present system therefore determines the scores
and assesses the pathogenicity of each of the mutations from
each publication, using several algorithms such as the Sha-
piro-Senapathy, MaxEntScan, and NNSplice scoring, as
well as their modifications and combinations thereof, and
the molecular aberrations within the gene, transcript and
protein. The system collects data for all of the molecular
effects and aberrations for each gene and for each disease,
and provide tools to analyze them through statistical and
graphical (stat-graph) methods.

[0036] Described herein is a system, or platform in which
the details of identified mutations will be overlaid on the
different genetic elements in a given gene in various graphi-
cal and statistical ways. The platform determines if and how
a mutation within the sequence of each genetic element
causes an aberration in the transcription of a gene, splicing
of the primary RNA transcript into the mRNA copy, poly-
adenylation of the mRNA, or the translation of the mRNA
into the protein. Algorithms described herein are used to
determine the possible aberration caused by a mutation in
each type of the genetic element within a gene at each step
of the genetic processes.

[0037] For example, a mutation in a donor splicing ele-
ment in a particular exon of a specific gene such as TP53 can
cause an exon skipping or intron inclusion during the
splicing process, or premature termination of the mRNA into
protein. The platform depicts the mutations on the elements,
and illustrates in various ways a graphical animation of the
erroneous processes both in the gene structure and in the
sequence representation of the whole gene. In one embodi-
ment, the system also shows the defects created in the
protein sequence and in a 3D structure of the protein when
available. Furthermore, the platform depicts several details
of the genetic elements, when a mutation that causes a
genetic defect occurs. The platform has the ability to analyze
each mutation from a publication based on its several
algorithms for different genetic elements, to categorize the



US 2023/0307092 Al

pathogenic, strength altering, and non-pathogenic muta-
tions, and to identify the potential molecular aberrations.

[0038] Therefore, the system allows for researchers to
perform comprehensive meta-analyses by the collective
analysis of published mutations of all the genetic elements
in the genes causing various genetic and protein aberrations,
leading to various diseases in a large number of patients, in
a combination of statistical and graphical approaches than
the analysis of individual mutations.

[0039] Pathology of a gene indicates its biology, depicting
where in the genome biology the particular gene partici-
pates. The pathology of the mutations in a genetic element
through the collective statistical and graphical (stat-graph™)
approach, based on a large number of mutations within a
genetic element, will indicate the genetic and biological
environment that the element is involved in. This approach
to connect the biology and pathology of the individual
genetic elements through the statistical-graphing analysis
will be able to uncover deeper insights into the molecular
causation of the disease.

Predicting the Frequency Pattern of Published
Mutations across the Variable Sequences of Genetic
Elements

[0040] A sequence for a particular type of splicing element
such as the donor varies across different exons of a particular
gene, and across different genes in a genome. These varia-
tions are represented by the frequency of different bases (or
nucleotides) at every position of the sequence representing
the element throughout the genome, which culminates in the
Position Weight Matrix (PWM) of that element. This PWM
defines the range of variations that can occur within the
sequence of a particular type of element, although there can
be a small minority of sequences significantly varying from
the PWM across the genes within the human genome.

[0041] Many variants that change the sequence of the
element in the individuals of an organism, can affect the
function of that element, causing an aberration in the tran-
scription or splicing of the transcript, and leading to a
disease. However, some of the variants can lead to increased
or decreased function of the element, causing a slightly
changed binding affinity of the element to their target
binding proteins or other molecules such as the small
nuclear RNAs (snRNAs), and lead to an increased or
decreased transcription, splicing or translation. Such vari-
ants may or may not cause a disease state, or at least increase
one’s predilection towards developing a certain disease
state. Herein, the described system may be configured to
predict that the frequency of the disease causing pathogenic
mutations that occur within the sequence of an element
across numerous patients should closely represent the
sequence variations associated with the element depicted in
its PWM.

[0042] Mutations of a type of genetic element (e.g., donor
splicing) at different locations within a gene (e.g, in the
different exons of a 20-exon containing gene) will affect the
function of that element differentially. Mutations in different
locations may have different levels of deleteriousness or
pathogenicity due to the genetic environment in which they
are present. A mutation in one location may be more
pathogenic than a similar mutation in another location. This
will be revealed by the statistical-graphing method of
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GDMAP by the frequencies of mutations in a type of genetic
element in different locations within a gene across various
patients.

[0043] Herein, the described algorithms can additionally
predict the aberrational effect, such as a splicing effect
including exon skipping, intron inclusion, partial exon dele-
tion, or cryptic exon creation, for every possible mutation
within every possible genetic element within every gene.
The system is then capable of correlating the aberrational
consequences of disease causation (or drug response phe-
notype) of published mutations for every sequence position
within every genetic element of every gene with the pre-
dicted molecular aberrations. The system will then be
capable of revealing the different positions exhibiting vari-
ous genetic elements in the gene that are differentially
capable of causing disease when a mutation occurs in them.
This will aid in predicting the aberration and disease-
causality of a new mutation that arises in a new patient that
was unknown before from the literature.

[0044] FIG. 1A and FIG. 1B illustrates the distribution of
mutations at different sequence positions of a genetic ele-
ment, for example, in each position within the sequence of
acceptor (FIG. 1B) and donor (FIG. 1A).

The Statistical Distribution of Published Mutations
on the Variable Sequence Matrix of Every Genetic
Element and Their Disease Implications

[0045] In some embodiments, the frequency distribution
of the published mutations across the different sequence
positions of every type of element is plotted without regard
to individually published genes or diseases. Therefore, the
frequency distribution of the published mutations across the
different sequence positions of every different element
within a given gene is plotted, whether the gene is part of a
panel of genes implicated in a particular disease or not. It is
expected that when an increasing number of mutations are
plotted from an increasing number of publications, the
frequency of mutations in the different base positions within
the sequence of an element increases, and reaches a maxi-
mum for one or more sequence positions.

[0046] The frequency pattern of a normalized graph for
this distribution will be characteristic of the frequency of the
bases in the different positions reflecting the disease causal-
ity of the various positions, as illustrated in FIGS. 2-5.
Although this may closely resemble the PWM for the
corresponding element, there are key variations that would
help in determining the deleteriousness and disease causality
of'a type of mutation at a particular position within a genetic
element. Using these characteristics of the weights of muta-
tions at the different positions of a genetic element, com-
pared to the PWM of that element, a scoring algorithm for
deleteriousness of a mutation from a patient was developed.
[0047] It can be expected that the frequency patterns of
published mutations in different locations of the same type
of splicing element such as a donor within a gene will be
different. This is because the importance or weightage of the
element in the splicing reaction of a particular exon among
the multiple splicing elements for that exon will vary for
different splice sites for different exons.

[0048] We also expect that when published mutations
from various diseases are plotted on all of the 20,000 genes
on the different genetic elements including the coding,
regulatory and splicing elements, they will show the char-
acteristic frequency patterns as predicted above. This pattern
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will reveal the genes (and the genetic elements with the
genes) that are most disease causing and the genes that are
the least disease causing across all diseases covered by the
publications. This process will also reveal genes that are not
disease causing, to the extent that the publications cover all
of the human diseases and all of the genes.

[0049] In addition, the same type of frequency distribution
from a particular disease will reveal the genes that are causal
of'that disease. Further, this set of genes might include some
novel genes that are not included in the panel of genes that
has been thought to be causal of the disease. A score is
assigned to the genes based on the frequencies of the
mutations in the different genetic elements and in the dif-
ferent genes for the causality of a particular disease, which
can be used in predicting a disease in a patient.

Differential Base Changes at Every Sequence
Position of a Genetic Element

[0050] The platform shows that when the different bases at
the different sequence positions within a genetic element are
mutated, they mutate differentially to the other 3 bases. For
instance, the G at position +2 of the donor splice site mutates
most often to A, than to other bases. Based on these
frequencies, described herein is a scoring formula for patho-
genic mutation for every base change at each sequence
position of the donor, which could reflect a measure of
disease causality. Thus, even between the two canonical
bases within a splicing element such as the donor, the
disease causality may vary for some biological reasons that
are not immediately apparent.

[0051] Based on PWM, the mutations at the two canonical
bases of the donor splice site should lead to the same level
of deleteriousness and thus disease causality. As such, the
unique variations of specific base changes at the different
sequence positions of a splicing element observed in the
analysis aids allows for a unique way of determining the
deleteriousness of a mutation that could be a measure of
disease causality, which should apply for any genetic ele-
ment collectively in the human genome, as well as individu-
ally for any genetic element in each of the genes in the
human genome.

[0052] We also predict that we can create a PWM of the
CDS of a gene, based on mono, di, tri, and oligonucleotides
or oligo amino acids that occur in different individuals (with
or without a disease). It will form variable amino acids (AA)
or nucleotides at many positions. The frequency that we will
obtain from the published mutations will follow these pat-
terns. In addition, the frequency of published mutations at
the different AA positions will reveal the AAs to which an
AA at a given position would mutate most frequently. We
have formulated an algorithm to assign scores for the
mutations from an AA at every position of the variable AA
signature of a domain into the different AAs based on the
frequency of the AAs that are mutated into.

[0053] We have determined that the frequencies of
mutated AA changes will reflect the inherent frequency of
different amino acids that could occur within the set of
variable (or allowed) amino acids at a given sequence
position of a protein domain. However, they may change in
unique ways due to so many other parameters and biological
or biochemical environments, such as the requirement for
co-occurrence or co-dependence of amino acids at different
positions of the variable amino acid sequence signature of a
domain or protein.
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Differential Frequency of Base Changes at Every
Sequence Position of a Genetic Element

[0054] The platform shows that when the different bases at
different sequence positions within a genetic element are
mutated, they mutate at different frequencies to the other 3
bases. The analysis shows that, for instance, the G at position
+2 of the donor mutates most often to A, than to other bases.
This indicates that the G—A change at this specific sequence
position in the donor splice site alters or diminishes the
function of the donor splice site in such a manner to cause
a severe aberration of the splicing process of the correspond-
ing gene, leading to the disease more often than the change
to the other two bases. Based on these variable mutation
frequencies at different sequence positions, the scoring for-
mula that we defined would indicate the pathogenicity or
deleteriousness of a mutation and its disease causality at
each position of the donor.

[0055] The variable frequency pattern of mutations will be
characteristic of a particular genetic element within a gene,
and will be different for different elements within the same
gene. Thus, this pattern can be considered to be a Mutational
Frequency Position Weight Matrix (MFPWM) for every
element within a gene computed or defined based on its
consensus sequence. A patient mutation that occurs within a
particular element in a particular gene can be scored based
on this MFPWM.

[0056] The frequency of base changes at every position of
the donor (FIG. 2) and acceptor (FIG. 3), from one base into
the other three bases, collected from different publications
are plotted. The figures (FIGS. 4 and 5) show the frequencies
of bases that occur in the PWM of donor and acceptor,
respectively.

Mutations within the Regulatory Elements and
Motifs

[0057] It is known that promoter elements occur at vari-
able distances from the transcription start site in different
genes, upstream, within or downstream of the genes. For the
majority of the genes in a genome including the human, the
exact location of all promoter elements is not known. The
depiction of the frequency and statistics of the disease
causing mutations on the gene structure in tabular and
graphical ways in different genes may reveal the important
areas of the promoters and the actual base changes into other
bases. These important features will not be revealed from the
knowledge of mutations at given individual positions or in
individual patients. However, when a large number of muta-
tional data from a large number of patients are depicted in
various statistical and graphical approaches and various
analytical and graphical methods are applied to them, it will
reveal the important features of the different promoter
elements and motifs in causing a disease. This can be done
for every promoter element collectively that occur through-
out the genome.

[0058] This is true with the mutations that occur within the
enhancers and silencers of the gene regulatory elements and
the splicing elements. In addition, this type of collective
statistical and graphical analysis from published data will
reveal the mutational characteristics in the different ele-
ments, their sequence features and the sequence positions at
which they occur within every gene. Thus, this type of
analytical capability will reveal the biological and clinical
implications of mutations in various features and elements in
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every gene, and may reveal novel elements and genes in a
genome. The novel algorithms that we described above for
the splicing elements also apply to the promoter elements
and other gene regulatory and splicing enhancers and silenc-
ers.

[0059] FIG. 6 illustrates a distribution of molecular effects
due to mutations in different genetic elements. The distri-
bution of molecular or biological effects such as exon
skipping, intron retention, partial exon deletion, or cryptic
exon creation, caused due to mutations in genetic elements
in different genes from different publications are shown.
Likewise, other molecular effects such as abolition, increase
or decrease of transcription (gene expression) or translation
due to mutations in regulatory elements are also computed.
Based on the statistics of the collective effects within a gene
from published data, the scoring algorithms will lead to
disease causality score for a given mutation from a given
patient.

Mutations in the Coding Sequence (CDS) Regions
of Genes

[0060] In the current field, mutations that lead to a non-
synonymous amino acid (mis-sense), and mutations that
lead to a gain of stop codon (non-sense) would be taken as
deleterious, and that synonymous mutations are generally
non-deleterious. However, there are numerous instances
where this is not true, and which needs to be identified to
correctly pinpoint the pathogenic mutations. As the amino
acid sequence of a protein is not a fixed sequence, the amino
acid at a given position can be changed into a set of other
amino acids without changing the structure or function of
the protein. This set of variable amino acids that do not alter
the structure or function of the protein forms the allowable
amino acids, and those that alter the structure or function of
the protein forms the non-allowable amino acids. It is
predicted that the sequence of variable AAs at every position
of'a domain or protein forms a variable amino acid sequence
signature that is characteristic of the domain or protein.

[0061] Therefore, pathogenic mutations will occur differ-
ently at different positions in the coding sequence of a gene
based on the allowed and non-allowed amino acid variability
at the different amino acid positions. Mutations that occur
among the allowed amino acids at a given amino acid
sequence position should be non-deleterious, and mutations
that change an allowed amino acid to a non-allowed amino
acid will be deleterious. This is different from the difference
between a synonymous and non-synonymous amino acid
change. Therefore, a system of the present embodiment is
able to identify positive and negative amino acid sequence
signatures, and the mutations that occur within the positive
regions are predicted to be non-deleterious and mutations
that occur from a positive region to a negative region will be
deleterious.

[0062] In this scenario, the mutations from patients that
are determined to be pathogenic, causal of various diseases
should occur in such a manner that the amino acids in the
positive signature region should change into the negative
signature region. As shown in FIG. 10, pathogenic mutations
largely shifted from positive to negative when assessed
against published mutations causal of various diseases, and
showed a broad correlation as predicted. Any deviation from
this prediction could be due to the possibility that the
mutation that is reported to be pathogenic in the publication
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may not be truly pathogenic, or due to an error in the amino
acid variability that is reported in the variability data from
resources such as the Pfam.

[0063] A gene can be involved in the causation of one
disease or more than one disease. For instance, the genes that
encode DNA binding proteins that regulate the expression of
other genes may be involved in multiple diseases. Thus, the
GDMAP platform has two ways of depicting the results for
a protein, one from each disease separately, and the other
from all diseases together. We predict that the variable
pattern of mutations at the different amino acid positions
within a gene’s protein would be the same regardless of the
disease, as the gene mutation that causes a disease or any
phenotype would lead to a deleterious defect in the protein.
[0064] The results can be plotted as a bar chart represent-
ing the amino acid positions in the protein (or domain) as the
X-axis, and the frequency of mutations that changes one
amino acid into various other amino acids from the patients
(publications) as the Y-axis. For each amino acid at every
position there will be a spectrum of different deleterious
amino acids with variable frequencies. The base of the
X-axis would represent one of the reference amino acid
sequences, and the frequencies of different amino acids that
are non-allowed at each of the sequence positions will be
plotted on the Y-axis. These non-allowed amino acids and
their frequencies will accumulate on the Y-axis as the set of
deleterious mutations for every allowed amino acid at a
given amino acid sequence position, as the data from dif-
ferent patients accumulate.

[0065] The frequency of such mutations for every amino
acid at a given sequence position can be plotted separately
as a bar chart, where the height of the bar at each position
will represent the number of non-allowed mutations at that
position. In addition, the frequency of a given amino acid
mutating to a specific amino acid also will be plotted, which
may indicate the pathogenicity or deleteriousness of the
specific type of mutations, for example, a Glu—Asp will be
at a higher frequency than a Glu—Tyr. In one embodiment
of a scoring algorithm described herein, the differentially
mutated amino acids will be given different scores that will
be used to calculate and predict the causality of disease or
any phenotype.

Predicting Disease Causality of Mutations in the
Coding Regions from Published Mutations

[0066] Variable amino acid sequence signatures have
peaks and valleys, wherein the peaks are highly variable and
valleys are low or invariable. We predict that disease causing
mutations majorly occur in the low or invariable regions or
valleys. Thus, the distribution of disease causing mutations
from a large number of publications on the variable
sequence signature of a protein domain will reveal that the
high frequency of pathogenic mutations occur in the invari-
able and low variable positions and a low frequency of
pathogenic mutations at positions with increasing amino
acid variability. We expect that different amino acids will
change at different rates or frequencies to other amino acids
at the invariant, low variant and high variant positions.

[0067] For instance, a particular amino acid at an invariant
or a low variable position (e.g., glutamine) will change to a
few other specific amino acids variably by a deleterious
mutation, and not to all the other 19 amino acids equally.
This differential deleterious or strength-altering change of a
given amino acid to other amino acids can be used to predict
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deleteriousness and disease causality, as we did for the
differential base changes that occur in the nucleotide
sequences of different genetic elements.

Effects of Pathogenic Mutations in Transcription,
Splicing and Translation

[0068] The aim of clinical genomics is to understand the
molecular basis of a disease, by identifying the actual defect
in the decoding of a gene into a protein or the defect in the
protein sequence that leads to a non-functional protein, or an
increased or decreased quantity (expression) or the level of
function of a protein. These defects can happen in any of the
steps of transcription, splicing and translation of the gene
into the protein, as described in the following sections.
[0069] Genetic Elements of Transcription Regulation
[0070] The transcription of a gene is regulated by the
promoter that occurs upstream of the gene. Several sequence
elements such as the TATA box, CAAT box, and GC box
comprise the promoters. In addition, several sequence ele-
ments that enhance or silence the transcription of a gene are
present upstream of the gene, and also occur in the introns
and throughout the gene, and rarely far away on the chro-
mosome or genome. Mutations in any of these elements can
increase, decrease or abolish the transcription of a gene, and
can lead to disease.

[0071] Mutations that occur in the genetic elements par-
ticipating in gene expression (transcription) from publica-
tions are plotted on the promoter elements (TATA box,
CAAT box, GC box, initiator box) upstream of the gene and
throughout the gene in the normalized gene length pattern,
and in actual genes. The pattern showed that the frequency
of the mutations are high where these elements occur. In
addition, the mutations on the sequences of the different
promoter elements occur with differential frequencies, as
they occur in the PWMs of each element, indicating the
differential importance of the bases within each of these
elements, and also the different bases to which these refer-
ence bases mutate into.

[0072] The enhancers and silencers of many genes are not
yet discovered. The distribution of pathogenic mutations
from a large number of publications on the gene structure
and sequence will reveal these unidentified enhancers and
silencers and other novel promoter elements. It is known that
multiple transcription factor proteins bind to different
sequences such as enhancers and silencers that serve in
regulating the expression of the gene. The combination of as
many as 20 different proteins or more are known to regulate
the expression of particular genes. The approach to deter-
mining the frequency patterns of pathogenic mutations from
a large number of publications from different diseases will
enable the discovery of many of these novel elements.
[0073] In the cases where gene expression data (from
RNASeq) were available, the gene mutations were corre-
lated with the level of expression of the RNA transcripts.
When a mutation indicates that the strength of the promoter
would be abolished, the particular transcript of the gene was
absent in the RNASeq data. When a mutation in a promoter
element indicates that the transcription would increase, the
transcript should be present at a higher level, and vice versa.
The results indicated this to be true.

Genetic Elements of Splicing Regulation

[0074] In a gene with multiple exons, the potential for a
given type of splicing element such as a donor to become
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defective will vary across the donor element present in
different exons. Multiple different elements in combination
participate in the splicing together of two consecutive exons,
and the elimination of the intron that occurs between the two
exons. The strength of each of these elements (specified by,
for example, the Shapiro-Senapathy score) vary differently
across different exons. Consequently, a mutation in different
elements in different exons will have different levels of
deleterious effects, and lead to different kinds of aberrations
such as exon skipping, intron retention, partial exon dele-
tion, and cryptic or pseudo exon creation. Thus, mutations in
a donor in one of the exons may have the highest probability
of'leading to disease in comparison with the mutations in the
donors of other exons in a gene.

[0075] In addition, different mutations in different
sequence positions within a given element can have entirely
different effects. These effects are non-trivial and are pro-
duced by a complex process of spliceosomal recognition of
the various components of the splicing process, including
protein and other factors that enable alternative splicing in
different developmental stages or tissue specific gene
expression.

[0076] Described herein is a method and specific algo-
rithms to identify the different possible splicing aberrations
due to mutations in the different positions of the sequence of
an element, and in different elements. In addition, the
enablement of these defects also depends on the environ-
ment of the other elements that participate in the splicing
process. The algorithms are designed to understand these
environments and correlate them with the mutations and
correctly predict the aberrational effect of mutations in the
process of splicing.

[0077] Using this module, the effect of any given patho-
genic mutation in any of the splicing elements in a gene can
be predicted, and the complete process can be graphically
illustrated. The GDMAP platform enables the identification
of the pathogenic process of every mutation leading to a
protein defect, or increase or decrease of protein production,
from the published data for every disease. It also enables the
statistical and graphical elaboration of a variety of details for
the aberrations caused by every pathogenic or strength
altering mutation.

EXAMPLE 1

[0078] We tested the relationship between PWM and
disease state possibility by calculating the frequency of
pathogenic mutations that occur within the sequence of a
particular type of splicing element (e.g., the donor) causing
different diseases that are individually reported in numerous
publications in various patients. FIG. 2 illustrates the rela-
tive base change distribution in donor mutation sites along
a nucleotide string. PWM scores were calculated and
weighted in FIG. 4. FIG. 3 illustrates the relative base
change distribution in acceptor mutation sites along a
nucleotide string. PWM scores were calculated and
weighted in FIG. 5. The results from the curated data set
indicated that the frequency of published mutations causal of
disease across the different bases of a given type of splicing
element reflects closely the frequency of bases that occur at
the different positions of its PWM.

[0079] FIG. 7 illustrates the distribution of mutations
within TP53, a known oncogene, collected from published
articles in the literature. First, a curated data set containing
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mutations and types of elements from different diseases
without regard to the type of disease or the gene was
provided.

[0080] It was predicted that the frequency of pathogenic
mutations that occur in a particular genetic element (e.g., a
specific promoter or a splicing element) within a particular
gene (e.g., the donor splice site in exon 6 of the gene TP53)
across numerous individuals exhibiting a particular disease
from the published data will represent the inherent sequence
variation of that element in that gene across various indi-
viduals. FIG. 8 illustrates the distribution of mutations
within a particular genetic element within TP53. Moreover,
FIG. 9 illustrates the relative frequency distribution of
publications regarding differing genetic elements in various
diseases. The results produced variable frequencies of muta-
tions at every sequence position of different genetic ele-
ments into which a specific nucleotide changed (into the
other three nucleotides). This observation is also true when
a gene has a deleterious mutation and contributes to the
causation of multiple diseases (for example, the gene TP53
that is mutated in many cancers).

[0081] It was further predicted that the published patho-
genic mutations that occur in the coding sequence in a
particular gene across numerous individuals exhibiting a
particular disease will represent the inherent amino acid
variations in the different amino acid positions across the
protein sequence of individuals of that organism, such as
that found in the amino acid sequence signature of a protein
domain. In this regard, the allowed amino acids at different
sequence positions of a protein domain or a protein consti-
tute a positive signature and the dis-allowed amino acids at
these positions constitute a negative signature. Thus, when
an amino acid is mutated deleteriously causing a pathogenic
effect, it will go out of the +ve signature and into the —ve
signature, as depicted in the +ve/-ve signature of a protein
domain. FIG. 10 illustrates these features by representing the
allowable amino acids as the +ve signature (green) and
non-allowable amino acids as the —ve signature (red), with
mutations overlaid (purple boxes) indicating the pathoge-
nicity of mutations. The reference amino acids are indicated
in the blue bar at the top of the grid, and the mutated amino
acids are indicated in the red (deleterious) or green (non-
deleterious) region within the signature grid.

Genetic Elements of Translation Regulation

[0082] One of the elements that control the translation of
a protein from the RNA are the poly-adenylation elements
that occur at the tail end of the gene that aids in the accurate
addition of poly-A (a stretch of ~200 As) at the end of the
transcript. This set of poly-adenylation elements comprise
Poly-A addition signal and site, and the enhancers and
silencers. The poly-A sequence at the end of the transcript
enables the transport of the mRNA from the nucleus to the
cytoplasm where it would be translated. Mutations in these
sequences can increase, decrease or abolish this process,
which can enhance, reduce or impair the production of the
protein.

[0083] There are few other elements that enable the trans-
lation of the mRNA into protein, such as the Kozak element
that occurs around the initiator codon of the mRNA. Muta-
tions in all of these elements from published data indicate
that the frequency of the mutations are different at different
base positions, and often correspond to the PWMs of the
element. In addition, there are upstream and downstream
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ORFs (uORFs and dORFs) relative to the true start coding
of the true ORF within an mRNA, which also are known to
be participating in the regulation of translation. Mutations in
these elements are also studied by GDMAP in a similar
manner.

[0084] The enhancers and silencers of poly-adenylation
elements of many genes are not yet discovered. The distri-
bution of pathogenic mutations from a large number of
publications on the gene structure and sequence will reveal
these unidentified enhancers and silencers and other novel
translation regulation elements. Determining the frequency
patterns of pathogenic mutations from a large number of
publications will enable the discovery of many of these
novel elements.

[0085] Provided herein is a system to identify and score
pathogenic mutations sourced from publications as evinced
in FIG. 2 and FIG. 3. Broadly, a graph is generated accord-
ing to the below:

[0086] 1. Stack the base changes of the mutations (one
particular base to any of the other 3 bases) at each
sequence position of a genetic element, and each of the
different genetic elements occurring within a gene
obtained from different publications.

[0087] 2. When normalized to 100%, the frequency
(Y-axis height) of the different sequence positions, and
the different elements (e.g., the different donors within
the same gene) will raise and keep fluctuating initially.

[0088] 3. Keep stacking until the frequency of each of
the positions gets stabilized.

[0089] 4. When plots are stabilized, the heights of the
different elements of the same type (i.e. donor) at
different position within a gene will be different, and
the different sequence positions within the same ele-
ment (donor at a given position, i.e. 7th exon of a 20
exon gene) will differ. The data in this final stabilized
pattern will be useful to determine the disease-causality
score of each of the base changes at each position of
every genetic element, and the different elements
within a gene.

[0090] FIG. 12 illustrates an embodiment of the method to
identify pathogenic mutations. First, at 1210, the system
retrieves a mutation from a selected genetic element for a
selected gene from a selected publication. The mutation may
be sourced from one or more scientific literature publica-
tions, and may include specific annotations. In some
embodiments, the annotations indicate known or otherwise
tagged genetic elements, such as a promoter, enhancer, or
any other known genetic element. At 1220, for each base in
the retrieved sequence or mutation, the system proceeds to
generate a mutation of one or more bases into a non-identical
base, generating one or more mutated sequences. For
example, a guanine may be mutated to any nucleotide that
is not guanine (i.e. cytosine, adenine, thymine, uracil,
depending on whether the selected sequence comprises
RNA or DNA). In some embodiments, mutated sequences
comprise nucleotides arranged in sequence, wherein the
position of one or more nucleotides are mutated into a
non-identical base. In one embodiment, an initial nucleotide
sequence of 3 bases comprising the sequence AAA, can
generate mutated sequences where one, or multiple
instances of A are replaced by a U, T, G, C, or any other
extant nucleobase besides A. At 1230, for every mutated
sequence, the system is configured to use similarity sorting
algorithms to sort and categorize pathogenic mutations. In
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some embodiments, the sorting algorithms are configured to
filter out non-pathogenic mutations. At 1240, the system
proceeds to generate a plot, with base pair position along the
X axis, and “stacked” mutations on the Y axis, as illustrated
in FIGS. 2 and 3. The differential base changes (from filtered
deleterious mutations) at the different sequence positions of
a type of genetic element such as donor generally follow the
base frequencies within the PWM in general. However, they
vary from the PWM positions in certain ways. For instance,
there is a difference between the 2 canonical base positions.
The calculation of pathogenicity based on the scores based
on PWMs will treat both canonical positions equally. How-
ever, if the base-change frequency pattern from the known
(published) pathogenic mutations is used in the deleterious-
ness and disease-causality score determination, these scores
will be different and will reflect the biological and patho-
logical reality in the patients. Thus, this type of scoring will
better accurately pinpoint the disease causality of a specific
mutation than the PWM based scores.

[0091] Embodiments of the present disclosure define the
genome as the regions within the genome that include the
introns in the currently known genes and the intergenic
regions between the currently known genes. In some
embodiments, a platform as disclosed herein identifies
potential genes, protein-coding sequences, and the regula-
tory regions of these protein-coding genes, as well as the
non-coding RNA genes. Accordingly, some embodiments
applied the functionalities of multiple modules therein on
these newly discovered genes and obtained the various
details for CDS and regulatory genetic elements, and their
cryptic versions that occur within these genes.

[0092] FIG. 13 is a block diagram 1300 illustrating an
example genome analysis system 1320, according to certain
aspects of the disclosure. Data input sources 1330 are
connected via a network 1310 to the genome analysis system
1320. In some embodiments, genome analysis system 1320
may include modules and tools, as well as database 1332,
which operatively stores instructions and data received from
data input sources 1330. In some embodiments, data input
sources 1330 comprise any known scientific journal, reposi-
tory of scientific literature, primary, secondary, or other
sources of genomic and genetic data. In some embodiments,
the data collected from the data input sources 1330 com-
prises gene sequence data, including genetic sequences,
specific annotations, and other metadata related to genetic
information. The sequence scoring tool 1329 parses at least
a portion of a nucleotide string from a genome to identify a
splicing site therein. More specifically, sequence scoring
tool 1329 identifies, in a nucleotide string, at least one exon,
at least one acceptor, at least one donor, and at least one
intron between the at least one exon. In some embodiments,
sequence scoring tool 1329 may include identifying, in a
nucleotide string, at least one exon, and at least one intron
between the at least two exons, and a promoter sequence. In
some embodiments, sequence scoring tool 1329 may include
identifying, in a nucleotide string, a poly-A addition site,
wherein the poly-A addition site includes a poly-A site and
a signal. In some embodiments, sequence scoring tool 1329
may include identifying a first amino acid string correspond-
ing to a functional protein or protein domain. The Mutation
tool 1328 generates mutations in base pairs according to an
input sequence, mutating for every base pair at positions
upstream and/or downstream from an arbitrary position. In
some embodiments, mutation tool 1328 may access a muta-
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tion log in database 1332, to identify a recurring mutation
over a cohort or a population of individuals. In some
embodiments, mutation tool 1328 may identify, in a nucleo-
tide string, a mutation that changes an amino acid to another
allowed amino acid (within the positive signature), and a
mutation that changes an amino acid to a non-allowed amino
acid (within the negative signature) in the functional protein.
In some embodiments, mutation tool 1328 determines a
deleterious effect of a mutation based on whether the muta-
tion occurs within the positive signature or the negative
signature in a protein domain. In some embodiments, muta-
tion tool 1328 identifies, in a nucleotide string coding a
protein domain in the functional protein, a mutation leading
to a disallowed amino acid. In some embodiments, mutation
tool 1328 determines a mutated hydropathy signature of the
protein domain based on a hydropathy index of a mutated
amino acid. In some embodiments, mutation tool 1328
determines a normal hydropathy signature of the protein
domain based on a hydropathy index of an allowed amino
acid or a disallowed amino acid, and a deleteriousness score
for the mutation based on a difference between the mutated
hydropathy signature of the protein domain and the normal
hydropathy signature of the protein domain. In some
embodiments, mutation tool 1328 also determines a delete-
riousness score for the mutation based on whether a muta-
tion occurs within a positive signature indicating no delete-

riousness oOr a negative signature indicating a
deleteriousness.
[0093] Statistics tool 1330 may perform a frequency

analysis over the splice sites and the mutations identified by
sequence scoring tool 244 and mutation tool 246. In some
embodiments, statistics tool 1330 may use mutation logs and
gene sequencing logs in database 252 to evaluate statistical
data on a nucleotide string for an individual or a cohort of
individuals, for analysis. The algorithm may be a linear or
non-linear algorithm, including a neural network, machine
learning, or artificial intelligence algorithm used to identify
and score splicing sites (e.g., for sequence scoring tool 244).
For example, in some embodiments, the algorithm may
include the Shapiro & Senapathy algorithm to score a
nucleotide string as a splice site (e.g., a ‘donor’ site or an
‘acceptor’ site), a MaxEntScan algorithm, and an NNSplice
algorithm, among others. The algorithm may combine vari-
ous algorithms including the updated version of the Shapiro
& Senapathy algorithm to develop biological probability
and impact of the various splicing event data throughout the
genome.

[0094] The Genome Analysis System 1320 may also
include different modules which enable the different appli-
cations and aspects disclosed herein. For example, some of
the modules include an Exon Splice Module 132, Cryptic
Splice Module 1322, Alternative Splice Module 1323, Exon
Frame Module 1324, ncRNA Map Module 1325, Exon plot
module 1327, UTR module 1326, ProtSig module 1331, and
Machine Learning Module 1330. Exon splice module 1321
identifies exons in a nucleotide string, and provides data
analysis regarding the proteins and protein domains codified
by the exons, and the possible protein isoforms or deleteri-
ous effects produced by skipping of one or more exons or
domains, amino acid rearrangements and other effects or
mutations.

[0095] Alist of genes from an external database, library, or
resource (NCBI, ENSEMBL, and the like) may be down-
loaded and integrated into Database 1332 to provide the list
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of genes, exons, coding sequence, 5' and 3' UTRs, poly-A
signal sequences, promoter sequences, and clinical associa-
tion of genes with diseases (as sourced from dbSNP, COS-
MIC, and ClinVar). The exons are classified based on their
coding features into 5' and 3' noncoding sequences, 5' and 3'
partially coding sequences, fully coding sequences,
upstream open reading frames (UORFs), downstream open
reading frames (dORFs), poly-adenylated tails, kozak
sequence contents, and various promoter boxes (TATA, GC,
CAAT, and initiator), each of which are computed, identi-
fied, and tagged.

[0096] Cryptic splice module 1322 uses algorithms (i.e.,
the Shapiro & Senapathy algorithm) to identify cryptic
splice sites and cryptic exons in human genes. Cryptic splice
module 1322 is a beneficial tool that helps investigate
splicing mutations in disease, as Cryptic Splice Sites (CSSs)
and cryptic exons are known to be involved in numerous
diseases. More generally, cryptic versions of every regula-
tory element occur within a gene sequence. Furthermore,
cryptic exons also occur throughout the gene sequence.
Cryptic splice module 1322 identifies one or more of these
elements throughout the gene sequence, and displays them
in graphical, tabular, and sequence views. Cryptic splice
module 1322 also determines the mutations that occur
within these elements, and displays the details in various
forms of illustrations from a subject sequence data and from
various public data sources including dbSNP, ClinVar, and
COSMIC. Cryptic splice module 1322 also identifies the
cryptic versions of other regulatory elements throughout the
gene sequence, and the mutations in them, and provides
detailed illustrations in various forms.

[0097] The exon plot module 1327 enables classification
and analysis of exon lengths and their accompanying splic-
ing features, including unusual exon patterns in distinct
genes. In some embodiments, exon plot module 1327
applies an algorithm (i.e., the Shapiro & Senapathy algo-
rithm and other relevant algorithms) to determine the scores
of real and cryptic splice sites in the outlier exons and other
exons in a gene. In some embodiments, exon plot module
1327 enables the analysis of outlying exons that have highly
outlying lengths compared to the other exons in the gene,
and their real splice sites, cryptic splice sites, real exons,
cryptic exons, branch point sites, enhancers and silencers,
and their scores. In some embodiments, exon plot module
1327 displays regulatory elements and their cryptic versions
within the outlying exon in graphical, tabular, and sequence
views. In some embodiments, exon plot module 1327
enables the graphical depiction of exons with repeated
lengths and outlying exons in a gene, and their correlations
with the splice donor, acceptor and exons scores, and their
DNA and protein sequences, using dropdowns for user
selection of these features and their involvement in disease.
In some embodiments, exon plot module 1327 enables
various searching options using nested search boxes for the
user to choose the genes with gene length, CDS length,
genes having exon length repetition, exons with outlying
lengths, disease associated with such genes, and exceptional
genes with these features. In some embodiments, exon plot
module 1327 enables the search option for genes from
various gene panels such as disease panels, drug metabo-
lizing gene (DMQ) panels, the American College of Medical
Genetics and Genomics (ACMG) gene panels, and other
user given gene panels and enabling the visualization and
analysis of any gene provided. In some embodiments, exon
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plot module 1327 provides the capability to analyze different
exon classes based on length, length of the preceding and
following exons and introns, and the scores of the acceptor
and donor splice sites.

[0098] In some embodiments, exon plot module 1327
provides the capability to analyze different sets of exons,
each set with the same lengths, and their splice scores, exon
sequences, amino acid sequences, and the ability to analyze
various parameters such as if the sequences of exons of the
same length are similar or different, and determining if the
splice site sequences and scores are similar or different. In
some embodiments, exon plot module 1327 depicts the real
and cryptic splice sites by employing Shapiro & Senapathy
and other relevant algorithms and comparing the scores for
exons with repeat lengths in genes from any given organism,
including the human, in an automated manner. In some
embodiments, exon plot module 1327 enables the automated
analyses of the many features of an exon chart and providing
the tabular, graphical, and sequence representation for the
analysis of every gene from any organism including animals,
plants, and microorganisms. In some embodiments, exon
plot module 1327 classifies and analyzes exons based on
their coding features into 5' non-coding sequences, 3' non-
coding sequences, 5' partially-coding sequences, 3' partially-
coding sequences, and fully coding sequences for the genes
with repeated exon lengths and outlying exons. In some
embodiments, exon plot module 1327 characterizes the
various exons present in a gene into multiple categories
based on their length to identify the exon length repetition,
highest exon lengths to signify the “outliers” in a gene, and
the exception codons which contain no stop codon, in-frame
stop codon, or selenocysteine codon sequences. In some
embodiments, exon plot module 1327 creates a repository
containing information for genes in a genome such as exon
details with the exon length, genomic position of the exons,
transcript details, real/cryptic splice donors and acceptors,
splicing scores, and enabling the display and analysis of any
gene by a query. In some embodiments, exon plot module
1327 enables a search for genes that fit various parameters
of exon lengths, gene lengths, outlier exon lengths, exons
with the same lengths, non-coding, partial coding and fully
coding exon lengths, genes from different gene panels, and
genes from different diseases, and determines if any disease
correlates with such genes or vice versa, and the ability to
analyze these genes in graphical, tabular, and sequence
illustrations. In some embodiments, exon plot module 1327
overlays the subject(s)’ mutations on the gene with depic-
tions in an exon chart, in graphical gene structure and
sequence illustrations in color codes for depicting the fea-
tures of exons, promoter boxes, 5' and 3' UTRs, real/cryptic
splice sequences, poly-A site and region, branch point
regions, and the ability to analyze them for different param-
eters of exons provided by an exon chart including the
correlation of the subject mutations with gene features. In
some embodiments, exon plot module 1327 enables analysis
of enhancers and silencers in the outlying exons, especially
the first and last exons, to determine if the long lengths are
required in order to accommodate these regulatory
sequences or signals. In some embodiments, exon plot
module 1327 indicates the consequences of a mutation in
graphical and sequence illustrations, and plotting subject
mutations in a real or cryptic splice and exonic regions, and
the known mutations from the different databases such as
dbSNP, ClinVar, and COSMIC, and categorized into clinical
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significance, molecular consequence, variation type and
pathogenicity based on the SIFT and/or PolyPhen scores on
any gene chosen by the user. In some embodiments, exon
plot module 1327 enables the query and analysis of different
parameters of genes in an exon plot for the detection and
analyses of unusual length repetition patterns and splicing
patterns in distinct genes, and possible disease connections.

[0099] UTR Module 1326 identifies the various promoter
elements, 5' and 3' UTRs, poly-A sites, and various possible
ORFs such as u-ORFs and d-ORFs, their sub classifications
within these based on the specific start and stop codons, and
their disease connections. In some embodiments, UTR Mod-
ule 1326 identifies genetic elements in various tabs for
analyzing the properties of promoters and UTRs in tran-
scripts and mRNAs such as: mRNA sequence, splice score
and promoter, displays the structure of mRNA transcript of
a gene and illustrating and enabling the analysis of the
properties of un-translated regions (UTRs) in human mRNA
sequences, and enables the classification of exons in the
transcript into coding, partially-coding, or non-coding
exons, providing splice site sequences, and scores for each
of them. In some embodiments, UTR Module 1326 locates
any upstream and downstream open reading frames (u-ORF's
and d-ORFs) that surround the real ORF (CDS), enables the
determination of the Kozak consensus sequences surround-
ing the start codon, and providing Kozak scores for the
identified ORFs in upstream and downstream regions, indi-
cating which ORFs may be turned on in different biological
contexts, and depicts the structure and sequence of mRNAs
and locates the sequence components such as coding
sequence, 573' UTRs, Poly-A signals, initiator ATG codons,
stop codons that are in-frame with one or more ATGs,
upstream ORFs (u-ORFs) and downstream ORFs (d-ORFs),
and displays four different classes of ORFs in upstream and
downstream regions of every mRNA transcript of genes, in
tabular, graphical, and sequence views. In some embodi-
ments, UTR Module 1326 illustrates different ORF classes
such as u-ORF, r-ORF (real open reading frame), and d-ORF
between 5' and 3' region of coding exons and depicts the
occurrences of start and stop codons on the gene’s mRNA
and for every ORF classes in a graphical, and sequence view,
determines the ORF classes and tabulating the features of
them such as ORF type, ORF position, Kozak sequence,
Kozak score, stop codon sequence, real stop codon score,
and 4-base stop codon score, and illustrating them in graphi-
cal and sequence view, displays the splice sites for all the
exons in a transcript and computing scores using the Shapiro
& Senapathy algorithm and other relevant algorithms, and
calculating and displaying the exon scores by taking the
average of the acceptor and donor scores, and defines
different UTR and exon classes in a transcript, and catego-
rizing them as fully coding exon (FCE), 5' partially-coding
exon (PCES), 3' partially-coding exon (PCE3), 5' and 3'
partially-coding exon (PCES3), 5' non coding exon (NCES),
and 3' non-coding exon (NCE3). In some embodiments,
UTR Module 1326 identifies real and cryptic promoters and
poly-A motifs and elements by adapting and moditying
other relevant algorithms such as MaxEntScan, NNSplice,
and Human splicing Finder throughout the gene sequence
and genes in the genome. In some embodiments, UTR
Module 1326 identifies real and cryptic splice sites using
promoter and poly-A motifs and elements by adapting and
modifying other relevant algorithms such as MaxEntScan,
NNSplice, and Human splicing Finder throughout the gene
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sequences and genes in the genome and identifying the
known mutations from databases such as ClinVar, dbSNP,
and COSMIC. In some embodiments, UTR Module 1326
identifies real and cryptic promoter and poly-A motifs and
elements by adapting and modifying other relevant algo-
rithms such as MaxEntScan, NNSplice, and Human splicing
Finder throughout the gene sequences and genes in the
genome and identifying the mutations from subjects’
genome. In some embodiments, UTR Module 1326 enables
various search options using nested search boxes for the user
to choose the genes based on number of ORFs, number of
promoter boxes, promoter box score, poly-A boxes, poly-A
box score, exon classes, disease associated genes, excep-
tional genes, and other parameters.

[0100] Alternative splice module 1323 uses the algorithm
(e.g., the Shapiro & Senapathy algorithm and other relevant
algorithms) to identify alternative splicing events such as
exon skipping, intron retention, and alternative splice site
usage in each of the predicted isoforms of the given gene. In
some embodiments, alternative splice module 1323 provides
a catalog of predicted alternative transcripts in human genes,
including those that may or may not genuinely encode
distinct proteins. Alternative splice module 1323 identifies
unique splicing events in the alternative transcripts when
compared with a canonical transcript, such as exon skipping,
exon inclusion, intron retention, and alternative splice site
usage.

[0101] Alternative splice module 1323 maps alternative
splice events and their molecular effects in different tran-
scripts of a gene compared with the canonical transcript,
which is defined by various methods. In addition, it also
maps these details based on constitutive exons defined by
various methods. In alternative splice module 1323, differ-
ences among transcripts are also correlated with changes in
the encoded structural domains, thereby capturing the func-
tional regions of proteins that alternative splicing may
normally or deleteriously affect. Alternative splice module
1323 thus simplifies the prediction of the particular tran-
scripts resulting in distinct proteins and distinguishes them
with the artifacts of mistaken sequence annotation, which is
key to the advancement of the field of clinical genomics and
Precision Medicine. In some embodiments, alternative
splice module 1323 enables the visualization of known
mutations, mutations from individual subjects and cohorts of
subjects. In addition to the mutational analysis, alternative
splice module 1323 also provides analysis of the domains
encoded by different isoforms of a gene in a single view.
Thus, alternative splice module 1323 provides insight into
aspects of alternative splicing in genes, their impacts on
functional domains, and mutational analysis.

[0102] Alternative splice module 1323 provides multiple
ways to view and analyze alternative splicing events, such as
based on gene: The alternative splicing events can be
visualized for individual transcripts for the selected gene;
and based on clinical association: the alternative splicing
events can be visualized for individual transcripts for the
genes implicated in the panels for all major cancers and
inherited disorders. In some embodiments, alternative splice
module 1323 provides alternative splicing events, wherein
the user can select a particular transcript of a given gene and
explore different alternative splicing events including
skipped exons, cryptic exons, exons with alternative accep-
tor splice sites, exons with alternative donor splice sites,
exons with alternative acceptor and donor splice sites, and



US 2023/0307092 Al

retained introns together. In some embodiments, alternative
splice module 1323 identifies genes based on a number of
transcripts (and selects the highest, or one of the highest):
Genes having a high number of transcripts can be searched
(e.g., ranging from 1-28). The alternative splicing events can
be visualized for individual transcripts for these selected
genes.

[0103] Exon frame module 1324 determines the possible
distribution of stop codons and coding exons in a reading
frame before and after splicing events. A reading frame is a
way of dividing the sequence of nucleotides into a set of
consecutive, non-overlapping triplets, where these triplets
equate to amino acids or stop signals during translation,
which are called codons. In some embodiments, exon frame
module 1324 analyzes and verifies that a distance in the
nucleotide string between two stop codons while mapping
different stop codons should not fall inside an exon region.
To verify this, the length of each of the exons and the open
reading frame are plotted separately. The exon with maxi-
mum length in any transcript should be lesser than the
maximum distance between two stop codons in all the
reading frames. After splicing, the CDS length should be
shorter than the maximum distance between two stop
codons. In some embodiments, exon frame module 1324
allows the determination, analysis, and illustration of the
exon-intron structures across ORF patterns of a gene and
determines the structure of a gene with respective reading
frames that contain exons of a gene and the patterns of
before and after splicing by constructing an image of the
entire split gene, including the exons, introns, splice junction
signals, and stop codons that occur within each frame. In
some embodiments, exon frame module 1324 streamlines
the detection of atypical gene patterns, such as long exons,
long open reading frames without annotated exons, or short
introns, and illustrates exons and ORFs in a single reading
frame of the gene along with their splice sites and scores
calculated using algorithm (e.g., the Shapiro & Senapathy
algorithm and other relevant algorithms). In some embodi-
ments, exon frame module 1324 represents three reading
frames of a transcript, along with all possible stop codons in
each reading frame and plotting the coding exons in appro-
priate reading frames by using the reading frame algorithm.

[0104] In some embodiments, ncRNA map module 1325
identifies and illustrates ncRNA genes from the human
genome, and their splicing and processing into the mature
functional RNA molecules in tabular, graphical, and
sequence illustrations, and creates a repository for the non
coding RNA genes platform containing all possible infor-
mation for ncRNA genes in a genome such as exon details
with the genomic position of the exons, transcript details,
exon length, splicing and maturation processes, and conse-
quences of the mutations. In some embodiments, ncRNA
map module 1325 identifies mutations in the non-coding
RNA genes by modifying and applying the Shapiro &
Senapathy algorithm and other relevant algorithms across
the gene and genomic scale from individual subjects and in
a cohort of subjects, and enabling the clinicians to correlate
the mutations in non-coding RNA genes that drive disease
pathogenesis, and identifies mutations in the regulatory
elements of the non-coding RNA genes responsible for
disease-causing, adverse drug reactions and affecting the
efficacy of various drugs in a subject. In some embodiments,
ncRNA map module 1325 identifies known disease-causing
mutations in different ncRNA genes, and using them to
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predict or diagnose mutations and diseases from the subject
genome, parses the identified mutations in non-coding RNA
genes against the curated Genome Explorer proprietary
mutation database, enabling to distinguish and categorize
the known and novel mutations of non-coding RNA genes
reported in the individual and cohort subjects, and identifies
structural and functional motifs and elements in the non-
coding (nc) RNA genes (rRNA, tRNA, miRNA, snRNA,
snoRNA, siRNA, IncRNA).

[0105] In some embodiments, ncRNA map module 1325
identifies disease-causing mutations in different ncRNA
genes, predicting or diagnosing, mutations and diseases
from the subject genome, and known disease-causing muta-
tions in different ncRNA genes, using them to predict or
diagnose mutations and diseases from the subject genome.
In some embodiments, ncRNA map module 1325 identifies
sequence signals for processing different ncRNA genes to
their mature forms using the modified Shapiro & Senapathy
and other algorithms based on consensus, PWMs, and other
relevant parameters for all ncRNA genes, and compares
subject ncRNA gene sequences with reference sequences to
identify mutations using modified Shapiro & Senapathy and
other relevant algorithms based on the score difference
between the normal and the mutated signals.

[0106] Prot-Sig Module 1331 enables the analysis of
selected protein features in a genome, and their aberrations
due to mutations that lead to diseases and other afflictions
such as adverse drug reactions. It further enables the visu-
alization and analysis of various details including the exon-
domain signatures, cryptic splice sites, and the protein
signature showing variable amino acids at each position of
the domains that provides a deeper understanding of the
allowed and non-allowed amino acids of the domains. When
a gene is chosen in Prot-Sig Module 1331, coding exons of
the selected gene and transcript are displayed with their
corresponding domains overlaid as colored lines. Mutations
on these coding exons can be visualized by selecting the
mutation toggle option. On clicking the domains above their
coding exons, domain details, and various types of signa-
tures such as 20 colors, Positive-Negative, Hydro, Cryptic
splice, Alternative splicing and Whole protein signature, are
displayed for further analysis. In some embodiments, Prot-
Sig Module 1331 performs or collects alignment results
from a third party database (e.g. , database 252, including the
Pfam database), including a seed alignment and a full
alignment. In some embodiments, a seed alignment includes
a set of manually curated amino acids from the domain
sequences from several genomes and thus tends to have a
smaller number of amino acids than the full alignment. In
some embodiments, a full alignment includes a set of amino
acids produced from several genomes that are aligned using
Hidden Markov models, and the like.

[0107] In some embodiments, Prot-Sig Module 1331
determines, analyzes, and illustrates the protein sequence
signatures of a protein and its domains, their associated
features such as the hydropathy and splicing, and the clinical
and biological impacts of genetic mutations. In some
embodiments, Prot-Sig Module 1331 provides a protein
chart to determine and illustrate the analysis of variable
amino acids in protein-coding sequences under three differ-
ent tabs: Protein Overview, Cryptic Splice Sites, and Variant
density. In some embodiments, Prot-Sig Module 1331 con-
verts the amino acid alignments from Pfam database into
amino acid signatures of proteins and their domains, by
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identifying the variable amino acids and avoiding the redun-
dant amino acids at each position, and by determining if an
amino acid occurs at greater than a specific fraction (e.g.,
50%) of the aligned positions, thus incorporating a unique
algorithm. In some embodiments, Prot-Sig Module 1331
defines an algorithm that identifies the different non-redun-
dant amino acids at each position and includes them as the
variable or allowed amino acids at that position, taking into
account any position with or in the alignment indicating a
gap, whereby a position with a particular frequency (e.g.,
>50%) of dots is defined as grey regions in the signature.

[0108] In some embodiments, Prot-Sig Module 1331
determines and displays the set of non-redundant AAs
produced from the multiple sequence alignment (MSA),
generating a unique signature of allowed AAs for every
sequence position, showing each of the 20 AAs in a distinct
color, and defines that the allowed and non-allowed regions
of the positive-negative signature of a domain or protein
determines the pathogenicity or deleteriousness of a variant
by its occurrence in the positive (green) or negative (red)
region. In some embodiments, Prot-Sig Module 1331 dis-
plays the non-redundant AAs from the multiple sequence
alignment (for e.g., Pfam database) in one color (e.g., green),
and all other AAs in another color (e.g., red), showing a map
of allowed (positive) and non-allowed (negative) AA sub-
stitution space across the sequence, indicating variants that
may result in a viable or defective protein. In some embodi-
ments, Prot-Sig Module 1331 finds that the deleterious
(pathogenic) mutations would fall within the negative region
(red) and that the benign or likely pathogenic mutations
would fall within the positive region (green), and applying
this finding in testing and determining if a given variant is
deleterious or not, determines the impact and clinical sig-
nificance of the mutations based on the occurrence of the
altered amino acids within the negative amino acid space or
the positive amino acid space, thereby showing the amino
acids where the actual mutations occur by color codes, and
depicts the signature for the exon encoded domains in color
codes based on a hydropathy scale. Prot-Sig Module 1331
displays the hydrophobic AAs in shades of a particular color
(e.g., red), and hydrophilic AAs shown in shades of another
color (e.g., blue) to create a heat-map of hydropathy. In some
embodiments, Prot-Sig Module 1331 determines the sec-
ondary structure map of the amino acid signature using
standard values of secondary structure, and depicting them
in different color codes thus creating a color-coded second-
ary structure signature, which will change due to genetic
mutations from a subject or from gene-mutation databases
such as ClinVar, dbSNP, and COSMIC. In some embodi-
ments, Prot-Sig Module 1331 defines the secondary struc-
ture map of the amino acid signature using standard values
of secondary structure, depicting them in different color
codes, thus creating a color-coded secondary structure sig-
nature and enabling its illustration against the domain sig-
nature for the analysis of secondary structures correlating
with signatures and mutations in various amino acids. In
some embodiments, Prot-Sig Module 1331 enables the
illustration, visualization, and analysis of mutations in the
3D structure of the domain along with the amino acid
variability in the allowed or non-allowed set of amino acids
and correlating and determining the effects of the mutations
in the domain. In some embodiments, Prot-Sig Module 1331
represents the structure of coding exons in a gene by a shape
such as an oval or rectangle, and overlaying the protein
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domains encoded by the exons, as available in Pfam data-
base or predicted by PfamScan, or any other amino acid
alignment databases, correlating the clinical association of
mutations in the CDS with cancers and non-cancer disorders
in a user-driven approach, displaying various details of
domains encoded by the exons such as domain identifier
(Pfamld), class, start and end position of the transcript
encoding the domain, and coding exons using i-icons, mouse
hovers, and context-sensitive popups, depicts the variable
amino acids in the key regions of human proteins, such as
domains and deriving the set of “allowed” amino acids by
generating the multiple sequence alignments of diverse
genomes, creating a signature of potential amino acid sub-
stitutions across the domain, and classifying the signature
under different tabs including: 20 colors, Positive Negative,
Hydro, Cryptic Splice, Alternative Splicing, and whole
protein signature, and illustrates the alignment of amino
acids under two different tabs: Seed and Full, and depicting
the alignment which contains a set of allowed/curated amino
acids in the Seed tab and the alignment which contains the
set of amino acids produced by Pfam using Hidden-Markov
models in the Full tab. In some embodiments, Prot-Sig
Module 1331 computes and depicts the signature of poten-
tial amino acid substitutions across the domain in color
codes based on the hydropathy (hydrophobic and hydro-
philic) index, charge of amino acids, and determining its
region and impact on the cryptic and alternative splicing
sites, creates and depicts the impression of the known amino
acid substitutions or subject(s) mutations that are likely to
maintain the structure and function of a given protein region,
and the mutations that are likely to destroy the structure and
function of the protein thus leading to disease, depicts the
exons that encode a domain by overlaying the domains on
the corresponding positions of the codon and AA sequences,
and various features of domains and proteins against the
gene sequence, and enables the selection of different score
thresholds to view any cryptic splice sites or cryptic exons
that occur within the CDS of different exons in different
color codes, thereby identifying the cryptic splice sites and
cryptic exons within real exons, whose mutations can dis-
rupt normal splicing leading to defective protein and dis-
ease.

[0109] In some embodiments, Prot-Sig Module 1331
depicts the positions on the signature in which the human
amino acid sequence has a gap, but other genomes have
amino acids, shown as a dash in the human sequence, in
different color codes, and indicating the positions at which
lesser or higher than a specific fraction of amino acids occur
with or without a gap (e.g., 50%) in the sequence signature.
In some embodiments, Prot-Sig Module 1331 provides
toggle options to turn on the mutations to overlay known
mutations on the signatures from different databases such as
dbSNP, ClinVar, and COSMIC, categorized into clinical
significance, molecular consequence, variation type, and
pathogenicity based on the SIFT and/or PolyPhen scores,
and enabling the illustration of the amino acids, cryptic sites,
and its scores in graphical, tabular, and sequence with
pop-up boxes, mouse hovers, and context sensitive expla-
nations. In some embodiments, Prot-Sig Module 1331 ana-
lyzes cryptic sites and exons within the coding sequence of
a protein by determining and depicting the cryptic splice
sites and cryptic exons, real splice sites and exon positions
and their scores in various color codes and shapes, based on
different score thresholds within the coding exon sequences
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in tabular, graphical, and sequence illustrations, analyzes the
alternative splicing of the exons coding for the domains and
providing the signatures for the added or skipped region of
the exons coding for the domain, and enables the pattern
analysis of variations in protein and domain sequence sig-
natures for different transcripts of a given gene. In some
embodiments, Prot-Sig Module 1331 displays the number of
samples for each variant from the COSMIC database for
each domain position, and depicts the positions of a specific
variant in a color (e.g., red), and positions with more than
one variant are depicted in different colors, for example, as
follows: two variants->blue, three variants->green, four
variants->yellow (named as variant density plot), predicts
the splice sites in the genes of any organism using Shapiro
& Senapathy and relevant algorithms in an automated man-
ner. Predicting and assigning the score for cryptic exons
based on the cryptic donor and acceptor splice site scores,
and detecting which amino acid mutation would make the
protein defective based on the mutations from one or more
subjects within the protein signature, based on where the
mutation falls within the positive or negative amino acid
space, and determining which mutations are correctly iden-
tified and which are incorrectly identified. In some embodi-
ments, Prot-Sig Module 1331 overlays the subject(s) muta-
tions on the gene, and provides visual and analytical
illustrations of the mutations from the subject(s) and known
mutations from various gene-mutation databases in graphi-
cal, tabular, and sequence views with pop-up boxes, mouse
hovers, and context sensitive explanations, enables various
search options using nested search boxes for the user to
choose the genes based on the domain, number of domains
in a gene, families, average AA substitutions, alignment
type, disease associated genes, domains using Pfam Identi-
fier, and exceptional genes, and provides various informa-
tion about the gene and its associated elements such as
protein family and domains, ontology information, disease
phenotypes using i-icons, mouse hovers, and context-sensi-
tive popups.

[0110] In some embodiments, machine learning module
1330 is configured to accept one or more types of input, to
generate a suitable output to provide analysis of certain
genomic features. According to embodiments described
herein, training data sets comprising pre-compiled or pre-
annotated genetic elements, mutations, or other meta-data
for genomic data, may be processed in order to generate
novel identification of under characterized or unknown
features.

[0111] The Genome Analysis System 1320 may be
installed onto a platform, including a server, and perform
scripts and other routines provided by Genome Analysis
System 1320 to display graphics and generate analysis of
genomic features.

[0112] FIG. 14 is a flowchart of an example method for the
analysis of features, mutations, genes, and genomes, the
method comprising the following steps. At step 1410, the
method recites receiving a plurality of nucleotides compris-
ing a genetic element in a gene, wherein the plurality of
nucleotides are assigned a position. In some embodiments,
the plurality of nucleotides are arranged in a specific
sequence. In some embodiments, the plurality of nucleotides
are collected from a gene repository. In some embodiments,
the plurality of nucleotides are assigned or annotated with
genetic elements. In some embodiments, the plurality of
nucleotides are collected from one or more scientific pub-
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lications. At step 1420, the method further comprises cal-
culating a frequency of mutation for each position within the
genetic element, wherein the nucleotide at the position
within the genetic element is replaced by an alternative
nucleotide. For example, a nucleotide sequence of 3 bases
comprising the sequence AAA, can generate mutated
sequences where one, or multiple instances of A are replaced
by a U, T, G, C, or any other extant nucleobase besides A.
At step 1430, the method then proceeds to calculate the total
number of mutations for the sequence length of the genetic
element. At step 1440, the system calculates a deleterious-
ness score for each specific position based on the frequency
of mutations at that position relative to the total number of
mutations.

[0113] FIG. 15 is a flowchart of an example computer
implemented method for automatically assessing genomic
features, the method comprising step 1510, receiving an
input dataset comprising one or more regulatory and/or one
or more splicing elements in a gene set. In some embodi-
ments, the gene set comprises one or more gene sequences,
each gene sequence annotated with existing genomic fea-
tures. Then at step 1520, the method proceeds to generate
one or more similarity scores for the one or more regulatory
and/or one or more splicing elements. In some embodi-
ments, the similarity scores are calculated using an algo-
rithm as described herein. (i.e. Shapiro-Senapathy, Max-
EntScan, or NNSplice scoring). At step 1530, the method
then generates one or more pathogenic or strength altering
mutations in the gene set by calculating pathogenicity of
known mutations in the one or more regulatory and one or
more splicing elements. At step 1540, an Al model is trained
with a subset of the one or more regulatory and one or more
splicing elements of the gene set, wherein the subset of the
one or more regulatory and one or more splicing elements
are chosen by prossessing one or more similarity scores
within a preset range. In some embodiments, the preset
range is within 30. In some embodiments, the preset range
is within 10, 20, 40, 50, 60, or 100, or 60-70, 70-80, 80-90,
90-100 or below 50, or any value in between. At step 1550,
the process then generates an output data set of splicing or
regulatory elements based on a new set of genes. In some
embodiments, the new set of genes are different than the
gene set from the input dataset. At step 1560, the method
then generates pathogenic or strength altering mutations for
the new set of genes.

Identifying Pathogenic Mutations in Cryptic
Genetic Elements in Genes with Disease Causality
Using Statistical Graphing Method

[0114] 1. Obtain all possible n-mers from the whole
genome sequence based on the length of a genetic
element using the sliding window method or other
methods. For each of the n-mers:

[0115] a. Calculate the similarity scores based on
algorithms such as Shapiro & Senapathy algorithm,
MaxEntScan algorithm and NNSplice algorithm or
their modified versions based on the length and
PWMs of the genetic elements, or their average or
weighted scores.

[0116] b. Categorize the n-mers based on the simi-
larity score ranges such as 90-100, 80-90, 70-80 and
so on, and,

[0117] c. Plot them on a gene structure and sequence
graph with frequency of n-mers in each score range.
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[0118] d. These n-mers form the pseudo or cryptic
elements.

[0119] Further, find the similarity scores for a particular
element from all archived genes. Next, categorize each
element based on the percentage similarity score, including
ranges such as 90-100, 80-90, 70-80, 0-100, or any value in
between, and plot the similarity scores on a gene structure
and sequence graph with the frequency of n-mers in each
score range. Frequency distribution of similarity score
ranges in each type of the genetic element, such as acceptor,
donor, branch point, enhancer, silencer, promoter and polyA
in all of the 20,000 genes are thereby determined.
[0120] We observed that the majority of the real elements
occurring in the 20,000 genes have similarity scores above
70. The frequency distribution of the cryptic elements in
every type of genetic element revealed that the majority of
cryptic elements have very low similarity scores compared
to the real elements. It also showed that increasing the scores
actually decreased the frequency of the occurrence of cryptic
elements.
[0121] Display the cryptic elements of a particular gene on
its structure and sequence, based on the score range selected
from a dropdown. Cryptic elements with similarity scores
within the selected range, in some embodiments, 80-90 from
a dropdown, 70-80, 60-70, 50-60, 40-50, or any value in
between the preceding values, are displayed on the gene
structure and sequence view.
[0122] Cryptic exons or pseudo exons are defined by
cryptic genetic elements such as cryptic acceptor, donor,
branch point, enhancer, and silencer in the gene sequence,
where each of the elements is positioned appropriately
resembling a genuine true exon. Plot the cryptic exons on the
gene structure and sequence view based on the genetic
elements with similarity scores within the selected score
ranges, and the selected exon length range such as 50-300
bases, and 50-500 bases. These cryptic exons, when acti-
vated due to a mutation in any one of the cryptic elements,
can lead to deleterious aberrations causing diseases. All the
possible cryptic exons within a gene are determined and the
details such as exon length, scores, and their ranks are
tabulated.
[0123] Mutations from publications that falls on the cryp-
tic elements are similarly plotted on the different elements.
Their statistics are determined by various methods as
described above, also plotting on the different cryptic
genetic elements in each gene. The frequency of mutations
in certain cryptic elements within a gene could be much
higher than others, indicating that they are present in a
genetic environment such that these mutations cause aber-
rations in gene regulation or splicing. Thus, this is part of
statistical graphing method to identify specific mutations in
particular cryptic genetic elements within each gene, when
a large number of pathogenic mutations can be analyzed in
this manner.

Non-Coding RNA Genes and Their Genetic
Elements

[0124] Although the number of non-coding RNA genes in
the human genome is not yet clearly determined, it is
estimated that there may be thousands of ncRNA genes. The
different types of ncRNAs, such as micro-RNA (miRNA),
transfer RNA (tRNA), ribosomal RNA (rRNA), small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA),
and long non-coding RNA (IncRNA) have different func-
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tions. The ncRNA genes are transcribed, and the primary
RNA transcripts are processed to remove parts of the RNA
sequences, resulting in the processed functional RNA mol-
ecules, which then perform their function. ncRNA genes are
associated with important biological processes.

[0125] Each type of ncRNA includes promoters, exons,
introns and their associated enhancer/silencer elements. As
with the protein coding genes, the processing of the primary
RNA transcript of an ncRNA is aided by recognition
sequences that signal the presence of the exons and the
introns, such as the Drosha and Dicer for miRNA genes.
Mutations in these regulatory and splicing elements of
ncRNA genes, as well as the processed functional RNA, can
cause many diseases.

[0126] The ncRNAs have now emerged as important
players in the diagnosis and therapeutics of many diseases
such as cardiovascular diseases (atherosclerosis, cardiac
fibrosis, hypertension), neurodegenerative diseases (Spino-
cerebral ataxia type 7, Spino-cerebral ataxia type 8, Spinal
muscular atrophy, Opitz-Kaveggia syndrome, etc.) cancers
(cervix, breast, lung cancer), immune-mediated diseases,
and developmental diseases.

[0127] The publications concerning diseases caused by
ncRNA genes and the causal mutations are emerging. Com-
putational methodologies to understand, predict and diag-
nose the different diseases using these data will be a boon to
the field. We have devised a methodology to utilize the
published data in statistical and graphical (stat-graph)
approaches that will uncover deeper insights into the dis-
ease-causing mechanisms of these mutations.

[0128] The idea is that knowing a published mutation in an
ncRNA gene by itself can only show the involvement of this
particular mutation in the particular ncRNA gene in causing
a disease. However, GDMAP distributes many mutations in
the same gene on the gene structure and sequence, wherein
the mutations on the different genetic elements are statisti-
cally and graphically depicted, where they are drawn to scale
on the length of the gene. The frequencies of the mutations
on the different elements and their individual bases will
reveal key biological and clinical significance of these
positions within the different genetic elements.

[0129] In addition, we can build PWMs for the allowed
sequence variations of the different genetic elements within
every type of ncRNA by using the sequences of a large
number of ncRNA genes that occur in the human genome.
We expect the frequencies of the disease-causing mutations
within the ncRNA genes to closely reflect the PWMs of the
different elements of the different ncRNA genes. The unique
algorithms that we have developed within GDMAP based on
the variable frequencies of the nucleotide changes to the
other three nucleotides at every sequence position of a
genetic element, obtained from published mutations, enables
the determination of deleteriousness and disease causality of
every mutation from one base to one of the other three bases.
Based on these frequencies, the algorithms assign different
disease causality scores to the specific mutations at the
different sequence positions of every genetic element.

[0130] Provided herein is a method for designing algo-
rithms to determine disease causality of mutations in genetic
elements based on the differential base changes at different
sequence positions of the genetic element.

[0131] 1. Step 1: Determine scores for all mutations at
a particular sequence position, based on the total muta-
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tions at a particular position divided by the total muta-

tions at all sequence positions within the element

[0132] a. Determine the total frequency of all of the
base changes at all of the positions of the genetic
element.

[0133] b. Determine the frequency of all mutations at
a particular position.

[0134] c. Determine the frequency score for all muta-
tions at a particular position, by dividing the fre-
quency of all mutations at a particular position by the
total number of all base changes.

[0135] 2. Step 2: Determine the score for a particular
mutation at a particular sequence position, based on the
specific change of a base into any one of the other three
bases at that position
[0136] a. Determine the frequency score for a par-

ticular mutation at a particular position, by dividing
the frequency of the particular base change by the
total number of all base changes at that position.

[0137] b. Similarly, determine the frequency scores
of each of the base changes at each of the positions
of the genetic element.

[0138] c. Normalize this score of each of the posi-
tions based on the highest scoring position.

[0139] d. These normalized scores will represent the
disease causality scores of different mutations at
each of the positions of the genetic element.

[0140] e. Thus, the disease causality scores of muta-
tions for each base change at each of the positions of
the genetic elements are determined.

[0141] . This algorithm thus enables us to obtain the
disease-causality score for a particular mutation
occurring in an individual.

Determining the Disease-Causality Score for
Disease-Causing Mutations in Genetic Elements

[0142] Defining a score for disease causality based on the
statistical graphing of disease-causing mutations from pub-
lications can be achieved using an embodiment of the
system, as described below:

Method

[0143] 1. Determine a score for a mutation at a particu-
lar position within the sequence of the element (donor)

[0144] a. Total number of mutations at each position
[0145] b. Total number of mutations in all positions
[0146] c. Score for a position=(a/b)x100

[0147] d. Normalize this score based on the highest

scoring position

[0148] e. Example: position 4 will be the highest.
Make that number as 100 and calculate the score for
each of the other positions

[0149] f. Total number of mutations in all 9 posi-
tions=640

[0150] g. Total number of mutations at 4th posi-
tion=228

[0151] h. Deleteriousness score of 4th position=228/

640=0.36x100=36

[0152] 1. Deleteriousness score of 1st position=4/
640=0.00625x100=0.6

[0153] j. Deleteriousness score of 3rd position=106/
640=0.166x100=16.6
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[0154] 2. Determine the score for a particular mutation
at a particular position

[0155] 3. For instance, at 4th position, if the mutation is
G—A, then its score is=137/(137+30+60+1)=137/
228=0.60x100=60

[0156] 4. Score=36x60=2160/100=21.6

[0157] 5. At 1st position=14=0.25x100=25

[0158] 6. Score=0.6x25=15/100=0.15

[0159] 7. At 3rd position G—=A=60/106=0.57x100=57

[0160] 8. Score=16.6x57=946.2/100=9.46

Normalizing

[0161] 9. Take the score of the highest scoring posi-
tion—i.e., 4th position to be 100

[0162] 10. The score of the 1st position mutating
C—A=(0.15/21.6)x100=0.69

[0163] 11. The score of the 3rd position mutating
C—=A=(9.46/21.6)x100=43.8

[0164] 12. Thus, the disease causality score for the 4th
position G—A mutation is 100

[0165] 13. The disease causality score for the 1st posi-
tion C—T mutation is 0.69

[0166] 14. The disease causality score for the 3rd posi-
tion G—A mutation is 43.8

[0167] 15. In position 1, calculate the number of muta-
tions at position 1

[0168] The above described methods and algorithms, and

their variations, will be used for every genetic element in
protein-coding and non-coding RNA genes.

Pathogenic Mutations Versus Strength Altering
Mutations Revealed in Statistical Graphing Method

[0169] Pathogenic mutations in a gene will disrupt the
protein to the extent that the protein will lose its structure
whereby its function will be lost. The biochemical or bio-
logical reaction or process that the protein is involved in will
be disturbed to the extent that it can lead to a disease.
Strength altering mutations, on the other hand, will not
destroy the structure or the function of the protein, but will
enhance or decrease the function of the protein, or its
production. We predict that this type of mutation can occur
in any of the genetic elements such as the promoters, splice
donor, acceptor, branch, exon or intron splice enhancers and
silencers, poly-A sites and signals, Kozak sequence, and
enhancers and silencers of promoters and poly-A signals, or
within the coding sequences of genes.

[0170] These mutations can either strengthen or weaken
these genetic elements in their biochemical or biological
activity such as their binding strength to the target molecule,
thereby enhancing or reducing the outcome of the process.
For instance, a promoter strengthening mutation can
enhance the production of the protein thus overexpressing
the protein. A splice donor mutation can weaken the donor
binding strength to the spliceosome machinery thus reducing
the splicing reaction, leading to a reduction in the quantity
of the spliced transcript per unit time. An amino acid
mutation in the binding site of an enzyme can reduce its
binding to its target biochemical such as a cofactor or
coenzyme, and thus reduce the kinetics of the biochemical
reaction. It may also over-activate or reduce an active site of
an enzyme thus altering the kinetics of its biochemical
reaction.
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[0171] Mutations that are not pathogenic or strength alter-
ing are categorized as variants of unknown significance
(VUS) in the clinical genomics field, as they apparently have
clinical significance. We predict that many of the VUS are
strength altering or pathogenic mutations, not only in the
CDS regions, but also in any of the genetic elements within
a gene. When we overlay mutations from publications on the
genes, genetic elements, or protein sequences with not only
pathogenic mutations but also other mutations by the sta-
tistical graphic method, these types of VUS and strength
altering mutations will be revealed by virtue of their statis-
tical significance.

Genetic Elements that Occur at Variable Distances
from Fixed Elements in a Gene Revealed by
Statistical Graphing Method

[0172] There are some elements that occur at relatively
fixed positions within a gene, such as the transcription start
site (TSS), and donor and acceptor splice sites. However,
other elements such as the promoter sites (e.g., TATA box or
GC box), cryptic splice sites, poly-A sites, and their enhanc-
ers and silencers occur at variable positions with respect to
what is generally considered to be the fixed positions of the
TSS or the splice donor or acceptor sites. Thus, the muta-
tions on these variable positions cannot be overlaid exactly.
In addition, these “movable” genetic elements are known
only for a subset of genes. Presented herein is a method to
identify these movable elements based on the statistical
graphing of a large number of published mutations in and
around a gene.

[0173] The distribution of the mutations on a statistical
graph would reveal a sequence motif that exhibits a high
frequency of the mutations with structural or functional
significance. This sequence motif can be scored for its
resemblance to one or more known genetic elements to
identify which genetic element it represents. From thereon,
we can use the algorithms we have designed to determine the
disease causality of mutations from an individual.

[0174] The statistical graphing method would reveal the
sequences of the motifs, and the relative weights of the
different sequence positions within the motif in this type of
genetic elements that occur at variable distances from the
fixed elements within a gene. This method will also reveal
many unknown motifs throughout the genome that have
both biological and clinical significance. These motifs and
their mutational nuances revealed by the statgraph method-
ology will be applicable in clinical setting to diagnose and
treat patients with the most effective drugs with least side
effects, as they will also be applicable for not only disease
causing genes but also for therapeutic genes and drug
metabolizing genes.

GDMAP and Cohort Analysis

[0175] The majority of the positions and sequences of the
enhancers and silencers of the regulatory and splicing ele-
ments of each of the 20,000 genes are unknown. These are
known only for a small set of genes. The frequency patterns
of a large number of published pathogenic mutations from a
large number of patients with a particular disease will show
a characteristically higher frequency at these locations, and
at each nucleotide position of each regulatory and splicing
element within every gene involved in the disease. This is
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true with genes involved in a drug response phenotype such
as effective therapy or harmful side effects.

[0176] In addition, the enhancers and silencers of regula-
tory and splicing elements do not occur at fixed positions. As
the promoters, enhancers and silencers of regulatory ele-
ments occur at variable distances from the transcription start
sites (TSSs) or transcription termination sites (TTS), the
GDMAP has the ability to uncover them. The same will be
true for the enhancers and silencers of splicing, which occur
at variable distances relative to the donors and acceptors of
exons. This is true with ncRNA genes.

[0177] The genomic study of a disease cohort is expected
to reveal the genes and mutations causal of a disease (or any
phenotype including drug response phenotypes, or traits
such as skin color, height, or longevity of an individual), by
bringing out the most frequently mutated genes across the
cohort exhibiting a particular phenotype. However, the
cohort studies will only show the most frequently mutated
genes regardless of the other disease genes present in the
cohort due to the other common diseases (such as diabetes
or hypertension) exhibited by the members of the cohort.
The cohort study will thus erroneously bring up genes causal
of other diseases. In contrast, most of the published muta-
tions are expected to indicate pathogenic mutations specific
for a disease, as they are expected to have been isolated or
purified to indicate the disease of interest. Thus, GDMAP
will reveal genes that are specifically causal of a particular
disease or phenotype. GDMAP has a module to compare the
genes and mutations in the coding, regulatory and splicing
elements from a cohort study with those obtained from
published mutations for a particular disease.

[0178] In summary, GDMAP enables deeper genomic
insights by the collective analysis of published mutations of
all the genetic elements in the genes causing various genetic
and protein aberrations leading to various diseases or phe-
notypes in a combination of statistical and graphical
approaches. This sort of deeper insight is not possible by the
analysis of single mutations in individual genetic elements
or genes. The approach enables this analysis from thousands
of published mutation data, the majority of which are known
to cause disease. The derived knowledge from this analysis
leads to the understanding of the pathology of a gene that in
turn indicates its biology, depicting where in the genome and
disease biology the particular gene participates. The under-
standing of the pathology of mutations in a genetic element
through the collective statistical and graphical approach will
indicate the genetic and biological environment in which the
element within the gene carries out its function. The
approach to connect the biology and pathology of the
individual genetic elements is able to uncover deeper
insights into the molecular causation of the disease.

SpliceCode Algorithm

[0179] Identifying the genetic elements including the cod-
ing, regulatory, and splicing elements of a gene, and the
complete gene in a raw DNA sequence by SpliceCode
algorithm and Al systems

[0180] The splicing machinery called the spliceosome
employs a molecular and cellular algorithm to identify the
regulatory, splicing and coding elements of a gene accu-
rately from a genome sequence. This molecular algorithm
inherent to the splicing machinery is termed as the Splice
Code. We have understood that numerous pseudo or cryptic
regulatory and genetic elements occur throughout the
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genome sequence including the genic regions. Thus the
Splice Code is expected to accurately distinguish between
the genuine elements of gene regulation and splicing, avoid-
ing the numerous pseudo or cryptic elements that are strewn
around the genuine elements throughout the genes and the
genome.

[0181] As the cryptic elements highly resemble genuine
elements, it has been difficult to understand how the Splice
Code is able to distinguish these correctly. Thus far, the
SpliceCode has not been deciphered to any extent. We have
developed a SpliceCode™ algorithm that closely mimics the
cellular Splice Code. This algorithm is able to correctly
identify ~90% of the genes, including all of its genetic and
coding elements.

[0182] True splice sites have certain sequence character-
istics within and around the exons that enable the true exons
recognizable as a signal above a threshold by the combina-
tion of these sequence characteristics. In addition, underly-
ing themes have been elucidated for the spliceosome in
being able to select correct consecutive exons towards a
molecular goal. Thus, the goal is to achieve a contiguous
coding sequence of the gene, without interruption by any
stop codons. In choosing the next exon, the goal of the
spliceosome is to find the exon with all of the signals that are
characteristic of an exon, plus the continuity of the ORF
within the spliced exons thus far in its pursuit of finding the
consecutive exons for the gene.

[0183] The spliceosome acts on a primary RNA transcript.
Thus, the spliceosome’s splice code will start from the start
of the transcript, to identify the first exon with certain
specific characteristics of the first exon. The Splice Code
algorithm for defining the first exon is: 1) it should have an
initiator codon downstream of the start of the transcript, 2)
then it should scan the downstream sequence for the occur-
rence of the first donor sequence with any stop codon
interruption, 3) if there is a stop codon before the donor
sequence, then it should start with the next initiator codon,
looking for the first donor without any interrupting stop
codons. This rule may include the requirement of an exon or
intron splice enhancer and silencer within the first exon or
intron, and also the presence of Kozak sequence surrounding
the initiator codon.

[0184] The Splice Code algorithm for defining the second
and subsequent middle exons: 1) a middle exon should start
with an acceptor signal and end with a donor signal, 2) it
should have a continuous coding sequence without interrup-
tion by any stop codons on the same reading-frame as that
of the 1st exon, and 3) it should have a branch point signal
upstream of the acceptor signal. This rule may include the
requirement of an exon or intron splice enhancer and
silencer within the middle exon or neighboring introns.
[0185] The Splice Code algorithm for defining the last
exon: 1) it should start with an acceptor signal and end with
a stop codon, 2) it should have a continuous coding sequence
without interruption by any stop codons on the same read-
ing-frame as that of the combined previous exons, and 3) it
should have a branch point signal upstream of the acceptor
signal. This rule may include the requirement of an exon or
intron splice enhancer and silencer within the last exon or
the upstream intron.

[0186] An additional rule for all exons may involve pro-
tein domains. The contiguity or combination of two exons
should correspond with the contiguity of the amino acid
sequence of a protein domain, when the domain is coded by
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the contiguity of multiple exons. If a contiguity is broken
and misses a portion of the domain, it would indicate that
there is a missing exon at that location.

[0187] The cellular Splice Code will be able to identify the
first, middle and last exons present in a gene’s primary RNA
transcript. These exons within the RNA transcript are iden-
tified based on the specific features of genetic elements, and
the requirement for the contiguity of the coding sequence
leading to a contiguous amino acid sequence of the protein,
encoded by the gene.

[0188] The SpliceCode algorithm identifies the genetic
elements responsible for splicing the exons together, such as
the donor, acceptor, branch points, enhancers, and silencers.
It determines these genetic elements by using their PWMs
and similarity scores calculated from algorithms such as the
Shapiro & Senapathy algorithm, MaxEntScan algorithm and
NNSplice algorithm, their modifications and combinations,
or other scoring algorithms. It sequentially identifies the
protein coding exons by identifying the first exon, consecu-
tive middle exons, and the last exon that codes for the
contiguous protein sequence encoded by the gene.

[0189] We have also observed that the length of the
genetic elements such as donor and acceptor can be altered
or tweaked to identify the genuine elements which improved
the scores of the genuine elements in genes. These improved
algorithms based on the altered sequences and lengths can
also be incorporated into the Splice Code algorithm.
[0190] In order for the genetic regulatory system to iden-
tify the start of a gene and end of a gene, there are two
additional systems. The start of the gene should consist of
promoter elements, the sequences of enhancers and silencers
present at multiple sites for multiple binding proteins (tran-
scription factors), and a transcription start site at which the
transcription of the primary RNA transcript starts. These
sequences are fairly unique and recognizable by correspond-
ing PWMs, and we will use scoring algorithms such as the
Shapiro & Senapathy algorithm, MaxEntScan algorithm and
NNSplice algorithm, their modifications and combinations,
to predict these elements.

[0191] The end of the gene is a transcription termination
site with specific recognition sequences in the gene
sequence. These specific recognition sequences occur close
to the polyA addition site and signal. There is an additional
sequence called Kozak sequence that surrounds the initiator
codon ATG and aids in its recognition in the mRNA by the
ribosomes. Thus, the SpliceCode™ system will be able to
identify the complete set of elements that constitute a gene
from a genomic sequence.

Automated System for SpliceCode

[0192] An AUVML system is described herein, trained to
correctly identify the regulatory, splicing and coding ele-
ments of a gene using the characteristics of known genetic
elements based on similarity scores and other parameters of
the genuine elements. Thus, the Al system is trained with the
SpliceCode algorithm that we have developed, namely the
rules and steps that we have built into the algorithm. The Al
system learns the nuances of the rules as applied to the
genetic elements, scores, sequences, their positions within
the genes, for a large set of genes that we used to train the
SpliceCode algorithm. Thereby, the Al SpliceCode system is
able to predict the elements of new genes that are given to
the system for testing its accuracy.
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[0193] The AI/ML system is trained to learn the first
exons, middle and last exons separately using the S&S and
other scores of the elements surrounding each, and certain
parameters of these exons (using the requirement for an
ORF that encompases the exon, etc), and the introns. As
there are >200,000 exons with an average of 10 exons per
gene, and ~20,000 genes in the human genome, a large set
of'these exons and genes can be used as training and test data
sets.

[0194] In the above training, in addition to exons, regu-
latory elements of transcription, splicing, and translation
such as the promoter elements, Transcription Start Sites, and
poly-A addition elements, Transcription Termination Sites,
are provided to the AI/ML system. Next, the ML system is
trained to recognize the complete gene parameters of first
exons, middle exons and last exons to recognize the com-
plete gene patterns.

[0195] When the ML system is fully trained and tested, it
can predict complete genes from a genomic sequence. We
have developed a software code implementing the Splice-
Code algorithm. The outcome of this SpliceCode program
can be matched with the SpliceCodeAI™ system to verify
the validity of the ML system.

Method for Rapid Whole Genome Interpretation
(WGDH™

[0196] We have devised a method to interpret a patient’s
whole genome sequence based on the known features and
properties of the coding, regulatory and splicing elements of
genes within the human genome. We use the known char-
acteristics of their different elements within the gene and the
genetic and biological environment in which these elements
are dispersed across the gene. The information of all of these
structural and functional features are embedded within the
gene sequence and can be unearthed by using algorithms
that we have developed. The method exploits the similarity
scores of the various genetic elements embedded within a
gene and the knowledge of the cryptic elements that sur-
round them.

[0197] The mutations and the genetic and protein aberra-
tions that they cause leading to various diseases, traits and
drug response phenotypes are finite although large in num-
ber, and are determinable by using the several algorithms
that we have developed. If we are able to determine and
identify all possible mutations that lead to deleterious
defects in all of the genes and proteins from the human
genome, then we can use this set of knowledge to predict all
of the genetic and protein effects of a new mutation from a
patient that leads to a disease, trait or drug response phe-
notype.

[0198] The method employs the similarity scores of all of
the genetic elements that occur in all of the genes calculated
using the Shapiro-Senapathy algorithm. The mutational
spectrum of the different sequence positions of a particular
genetic element that occur in a particular position within a
gene can be calculated to obtain all possible mutations in
that genetic element. This is applied for every genetic
element throughout the gene, and the cryptic elements
surrounding it. For example, all possible mutations that
occur in the true and cryptic splicing elements that are
dispersed within a particular exon and its surrounding
introns can be determined, by changing the particular base
that occurs at a particular position to other three bases. Some
of these variations may be normal variations that have no

Sep. 28, 2023

aberrational effect. However, others may cause molecular
aberrations leading to a genetic and protein defect.
[0199] The molecular effects and aberrations of these
limited number of variations that can occur within a genetic
element can thus be calculated. Extending this to all of the
genetic elements and their cryptic versions within a gene,
and scaling this up to all of the genes within the human
genome will enable us to obtain all possible mutations that
cause deleterious defects leading to various diseases and
other phenotypes. This is also true for the mutations that
occur in the coding regions of genes.
[0200] The approach of the algorithm is to obtain this large
set of all possible mutations and their molecular effects from
the whole genome at one time. The algorithm then uses this
information to predict the effect of a mutation from a patient,
as we have determined that any new mutation or variant
from any patient with any disease or phenotype will be
among the set of all possible mutations that we have already
mapped out.
[0201] The algorithm deals with a practical issue that
arises when we compare a very large number of variants that
occur in the genome of an individual. We have determined
that approximately 5 million to 10 million variants occur in
the whole genome of every individual. It takes a substantial
amount of time to compare this large number of variants
with all possible variants from all of the genes in the human
genome. Thus, we have overcome this problem by parallel
processing different smaller segments of the 5 to 10 million
variants to identify the particular positions within the genetic
regulatory, splicing and coding elements of various genes.
[0202] These positions within particular genetic elements
within particular genes will indicate if there are any aber-
rations caused by that genetic element mutation. There is yet
another problem that we deal with in this process. The
molecular aberrations caused by two or more mutations that
occur within the same genetic element or within the genetic
element and one or more cryptic elements surrounding the
genetic element have to be determined. These situations are
isolated from the whole genome and are parallely processed
to obtain the pathogenic or deleterious mutations that have
the potential to lead to disease.
[0203] The predictions based on the calculations and
experimental observations in carrying out this process using
the variants from the whole genome of an individual are the
following (numbers are approximate estimates):
[0204] 1. The total length of the sequence across all
20,000 genes is ~1.2 billion bases (genic regions).
[0205] 2. The total number of all possible variants in the
genic regions, obtained by mutating each base to other
three bases, is ~3.6 billion bases (1.2 billionx3).
[0206] 3. The set of pathogenic mutations (lookup) for
all possible mutations in all genetic elements in all
~20,000 genes, calculated from similarity scores, is
expected to be ~20-40 million.
[0207] 4. The number of variants from an individual’s
whole genome sequence is ~5-10 million
[0208] 5. This set of variants from an individual’s whole
genome sequence will have ~300,000 pathogenic muta-
tions in all of the genetic elements of all genes.
[0209] 6. We estimated approximately 25,000 genetic
elements, in which a pathogenic variant occurs, will
have one or more additional variants within the same or
neighboring genetic elements.
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[0210] 7. The set of pathogenic variants with aberra-
tions (molecular effect) is estimated to be ~2,500
indicating that one in approximately 100 pathogenic
variants will lead to a molecular aberration.

[0211] 8. We will segment the total number of patho-
genic genetic element mutations in the genome and the
total number of variants from the individual into mul-
tiple segments, and process them parallely to obtain the
pathogenic genetic element mutations in the individual.

[0212] Devised is a methodology to identify all possible
pathogenic mutations in the CDS regions of all ~20,000
genes. This is achieved by subjecting the coding sequence to
the predicting software for pathogenic mutations in the CDS
regions (using the algorithm called Comprehensive Variant
Classification, CVC).

[0213] 1. The total length of the coding sequence across
all 20,000 genes is ~62.5 million bases (coding
regions).

[0214] 2. The total number of all possible pathogenic
mutations in the CDS regions is estimated to be 5-10
million.

[0215] 3. This set of pathogenic mutations will be used
as a lookup to compare the ~5-10 million variants from
an individual, to obtain the CDS pathogenic mutations
and the genes they occur in an individual.

[0216] 4. We will segment the total number of patho-
genic CDS mutations in the genome and the total
number of variants from the individual into multiple
segments, and process them parallely to obtain the
pathogenic CDS mutations in the individual.

[0217] The rWGI system enables the processing of all of
these steps in a relatively very short time. This algorithm
thus enables us to accurately interpret all of the 5 to 10
million variants in the complete genome of an individual
within a very short time.

Rules

[0218] 1. Mutation in a real splice site—=looking for
cryptic splice site—check if that cryptic site has any
variants in that patient—consider the patient variant-
—effect calculation for patient variant
[0219] a. Generate a master lookup that has all pos-

sible pathogenic mutations in all RSE (regulatory
and splice elements) elements (real+cryptic)
throughout the genic region (1.2 billion bases)—
based on % difference only—name it as ‘master
lookup’ (~50 M)

[0220] b. Generate an effect lookup that has all pos-
sible pathogenic mutations in all RSE elements
(real+cryptic) throughout the genic region (1.2 bil-
lion bases)—based on effects—sname it as effect
lookup

[0221] c. Match the patient data (~5 million variants)
with the master lookup—you will get all pathogenic
mutations in a patient based on % difference—this
will be around 300,000 for ~5 million variants

[0222] d. Parse these 300,000 mutations
[0223] iFind if the input patient data has any

variant surrounding the mutation position (+/-300

from the mutation position)

[0224] 1. For instance, if there is a P mutation at
position 1,000 in chr 1—gene:TP53, exon 3,
real donor, then find if there are any variants
within 700 to 1300
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[0225] iiIf you find a variant, incorporate that
variant to the refseq.

[0226] 1. Check if the variant occurs in any
cryptic/real site
a. If yes, calculate its effect from scratch (same
as current SA parser does)
b. If no, proceed to step (iii)

[0227] iii.If you do not find a variant from the
patient file within the specific range, then match
that particular mutation with the effect lookup to
find its effect

[0228] e. These 300,000 mutations can be processed
as chunks of 3000 variants each and processed

parallelly on 100 instances—time will reduce 100

fold

[0229] 2. Also check for more than one mutations in one
element

AI/ML System for rtWGI

[0230] The most limiting factor in whole genome inter-
pretation is the longer turnaround time. To overcome this
limitation, we have developed a technology called rapid
whole genome insights. Through this technique, the whole
genome sequence date can be interpreted in less than a few
hours. By applying AI/ML techniques, the interpretation
time can be further reduced. From the whole genome
reference sequence, all possible variants in every genetic
element such as an exon, acceptor, donor, branchpoint,
promoter sites, polyA, enhancers and silencers, and introns,
were generated. S&S and other algorithms are applied to
these variants, and their features such as sequence, variant
score, and neighboring elements are determined to deter-
mine the pathogenicity and disease causality of the variants
that have the potential to cause disease or drug response
phenotype.

[0231] The AI/ML systems are trained with these known
features of all possible pathogenic variants in the reference
whole genome. The trained systems will be able to identify
pathogenic disease or actionable mutations from the list of
all possible variants from the whole genome. These disease
causing and actionable pathogenic variants, and their char-
acteristic features are used as a lookup to interpret a patient’s
genome data, which enables a fast turnaround time for
interpreting a patient’s genome.

Genome Artificial Intelligence™—GenomeAI™

[0232] It is estimated that there are approximately 5 mil-
lion variants from the whole genome sequence of every
individual or patient, compared to the reference sequence
(Eg., Ensembl, RefSeq). However, only a miniscule fraction
of these variants have deleterious effects on gene regulation
or splicing, or the protein itself. Moreover, on average, it is
estimated that ~1,000 deleterious mutations occur within
every individual’s genome. Additionally, the possible num-
ber of deleterious mutations in a given gene is finite, and
thus by one embodiment of the presently described system
to categorize deleterious mutations, it is possible to discover
and identify novel mutations not previously described in
literature.

[0233] The aim is to develop algorithms and methodolo-
gies that are capable of distinguishing and identifying del-
eterious mutations from the non-deleterious variants from
the totality of 5 million variants of a patient. In addition, the
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aim is to collect one or more known deleterious mutations
from one or more known genes from published literature
that cause any disease or drug response phenotype, along
with other relevant details. According to one embodiment of
the present system, the output will be a complete dictionary
and encyclopedia of deleterious mutations from genes in the
human genome that cause human disease and drug response
phenotype, from which one can simply lookup one or more
variants of a patient to see if it has a deleterious effect and
if it would cause a disease, and what disease. Thus, the
system will allow us to identify the very small miniscule of
disease and drug response causing deleterious and strength
altering mutations from nearly 10 billion possible variants in
the human population.

[0234] Only 1 in ~1000 variants that occur in an individual
is a pathogenic/deleterious mutation that has any effect on
gene expression, splicing or protein sequence, and are causal
of disease or drug response phenotype. We aim to use the
algorithms, methodologies and technologies, capable of
identifying deleterious mutations in gene regulation and
splicing, and protein structure and function, along with
validated deleterious mutations, and overlay and train
AI/ML technologies to be able to predict novel deleterious
mutations in genes and proteins.

[0235] Thus, one embodiment herein will systematically
accumulate details and data relating to the major categories
of biological features or processes, namely, gene expression,
splicing, translation that cause aberrations in the protein
(exonic) sequence of each of the 20,000 genes. We will
sub-categorize each of these major categories and approach
them systematically to build the evidence based algorithms
and technologies. Next a machine learning system will be
trained on the validated data.

[0236] Three different possible types of deleterious muta-
tions can occur within a gene and lead to disease:

[0237] 1. Gene expression regulation—promoters
(TATA, CAAT, GC, initiator elements), polyA site or
signal, their enhancers or silencers can affect transcrip-
tion and transcript processing, translation regulation
(Kozak and other sequences, microRNAs and other
regulatory elements).

[0238] a. They affect the level of gene expression.

[0239] 2. Splicing regulation—acceptors, donors,
branch points, splicing enhancers and silencers.

[0240] a. They affect the processing of splicing to
bring together exons and delete the introns of a gene.
It can cause large deletions of a protein sequence or
insertions of intronic sequences into the protein
sequence, thus greatly affecting the actual amino
acid sequence of the protein.

[0241] 3. Deleterious mutations within the actual amino
acid sequence—coding sequence mutation.

[0242] a. These are SNPs and INDELs that occur
within the coding sequence (exons) of the gene, and
deleteriously affect the protein structure and func-
tion.

[0243] The following steps can be taken to identify the
training datasets and then train an AI/ML system to predict
the real donors, real acceptors, and real exons:
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[0244] 1. First train real donors alone in 1000 genes
separately
[0245] a. Take real donors as defined in the gene
annotation for 1,000 genes
[0246] i.Obtain their Shapiro-Senapathy (S&S)
similarity scores by subjecting the donor
sequences to the algorithm

[0247] b. Train an ML system with

[0248] 1.Only the donor sequence and their posi-
tion in the gene sequence

[0249] ii.Next, use S&S score in addition to the
donor sequence and position in the gene sequence

[0250] iii.Next, subdivide the donors based on
their score ranges, such as the scores of 90-100,
80-90, . . . <50, etc.

[0251] iv.Train with the subsets of donors within
each score category, by specifying their positions
within the gene, their sequence, score

[0252] v.Next, specity in addition to the features in
(iv), other parameters and features one by one, and
so on, such as acceptors for the exons containing
the donors being analyzed, their scores, sequence,
etc., branch points, and so on.

[0253] 2. Next, train real acceptors alone in 1000 genes
separately, following the Step 1 above.

[0254] 3. Similarly, train the real exons alone by pro-
viding the exon sequence, position, S&S score of exons
from 1000 known genes to the AI/ML system, adding
each in successive steps
[0255] a. In this step also, as in step 1, obtain the S&S

scores for exons, and categorize them into subsets,

such as 90-100, 80-90, etc.

[0256] b. Train the ML system with the different
categories of exons

[0257] 4. Then, train the first exons of genes alone. In
this step, give requirement for the elements that con-
stitute the first exon, including the Kozak, ORF from
Kozak start codon to the end of first exon, in addition
to ending in a donor splice site, and the requirement of
an ORF between the start codon to the occurrence of
the first donor.

[0258] a. In this step also employ the nuances as in
step 1 and step 3.

[0259] 5. Similarly, train the last exons alone from
1,000 genes, incorporating the requirements genetic
elements that constitute a last exon, including the
Poly-A addition signal and site, enhancers and silencers
of transcription termination and poly-adenylation.
[0260] a. In this step also employ the nuances as in

step 1 and step 3.

[0261] 6. Next, train the middle exons in a similar
manner. The examples of its requirements are acceptor
to donor 30 to 600 bases length, ORF in at least one of
the reading frames, RNY periodicity in the same read-
ing frame as that of the ORF that matches with the
exon, exon score thresholds for donor, acceptor, branch
point, exon splice enhancers (ESE), intron splice
enhancer (ISE), exon splice silencer (ESS) and intron
splice silencer (ISS).

[0262] a. In this step also employ the nuances as in
step 1 and step 3.
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[0263] 7. Similarly, train the AI/ML system with details
of'a combination of real exons (only the sequence) and
real donors
[0264] a. Add the S&S scores for donors and exons

[0265] 8. Next, train with the combination of real exons
(only the sequence) and real acceptors

[0266] 9. Train the system with details of combination
of real exons, real donors, and real acceptors, with
respective sequences including or excluding the S&S
score

[0267] 10. Train the AI/ML system with known RNY
periodicity in exons of multiple genes (e.g., 1,000
genes).

[0268] 11. In addition, the system is trained with other
elements added one by one (Branch, ESE, ESS, ISE,
ISS, etc).

[0269] 12. Continue training on this line with each
element with sequence including or excluding S&S
score

[0270]
[0271]
[0272]
[0273]
[0274]

13. In training and testing exons:

a. Include one exon in one or more genes

b. . .. +Its neighboring 300 bases on the right

c. . .. +Its neighboring 300 bases on the left

d. . .. +Its neighboring introns
[0275] e. ... +its neighboring introns+exons

[0276] 14. Next, train with a complete gene, with one or
more of the elements successively included by com-
bining the genetic elements one by one, for example,
promoter+first exon, promoter+first exon+second exon,
promoter+first exon+middle exons+last exons, then
add poly A site, etc.

[0277] 15. Once the system is trained thoroughly with
individual elements, various combination of the ele-
ments and the whole gene, it can be tested with an
untrained set of 1000s of elements and genes for each
step of training. The training and testing datasets will
be divided and chosen randomly to allow for a large
number of unbiased datasets. The trained and tested
system should be able to predict one or more elements,
exons and genes.

[0278] The gene sequence contains not only the real
genetic elements where they are expected to occur, but also
numerous spurious or cryptic sequences that resemble the
real elements that occur throught the gene and the genome.
Another way to make sure that the system will identify the
real elements specifically, as described above, is to mix
cryptic elements resembling one or more types of real
elements during training and testing. When training with
complete genes, the cryptic elements occur throughout the
gene, and therefore it provides the environment wherein the
real elements and cryptic elements are interspersed.

[0279] Training the AI/ML system with real and cryptic
elements in a systematic manner as described above, and the
exons and the complete gene, would enable the trained
system to predict a gene from a sequence with only its real
genetic features, thus avoiding the cryptic features, and the
vice versa. The ability has important implications in iden-
tifying the genetic mutations in a gene capable of causing a
disease or drug response.

[0280] The following steps describe the steps to identify
the training data sets, and then train an AI/ML system to
identify deleterious mutations in the different elements or
features of a gene.

22
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[0281] 1. Train and test the ML system with known
deleterious mutations that are known to cause a disease
in individual genetic elements such as a donor splice
site first
[0282] a. In this step, subdivide and categorize the

splice sites based on several parameters such as the
Shapiro-Senapathy score, as described above in the
previous section (on predicting real donors, etc.), and
follow the other nuances as well.

[0283] 2. In the next step, mix benign (i.e., non-delete-
rious) mutations along with deleterious mutations

[0284] 3. Next, train and test successively by adding
first exons, middle exons and last exons containing
deleterious mutations, and then non-deleterious muta-
tions at various sequence positions. Additionally, train
with the nuances as described above.

[0285] 4. Conduct this line of training and testing with
known, disease-causing mutations in the different
genetic elements and features of a gene in a systematic
manner as described in the steps above
[0286] a. For example, do the training for multiple

elements of an exon with mutations in different
places of an exon, and train on 1000 exons
[0287] b. Similarly, do the training for mutations
within introns with its multiple requirements to iden-
tify near and deep intronic mutations that are known
to cause disease
[0288] c. Next, train the system with disease causing
mutations in complete genes
[0289] d. Inthese steps, give only real exons in a gene
for training, and then cryptic exons
[0290] e. Give requirement for ORF continuity from
start codon of first exon to the stop codon of last
exon, and train mutations that affect this continuity in
the mRNA sequence
[0291] £ Then add requirement for S&S score thresh-
olds for each element and the mutated version of the
element
[0292] i.Next, categorize the donor mutations into
the type of effects that they cause, such as exon
skipping, intron inclusion, cryptic exon creation,
etc.
[0293] Train the A/ML system with scoring algorithms to
identify the aberrational effect of splicing, with mutations in
every type of splicing element. Use a set of 1,000 mutations
for each type and their effects that are validated as the
training and test data set.
[0294] For example, when a real donor is mutated:

[0295] 1. Check if the S&S score percentage difference
before and after mutation is in a range of score thresh-
old (e.g., =>3 or <=-3)

[0296] 2. Search for cryptic donors from a few bases
within the exon (e.g., 31st base) to a length range
within the intron (e.g., 1st 300 bases) with respect to
mutation position.

[0297] 3. Check if the S&S score of the mutated donor
is lesser than the cryptic donors

[0298] 4. Calculate the distance of the cryptic donors
within the mentioned range from the real site

[0299] 5. If the minimum distant cryptic donor lies in
the intron, then the effect is intron inclusion

[0300] 6. Similarly, if the minimum distant cryptic
donor lies in the exon, then the effect is partial exon
deletion
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[0301] Similarly, based on the specific nuances of each of
the genetic elements such as acceptors, branch points,
enhancers, or silencers, appropriate aberrational effects are
determined.

[0302] In the same manner, continue with mutations
within one or more promoter elements such as the TATA,
CAAT, GC boxes, and one or more poly-A addition ele-
ments, separately and in various combinations thereof. In
this, categorize the mutations into the type of effects that
they cause, such as increase in transcription, decrease in
transcription, or abolition of transcription, and various
nuances in between

[0303] Train one or more enhancers or silencers of gene
expression (gene regulators) for a gene like TP53 with
mutations known to be deleterious or non-deleterious. Some
of'these enhancers or silencers occur in multiple genes—i.e.,
the same target enhancers or silencers occur in multiple
genes, and are bound by the same Transcription Factors. In
this process, we can use the known consensus sequence(s)
for a gene like TP53 binding DNA sequences that occur in
many genes. When trained with one or more such genes in
the genome that have the same target Transcription Factor
binding sequences, it is possible to identify the genetic effect
of the mutation causal of a particular molecular and disease
causation in regulatory genes such as the TF genes and their
target binding DNA sequences. Similarly, do this for muta-
tions in different enhancers of multiple genes containing the
same TF binding sites.

[0304] The corollary of the above described process—i.e.,
many different silencers and enhancers occur surrounding
one gene, for example, the gene TP53. Each of these
silencers and enhancers are targeted by a different Transcrip-
tion Factor gene. The ML system will be trained with
thousands of genes with mutations in the same or different
enhancer or silencer. As in other training and testing data
sets, random datasets will be used here also. The trained and
tested ML system would be able to identify one or more
disease or drug response phenotypes based on a mutation in
one or more enhancers or silencers in one or more genes in
the genome.

[0305] In all of the above training, use mutations in
different genetic elements including splice sites, exons,
promoters, poly-adenylation sites, enhancers and silencers,
that are known to cause molecular effects such as enhance-
ment or suppression of transcription, splicing errors such as
whole or partial exon skipping, partial intron inclusion,
cryptic exon creation, premature termination codon creation,
enhancement or suppression of poly-adenylation or transla-
tion initiation, as the training datasets, and train each of these
molecular effects.

[0306] In these training, the system will further use ran-
dom mutations simulated in one or more positions of the
genetic elements, exons, and genes. The system is also
configured to use similarity scores calculated by algorithms
such as the Shapiro-Senapathy, MaxEntScan, NNSplice and
their modified versions thereof. Algorithms such as Shapiro-
Senapathy are capable of predicting the consequence and
effects of splicing mutations in disease causality. We will use
the available data in the training and testing.

[0307] Deep intronic mutations are now known to cause
approximately 50% of all diseases. We will train with deep
intronic cryptic genetic elements (i.e., ~300 bases into the
intron on both sides of the exon) to detect them. We will then
use known mutations in them to train, test and identify
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molecular and disease causality. In addition, we will use
algorithms like S&S to predict deep intronic mutations that
cause molecular and disease abnormalities, which data can
be used in training and testing.

[0308] In another embodiment, artificial intelligence (AI)
and machine learning (ML) techniques are applied to the
algorithms that are developed by statistical graphing of
published mutations in the GDMAP platform. In this
embodiment, mutations from publications in genes that are
known to cause diseases are assembled, and subdivided into
various categories and sub-categories of mutations in dif-
ferent genetic elements of genes, and their parameters such
as S&S scores, their molecular effects such as exon-skip-
ping, their statistics in different elements, and so on, and are
studied for association with disease causality. Similar
approaches are carried out for genes and mutations for
therapeutic indications and harmful side effects indications.
ML systems are trained systematically in these details and
various parameters with training datasets of known features,
mutations, and disease and drug responses, and tested with
appropriate datasets. The trained and tested ML systems are
used in actual clinical setting to identify these mutations
causal of disease and drug response phenotypes.

[0309] The ML system is trained on the statistical graph-
ing algorithms with the objective of enabling it to predict
pathogenic and strength altering mutations in various
genetic elements of the genes. We also apply ML techniques
in all the modules of Splice Atlas and Genome Explorer
platforms. The modules in GDMAP, the maps of Splice
Atlas and the modules of Genome Explorer apply the
Shapiro-Senapathy algorithm, and other known and novel
algorithms, to determine the scores for different genetic
elements and predict mutations in them. The S&S scores for
the majority of the donor splice sites within genes, for
example, can vary substantially between 70 and 100, while
a minority exhibits lower scores, even as low as 40. We train
the ML module to recognize the sequences of donor, accep-
tor, and other types of genetic elements with scores within
a specific range (e.g., 90-100, 80-90, 70-80, 40-50, or <70),
by giving the sequences, positions, and scores of the differ-
ent splice sites within different genes, and the complete gene
sequences. The trained Al system will then be able to predict
these splice sites within varying score ranges or strengths in
a new set of genes.

[0310] The data sets for training are subsets of splice sites
such as the donor, based on S&S (or other algorithms) that
occur within specified ranges, for example, 90-100, 70-80,
<60 etc., that occur within a set of genes. Another subset of
splice sites from another subset of genes from the human
genome can be used as the test data set. A similar process is
carried out for cryptic splice sites (e.g., cryptic donor sites).
[0311] Genome Explorer predicts and categorizes muta-
tions in different genetic elements based on algorithms that
takes into account the scores of the elements and their
mutated forms, and the differences in scores above or below
a threshold. This algorithm then categorizes different types
of mutations into deleterious, strength altering or non-
deleterious mutations. The ML system also is trained and
tested to detect these different types of mutations using the
known data, and to predict unknown data.

[0312] The ML systems can be applied to other genetic
regulatory elements such as the promoters or poly-A addi-
tion sites. The scores for the various regulatory elements,
such as promoter elements, polyA elements, enhancers and
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silencers of these elements, also vary within different ranges,
and the ML system is trained to predict them and their
mutations. There are numerous regulatory elements that
occur in and around every gene, including the enhancers and
silencers of every gene, with specific target binding
sequences and their corresponding binding proteins (or RNA
molecules such as microRNAs). The ML system is trained
to be capable of distinguishing the sequences, their strengths
(similarity scores), the positions, and their mutations in
different genes.

[0313] Cryptic genetic elements that resemble genuine
elements occur at numerous positions in the gene. However,
the scores of cryptic elements resemble the true elements,
and are often higher than the true elements that occur nearby.
Thus, it is important to distinguish the true and cryptic
elements to be able to predict them correctly. Furthermore,
mutations in true elements erroneously lead to the use of
higher-scoring cryptic elements that occur nearby. In addi-
tion, mutations in cryptic elements make it possible for them
to be erroneously selected instead of the true sites. These
types of mutations will cause aberrations in the normal
regulatory and splicing processes and lead to numerous
diseases.

[0314] The ML system is trained to predict the true and
cryptic elements based on their genetic environment (spe-
cific and relative positions within the sequences of other real
and cryptic elements in a gene), and the various possible
types of mutations and molecular aberrations. The molecular
effects of mutations in different types of regulatory and
spicing elements also vary, such as overexpression, under-
expression, or abolition, or alteration of transcription, splic-
ing or translation, and exon skipping, intron retention, or
pseudo or cryptic exon creation. The ML/AI system is
trained to predict and distinguish between the various
molecular effects with the corresponding datasets. Thus,
GDMAP uses the capabilities of ML/AI to train and predict
deleterious or strength altering mutations, disease causality,
actionable therapeutics, and drugs to avoid due to mutations
in one or more genetic elements of genes.

[0315] The GDMAP trains the ML system with a sample
training set of genetic elements such as the donor in a sample
set of genes (e.g., 1000 genes), before and after a pathogenic
mutation causing a disease or drug response phenotype is
introduced, by providing the sequence positions of the
genetic elements within the genes and the complete gene
sequence. In addition, it also trains the system with an added
data of the similarity scores (e.g., S&S score) of the ele-
ments before mutation and after mutation. This trained Al
system will be able to identify disease causing pathogenic
mutations in the genetic elements in a new set of genes.

[0316] The Splice Atlas platform deals with exons,
introns, splicing elements, scores of genetic elements, pro-
tein domains, proteins, exon skipping, and the effect of exon
skipping leading to frameshift and premature termination.
GDMAP trains the Al with these data points and predicts the
effects of mutations such as exon skipping, intron inclusion,
cryptic exon creation, etc., in a new set of genes with
mutations. Likewise, the ML system will be trained with
appropriate mutation data for the alteration in functionalities
of Splice Atlas and Genome Explorer to be able to predict
them in genes.
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Training ML, Module with Mutations from
Publications

[0317] Publications in the field of clinical genomics con-
sists of genetic elements including the coding sequence,
regulatory elements such as the promoter, TATA box, GC
box, CAT box, transcription initiator and terminator, and
splicing elements such as the donor, acceptor, branch point
sequence, the enhancers and silencers of all of these ele-
ments and their cryptic versions thereof. In addition, they
contain details such as the mutations that occur within the
sequences of these elements, the molecular effects and
aberrations on the elements, genes and proteins. Further-
more, they provide detailed information concerning the
disease, therapeutic treatment, their outcomes, adverse drug
reactions (ADRs), actionable genes and mutations, and the
drugs to avoid due to ADRs.

[0318] As described herein, presented is an AI/ML (Arti-
ficial Intelligence, Machine Learning) system trained to
extract useful and necessary information such as genes,
mutations, genetic elements, molecular effects, disease,
therapeutics and ADRs from different publications. More-
over, the system is configured to provide insight into the
unique combinations between these features to be able to
correctly identify and isolate the clinically meaningful infor-
mation. The AI/ML program is initially trained with the
correct set of combinations of information from a set of
publications, and the added information such as genetic
elements, their similarity scores, mutational aberrations, in a
learning process. Then, additional mutations or known vari-
ants from other publications are compared against as test
data to assess efficacy and iteratively improve the model’s
accuracy. In one embodiment, results that are obtained by
non-Al computational algorithms and approaches (without
using Al) are then compared with the results from the Al
systems to improve the predictive capabilities of each
method.

[0319] The same procedures can be carried out for training
and testing therapeutic genes and mutations. In addition, the
same can also be applied for training and testing Adverse
Drug Reactions (harmful side effects) causing genes and
mutations.

[0320] In training with mutations that cause one or more
types of splicing aberrations, train with one type of a
splicing element, such as donor mutation that cause one
particular type of splicing aberrational effect, for example,
exon skipping. Next, train with each of the other types of
splicing elements. Similarly, use one type of promoter
elements such as TATA box, CAAT box, initiator box,
poly-adenylation signal and site, which cause one type of
aberration such as increasing the gene expression or decreas-
ing it, or its abolition.

[0321] In addition, based on the specific nuances of each
of the gene expression regulatory elements such as promot-
ers, polyA, enhancers, or silencers, appropriate aberrational
gene regulation effects are determined. Based on the specific
nuances of each of the gene translational regulatory ele-
ments such as Kozak, microRNA, microRNA target
sequences, appropriate aberrational effects in gene transla-
tion are determined.

[0322] We can also train and test all of the above methods
only for a panel of genes that are known to be causal of a
particular disease or drug response phenotype, and only for
individual genes for which data are available. The same can
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be done separately for therapeutic genes (drug-gene panel)
and for ADR genes (PGx panel).

[0323] Certain elements such as one or few donors within
a gene of 20 exons will be more pathogenic causing a
disease or drug response phenotype—due to their sequence
or genetic environment—than others in the gene. The ML
system can be trained on this set of highly pathogenic
elements within a gene, and can be used to predict such
nuances of disease causality within a gene.

AI/ML for Coding Sequence Amino Acid
Variability and Mutations

[0324] In another embodiment, described herein is a
method to define the variable amino acid (AA) sequence
signatures of protein domains by assembling the non-redun-
dant amino acids at every sequence position of a domain. As
the variability of AAs is context dependent based on the
structure and function of a domain, there are hidden features
in these signatures that are trainable.

[0325] The ML systems will be trained to understand
inherent amino acid sequence variability (domain signatures
defined by the proprietary algorithm) based on the sequence
context and the biochemical and biological function of the
domains and proteins. For this purpose, data on their bio-
chemical/biological functions, active site or binding site
amino acids, structure constraints such as hydrophobic/
hydrophilic data, and other biological details will be asso-
ciated with the domain details. The described ML system
will also understand the co-dependencies and co-occur-
rences of particular amino acids at different positions within
a variable amino acid sequence signature of a domain or a
protein. The ML system can also be trained with the inherent
invariance and high or low variance of amino acids at the
different positions of a protein domain, based on their
restricted variability due to their structural and functional
constraints.

[0326] The proposed ML system therefore uses the fol-
lowing steps for training variable domain acid sequence
signatures.

[0327] Take only the human domains from PFAM.

[0328] 1. Retrieve 1000 domains from only SEED
sequence domains

[0329] 2. Train the ML system with the human sequence
and the rest of the seed sequences

[0330] 3. Test 1000 untrained set of domains, with only
one invariant sequence

[0331] 4. The trained ML system should result in the set
of variable AA sequences of the test domains

[0332] 5. Iterate steps 2-4 to get a high rate of success,
each time altering the training and test data by ran-
domly choosing the training and test data from a large
set of known and validated data.

[0333] 6. If the results have a high enough accuracy,
then the system can identify the domain Variable AA
sequences for the human proteins which are not present
in the accessed resource (i.e. PFAM).

[0334] The above method should be able to find the
“orphan domains” that are present in the human proteome
which are yet to be discovered, described, or otherwise
studied.

[0335] Moreover, described below are additional features
of a domain AA sequence to be used in a training set for
machine learning:
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[0336] 1. Hydrophobic and hydrophilic AAs
[0337] 2. Size of AAs
[0338] 3. Nearest neighbor AA frequencies for 2, 3, 4

AAs in domains

[0339] 4. Domain 3D structure data

[0340] 5. Domain hydrophobic and hydrophilic struc-
tures data

[0341] 6. Protein secondary structures data

[0342] 7. Use Ramachandran phi psi plot to predict the

structure of a protein which will help in predicting the
nuances of the amino acid variability based on the
structural constraints. Train the AI/ML system based on
these constraints with known data.

[0343] 8. The Ramachandran plot is a plot of the
torsional angles—phi (@) and psi ()—of the residues
(amino acids) contained in a peptide. In sequence order,
¢ is the N(i-1),C(1),Ca(i),N(i) torsion angle and 1 is
the C(1),Ca(i),N(1),C(i+1) torsion angle.

[0344] 9. Detect and predict co-dependent or co-occur-
ring AA in a AA variability signature

[0345] Thus, described herein is an algorithm wherein the
allowed amino acids in a variable amino acid sequence
signature are considered to be a positive sequence space. All
other amino acids from the set of 20 amino acids, depicted
within a grid with X-axis as the sequence position and Y-axis
as the 20 AAs, are considered to depict a negative sequence
space.

[0346] An amino acid within the positive space mutating
to another amino acid within the positive space may be
classified as non-deleterious. In contrast, an amino acid from
a positive space mutating to an amino acid in the negative
space may be classified as deleterious, and cause the protein
to become defective compared to the non-mutated version.
The ML system is first trained with datasets of positive (+ve)
space and negative (-ve) spaces for known domains, with
the objective of being able to produce variable AAs from
-ve AAs given the variable AAs from the +ve space, and
vice versa. In addition, given an invariant AA sequence from
the variable sequence signature of a protein domain, the ML,
system will be trained to produce the variable sequence
signature for that domain.

[0347] In asimilar manner, in one embodiment, an AI/ML
system is trained with a dataset of CDS (coding sequence)
mutations comprising known algorithms and validated data
described herein. In some embodiments, the system is
trained with mutation detection based on positive negative
amino acid variable signatures.

[0348] Additionally, the mutational effects of these amino
acids in a protein domain, their deleteriousness and disease
or drug response causality will also be trainable using
known mutations that cause such effects. Thus, the system
can leverage the technologies of AI/ML to train and predict
disease causality, actionable therapeutics, and drugs to avoid
due to mutations in the coding regions of genes.

[0349] For this purpose, we can use the CDS mutations
that are known to be highly accurate by lab experimentation
and in clinical validation. We can use other known param-
eters and methods that indicates deleterious CDS mutations
causal of disease. Finally, we can combine the trained ML
system for the regulatory and splicing elements mutations,
and the ML system for coding sequence mutations, and this
combined ML system should provide highly accurate results
of predicting disease-causing mutations in the complete
gene, including regulatory, splicing and coding sequences.
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AI/ML for Non-Coding RNA Genes, Their Genetic
Elements, Mutations, And Diseases

[0350] Non-coding RNA (ncRNA) genes (microRNA,
small nuclear RNA (snRNA), small interfering RNA
(siRNA), long ncRNA, and snoRNA) are also important
factors that cause various diseases when pathogenically
mutated. ncRNAs also possess genetic and regulatory ele-
ments like protein coding genes, and mutations in any of
those genetic and regulatory elements can lead to deleterious
effects. Many publications in literature possess data on
ncRNA studies and their mutations in various diseases. In
one embodiment, an Al system is trained with literature
derived sets of ncRNA genes, mutations, positions, genetic
elements, similarity scores, sequences, diseases and drug
responses from publications. In some embodiments, the
system may be trained with different types of microRNAs as
described supra, and the regulatory systems of expression
and splicing of each of the rnicroRNAs. The trained Al
system is then able to predict disease causing mutations in
the genetic elements of a new set of ncRNA genes and
mutations in new patients.

Artificial Intelligence and Machine Learning
Techniques for Identifying Genome Features and
Disease Causing Mutations

[0351] Machine Learning (ML) methods may be adopted
to train a model to identify features and nuances of the
regulatory and splicing elements of genes in the human
genome, and the pathogenic mutations that cause disease
and drug response phenotypes. These embodiments herein
are provided as examples, and are not intended to cover all
possible AI/ML (Artificial Intelligence/Machine Learning)
methods and procedures.

[0352] A Machine Learning approach has been developed
to accurately predict the pathogenicity of DNA sequences
based on identified regulatory and splice elements. The
project’s goal was to provide a method for forecasting the
pathogenicity of DNA sequences by analysis of known and
computer identified features, which may be used as a train-
ing data set to train a Machine Learning (ML) model. In one
embodiment, the end result is a robust Supervised learning-
based Random Forest model that can effectively predict the
pathogenicity of new DNA sequences based on their
numeric characteristics. This model has the potential to
greatly improve the accuracy and efficiency of pathogenicity
assessments in the field of genomics.

[0353] Described herein is a model trained with a super-
vised learning technique and a Random Forest model to
analyze a training dataset of DNA sequences with known
pathogenicity labels. The model is then used to make
predictions on new DNA sequences, based on their regula-
tory and splice element characteristics. In some embodi-
ments, the output can be a binary classification i.e. (patho-
genic or non-pathogenic). In some embodiments, the output
can be a numerical score representing the degree of patho-
genicity. In some embodiments, the numerical score can be
0 (representing non-pathogenicity), or 100, (representing
pathogenicity), or any value in between.

EXAMPLE 2

[0354] Described below is a methodology of an embodi-
ment of the AI/ML system described herein.
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Step 1: Curation of a Proper Dataset

[0355] A total of 2,28,290 splicing variants (43,843 Real
Acceptors, 34,864 Real Donors, 78,018 Cryptic Acceptors,
and 71,565 Cryptic Donors) were selected from the Valid-
SpliceMut database, a repository of validated and cryptic
mRNA splicing mutations across various types of cancer.
[0356] The process of filtering the collected variants
involved categorizing variants based on matching conse-
quence (Real Acceptor/Real Donor & Cryptic Acceptor/
Cryptic Donor) as obtained from a data source such as
SQUIRL, resulting in a final count of 167,814 variants.
Further refinement was accomplished by trimming the vari-
ants using the consequence match in S&S algorithms, reduc-
ing the variant count down to 94,794. To reassess pathoge-
nicity, a comparison was made between the pathogenicity
values from SQUIRL and Shapiro and Senapthy (S&S)
algorithm, resulting in a final variant count of 63,993. Only
the variants with matching pathogenicity were selected, with
a final count of 61,401 (Pathogenic—56,952, Benign—4,
489).

Step 2: Data Transformation

[0357] Data Transformation was performed on the data
set, transforming the data into a more suitable format for
modeling, such as scaling or normalizing using Min-Max
Scaler. Missing data was filled in using Data imputation, to
replace missing values with estimated values. Dimension-
ality reduction on the data set was further performed to
reduce the number of potential features (i.e. variables) used
in the model.

Dimensionality Reduction Example

[0358]

#Calculate the Pearson correlation coefficient
between all the features

corr = df.corr(method=*‘pearson’)

#Select the upper triangular of the correlation matrix
upper = corr.where(np.triu(np.ones(corr.shape),
k=1).astype(np.bool))

#Find the index of the feature with the highest
correlation to others

to_drop = [column for column in upper.columns
if any(upper[column] > 0.95)]

#Drop the highly correlated features

df = df.drop(df[to_drop], axis=1)

Step 3: Feature Selection. Selecting the Most
Important Features for the Model, by Using Feature
Importance Scores

Dimensionality Reduction Example: Function for
Feature Selection Using ANOVA F-Test

[0359]

def select_features(X_train, y_train, X_test):
# configure to select all features
fs = SelectKBest(score_func=f_classif, k=20)
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
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-continued

# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X test fs, fs
# Feature selection
X _train_fs, X_test_fs, fs =
select_features(X_train, Y_train, X_test)

Step 4: Selection of a Proper ML, Model

[0360] Supervised, unsupervised, and deep learning are
the three main types of machine learning algorithms:

[0361] 1. Supervised learning is a type of machine
learning where the algorithm is trained on a labeled
dataset. The goal is to learn a mapping from input
variables (features) to an output variable (label). The
model makes predictions on unseen data based on the
learned mapping. Examples of supervised learning
algorithms are Linear Regression, Logistic Regression,
Decision Trees, Random Forest, and Support Vector
Machines (SVMs).

[0362] 2. Unsupervised learning is a type of machine
learning where the algorithm is trained on an unlabeled
dataset. The goal is to identify patterns or structures in
the data without any prior knowledge of the labels.
Examples of unsupervised learning algorithms are
K-means Clustering, Hierarchical Clustering.

[0363] 3. Deep learning is a subset of machine learning
that uses artificial neural networks with multiple layers
to complex model patterns in data. It is used for tasks
such as image classification, speech recognition, and
natural language processing. Examples of deep learn-
ing algorithms are Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and
Long-Short Term Memory (LSTM) Networks.

Step 5: Training the Model

[0364] The Random Forest algorithm is a composite
machine learning method that involves building multiple
decision trees using the Bootstrap sampling method. This
method involves randomly selecting 1000 samples from the
raw input data and using them to construct 1000 decision
trees. In this algorithm, two types of variables are used,
namely dependent variables (Y) and independent variables
(X). The independent variables are numerical features that
have been calculated, while the dependent variable repre-
sents the outcome.

[0365] The construction of an RF model, or any other
machine learning model, requires the division of the refer-
ence datasets into training and test data. In this case, a
dataset of 61,401 splicing pathogenic and benign variants
was divided into training data (70%, or 42980 variants) and
test data (30%, or 18421 variants) using the “train_test_
split” function from the scikit-learn (sklearn) library in
Python. The RF model was trained using the training data
and used to predict the test data. The model was specifically
designed to predict the pathogenicity of regulatory splice
element variants as either pathogenic or benign.

[0366] The RF model was trained using the “RandomFor-
estClassifier” function from the scikit-learn library. The
accuracy of the model was evaluated using the metrics
module from scikit-learn and further analyzed for improve-
ment.

27
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Step 6: Testing the Model

[0367] There are several evaluation metrics that can be
used to assess the performance of the RF model, such as
accuracy, precision, recall, F1-score, and AUC (Area Under
the Curve) for binary classification problems, and Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and R-Squared for regression problems. Table 1 illustrates
evaluation metrics collected for the 18,421 variants from the
Test Data.

TABLE 1

Model Performance on Test Data ( 18,421 variants)

Real & Cryptic-
Metrics Acceptor Donor
True Positive (TP) 17,014
True Negative (TN) 12
False Positive (FP) 1355
False Negative (FN) 40
Accuracy 99.72%
Precision 98.53%
Recall 99.44%
F1-Score 98.98%
Mathew’s Correlation 0.98

Coeflicient (MCC) Score

Step 7. Cross-Validation of the Model

[0368] To estimate the ability of the machine learning
(ML) model to generalize to non-training data, cross-vali-
dation was performed. The cross-validation was done using
the K-Fold method with 10 folds (n_splits=10) and the
Stratified K-Fold method with 3 folds (n_splits=3) to ensure
that each fold was a representative sample of the whole
dataset. Additionally, repeated random subsampling valida-
tion was performed using Shuffle Split cross-validation,
which randomly splits the dataset into training and valida-
tion sets for each iteration. This was done using the Shuf-
fleSplit method with 10 re-shuffling and splitting iterations
(n_splits=10). Results are shown for cross-validation in
Table 2.

TABLE 2
Cross Validation Methods Accuracy
K-Fold CV 99.87%
Stratified K-Fold CV 99.85%
Shuffle Split CV 99.84%

Step 8: Validation of the Trained RF Model on a
New External Dataset

[0369] Model validation is a critical component of build-
ing a supervised model and is essential for achieving good
generalization performance. A sensible data-splitting strat-
egy is crucial for model validation. To validate the created
Random Forest (RF) model, the ClinVar and SCM datasets
were used. The metrics for validation were observed and
studied using the scikit-learn module once the pathogenicity
was predicted for this data. The pathogenic and benign
variants of 9549 real acceptors and real donors (pathogenic:
9,464, benign: 85) were obtained from ClinVar, and only
SNPs were considered as the model was trained for SNP. To



US 2023/0307092 Al

validate the pathogenicity model for cryptic acceptor and
cryptic donor, 3638 (pathogenic: 3,619, benign: 19) variants
were curated from the splice-site-creating mutations (SCM)
dataset. The pathogenicity calls of these variants were
re-classified based on the matching pathogenicity of the
SQUIRL and S&S algorithms. Table 3 illustrates validation
values.

TABLE 3
Clinvar Real & SCM Dataset
Cryptic- Real & Cryptic-

Acceptor/Donor Acceptor/Donor
Metrics (9549 Variants) (3638 variants)
True Positive (TP) 9463 3614
True Negative (TN) 81 10
False Positive (FP) 4 9
False Negative (FN) 1 5
Accuracy 99.14% 99.58%
Precision 52.35% 73.62%
Recall 89.57% 82.00%
F1-Score 54.22% 77.16%
Mathew’s Correlation 0.193 0.55
Coeflicient (MCC)
Score

Step 9 : A Deep Learning Model to Predict the
Pathogenicity in RSE Elements

A. Data Collection

[0370] The same dataset of 61,401 RSE variants curated in
step 1 will be used for building the deep learning model.

B. Data Pre-Processing

[0371] Before training the deep learning model, the above
dataset needs to be cleaned to remove any duplicates,
missing values, and irrelevant data. The data is then pro-
cessed and transformed into a compatible format for use in
a deep learning model. The variant nucleotides of regulatory
and splice elements are converted into numerical represen-
tations using one-hot encoding. Resulting data will be split
into training and testing sets with a ratio of 80:20.

C. Building the Model

[0372] A deep neural network (DNN) was used to predict
the pathogenicity of mutations in regulatory and splice
elements. The DNN model was designed by specifying
architecture elements, including the number of hidden lay-
ers, the number of neurons in each layer, the activation
functions, etc. The DNN will have multiple hidden layers,
and each layer will contain multiple neurons. The output
layer of the DNN has a single neuron that is responsible for
making the final prediction of the pathogenicity of the
mutation. This single neuron provides the final prediction
based on the information received from the hidden layers
and processed through the weights and biases of the neurons.

[0373] The model is then compiled by defining the opti-
mizer, loss function, and metrics used for evaluation. The
optimizer determines how the model will be updated during
training, the loss function measures the accuracy of the
predictions, and the metrics evaluate the model’s perfor-
mance.
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D. Training the Model

[0374] The deep learning model will be trained on the
pre-processed data. During the training process, the model
will learn to predict the pathogenicity of mutations in
regulatory and splice elements. The model is then trained
using the training data by running a number of iterations,
also known as epochs. During each iteration, the model is
updated based on the loss function and optimizer, and the
metrics are evaluated to monitor the model’s performance.
We will use a loss function to measure the accuracy of the
model and adjust the weights of the neurons in each layer to
improve the model’s performance.

E. Evaluating the Model

[0375] Once the model is trained, the model was then
evaluated on a test dataset. The evaluation was performed
using metrics such as accuracy, precision, recall, and F1
score. If necessary, the model can be fine-tuned by adjusting
the hyperparameters such as the number of hidden layers,
the number of neurons in each layer, the activation func-
tions, etc.

[0376] The above steps and nuances are used in their ML
applications of the genome features described in the differ-
ent embodiments in order to predict the different genomic
features, and to identify the variants that are causal of
disease and drug response phenotypes from among the
millions of variants possible in the genome sequence.

Computer System

[0377] Insome embodiments, the systems, processes, and
methods described herein are implemented using a comput-
ing system, such as the one illustrated in FIG. 11. The
example computer system 1102 is in communication with
one or more computing systems 1120 and/or one or more
data sources 1122 via one or more networks 1118. While
FIG. 11 illustrates an embodiment of a computing system
1102, it is recognized that the functionality provided for in
the components and modules of computer system 1102 can
be combined into fewer components and modules, or further
separated into additional components and modules.

[0378] The computer system 1102 can comprise a genome
analysis module 1114 that carries out the functions, methods,
acts, and/or processes described herein. The genome analy-
sis module 1114 is executed on the computer system 1102 by
a central processing unit 1106 discussed further below.
[0379] In general the word “module,” as used herein,
refers to logic embodied in hardware or firmware or to a
collection of software instructions, having entry and exit
points . Modules are written in a program language, such as
JAVA, C, or C++, or the like. Software modules can be
compiled or linked into an executable program, installed in
a dynamic link library, or can be written in an interpreted
language such as BASIC, PERL, LAU, PHP or Python and
any such languages. Software modules can be called from
other modules or from themselves, and/or can be invoked in
response to detected events or interruptions. Modules imple-
mented in hardware include connected logic units such as
gates and flip-flops, and/or can include programmable units,
such as programmable gate arrays or processors.

[0380] Generally, the modules described herein refer to
logical modules that can be combined with other modules or
divided into sub-modules despite their physical organization
or storage. The modules are executed by one or more
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computing systems, and can be stored on or within any
suitable computer readable medium, or implemented in-
whole or in-part within special designed hardware or firm-
ware. Not all calculations, analysis, and/or optimization
require the use of computer systems, though any of the
above-described methods, calculations, processes, or analy-
ses can be facilitated through the use of computers. Further,
in some embodiments, process blocks described herein can
be altered, rearranged, combined, and/or omitted.

Computing System Components

[0381] The computer system 1102 includes one or more
processing units (CPU) 1106, which can comprise a micro-
processor. The computer system 1102 further includes a
physical memory 1110, such as random access memory
(RAM) for temporary storage of information, a read only
memory (ROM) for permanent storage of information, and
a mass storage device 1104, such as a backing store, hard
drive, rotating magnetic disks, solid state disks (SSD), flash
memory, phase-change memory (PCM), 3D XPoint
memory, diskette, or optical media storage device. Alterna-
tively, the mass storage device can be implemented in an
array of servers. Typically, the components of the computer
system 1102 are connected to the computer using a standards
based bus system. The bus system can be implemented using
various protocols, such as Peripheral Component Intercon-
nect (PCI), Micro Channel, SCSI, Industrial Standard Archi-
tecture (ISA) and Extended ISA (EISA) architectures.

[0382] The computer system 1102 includes one or more
input/output (I/O) devices and interfaces 1112, such as a
keyboard, mouse, touch pad, and printer. The I/O devices
and interfaces 1112 can include one or more display devices,
such as a monitor, that allows the visual presentation of data
to a user. More particularly, a display device provides for the
presentation of GUIs as application software data, and
multi-media presentations, for example. The I/O devices and
interfaces 1112 can also provide a communications interface
to various external devices. The computer system 1102 can
comprise one or more multi-media devices 1108, such as
speakers, video cards, graphics accelerators, and micro-
phones, for example.

Computing System Device/Operating System

[0383] The computer system 1102 can run on a variety of
computing devices, such as a server, a Windows server, a
Structure Query Language server, a Unix Server, a personal
computer, a laptop computer, and so forth. In other embodi-
ments, the computer system 1102 can run on a cluster
computer system, a mainframe computer system and/or
other computing system suitable for controlling and/or com-
municating with large databases, performing high volume
transaction processing, and generating reports from large
databases. The computing system 1102 is generally con-
trolled and coordinated by an operating system software,
such as zZ/OS, Windows, Linux, UNIX, BSD, PHP, SunOS,
Solaris, MacOS, ICloud services or other compatible oper-
ating systems, including proprietary operating systems.
Operating systems control and schedule computer processes
for execution, perform memory management, provide file
system, networking, and I/O services, and provide a user
interface, such as a graphical user interface (GUI), among
other things.
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Network

[0384] The computer system 1102 illustrated in FIG. 11 is
coupled to a network 1118, such as a LAN, WAN, or the
Internet via a communication link 1116 (wired, wireless, or
a combination thereof). Network 1118 communicates with
various computing devices and/or other electronic devices.
Network 1118 is communicating with one or more comput-
ing systems 1120 and one or more data sources 222. The
genome analysis module 1114 can access or can be accessed
by computing systems 1120 and/or data sources 1122
through a web-enabled user access point. Connections can
be a direct physical connection, a virtual connection, and
other connection type. The web-enabled user access point
can comprise a browser module that uses text, graphics,
audio, video, and other media to present data and to allow
interaction with data via the network 1118.

[0385] The output module can be implemented as a com-
bination of an all-points addressable display such as a
cathode ray tube (CRT), a liquid crystal display (LCD), a
plasma display, or other types and/or combinations of dis-
plays. The output module can be implemented to commu-
nicate with input devices 1112 and they also include soft-
ware with the appropriate interfaces which allow a user to
access data through the use of stylized screen elements, such
as menus, windows, dialogue boxes, tool bars, and controls
(for example, radio buttons, check boxes, sliding scales, and
so forth). Furthermore, the output module can communicate
with a set of input and output devices to receive signals from
the user.

Other Systems

[0386] The computing system 1102 can include one or
more internal and/or external data sources (for example, data
sources 1122). In some embodiments, one or more of the
data repositories and the data sources described above can
be implemented using a relational database, such as DB2,
Sybase, Oracle, CodeBase, and Microsoft® SQL Server as
well as other types of databases such as a flat-file database,
an entity relationship database, and object-oriented data-
base, and/or a record-based database.

[0387] The computer system 1102 can also access one or
more databases 1122. The databases 1122 can be stored in a
database or data repository. The computer system 1102 can
access the one or more databases 1122 through a network
1118 or can directly access the database or data repository
through 1/0O devices and interfaces 1112. The data repository
storing the one or more databases 1122 can reside within the
computer system 1102.

URLSs and Cookies

[0388] In some embodiments, one or more features of the
systems, methods, and devices described herein can utilize
a URL and/or cookies, for example for storing and/or
transmitting data or user information. A Uniform Resource
Locator (URL) can include a web address and/or a reference
to a web resource that is stored on a database and/or a server.
The URL can specify the location of the resource on a
computer and/or a computer network. The URL can include
a mechanism to retrieve the network resource. The source of
the network resource can receive a URL, identify the loca-
tion of the web resource, and transmit the web resource back
to the requestor. A URL can be converted to an IP address,
and a Doman Name System (DNS) can look up the URL and
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its corresponding IP address. URLs can be references to web
pages, file transfers, emails, database accesses, and other
applications. The URLSs can include a sequence of characters
that identify a path, domain name, a file extension, a host
name, a query, a fragment, scheme, a protocol identifier, a
port number, a username, a password, a flag, an object, a
resource name and/or the like. The systems disclosed herein
can generate, receive, transmit, apply, parse, serialize, ren-
der, and/or perform an action on a URL.

[0389] A cookie, also referred to as an HTTP cookie, a
web cookie, an internet cookie, and a browser cookie, can
include data sent from a website and/or stored on a user’s
computer. This data can be stored by a user’s web browser
while the user is browsing. The cookies can include useful
information for websites to remember prior browsing infor-
mation, such as a shopping cart on an online store, clicking
of'buttons, login information, and/or records of web pages or
network resources visited in the past. Cookies can also
include information that the user enters, such as names,
addresses, passwords, credit card information, etc. Cookies
can also perform computer functions. For example, authen-
tication cookies can be used by applications (for example, a
web browser) to identify whether the user is already logged
in (for example, to a web site). The cookie data can be
encrypted to provide security for the consumer. Tracking
cookies can be used to compile historical browsing histories
of individuals. Systems disclosed herein can generate and
use cookies to access data of an individual. Systems can also
generate and use JSON web tokens to store authenticity
information, HTTP authentication as authentication proto-
cols, IP addresses to track session or identity information,
URLs, and the like.

Other Embodiments

[0390] While operations may be depicted in the drawings
or described in the specification in a particular order, such
operations need not be performed in the particular order
shown or in sequential order, or that all operations be
performed, to achieve desirable results. In particular, ele-
ments presented relating to GUI elements or displays to a
user may be presented in any particular order to achieve
desirable results. Other operations that are not depicted or
described can be incorporated in the example methods and
processes. For example, one or more additional operations
can be performed before, after, simultaneously, or between
any of the described operations. Further, the operations may
be rearranged or reordered in other implementations. Those
skilled in the art will appreciate that in some examples, the
actual steps taken in the processes illustrated and/or dis-
closed may differ from those shown in the figures. Depend-
ing on the example, certain of the steps described above may
be removed or others may be added. Furthermore, the
features and attributes of the specific examples disclosed
above may be combined in different ways to form additional
examples, all of which fall within the scope of the present
disclosure. Also, the separation of various system compo-
nents in the implementations described above should not be
understood as requiring such separation in all implementa-
tions, and it should be understood that the described com-
ponents and systems can generally be integrated together in
a single product or packaged into multiple products. For
example, any of the features for the system described herein
can be provided separately, or integrated together (e.g.,
packaged together, or attached together).
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[0391] For purposes of this disclosure, certain aspects,
advantages, and novel features are described herein. Not
necessarily all such advantages may be achieved in accor-
dance with any particular example. Thus, for example, those
skilled in the art will recognize that the disclosure may be
embodied or carried out in a manner that achieves one
advantage or a group of advantages as taught herein without
necessarily achieving other advantages as may be taught or
suggested herein.

[0392] Conditional language, such as “can,” “could,”
“might,” or “may,” unless specifically stated otherwise, or
otherwise understood within the context as used, is generally
intended to convey that certain examples include, while
other examples do not include, certain features, elements,
and/or steps. Thus, such conditional language is not gener-
ally intended to imply that features, elements, and/or steps
are in any way required for one or more examples or that one
or more examples necessarily include logic for deciding,
with or without user input or prompting, whether these
features, elements, and/or steps are included or are to be
performed in any particular example.

[0393] Conjunctive language such as the phrase “at least
one of X, Y, and Z,” unless specifically stated otherwise, is
otherwise understood with the context as used in general to
convey that an item, term, etc. may be either X, Y, or Z.
Thus, such conjunctive language is not generally intended to
imply that certain examples require the presence of at least
one of X, at least one of Y, and at least one of Z.

[0394] Language of degree used herein, such as the terms
“approximately,” “about,” “generally,” and “substantially”
represent a value, amount, or characteristic close to the
stated value, amount, or characteristic that still performs a
desired function or achieves a desired result.

[0395] The scope of the present disclosure is not intended
to be limited by the specific disclosures of preferred
examples in this section or elsewhere in this specification,
and may be defined by claims as presented in this section or
elsewhere in this specification or as presented in the future.
The language of the claims is to be interpreted broadly based
on the language employed in the claims and not limited to
the examples described in the present specification or during
the prosecution of the application, which examples are to be
construed as non-exclusive.

[0396] Although the foregoing invention has been
described in terms of certain preferred embodiments, other
embodiments will be apparent to those of ordinary skill in
the art. Additionally, other combinations, omissions, substi-
tutions and modification will be apparent to the skilled
artisan, in view of the disclosure herein. Accordingly, the
present invention is not intended to be limited by the
recitation of the preferred embodiments, but is instead to be
defined by reference to the appended claims. All references
cited herein are incorporated by reference in their entirety.
[0397] The terminology used in the description presented
herein is not intended to be interpreted in any limited or
restrictive manner and unless otherwise indicated refers to
the ordinary meaning as would be understood by one of
ordinary skill in the art in view of the specification. Fur-
thermore, embodiments may comprise, consist of, consist
essentially of, several novel features, no single one of which
is solely responsible for its desirable attributes or is believed
to be essential to practicing the embodiments herein
described. As used herein, the section headings are for
organizational purposes only and are not to be construed as
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limiting the described subject matter in any way. All litera-
ture and similar materials cited in this application, including
but not limited to, patents, patent applications, articles,
books, treatises, and internet web pages are expressly incor-
porated by reference in their entirety for any purpose. When
definitions of terms in incorporated references appear to
differ from the definitions provided in the present teachings,
the definition provided in the present teachings shall control.
It will be appreciated that there is an implied “about™ prior
to the temperatures, concentrations, times, etc. discussed in
the present teachings, such that slight and insubstantial
deviations are within the scope of the present teachings
herein.

[0398] Although this disclosure is in the context of certain
embodiments and examples, those of ordinary skill in the art
will understand that the present disclosure extends beyond
the specifically disclosed embodiments to other alternative
embodiments and/or uses of the embodiments and obvious
modifications and equivalents thereof. In addition, while
several variations of the embodiments have been shown and
described in detail, other modifications, which are within the
scope of this disclosure, will be readily apparent to those of
ordinary skill in the art based upon this disclosure. It is also
contemplated that various combinations or sub-combina-
tions of the specific features and aspects of the embodiments
may be made and still fall within the scope of the disclosure.
It should be understood that various features and aspects of
the disclosed embodiments can be combined with, or sub-
stituted for, one another in order to form varying modes or
embodiments of the disclosure. Thus, it is intended that the
scope of the present disclosure herein disclosed should not
be limited by the particular disclosed embodiments
described above.

Operative Embodiments

[0399] In some aspects, the techniques described herein
relate to a method of analysis of features, mutations, and
genomes, the method including: receiving a plurality of
nucleotides including a genetic element in a gene, wherein
the plurality of nucleotides are assigned a position; calcu-
lating the frequency of mutations for each position within
the genetic element, wherein the nucleotide at the position
within the genetic element is replaced by an alternative
nucleotide; calculating the total number of mutations for the
sequence length of the genetic element; and calculating a
deleteriousness score for each position based on the fre-
quency of mutations.

[0400] In some aspects, the techniques described herein
relate to a method, further including calculating a disease
causality score, wherein the disease causality score is cal-
culated based on the frequency of specific mutations divided
by the total number of mutations calculated.

[0401] In some aspects, the techniques described herein
relate to a method for comparing similarity between genetic
features, the method including receiving a nucleotide
sequence from a reference genome including at least one
genetic element, wherein the at least one genetic element is
selected from a list including: a 5'-UTR, a promoter, an
enhancer, a silencer, an exon, an intron, a coding sequence,
a non-protein coding RNA, a splice acceptor, a splice donor,
a branch point site, a 3'-UTR, a Kozak sequence, a poly-A
addition site or signal, or a cryptic version thereof; identi-
fying a first exon from the nucleotide sequence, wherein the
first exon begins with an initiator codon, wherein the first
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exon ends with a first donor sequence; identitying a middle
exon from the nucleotide sequence; identifying a last exon
from the nucleotide sequence; and, annotating splicing and
regulatory elements based on similarity scores or position
weight matrix scores.

[0402] In some aspects, the techniques described herein
relate to a method, wherein the similarity scores are com-
puted from one of: determining the similarity score of an
element by executing instructions from an algorithm
selected from a group consisting of algorithms such as
Shapiro-Senapathy algorithm, MaxEntScan algorithm, and
NNSplice algorithm, stored in a memory; determining the
similarity score of an element by executing instructions from
a modified algorithm selected from a group consisting of
algorithms such as Shapiro-Senapathy algorithm, MaxEntS-
can algorithm, and NNSplice algorithm, stored in a memory,
based on the characteristics of a genetic element sequence
signal such as length or variability; or determining a com-
bined score of the group of algorithms based on an average
or differentially weighted scores.

[0403] In some aspects, the techniques described herein
relate to a computer implemented method for interpreting a
genome, including: receiving a nucleotide string including at
least one genetic element, wherein the at least one genetic
element includes: a 5'-UTR, a promoter, an enhancer, a
silencer, an exon, an intron, a coding sequence, a non-
protein coding RNA, a splice acceptor, a splice donor, a
branch point site, a 3'-UTR, a Kozak sequence, a poly-A
addition site or signal, or a cryptic version thereof; gener-
ating, for each base in the nucleotide string, at least one
alternative nucleotide, thereby generating at least one alter-
native nucleotide string, wherein for each base in the alter-
native nucleotide string, the nucleotide differs compared to
the same position of the nucleotide string; calculating a
similarity score for the at least one genetic element for the
nucleotide string and all alternative nucleotide string(s); and,
calculating molecular effects, wherein the molecular effects
include one or more of: exon skipping, intron retention,
cryptic exon creation, or partial exon deletion.

[0404] In some aspects, the techniques described herein
relate to a method, wherein the similarity scores are com-
puted from one of: determining the similarity score of an
element by executing instructions from an algorithm
selected from a group consisting of algorithms such as
Shapiro-Senapathy algorithm, MaxEntScan algorithm, and
NNSplice algorithm, stored in a memory; determining the
similarity score of an element by executing instructions from
a modified algorithm selected from a group consisting of
algorithms such as Shapiro-Senapathy algorithm, MaxEntS-
can algorithm, and NNSplice algorithm, stored in a memory,
based on the characteristics of a genetic element sequence
signal such as length or variability; or determining a com-
bined score of the group of algorithms based on an average
or differentially weighted scores.

[0405] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the frequency of mutations that occur at one or
more nucleotide positions within the sequence of one or
more genetic elements in one or more genes, causal of one
or more diseases or drug response phenotypes, from one or
more publications;

[0406] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the frequency of mutations that occur at one or
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more nucleotide positions within the sequence of one or
more types of genetic elements (e.g., the donor), in one or
more genes in one or more diseases from one or more
publications containing the data;

[0407] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
statistical graphing and plotting the frequencies of mutations
at one or more sequence positions within one or more
elements in one or more genes for one or more diseases in
different graphical and tabular representations;

[0408] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the frequency of mutations at one or more
sequence positions within one or more genetic eclements,
reported in one or more publications; and, determining the
pathogenically high, medium, or low variable positions
within the genetic element, based on the frequencies, indica-
tive of the level of pathogenicity or deleteriousness of the
position;

[0409] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
training an AI/ML system with the variation of mutational
frequencies including the high, medium and low variable
positions of one or more genetic elements in a gene, and
predicting the level of pathogenicity of mutations by the
AI/ML system;

[0410] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining a scoring system for each genetic element that
occurs in a gene based on the differential mutations at each
of the different sequence positions within each genetic
element;

[0411] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
a genetic element representing a real element or a cryptic
element that occurs in a gene;

[0412] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining a deleteriousness or disease-causality of a muta-
tion within a particular genetic element within a gene based
on the frequency of the nucleotide change of a particular
mutation to any of the other three nucleotides at that
particular position, relative to the change of nucleotides at
all of the sequence positions within the element;

[0413] In some aspects, the techniques described herein
relate to identifying disease-causing cryptic sites for a
genetic element based on their locations in which disease-
causing mutations occur at a high frequency from published
data, and applying the disease-causality scoring algorithms
to the cryptic element;

[0414] In some aspects, the techniques described herein
relate to determining the disease-causality of a mutation in
a cryptic site of an element from an individual, based on the
disease-causality algorithm.

[0415] In some aspects, the techniques described herein
relate to a method of analysis of features, mutations, genes,
and genomes, the method including: receiving a plurality of
nucleotides including a genetic element in a gene, wherein
the plurality of nucleotides are assigned a position; calcu-
lating a frequency of mutations for each position within the
genetic element based on publications, wherein the nucleo-
tide at the position within the genetic element is replaced by
an alternative nucleotide; calculating the total number of
mutations for the sequence length of the genetic element;
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and calculating a deleteriousness score for each specific
position based on the frequency of mutations at that position
relative to the total number of mutations.

[0416] In some aspects, the techniques described herein
relate to a method, further including calculating a disease
causality score for each specific base change into any one of
three other bases at every position in the element, wherein
the disease causality score is calculated based on the fre-
quency of specific base change divided by the total number
of mutations at that position.

[0417] In some aspects, the techniques described herein
relate to a method, further including: determining the fre-
quency of mutations that occur at each nucleotide position
within the sequence of the genetic element, wherein the
mutations are retrieved from one or more publications.

[0418] In some aspects, the techniques described herein
relate to a method, further including: statistical graphing and
plotting the frequencies of mutations at one or more
sequence positions within the genetic element, wherein
statistically graphing and plotting are performed in different
graphical and tabular representations

[0419] In some aspects, the techniques described herein
relate to a method, further including determining the fre-
quency of mutations at one or more sequence positions
within the genetic element, reported in one or more publi-
cations; and, determining the high, medium, or low variable
positions within the genetic element, based on the frequen-
cies, indicative of the level of pathogenicity or deleterious-
ness of the position.

[0420] In some aspects, the techniques described herein
relate to a method, wherein determining the high, medium or
low variable positions includes training an AI/ML system
with the frequency of mutations of one or more genetic
elements in a gene.

[0421] In some aspects, the techniques described herein
relate to a method, further including identifying disease-
causing cryptic sites for a genetic element based on prede-
termined locations in which disease-causing mutations
occur at a high frequency from published data; and, applying
a disease-causality scoring algorithm to the cryptic element.

[0422] In some aspects, the techniques described herein
relate to a method for identifying a gene in a raw DNA
sequence, the method including receiving a nucleotide
sequence from a reference genome, the reference genome
including at least one genetic element, wherein the at least
one genetic element is selected from a list including: a
5-UTR, a promoter, an enhancer, a silencer, an exon, an
intron, a coding sequence, a non-protein coding RNA, a
splice acceptor, a splice donor, a branch point site, a 3'-UTR,
a Kozak sequence, a poly-A addition site or signal, or a
cryptic version thereof, identifying a first exon from the
nucleotide sequence, wherein the first exon begins with an
initiator codon, wherein the first exon ends with a first donor
sequence, and the first exon is bounded by an open reading
frame (ORF); identifying one or more middle exons from
the nucleotide sequence, wherein the middle exon starts with
a first acceptor sequence and ends with a second donor
sequence, and the middle exon is bounded by the open
reading frame (ORF); identifying a last exon from the
nucleotide sequence, wherein the last exons starts with a
second acceptor sequence and ends with a stop codon, and
the last exon is bounded by the open reading frame (ORF);
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and, annotating the splicing and regulatory elements within
the gene based on similarity scores or position weight matrix
scores.

[0423] In some aspects, the techniques described herein
relate to a method, wherein the similarity scores are com-
puted by: determining the similarity score of an element by
executing instructions from an algorithm selected from a
group consisting of: Shapiro-Senapathy algorithm, Max-
EntScan algorithm, and NNSplice algorithm, stored in a
memory; determining the similarity score of an element by
executing instructions from a modified algorithm selected
from a group consisting of: Shapiro-Senapathy algorithm,
MaxEntScan algorithm, and NNSplice algorithm, stored in
a memory; or determining a combined average or differen-
tially weighted score based on a group of algorithms,
wherein the group of algorithms consist of: Shapiro-Sena-
pathy algorithm, MaxEntScan algorithm, and NNSplice
algorithm, stored in a memory, or modifications thereof.
[0424] In some aspects, the techniques described herein
relate to a method, wherein the genetic elements, or exons
are identified based on a threshold of similarity scores.
[0425] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
identifying the first exon, one or more middle exons, and the
last exon of the gene, wherein the first exon, one or more
middle exons, and the last exons are characterized by the
highest similarity scores, wherein the similarity scores are
calculated based on the at least one genetic elements within
and surrounding the first exon, one or more middle exons,
and the last exon; and, choosing the first exon, one or more
middle exons, and the last exon of the gene based on the
contiguity of the ORF of the consecutive exons starting from
the first exon of a protein coding sequence, and the conti-
guity of protein domains over one or more exons, within the
gene.

[0426] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining a contiguous domain sequence of a protein
domain, wherein the protein domain corresponds with the
contiguous nucleotide sequence of either the first exon, the
one or more middle exons, or the last exon; and, predicting
that if a portion of the contiguous domain sequence is
missing, then an exon is missing from the gene.

[0427] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the occurrence of one or more premature ter-
mination codons within a complete protein sequence,
wherein the complete protein sequence is translated from the
raw DNA sequence, wherein the premature termination
codons indicate the presence of one or more cryptic exons;
eliminating the one or more cryptic exons from a map of the
gene; and, identifying the first exon, one or more middle
exons, and the last exon of a complete gene without inter-
fering stop codons.

[0428] In some aspects, the techniques described herein
relate to a computer implemented method, including, receiv-
ing a nucleotide string including at least one genetic ele-
ment, the at least one genetic element selected from: a
5'-UTR, a promoter, an enhancer, a silencer, an exon, an
intron, a coding sequence, a non-protein coding RNA, a
splice acceptor, a splice donor, a branch point site, a 3'-UTR,
a Kozak sequence, a poly-A addition site or signal, or a
cryptic version thereof, from a known protein coding gene,
or a regulatory, splicing, or functional element of a non-
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protein coding RNA gene from a reference genome; gener-
ating one or more modified nucleotide strings, wherein each
base on the one or more modified nucleotide strings is
replaced compared to the nucleotide string, wherein replac-
ing each base includes converting each base to a non-
identical nucleotide; for the at least one genetic element,
calculating the similarity score of the element for every of
the one or more modified nucleotide strings; determining
overall deleteriousness by comparing the similarity scores
for the at least one genetic element for every one of the one
or more modified nucleotide strings and for the nucleotide
string; assigning a molecular effect, the molecular effect
selected from one or more of: abolition, reduction or
enhancement of transcription or translation, exon skipping,
intron retention, cryptic exon creation or partial exon dele-
tion of the deleterious mutation; and storing the information
of the molecular effect for every one or more modified
nucleotide strings in a memory.

[0429] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the molecular effect for every genetic element
occurring throughout a genome, wherein the nucleotide
string is part of the genome.

[0430] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
receiving the nucleotide string including the at least one
genetic element, wherein the nucleotide string is selected
from a known protein coding gene, or wherein the nucleo-
tide string is selected from a regulatory, splicing, or func-
tional element of a non-protein coding RNA gene from a
genome of an individual; identifying at least one variant in
at the at least one genetic element, wherein identifying at
least one variant is accomplished by comparing with the
reference genome; comparing the molecular effect of muta-
tions stored in the memory with the at least one variant,
thereby generating at least one comparison; and storing a
record of the at least one comparison in memory.

[0431] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the molecular effect for every at least one
genetic element occurring throughout a genome, wherein the
nucleotide string is part of the genome, wherein the genome
is collected from the individual.

[0432] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
determining the molecular effects of every genetic element
for every gene occurring throughout the genome of an
individual.

[0433] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
evaluating the molecular effect of two or more variants for
the at least one genetic element, wherein evaluation is
assessed by comparing the similarity scores of the at least
one genetic element against multiple variants of the at least
one genetic element.

[0434] In some aspects, the techniques described herein
relate to a computer implemented method, further including,
assessing the molecular effect of two or more variants in two
or more genetic elements, wherein the genetic elements are
real or cryptic, wherein the genetic elements are located
within an exon or intron, wherein assessing the molecular
effect includes determining the similarity scores and other
parameters of the two or more variants in two or more
genetic elements.
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[0435] In some embodiments, the system can be trained to
recognize CRISPR recognition sequences in the genome.
The training can include the CRISPR-Cas9 recognition
sequences in graphical gene structure and sequence view. In
addition, it can be trained to graphically illustrate the rec-
ognition sequences, their mutations and their aberrations in
gene structure and sequence views.

[0436] A computer implemented method for automatically
assessing genomic features comprising:

[0437] receiving an input dataset comprising one or
more regulatory and one or more splicing elements in
a gene set;

[0438] generating one or more similarity scores for the
one or more regulatory and one or more splicing
elements;

[0439] generating one or more pathogenic or strength
altering mutations, wherein generating one or more
pathogenic or strength altering mutations involves cal-
culating pathogenicity of known mutations in the one
or more regulatory and one or more splicing elements;

[0440] training an artificial intelligence program with
the one or more regulatory and one or more splicing
elements, wherein the one or more similarity scores are
within a preset range;

[0441] generating an output dataset of splicing or regu-
latory elements, wherein the output dataset comprises a
new set of genes; and

[0442] generating pathogenic or strength altering muta-
tions for the new set of genes.

[0443] The computer implemented method of the above
embodiments, further comprising,

[0444] receiving a plurality of nucleotides from one or
more individuals with at least one genetic element,
exon, intron or a gene;

[0445] identifying pathogenic or strength altering muta-
tions in the plurality of nucleotides from one or more
individuals.

[0446] The computer implemented method of the above
embodiments, wherein generating pathogenic or strength
altering mutations for the new set of genes identifies genetic
elements causing phenotypes such as disease and drug
response, including therapeutics and harmful side effects.
[0447] The computer implemented method of the above
embodiments, further comprising,

[0448] training an artificial intelligence program with
one or more known cryptic elements from the input
dataset, wherein the one or more known cryptic ele-
ments include genetic environment of other genetic
elements; and

[0449] generating as an output one or more novel cryp-
tic element mutations causing disease, drug response
and harmful side effects.

[0450] The computer implemented method of the above
embodiments, further comprising,

[0451] identifying true and cryptic genetic elements in
the new set of genes using a machine learning model,
wherein the machine learning model is trained with one
or more known true and cryptic genetic elements from
the input dataset, wherein the one or more known true
and cryptic genetic elements are categorized based on
calculated similarity scores.

[0452] The computer implemented method of the above
embodiments, wherein the input dataset is collected from
one or more gene databases.
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[0453] A computer implemented method of the above
embodiments, further comprising,

[0454] sorting pathogenic or strength altering mutations
from benign mutations.

[0455] A computer implemented method of the above
embodiments, further comprising,

[0456] predicting deleterious or strength altering muta-
tions in different genetic elements of the new set of
genes.

[0457] A system configured for assessing genomic fea-
tures, comprising a system configured to carry out the
method of the above embodiments.

What is claimed is:

1. A computer implemented method for automatically

assessing genomic features comprising:

receiving an input dataset comprising one or more regu-
latory and/or one or more splicing elements in a gene
set;

generating one or more similarity scores for the one or
more regulatory and/or one or more splicing elements;

generating one or more pathogenic or strength altering
mutations, wherein generating one or more pathogenic
or strength altering mutations involves calculating
pathogenicity of known mutations in the one or more
regulatory and/or one or more splicing elements, and
the difference between the scores before and after
mutation;

training an artificial intelligence program with the one or
more regulatory and/or one or more splicing elements,
wherein the one or more similarity scores are within a
preset range,

training the artificial intelligence program with known
pathogenic or strength altering mutations in splicing or
regulatory elements in a set of genes with known
splicing and regulatory elements, genomic positions,
and similarity scores;

generating an output dataset of splicing or regulatory
elements, wherein the input dataset comprises a new set
of genes; and

generating pathogenic or strength altering mutations for
the new set of genes.

2. The computer implemented method of claim 1, further

comprising,

receiving a plurality of nucleotides from one or more
individuals with at least one genetic element, exon,
intron or a gene;

identifying pathogenic or strength altering mutations in
the plurality of nucleotides from one or more individu-
als based on the trained artificial intelligence program.

3. The computer implemented method of claim 1, further
comprising,

receiving a plurality of nucleotides from one or more
individuals with at least one genetic element, exon,
intron or a gene;

identifying one or more molecular effects due to patho-
genic or strength altering mutations in the plurality of
nucleotides from one or more individuals based on the
trained artificial intelligence program.

4. The computer implemented method of claim 1, wherein
generating pathogenic or strength altering mutations in
genetic elements for the new set of genes identifies pheno-
types such as disease and drug response, including thera-
peutics and harmful side effects.
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5. The computer implemented method of claim 1, further
comprising,
training an artificial intelligence program with one or
more known cryptic elements from the input dataset,
wherein the one or more known cryptic elements
include genetic environment of other genetic elements;
and their pathogenic or strength altering mutations
causing various phenotypes in a set of known genes;
generating as an output one or more novel cryptic element
mutations causing disease, drug response and harmful
side effects.
6. The computer implemented method of claim 1, further
comprising,
identifying true and cryptic genetic elements in the new
set of genes using a machine learning model, wherein
the machine learning model is trained with one or more
known true and cryptic genetic elements from the input
dataset, wherein the one or more known true and
cryptic genetic elements are categorized based on cal-
culated similarity scores and genomic positions in
known genes.
7. A computer implemented method of claim 1, further
comprising,
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the Al model sorting pathogenic or strength altering
mutations from benign mutations.
8. The computer implemented method of claim 1, further
comprising,
identifying pathogenic or strength altering mutations in
the new set of genes using a machine learning model,
wherein the machine learning model is trained with
known pathogenic and strength altering mutations and
non-deleterious or benign mutations, wherein the
pathogenic and strength altering mutations and non-
deleterious or benign mutations are categorized based
on calculated similarity scores, genomic positions in
known genes, and their genetic environment of other
elements and their parameters within the genes and the
genome.
9. A computer implemented method of claim 1, further
comprising,
the trained Al model predicting deleterious or strength
altering mutations in different genetic elements of the
new set of genes.
10. A system configured for assessing genomic features,
comprising a system configured to carry out the method of
claim 1.



