a9 United States

US 20120331474A1

a2y Patent Application Publication o) Pub. No.: US 2012/0331474 Al

Suzuki et al.

43) Pub. Date: Dec. 27, 2012

(54) REAL TIME SYSTEM TASK
CONFIGURATION OPTIMIZATION SYSTEM
FOR MULTI-CORE PROCESSORS, AND
METHOD AND PROGRAM

(75) Inventors: Noriaki Suzuki, Tokyo (JP); Masato
Edahiro, Tokyo (JP); Junji Sakai,
Tokyo (JP)

(73) Assignee: NEC CORPORATION, Tokyo (JP)

(21) Appl. No.:
(22) PCT Filed:

(86) PCT No.:

§371 (),
(2), (4) Date:

13/579,865

Feb. 2,2011

PCT/IP2011/052084

Sep. 14,2012

(30) Foreign Application Priority Data

Feb. 19, 2010

(P)

2010-034736

Publication Classification

(51) Int.CL

GOGF 9/50 (2006.01)
(52) US.CL oo 718/103; 718/104
(57) ABSTRACT

Disclosed is an automatic optimization system capable of
searching for an allocation with a good performance from
among a plurality of task allocations which can be scheduled
in a system of a development target configured with a plural-
ity of periodic tasks. A task allocation optimization system for
a multi-core processor including a plurality of cores calcu-
lates a response time of each of a plurality of tasks which are
core allocation decision targets, and outputs an accumulative
value of the calculated response time as an evaluation func-
tion value which is an index representing excellence of a task
allocation. A task allocation from which a good evaluation
function value is calculated is searched based on the evalua-
tion function value. A candidate having a good evaluation
function value among a plurality of searched task allocation
candidates is held.

100
TASK ALLOGATION AUTOMATIC OPTIMIZATION SYSTEM
SEARCHING UNIT
1M1 112
e P
BRANCHING | BounDING
UNIT UNIT TASK
OPTIMAL
ALLOCATION
110
L2 e
VEF—
A e EVALUATION
TIME CANDIDATE
CALCULATING HOLDING
UNIT UNIT

US 2012/0331474 Al

Dec. 27,2012 Sheet 1 of 13

Patent Application Publication

NOILYOOTIV
WAILJO
NSVL

1INN 1INN
ONIGIOH » ONILVINOTVO
JLYAIONYD JAIL
NOILYNIVAT 3SNOdS3d
—~ HOIH ~—FNLYTINANNIJV
0gl . 0g)
0Lb
~ !
LINN ™ 1INN
ONIANNOY ONIHONYYS
S~ ~1
45" WL
LINN ONIHO¥Y3S
INTLSAS NOILYZINILAO DILVWOLNY NOILYOOTIV HSVL
\\
00}

}OlH

ASVL

ASVL

ASYL

US 2012/0331474 Al

Dec. 27,2012 Sheet 2 of 13

Patent Application Publication

LINA N LIND
ONLLYTNNNDDY ozpw%méo
INIL |
JgNOdSTM |© ISNOdSTY
A AN 1-0zL

LINN ONILYTNDTYO JNIL ISNOLSTY FALLYINANDIY

0cl

¢ Il

US 2012/0331474 Al

Dec. 27,2012 Sheet 3 of 13

Patent Application Publication

00¢

WYHO0dd

T4 . .
NOILNIZ3a | e s |NOLVZINILAO
ooy ¢ DS PSH s ooy
MSVL ' NSV
‘o . P
L - ¢’
o S 12z 39IA30 IOVHOLS
AVITIXNY
\
022
HOSSI00Nd
(IJ
301A3a 01z
JOVHOLS |
] NIVIN
0€¢ YILNINOD

US 2012/0331474 Al

Dec. 27,2012 Sheet 4 of 13

Patent Application Publication

00¢

NOILINI43d
NOILVOOTIV

9

ERIE

MSV1
TVINILHO

o

114
NOILINIA3d
13SMSVL

NYH90dd

NOILVZINILAO

NOILYOOTIY
MSVL
JLLYWNOLNY

o

301A30 3OVHOLS
tee vee e AVITIXNY
—~
022 :
¥0SSI00Yd
301A30 WN
__| 39VHOLS NIV
0€Z
¥3LNdWOD

US 2012/0331474 Al

Dec. 27,2012 Sheet 5 of 13

Patent Application Publication

ﬁ .

[N

e

1) G

O
(0'¢'¢'¢)

3341 ONIHONVHE

G o4

US 2012/0331474 Al

N3
GlS (1 IHO2 0L X1
JLVAIANYD Y3LSIOTY W31908d 9nS ILVHINTO
b
~ ON
81S 1~ (0 3902 01 X14)
; : NT1908d 8NS ALVHINTO
S LVAIANYD 40 3NTVA
d3.vddn 38 Ol 3N TvA NOLLONNS NOILVN VAT 31¥adn 0L T

NOILONNA NOILVVIVAZ S3A

3 ALNISISSOd F43HL
\!I\
118

sl

€IS

ANTVA NOILONNS YINWEO04
NOILYNTVYAZ 3LVIND VI 9NIANNOE 40 NOILYINDTVO

=
¢lS

Dec. 27,2012 Sheet 6 of 13

918
¢ALVAIANYO 1SVL

L1dv1S

9014

Patent Application Publication

US 2012/0331474 Al

Dec. 27,2012 Sheet 7 of 13

Patent Application Publication

LINN LINN ONILONYLSNI
LINN ONINANS ONILYHOALNI NOILYTNOVO
JNIL NOILADAXA JNIL ISNOdS3 JNIL ASNOdS3H
MSVYL d3IXI4-NON MSVL d3X14-NON IALYINANDDY
1S31H0HS MSVL d3Xid
= ~ =
gcll el L-Cll
LINN ONIANNOY
\
¢hl

US 2012/0331474 Al

Dec. 27,2012 Sheet 8 of 13

Patent Application Publication

1INN 1IN ONILONYLSNI
ONILYEOILNI LINN ONILVEOELNI NOLLYIND VD
ANIL JNIL ISNOJSTY JNIL ISNO4STY
NOILND3X3 MSVL Q3XI4-NON IALYINNNDDY
WSYL 3XI4-NON 1S3LH0HS WSYL Q3Xid
~ ~ ~
aAl 27l L-Zhl
1INN ONIONNOE
\
AN

US 2012/0331474 Al

1INN
ONIHOHVIS
NOILNTOS
~ ALYWIXOHddY
bl
a
[A 4
=~ 1IN LINN
w - ONIJTOH ONILYTINDTYO
= J1VAIANVYD JNIL
om_‘/\ NOILYNTVAS 4SNO4S3Y
a HOIH IALYINANDJY
& y — 7
] 0Ll 0ch
S ~
a
NOILYOOTIV >
TYWILdO 1INN 1INN
YSVYL 9NIONNOY ONIHONYYE
— —~
AR L
LINN ONIHOEVYES

W3LSAS NOILYZINILLO JILYWOLNY NOILYOOTIV MSVL

\
001

Patent Application Publication

690/4

NSVL

MSVL

MSVL

Patent Application Publication Dec. 27,2012 Sheet 10 of 13 US 2012/0331474 A1

FIG.10

(ST/lRT)

SEARCH FOR TASK ALLOCATION CANDIDATE |~ S21
BY APPROXIMATE SOLUTION METHOD

A

REGISTER TASK ALLOCATION CANDIDATE ~ |—.__ S22

:

EXECUTE OPTIMIZATION - 523

I
G

US 2012/0331474 Al

Dec. 27,2012 Sheet 11 of 13

Patent Application Publication

NOILYOOTIV
TYNILdO
MSVL

LINN LINN
ONIQTOH ONILYINDTVO
31valaNyd > JNIL
NOILYNTVYAL ASNOdS3d
HOIH AALLYTNANDDV
~ ~ &
01l 0€) 0zl
-
1INN » 1INN
ONIONNOH ¢ ONIHONVE
~ ~
4% L
LINA
ONIdd313d

el | ONIONNOE

LINN ONIHOHVYSS

INFLSAS NOILYZINILAO JILYWOLNY NOILVIOTIV HSVL

\
001

LI

ASVL

NSVL

ASVL

US 2012/0331474 Al

Dec. 27,2012 Sheet 12 of 13

Patent Application Publication

aNd

GES ™

(ONIANNOE '} 340D OL XI4)
W31804d 9NS J1VYINTO

€eS ™

(ONIONNOSG-NON ‘L 3¥0D OL X1d)
W31904d 8nS JLVH3INID

F

A

vES T

(ONIONNOG ‘0 340D 0L XId)
NI T90Hd NS FLVHINTD

€S ™

(ONIANNOF-NON ‘0 340D OL XId)
NI7904d 9NS ILVHANID

¢3ANTVYA @314103dS
NVHL d39dv1 SMSVL a3XId

40 J38ANN Si

1dv1S

A=

US 2012/0331474 Al

Dec. 27,2012 Sheet 13 of 13

Patent Application Publication

F19ISSOdII SI ONITNAIHIS
40 F18ISSOd SI ONIMNA3IHIS

1INS3Y NOILYNINY3L3d

1nd1no

LINN ONININE3L3d
ALITIGISSOd ONIMNA3HOS

\
0E]

SH0SSIO0Ud 40 J3FdNNN

€Ol

US 2012/0331474 Al

REAL TIME SYSTEM TASK
CONFIGURATION OPTIMIZATION SYSTEM
FOR MULTI-CORE PROCESSORS, AND
METHOD AND PROGRAM

TECHNICAL FIELD

[0001] The present invention relates to a task allocation,
and more particularly, to a multi-core task allocation for a
real-time system.

BACKGROUND ART

[0002] In recent years, as the demands of digital devices
with high performance and low power consumption increase,
a multi-core configuration in which a plurality of processors
are mounted in an embedded large scale integration (LSI) is
attracting attention as a promising solution. This multi-core
configuration is becoming a mainstream in a real-time system
which is aimed at system control or the like.

[0003] Meanwhile, in a real-time system in which multiple
cores are mounted, it is necessary to guarantee that applica-
tions executed in parallel can be scheduled without any dead-
line miss. As an example of a technique of solving this prob-
lem, “real-time scheduling possibility determining method
and real-time system” is disclosed in Patent Literature 1.
[0004] The technique disclosed in Patent Literature 1 pro-
vides a scheduling possibility determining method usable
when a plurality of processors are simultaneously necessary
to execute a single task in a real-time system in which mul-
tiple cores are mounted.

[0005] Next, the technique disclosed in Patent Literature 1
will be described with reference to FIG. 13. FIG. 13 is a
diagram corresponding to FIG. 2 of Patent Literature 1. A
scheduling possibility determining unit 300 illustrated in
FIG. 13 determines whether or not scheduling is possible by
the following determination method.

[0006] Specifically, let us define:

[0007] Lk: a value that allows an actual average load of a
certain time period to be necessarily equal to or more than
itself when a task k incurs a deadline miss;

[0008] Uk,i: a value that is guaranteed to be equal to or
larger than an average single load time of a task 1 during an
average load time period of the task k when the task k incurs
a deadline miss; and

[0009] Mi: the number of processors simultaneously used
by the task i.
[0010] In this case, it is determined that real-time schedul-

ing is possible when all of tasks satisfy:
Si=, wan*Uki=Lk

[0011] Using this method, in the technique disclosed in
Patent Literature 1, it is possible to determine a scheduling
possibility when a plurality of processors are simultaneously
necessary to execute a single task.

CITATION LIST
[0012] Patent Literature
[0013] {PTL 1} JP 4016010 B1
[0014] Non-Patent Literature
[0015] {NPLT} “Real Time Systems: Theory and Applica-

tions” written by Shiroishi Hiromitsu/Takegaki Moriichi,
Asakura Shoten, Sep. 1, 2001, pp. 35 to 56

Dec. 27,2012

SUMMARY OF INVENTION

Technical Problem

[0016] As described above, it can be determined whether or
not scheduling is possible using the technique disclosed in
PLT 1.

[0017] However, a general technique represented by the
technique disclosed in PLT 1 has the following several prob-
lems.

[0018] A first problem is that it is difficult to search for an
allocation with a good performance from among a plurality of
task allocations that can be scheduled.

[0019] The reason is because in the general technique, it is
only possible to determine whether or not real-time schedul-
ing is possible, but it is difficult to determine excellence in
performance of each of a plurality of candidates that can be
scheduled.

[0020] A second problem is that it is difficult to increase the
margin from a deadline which is an important index in a
real-time system from a point of view of system stability.
[0021] The reason is because in the general technique of
determining whether or not real-time scheduling is possible,
processing is performed regardless of whether the margin
from a deadline is large or small.

[0022] Inthis regard, it is a first object of the present inven-
tion to provide a multi-core task allocation optimization sys-
tem for a real-time system which is capable of searching for
anallocation with a good performance from a plurality of task
allocations that can be scheduled, a method thereof, and a
program thereof.

[0023] Further, it is a second object of the present invention
to provide a multi-core task allocation optimization system
for a real-time system which is capable of increasing the
margin from a deadline which is an important index in a
real-time system from a point of view of system stability, a
method thereof, and a program thereof.

Solution to Problem

[0024] According to a first aspect of the present invention,
there is provided a task allocation optimization system for a
multi-core processor including a plurality of cores, including:
anaccumulative response time calculating unit that calculates
a response time of each of a plurality of tasks which are core
allocation decision targets, and outputs an accumulative value
of the calculated response time as an evaluation function
value which is an index representing excellence of a task
allocation; a searching unit that searches for a task allocation
from which a good evaluation function value is calculated
based on the evaluation function value; and a high evaluation
candidate holding unit that holds a candidate having a good
evaluation function value among a plurality of task allocation
candidates searched by the searching unit.

[0025] According to a second aspect of the present inven-
tion, there is provided a task allocation optimization method
for a multi-core processor including a plurality of cores,
which includes an accumulative response time calculating
step of calculating a response time of each of a plurality of
tasks which are core allocation decision targets, and output-
ting an accumulative value of the calculated response time as
an evaluation function value which is an index representing
excellence of a task allocation, a searching step of searching
for a task allocation from which a good evaluation function
value is calculated based on the evaluation function value, and

US 2012/0331474 Al

a high evaluation candidate holding step of holding a candi-
date having a good evaluation function value among a plural-
ity of task allocation candidates searched by the searching
step.

[0026] According to a third aspect of the present invention,
there is provided a task allocation optimization program that
is incorporated in a task allocation optimization system for a
multi-core processor including a plurality of cores and causes
a computer to function as a system which includes an accu-
mulative response time calculating unit that calculates a
response time of each of a plurality of tasks which are core
allocation decision targets, and outputs an accumulative value
of the calculated response time as an evaluation function
value which is an index representing excellence of a task
allocation, a searching unit that searches for a task allocation
from which a good evaluation function value is calculated
based on the evaluation function value, and a high evaluation
candidate holding unit that holds a candidate having a good
evaluation function value among a plurality of task allocation
candidates searched by the searching unit.

Advantageous Effect of the Invention

[0027] According to the present invention, an allocation
with a good performance can be searched for from among a
plurality of task allocations that can be scheduled.

[0028] The reason is because a task allocation with a good
performance is obtained by calculating an evaluation function
value which is an index representing excellence in perfor-
mance of a task allocation candidate and performing optimi-
zation using the evaluation function value.

[0029] Further, according to the present invention, it is pos-
sible to increase the margin from a deadline which is an
important index in a real-time system from a point of view of
system stability.

[0030] The reason is because a task allocation causing a
response time of each task to be as small as possible is
obtained by calculating an accumulative value of a response
time (a time until execution of a task finishes after task acti-
vation is instructed) of each of a plurality of tasks which are
core allocation decision targets and performing optimization
to minimize an accumulative value of a response time of each
of a plurality of tasks which are core allocation decision
targets.

BRIEF DESCRIPTION OF DRAWINGS

[0031] {FIG. 1} A block diagram illustrates a basic con-
figuration according to an embodiment of the present inven-
tion and each embodiment.

[0032] {FIG.2} A diagram illustrates a basic configuration
of an accumulative response time calculating unit according
to an embodiment of the present invention and each embodi-
ment.

[0033] {FIG. 3} A diagram illustrates an implementation
example (1/2) by hardware and software of the present inven-
tion.

[0034] {FIG. 4} A diagram illustrates an implementation
example (2/2) by hardware and software of the present inven-
tion.

[0035] {FIG. 5} A branching tree illustrates an operation
according to an embodiment of the present invention and each
embodiment.

[0036] {FIG. 6} A flowchart illustrates a basic operation
according to an embodiment of the present invention and each
embodiment.

Dec. 27,2012

[0037] {FIG. 7} A block diagram illustrates a bounding
unit according to a first embodiment of the present invention.
[0038] {FIG. 8} A block diagram illustrates a bounding
unit according to a second embodiment of the present inven-
tion.

[0039] {FIG. 9} A block diagram illustrates a basic con-
figuration according to a third embodiment of the present
invention.

[0040] {FIG. 10} A flowchart illustrates an operation of an
approximate solution searching unit according to the third
embodiment of the present invention.

[0041] {FIG. 11} A block diagram illustrates a basic con-
figuration according to a fourth embodiment of the present
invention.

[0042] {FIG. 12} A flowchart illustrates a basic operation
according to the fourth embodiment of the present invention.
[0043] {FIG. 13} A diagram illustrates a technique dis-
closedin PLT 1.

REFERENCE SIGNS LIST

[0044] 100: task allocation automatic optimization system
[0045] 110: searching unit
[0046] 111: branching unit
[0047] 112: bounding unit
[0048] 112-1: fixed task accumulative response time calcu-

lation instructing unit
[0049] 112-2: shortest non-fixed task response time inte-
grating unit

[0050] 112-3: non-fixed task execution time summing unit

[0051] 112-4: non-fixed task execution time integrating
unit

[0052] 113: bounding deterring unit

[0053] 120: accumulative response portion calculating unit

[0054] 120-1: response time calculating unit

[0055] 120-2: response time accumulating unit

[0056] 130: high evaluation candidate holding unit

[0057] 140: approximate solution searching unit

[0058] 200: computer

[0059] 210: processor

[0060] 220: auxiliary storage device

[0061] 221: automatic task allocation optimization pro-
gram

[0062] 222-1,222-2,222-3: task

[0063] 223: optimal task allocation definition file

[0064] 224: task set definition file

[0065] 230: main storage device

[0066] 300: scheduling possibility determining unit

DESCRIPTION OF EMBODIMENTS
[0067] Next, a configuration and an operation of a task

allocation optimization system for embodying the present
invention will be described using a concrete embodiment.

[0068] In this disclosure, for example, when a plurality of
cores are present and numbering a core number to identify
each core is performed, numbering is performed starting from

Oasin“acore 0, acorel, acore?2,...,and the like”
Embodiment
[0069] FIG. 1 is a block diagram illustrating an overall

configuration of an automatic optimization system 100
according to an embodiment of the present invention. Refer-
ring to FIG. 1, the automatic optimization system 100
includes a searching unit 110, an accumulative response time

US 2012/0331474 Al

calculating unit 120, and a high evaluation candidate holding
unit 130. Further, the searching unit 110 includes a branching
unit 111 and a bounding unit 112. As will be described later,
the branching unit 111 is a portion related to generation of a
sub problem. The bounding unit 112 is a portion related to
exclusion of an unnecessary candidate.

[0070] Next, the details of the accumulative response time
calculating unit 120 will be described with reference to FIG.
2. As illustrated in FIG. 2, the accumulative response time
calculating unit 120 includes a response time calculating unit
120-1 and a response time accumulating unit 120-2.

[0071] The automatic optimization system 100 may be
implemented by reading a program (software) through a
hardware resource such as a processor.

[0072] Inother words, an information processing apparatus
(machine) specific to the purpose of use or an operation
method thereof is constructed such that software is installed
in a computer, and a calculation or processing of information
according to the purpose of use is implemented by a concrete
portion in which software and a hardware resource work
together.

[0073] FIGS. 3 and4 illustrate a computer 200 as a concrete
implementation example of the data processing apparatus
100.

[0074] Referring to FIG. 3, the computer 200 includes a
processor 210, an auxiliary storage device 220, and a main
storage device 230.

[0075] The processor 210 is an arithmetic processing unit.
The auxiliary storage device 220 is a storage device repre-
sented by ahard disk drive (HDD) or a solid state drive (SSD),
and stores various data or a program. In FIG. 3, illustrated are
an automatic task allocation optimization program 221, tasks
(atask 222-1, a task 222-2, and a task 222-3 are illustrated),
and an optimal task allocation definition file 223. The main
storage device 230 is a storage device represented by a ran-
dom access memory (RAM), and is a storage unit used when
the processor 210 performs a calculation process.

[0076] The automatic task allocation optimization program
221 read from the auxiliary storage device 220 and then
executed by the processor 210 reads information of the task
222-1, the task 222-2, and the task 222-3 which are optimi-
zation targets from the auxiliary storage device 220, and
performs task allocation optimization using the storage
device 230. An optimal task allocation obtained as a result of
optimization is output to the auxiliary storage device 220 as
the optimal task allocation definition file 223.

[0077] Next, referring to FIG. 4, the auxiliary storage
device 220 includes a task set definition file 224 instead of the
task 222-1, the task 222-2, and the task 222-3.

[0078] The automatic task allocation optimization program
221 read from the auxiliary storage device 220 and then
executed by the processor 210 reads the task set definition file
224, in which information related to a plurality of tasks which
are optimization targets are defined, from the auxiliary stor-
age device 220, and performs task allocation optimization
using the storage device 230. An optimal task allocation
obtained as a result of optimization is output to the auxiliary
storage device 220 as the optimal task allocation definition
file 223.

[0079] Next, functions of the components described with
reference to FIGS. 1 and 2 will be described in detail.
[0080] The searching unit 110 searches for core allocations
of a plurality of tasks, and generates a task allocation candi-
date. This search is performed using a branch and bound

Dec. 27,2012

(B&B) method including a branching process of generating a
sub problem and a bounding process of excluding an unnec-
essary candidate.

[0081] The accumulative response time calculating unit
120 calculates a response time of each of a plurality of tasks
which are core allocation decision targets using the task allo-
cation candidate as an input, calculates an accumulative value
of'a response time as an evaluation function value which is an
index representing excellence of a task allocation, and out-
puts the evaluation function value.

[0082] The high evaluation candidate holding unit 130
holds a candidate with a high evaluation function value
among the task allocation candidates.

[0083] Next, the branching unit 111 and the bounding unit
112 in the searching unit 110 will be described.

[0084] As illustrated in FIG. 5, the branching unit 111
comprehensively generates task allocation candidates to be
searched such thata sub problem (indicated by a circle in FIG.
5) is generated by fixing a task to a core, starting from a task
with a high priority (downward in FIG. 5). At this time, when
generation of a sub problem is repeated and so allocations of
all tasks are completed, task allocation candidates (in the
lowest tier in F1G. 5) are generated. For the sake of convenient
description, FIG. 5 assumes a dual-core system. However, a
target of the present technique of comprehensively generating
task allocation candidates is not limited to a dual-core system,
and the present technique can be similarly extended to a
system having an arbitrary number of three or more cores.
[0085] The bounding unit 112 calculates a bound value
(which is a value predicable to be never better, and refers to a
lower bound value when an evaluation function in which a
good allocation is represented by a small value is used and an
upper bound value when an evaluation function value in
which a good allocation is represented by a large value is
used) of an evaluation function permissible to a sub problem
using at least one of an evaluation function value calculated
using a task already fixed to a core, a response time of a task
with a lowest priority in each core among tasks in which core
allocation is already fixed, and an execution time of a task in
which a core allocation is not decided.

[0086] When the bound value of the evaluation function
value is worse than a score of another task allocation candi-
date which has been already found, it is difficult to obtain a
task allocation candidate better than another task allocation
candidate even ifthe sub problem search is further performed,
and thus a bounding process of deterring the search is per-
formed. When the bounding process is performed, the
branching unit 111 does not generate a sub problem anymore.
[0087] Next, the response time calculating unit 120-1 and
the response time accumulating unit 120-2 in the accumula-
tive response time calculating unit 120 illustrated in FIG. 2
will be described.

[0088] The response time calculating unit 120-1 calculates
aresponse time (a time until execution of a task finishes after
task activation is instructed) of a corresponding task on each
of a plurality of tasks.

[0089] The response time accumulating unit 120-2 sums
the response times of the tasks calculated by the response time
calculating unit 120-1, and calculates the accumulative
response time.

[0090] Next, an operation of the automatic optimization
system according to an embodiment of the present invention
will be described with reference to a flowchart of FIG. 6.

US 2012/0331474 Al

[0091] For convenience sake, an operation assuming a
dual-core system will be described, but an application target
of the present technique is not limited to a dual-core system,
and the present technique can be similarly applied to a system
having an arbitrary number of three or more cores.

[0092] First, in step S11, the searching unit 110 determines
whether or not a currently dealt sub problem is a task candi-
date. Here, a task candidate corresponds to a sub problem in
which all tasks are fixed. When the currently dealt sub prob-
lem is not a task candidate (No in step S11), the process
proceeds to step S12. However, when the currently dealt sub
problem is a task candidate (Yes in step S11), the process
proceeds to step S16.

[0093] Next, in step S12, the bounding unit 112 of the
searching unit 110 performs a calculation of a bounding for-
mula, and calculates a bound value (a value predicable to be
never better) of an evaluation function value permissible to a
sub problem.

[0094] Thereafter, in step S13, the bounding unit 112 com-
pares the bound value of the evaluation function value with
the evaluation function value which the accumulative
response time calculating unit 120 has calculated on the task
allocation candidate held in the high evaluation candidate
holding unit 130. When it is determined that there is a possi-
bility to update the evaluation function value as a result of
comparison (Yes in step S13), the process proceeds to step
S14. However, when it is determined that there is no possi-
bility to update (No in step S13), a bounding process is
performed, and the process finishes without generating a sub
problem anymore.

[0095] When it is determined in step S13 that there is a
possibility to update the evaluation function value (Yes in step
S13), in step S14, the branching unit 111 generates a sub
problem in which a core allocation of a task to be fixed next is
set to O (zero). The generated sub problem is subjected to the
process based on the flowchart of FIG. 6 in the same manner
as the operation described herein. Subsequently, in step S15,
the branching unit 111 generates a sub problem in which a
core allocation of a task to be fixed next is set to 1 (one). The
generated sub problem is similarly subjected to the process
based on the flowchart of FIG. 6.

[0096] Meanwhile, when the currently dealt sub problem is
atask candidate in step S11 (Yes in step S11), in step S16, the
searching unit 110 calculates an evaluation function value of
a task allocation candidate each time the task allocation can-
didate is transferred to the accumulative response time gen-
erating unit 120. Thereafter, in step S17, the searching unit
110 compares the evaluation function value calculated in step
S16 with the evaluation function value of the task allocation
candidate held in the high evaluation candidate holding unit
130. Preferably, the evaluation function value of the task
allocation candidate held in the high evaluation candidate
holding unit 130 is not calculated each time, but an evaluation
function value which is calculated once is held. When the
current evaluation function value of the task allocation can-
didate represents a better value as a result of comparison (Yes
in step S17), in step S18, the searching unit 110 registers the
current task allocation candidate to the high evaluation can-
didate holding unit 130 as a high evaluation candidate, and
then the process finishes. However, when the current evalua-
tion function value of the task allocation candidate is not good
(No in step S17), the process finishes as is.

[0097] Next, an effect in an embodiment of the present
invention will be described.

Dec. 27,2012

[0098] In the embodiment of the present invention, a task
allocation of high performance can be obtained such that the
accumulative response time calculating unit 120 calculates
the evaluation function value which is an index representing
excellence in performance of a task allocation candidate and
performs optimization using the evaluation function value.
For this reason, it is possible to provide the automatic opti-
mization system capable of searching for a high-performance
allocation among from a plurality of task allocations that can
be scheduled. Further, a task allocation in which a response
time of each task becomes as short as possible can be obtained
such that the accumulative response time calculating unit 120
calculates an accumulative value of respective response times
(a time until execution of a task finishes after task activation
is instructed) of a plurality of tasks which are core allocation
decision targets and performs optimization to minimize an
accumulative value of response times of a plurality of tasks
which are core allocation decision targets. For this reason, it
is possible to increase the margin from a deadline which is an
important index in a real-time system from a point of view of
system stability. Further, when a task allocation candidate is
searched, the bounding unit performs the bounding operation
of deterring an unnecessary task allocation candidate from
being searched. Accordingly, a time necessary for optimiza-
tion can be reduced.

First Embodiment

[0099] Next, a configuration and an operation of the task
allocation optimization system 100 for embodying the
present invention will be described using concrete embodi-
ments.

[0100] A basic configuration of the first embodiment is the
same as the configuration and operation of the task allocation
automation system 100 described as the embodiment in
FIGS. 1, 2, and 6. However, in the first embodiment, a con-
crete configuration example of the bounding unit 112 will be
described with reference to FIG. 7. Further, a calculation
method in the response time calculating unit 120-1 will be
described.

[0101] Referring to FIG. 7, the bounding unit 112 includes
a fixed task accumulative response time calculation instruct-
ing unit 112-1, a shortest non-fixed task response time inte-
grating unit 112-2, and a non-fixed task execution time sum-
ming unit 112-3.

[0102] The fixed task accumulative response time calcula-
tion instructing unit 112-1, the shortest non-fixed task
response time integrating unit 112-2, and the non-fixed task
execution time summing unit 112-3 take charge of dealing
with a function of obtaining a bound value of an evaluation
function among functions of the bounding unit 112. Further,
considered are two cases, that is, a case in which a better
allocation is obtained when an evaluation function value is
larger, and a case in which a better allocation is obtained when
an evaluation function value is smaller, but the case in which
a better allocation is obtained when an evaluation function
value is smaller will be described below as an example. In the
following description, a fixed task refers to a task in which a
core allocation is already fixed in a sub problem. A non-fixed
task refers to a task in which a core allocation is not fixed yet
in a sub problem but is to be fixed in a subsequent process.
[0103] First, a calculation of a bound value of an evaluation
function includes two calculations, that is, a calculation of a
portion (hereinafter, referred to as a “fixed bound value) in
which an evaluation function value is already fixed by a fixed

US 2012/0331474 Al

task and a calculation of an evaluation function value (here-
inafter, referred to as an “increase bound value”) that is
expected to increase as a task allocation of a non-fixed task is
fixed in the future. The calculation of the fixed bound value is
performed by the fixed task accumulative response time cal-
culation instructing unit 112-1. The calculation of the
increase bound value is performed by the shortest non-fixed
task response time integrating unit 112-2 and the non-fixed
task execution time summing unit 112-3.

[0104] The fixed task accumulative response time calcula-
tion instructing unit 112-1 gives an instruction to calculate an
accumulative response time by transferring a core allocation
of a fixed task to the accumulative response time calculating
unit 120. The accumulative response time calculating unit
120 calculates an accumulative response time based on the
core allocation of the fixed task, and transfers the calculated
accumulative response time to the bounding unit 112 to cal-
culate the fixed bound value.

[0105] Next, the shortest non-fixed task response time inte-
grating unit 112-2 performs the calculation of the increase
bound value as follows.

[0106] First, a state in which sub problem generation of
several tiers has been already performed and so several fixed
tasks are present is considered. Here, when a non-fixed task is
newly added, a non-fixed task is lower in priority than a fixed
task. For this reason, a response time of a non-fixed task is
longer than a shortest response time (hereinafter, referred to
as a “shortest non-fixed task response time”) determined as a
result of comparing a response time of a fixed task with a
lowest priority in each core. For this reason, an evaluation
function value increased by fixing all of the remaining tasks is
larger than a value obtained by multiplying the shortest non-
fixed task response time by the number of the remaining
tasks. The shortest non-fixed task response time integrating
unit 112-2 calculates the value obtained by multiplying the
shortest non-fixed task response time by the number of the
remaining tasks as a part of the increase bound value.

[0107] Finally, the non-fixed task execution time summing
unit 112-3 performs the calculation of the increase bound
value as follows.

[0108] First, a state in which sub problem generation of
several tiers has been already performed and so several fixed
tasks are present is considered. Here, when a non-fixed task is
newly added, for a response time of a non-fixed task, at least
an execution time of an added task is added in addition to the
fixed task shortest response time. For this reason, the non-
fixed task execution time summing unit 112-3 calculates a
part of the increase bound value by summing all of execution
times of non-fixed tasks.

[0109] Here, since the increase bound values which are
calculated by the shortest non-fixed task response time inte-
grating unit 112-2 and the non-fixed task execution time
summing unit 112-3 are elements independent of each other,
a value obtained by summing both values may be used as the
increase bound value.

[0110] Next, a calculation of a response time in the
response time calculating unit 120-1 will be described. A
technique of calculating a worst response time described in
NPLT 1 canbe applied to a calculation of a response time. The
outline of this technique will be described below.

[0111] First, in a single core, a work load for a task TM
expressed by Formula 1 represents the sum of workloads of
processors occurred by the task TM and all tasks with priority

Dec. 27,2012

higher than the task TM, to which an activation instruction is
given during a time period expressed by Formula 2, and is
calculated by Formula 3.

Workload, (1) {Formula 1}
[0.0) {Formula 2}
m {Formula 3}
Workload,(r) = Z [TL-IC; o
[
[0112] Here, Formula 4 is a minimum integer equal to or

larger than x, and corresponds to a value obtained by rounding
off or rounding up or down a number after a decimal point.

[x] {Formula 4}

[0113] Here, whena workload is 1, it means that processing
of'a processor finishes at a time 1.

{Formula 5}

Workload,(r) = i [%-IC; =r
=1 !

[0114] Thus, when t that satisfies Formula 5 is present, that
is, when a point at which a workload accumulated until a time
t becomes equal to an elapsed time t is present, the remaining
workload of a processor at the time t becomes 0 (zero). The
time t is a worst response time of the task tm. When the time
tis in a range expressed in Formula 6 (Dm is a deadline time
of'the task tm), it can be determined that the task Tm satisfies
a deadline constraint.

0=r=D,,

[0115] Here, the worst response time may be calculated
using a regression relation of Formula 7 and Formula 8.

{Formula 6}

{Formula 7}

wl = Workload,,(w*) {Formula 8}

[0116] In the regression relation, when Formula 10 is sat-
isfied in a range expressed in Formula 9, a calculation stops.

0=1=D,

==t

{Formula 9}

! =yt {Formula 10}

[0117] Meanwhile, when Formula 12 is not satisfied in a
range expressed in Formula 11, a deadline miss occurs.

0=t=D,, {Formula 11}

wrt =yl {Formula 12}

[0118] For a calculation of the worst response time of the
task TM in a multi-core system, a workload formula is con-
structed using a task on the same core as the task TM.
[0119] Finally, the response time accumulating unit 120-2
sums the response times of each of the tasks calculated by the
response time calculating unit 120-1, and thus calculates the
accumulative response time.

US 2012/0331474 Al

[0120] A basic operation according to the first embodiment
is the same as the operation illustrated in the flowchart of FIG.
6, and thus a description thereof will not be made. Through
the configuration according to the present first embodiment,
the same effects as in the embodiment can be obtained.
[0121] In the first embodiment, the bounding unit 112
includes the fixed task accumulative response time calcula-
tion instructing unit 112-1, the shortest non-fixed task
response time integrating unit 112-2, and the non-fixed task
execution time summing unit 112-3 as its components. How-
ever, since each of the three components calculates an inde-
pendent element of the bound value of the evaluation func-
tion, the bounding unit 112 may be configured to include
some of the three components. Specifically, the following
variations are conceivable.

[0122] (1) A configuration in which the bounding unit 112
includes the fixed task accumulative response time calcula-
tion instructing unit 112-1

[0123] (2) A configuration in which the bounding unit 112
includes the shortest non-fixed task response time integrating
unit 112-2

[0124] (3) A configuration in which the bounding unit 112
includes the non-fixed task execution time summing unit
112-3

[0125] (4) A configuration in which the bounding unit 112
includes the fixed task accumulative response time calcula-
tion instructing unit 112-1 and the shortest non-fixed task
response time integrating unit 112-2

[0126] (5) A configuration in which the bounding unit 112
includes the fixed task accumulative response time calcula-
tion instructing unit 112-1 and the non-fixed task execution
time summing unit 112-3

[0127] (6) A configuration in which the bounding unit 112
includes the shortest non-fixed task response time integrating
unit 112-2 and the execution time summing unit 112-3

Second Embodiment

[0128] Next, a configuration and an operation of a task
allocation optimization system 100 according to a second
embodiment of the present invention will be described.
[0129] The task allocation optimization system 100 of the
second embodiment is different from that of the first embodi-
ment in that a non-fixed task execution time integrating unit
112-4 is provided instead of the non-fixed task execution time
summing unit 112-3 included in the bounding unit 112 of the
task optimization system according to the first embodiment as
illustrated in FIG. 8.

[0130] Next, afunction of the non-fixed task execution time
integrating unit 112-4 will be described. An operation of the
other portion than the non-fixed task execution time integrat-
ing unit 112-4 is the same as in the first embodiment, and thus
a description thereof will not be made. Further, an overall
operation according to the second embodiment is the same as
in the first embodiment except for a calculation of an increase
bound value by the non-fixed task execution time integrating
unit 112-4, and thus a description thereof will not be made.
[0131] The non-fixed task execution time integrating unit
112-4 performs a calculation of an increase bound value as
follows.

[0132] The non-fixed task execution time summing unit
112-3 of the first embodiment simply sums all of execution
times of non-fixed tasks, but the non-fixed task execution time
integrating unit 112-4 employs a different calculation tech-
nique.

Dec. 27,2012

[0133] Here, aresponse time of a non-fixed task in a single-
core system is considered.

[0134] First, a state in which sub problem generation of
several tiers has been already performed and so several fixed
tasks are presented is considered. Here, when a non-fixed task
A is newly added, for a response time of the non-fixed task A,
at least an execution time of the non-fixed task A is added in
addition to the fixed task shortest response time. When a
non-fixed task B is newly added in this state, for a response
time of the non-fixed task B, at least an execution time of the
non-fixed task B is added in addition to the fixed task shortest
response time and the execution time of the non-fixed task A.
Here, since an evaluation function is an accumulation of the
response time, the increased evaluation function value
obtained when the non-fixed task A and the non-fixed task B
are added contains the execution time of the non-fixed task A
which is added twice. Similarly, when the number of added
non-fixed tasks is X, the execution time of the non-fixed task
A is added x times, and the execution time of the non-fixed
task B is added (x-1) times.

[0135] Inamulti-core system, a core to which the non-fixed
task A is added is not necessarily the same as a core to which
the non-fixed task B and another non-fixed task are added.
Thus, it should be noted that in a multi-core system including
p cores, the number of times of a response time to be added is
generally 1/p.

[0136] In addition, since the non-fixed tasks B is highly
likely to be increased by a core allocation of a subsequent
non-fixed task, an error in which a task having a long execu-
tion time is added the maximum number of times occurs in the
number of times that the execution times of the non-fixed task
A and the non-fixed task B are added. Thus, a value having no
problem can be calculated as the increase bound value by
sorting execution times of non-fixed tasks in ascending order
and adding the execution times multiple times, starting from
a shortest one.

[0137] This process may be expressed as follows. First, the
execution times of the non-fixed tasks are sorted in ascending
order. An operation of integrating a value obtained by multi-
plying an execution time of a non-fixed task sorted in ascend-
ing order by a value obtained by rounding off or rounding up
or down a number after a decimal point of (the number of
non-fixed tasks+the number of cores) each subsequent non-
fixed task and then decreasing the number of non-fixed tasks
by one for is repeated for all non-fixed tasks.

[0138] In other words, when n is a total of the number of
tasks, m is the number of fixed tasks, p is the number of cores,
and Formula 13 represents an execution time of a remaining
task sorted in ascending order, a part of the increase bound
value may be calculated using Formula 14.

i {Formula 13}

{Formula 14}

[0139] Here, since the shortest non-fixed task response time
integrating unit 112-2 and the non-fixed task execution time
integrating unit 112-4 calculate elements independent of each
other, a value obtained by summing both values may be used
as the increase bound value.

US 2012/0331474 Al

[0140] Further, in the second embodiment, the bounding
unit 112 includes the fixed task accumulative response time
calculation instructing unit 112-1, the shortest non-fixed task
response time integrating unit 112-2, and the non-fixed task
execution time integrating unit 112-4 as its components.
However, since each of the three components calculates an
independent element of the bound value of the evaluation
function, the bounding unit 112 may be configured to include
some of the three components. Among concrete variations,
the following variations which have not been described in the
first embodiment are conceivable.

[0141] (1) A configuration in which the bounding unit 112
includes the non-fixed task execution time integrating unit
112-4

[0142] (2) A configuration in which the bounding unit 112
includes the fixed task accumulative response time calcula-
tion instructing unit 112-1 and the non-fixed task execution
time integrating unit 112-4

[0143] (3) A configuration in which the bounding unit 112
includes the shortest non-fixed task response time integrating
unit 112-2 and the execution time integrating unit 112-4

Third Embodiment

[0144] Next, a configuration and an operation of a task
allocation optimization system according to a third embodi-
ment of the present invention will be described.

[0145] The task allocation optimization system 100 of the
third embodiment is configured to further include an approxi-
mate solution searching unit 140 in addition to the task opti-
mization system 100 of the first embodiment or the second
embodiment as illustrated in FIG. 9.

[0146] Next, a function of the approximate solution search-
ing unit 140 will be described. An operation of portions other
than the approximate solution searching unit 140 is the same
as in the first embodiment or the second embodiment, and
thus a description thereof will not be made. Further, the
approximate solution searching unit 140 of the third embodi-
ment may be combined with the bounding unit 112 of the first
embodiment or may be combined with the bounding unit 112
of the second embodiment.

[0147] The approximate solution searching unit 140
searches for the task allocation candidate more rapidly than
the searching unit 110 through a technique simpler than opti-
mization performed by the searching unit 110, and registers
the found candidate to the high evaluation candidate holding
unit 130. A general approximate solution method of optimi-
zation such as a hill climbing method may be used as a simple
method. In this search, an evaluation function value of a
candidate which is slightly insufficient is not problematic, but
the speed needs to be sufficiently faster than the searching
unit 110.

[0148] Next, an operation of the automatic optimization
system 100 according to the third embodiment of the present
invention will be described with reference to a flowchart of
FIG. 10.

[0149] First, in step S21, the approximate solution search-
ing unit 140 generates a task allocation candidate by an
approximate solution method. Then, in step S22, the approxi-
mate solution searching unit 140 registers the generated can-
didate. Subsequently, in step S23, the searching unit 110
performs optimization. This operation is the same as the
operation of the flowchart of FIG. 6 which illustrates the
operations of the first embodiment and the second embodi-
ment, and thus a description thereof will not be repeated.

Dec. 27,2012

[0150] Next, effects of the third embodiment of the present
invention will be described.

[0151] At the initial stage to start optimization, a task allo-
cation candidate with a low score is generally found. Thus, a
value calculated as a bound value of an evaluation function
value permissible to a sub problem is much larger than a score
of'a currently found task allocation candidate, and thus effec-
tive bounding may not be performed. Here, in the third
embodiment of the present invention, before optimization by
the searching unit 110, a candidate of a relatively satisfactory
solution is obtained by a high-speed approximate solution
method and then registered to the high evaluation candidate
holding unit 130 in advance. For this reason, when optimiza-
tion by the searching unit 110 starts, a bounding process can
be performed based on the evaluation function value, and the
process can be performed at a high speed.

Fourth Embodiment

[0152] Next, a configuration and an operation of a task
allocation optimization system 100 according to a fourth
embodiment of the present invention will be described. In the
fourth embodiment, roughly, the bounding process is per-
formed not in the first half of optimization but in the second
half.

[0153] The task allocation optimization system 100 of the
fourth embodiment is different from the first embodiment or
the second embodiment in that the searching unit 110 of the
task optimization system further includes a bounding deter-
ring unit 113 as illustrated in FIG. 11. Further, the approxi-
mate solution searching unit 140 illustrated in FIG. 9 may be
combined with the bounding deterring unit 113, that is, a
combination of the third embodiment and the fourth embodi-
ment may be made.

[0154] Next, an operation of the bounding deterring unit
113 will be described. Further, the same components as in the
first embodiment or the second embodiment except for the
bounding deterring unit 113 perform the same operation as in
the first embodiment or the second embodiment, and thus a
description thereof will not be made.

[0155] The bounding deterring unit 113 deters the bound-
ing unit 112 from performing the bounding process when the
number of fixed tasks is small. The number of fixed tasks to
invoke the deterring operation may be calculated by an arbi-
trary method such as a method of performing a calculation
based on a total of the number of tasks (for example, when it
becomes a half (V2) a total of the number of tasks) or a method
of recording a value in which the number of fixed tasks to
effectively operate the deterring operation is measured for
each total of the number of tasks in advance.

[0156] Next, an operation of the automatic optimization
system according to the fourth embodiment will be described
with reference to a flowchart of FIG. 12. For convenience
sake, an operation assuming a dual-core system will be
described, but the present technique is not limited to a dual-
core system and can be similarly applied to a system having
an arbitrary number of three or more cores.

[0157] First, in step S31, the bounding deterring unit 113
determines whether or not the number of fixed tasks is larger
than a specified value. When it is determined the number of
fixed tasks is not larger than the specified value (No in step
S31), the process proceeds to step S32. However, when it is
determined the number of fixed tasks is larger than the speci-
fied value (Yes in step S31), the process proceeds to step S34.

US 2012/0331474 Al

[0158] When it is determined the number of fixed tasks is
not larger than the specified value, in step S32, the branching
unit 111 generates a sub problem in which a core allocation of
a task to be fixed next is set to zero (0). The sub problem
generated at this time is subjected to the process based on the
flowchart of FIG. 12 similarly to an operation described
herein, and the process related to the bounding operation is
not performed. In other words, only sub problem generation is
performed. Subsequently, in step S33, the branching unit 111
generates a sub problem in which a core allocation of a task to
be fixed next is set to one (1). The generated sub problem is
similarly subjected to the process based on the flowchart of
FIG. 12.

[0159] When it is determined the number of fixed tasks is
larger than the specified value, in step S34, the branching unit
111 generates a sub problem in which a core allocation of a
task to be fixed next is set to zero (0). The sub problem
generated at this time is subjected to the process based on the
flowchart of FIG. 6 similarly to the first embodiment or the
like unlike an operation described herein. In other words, the
bounding process by the bounding unit 112 starts from this
stage. Subsequently, in step S35, the branching unit 111 gen-
erates a sub problem in which a core allocation of a task to be
fixed next is set to one (1). The generated sub problem is
similarly subjected to the process based on the flowchart of
FIG. 6.

[0160] Next, effects of the fourth embodiment of the
present invention will be described.

[0161] Inastate in which the number of fixed tasks is small,
a fluctuation range of an evaluation function value is large
since a subsequent non-fixed task is added. For this reason, a
pessimistic value is calculated as a bound value of an evalu-
ation function value, which is permissible to a sub problem,
which is calculated to perform the bounding operation. Thus,
an overhead occurring by a calculation of a bound value may
be larger than an increase in the speed by a reduction in the
number of sub problems by the bounding operation. In this
regard, in the fourth embodiment of the present invention, for
a sub problem in which the number of fixed tasks is small, the
bounding process is not performed, and the bounding value is
not calculated. Through this operation, bound value calcula-
tion overhead for a sub problem, in which the number of fixed
tasks is small, from which the bounding effect is not obtained
can be eliminated, and thus the optimization process can be
performed at a high speed.

[0162] The effects of the above embodiments of the present
invention can be summarized as follows.

[0163] A first effect is that an allocation with a better per-
formance can be searched for from among a plurality of task
allocations that can be scheduled.

[0164] The reason is because a task allocation with a good
performance is obtained such that the accumulative response
time calculating unit calculates an evaluation function value
which is an index representing excellence in performance of
a task allocation candidate and performs optimization using
the evaluation function value.

[0165] A second effect is that it is possible to increase the
margin from a deadline which is an important index from a
point of view of system stability in a real-time system.
[0166] The reason is because a task allocation causing a
response time of each task to be as small as possible is
obtained such that the accumulative response time calculating
unit calculates an accumulative value of a response time (a
time until execution of a task finishes after task activation is

Dec. 27,2012

instructed) of each of a plurality of tasks which are core
allocation decision targets, and performs optimization to
minimize an accumulative value of a response time of each of
aplurality of tasks which are core allocation decision targets.
[0167] A third effect is that a time necessary for optimiza-
tion can be reduced.

[0168] A firstreason is because the bounding unit performs
the bounding operation of deterring an unnecessary task allo-
cation candidate from being searched when a task allocation
candidate is searched.

[0169] A second reason is because before optimization, a
candidate of a relative satisfactory solution is obtained and
registered by a high-speed approximate solution method, and
when optimization starts, the bounding operation is per-
formed based on the evaluation function value.

[0170] A third reason is because the bounding process is
not performed, and the bound value is not calculated, for a sub
problem in which the number of fixed tasks is small, and thus
bound value calculation overhead for a sub problem, in which
the number of fixed tasks is small, from which the bounding
effect is not obtained is eliminated.

[0171] Further, the task allocation optimization system
according to the embodiments of the present invention may
be implemented by hardware, but may be implemented such
that a computer reads a program causing a computer to func-
tion as the task allocation optimization system from a com-
puter readable recording medium, and then executes the read
program.

[0172] Further, the task allocation optimization method
according to the embodiments of the present invention may
be implemented by hardware, but may be implemented such
that a computer reads a program causing a computer to
execute the method from a computer readable recording
medium, and then executes the read program.

[0173] Furthermore, the above embodiments are preferred
embodiments of the present invention. A range of the present
invention is not limited to the above embodiments, and vari-
ous modifications can be made within a range not departing
from the gist of the present invention.

[0174] This application is based on Japanese Patent Appli-
cation No. 2010-034736 filed on Feb. 19, 2010, and claims
priority to and the benefit of Japanese Patent Application No.
2010-034736. The disclosure of Japanese Patent Application
No. 2010-034736 is incorporated by reference herein. The
exemplary embodiments of the present invention have been
described in detail, but it should be understood that various
changes, substitutions, and alternatives may occur without
departing from the spirit and range of the invention defined in
the appended claims. Further, even if a claim is amended
during an application procedure, the inventor (s) intends to
maintain the equivalent range of the inventions set forth in the
appended claims.

[0175] All or some of the above embodiments may be
described as in the following additional notes, and the present
invention is not limited to the following additional notes.
[0176] (Additional Note 1) A task allocation optimization
system for a multi-core processor including a plurality of
cores, including:

[0177] an accumulative response time calculating unit that
calculates a response time of each of a plurality of tasks which
are core allocation decision targets, and outputs an accumu-
lative value of the calculated response time as an evaluation
function value which is an index representing excellence of a
task allocation;

US 2012/0331474 Al

[0178] a searching unit that searches for a task allocation
from which a good evaluation function value is calculated
based on the evaluation function value; and

[0179] ahigh evaluation candidate holding unit that holds a
candidate having a good evaluation function value among a
plurality of task allocation candidates searched by the search-
ing unit.

[0180] (Additional Note 2) The task allocation optimiza-
tion system according to Additional Note 1, wherein the
searching unit includes

[0181] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0182] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0183] the bounding unit includes a fixed task accumulative
response time calculation instructing unit that calculates the
bound value using the evaluation function value calculated
using a task already allocated to a core.

[0184] (Additional Note 3) The task allocation optimiza-
tion system according to Additional Note 1, wherein the
searching unit includes

[0185] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0186] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0187] wherein the bounding unit includes a shortest non-
fixed task response time integrating unit that calculates a
bound value by comparing a response time of a fixed task
which is a task with a lowest priority already allocated to a
core in each core on each core and multiplying a shortest
response time determined as a result of the comparison by the
number of remaining tasks.

[0188] (Additional Note 4) The task allocation optimiza-
tion system according to Additional Note 1, wherein the
searching unit includes

[0189] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0190] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0191] wherein the bounding unit includes a non-fixed task
execution time summing unit that calculates a bound value by
summing all of execution times of non-fixed tasks which are
tasks in which allocation is not fixed yet.

[0192] (Additional Note 5) The task allocation optimiza-
tion system according to Additional Note 1, wherein the
searching unit includes

[0193] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0194] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

Dec. 27,2012

[0195] wherein the bounding unit includes a non-fixed task
execution time integrating unit that calculates a bound value
by repeating, on all of non-fixed tasks, operations of sorting
execution times of non-fixed tasks which are tasks in which
allocation is not fixed yet in ascending order, integrating a
value obtained by multiplying the execution time of the non-
fixed task sorted in ascending order by a value obtained by
rounding off or rounding up or down a number after a decimal
point of (the number of non-fixed tasks+ the number of cores)
for each non-fixed task, and reducing the number of non-fixed
tasks by one.

[0196] (Additional Note 6) The task allocation optimiza-
tion system according to any one of Additional Notes 2 to 5,
wherein the searching unit further includes a bounding deter-
ring unit that deters the bounding unit from performing the
bounding operation when the number of tasks in which allo-
cation is already fixed is smaller than a specified value.
[0197] (Additional Note 7) The task allocation optimiza-
tion system according to any one of Additional Notes 1 to 6,
further including an approximate solution searching unit that
finds a task allocation candidate faster than the searching unit
by performing an approximate solution search in advance,
and registers the found task allocation candidate to the high
evaluation candidate holding unit.

[0198] (Additional Note 8) A task allocation optimization
method for a multi-core processor including a plurality of
cores, including:

[0199] an accumulative response time calculating step of
calculating a response time of each of a plurality of tasks
which are core allocation decision targets, and outputting an
accumulative value of the calculated response time as an
evaluation function value which is an index representing
excellence of a task allocation;

[0200] a searching step of searching for a task allocation
from which a good evaluation function value is calculated
based on the evaluation function value; and

[0201] ahigh evaluation candidate holding step of holding
a candidate having a good evaluation function value among a
plurality of task allocation candidates searched by the search-
ing step.

[0202] (Additional Note 9) The task allocation optimiza-
tion method according to Additional Note 8, wherein the
searching step includes

[0203] a branching step of generating a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0204] a bounding step of calculating a bound value of the
evaluation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0205] wherein the bounding step includes a fixed task
accumulative response time calculation instructing step of
calculating the bound value using the evaluation function
value calculated using a task already allocated to a core.
[0206] (Additional Note 10) The task allocation optimiza-
tion method according to Additional Note 8, wherein the
searching step includes

[0207] a branching step of generating a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0208] a bounding step of calculating a bound value of the
evaluation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

US 2012/0331474 Al

[0209] wherein the bounding step includes a shortest non-
fixed task response time integrating step of calculating a
bound value by comparing a response time of a fixed task
which is a task with a lowest priority already allocated to a
core in each core on each core and multiplying a shortest
response time determined as a result of the comparison by the
number of remaining tasks.

[0210] (Additional Note 11) The task allocation optimiza-
tion method according to Additional Note 8, wherein the
searching step includes

[0211] a branching step of generating a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0212] a bounding step of calculating a bound value of the
evaluation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0213] wherein the bounding step includes a non-fixed task
execution time summing step of calculating a bound value by
summing all of execution times of non-fixed tasks which are
tasks in which allocation is not fixed yet.

[0214] (Additional Note 12) The task allocation optimiza-
tion method according to Additional Note 8, wherein the
searching step includes

[0215] a branching step of generating a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0216] a bounding step of calculating a bound value of the
evaluation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0217] wherein the bounding step includes a non-fixed task
execution time integrating step of calculating a bound value
by repeating, on all of non-fixed tasks, operations of sorting
execution times of non-fixed tasks which are tasks in which
allocation is not fixed yet in ascending order, integrating a
value obtained by multiplying the execution time of the non-
fixed task sorted in ascending order by a value obtained by
rounding off or rounding up or down a number after a decimal
point of (the number of non-fixed tasks+the number of cores)
for each non-fixed task, and reducing the number of non-fixed
tasks by one.

[0218] (Additional Note 13) The task allocation optimiza-
tion method according to any one of Additional Notes 9to 12,
wherein the searching step further includes a bounding deter-
ring step of deterring the bounding operation in the bounding
step when the number of tasks in which allocation is already
fixed is smaller than a specified value.

[0219] (Additional Note 14) The task allocation optimiza-
tion method according to any one of Additional Notes 8 to 13,
further including an approximate solution searching step of
finding a task allocation candidate faster than in the searching
step by performing an approximate solution search in
advance, and registering the found task allocation candidate
in the high evaluation candidate holding step.

[0220] (Additional Note 15) A task allocation optimization
program that is incorporated in a task allocation optimization
system for a multi-core processor including a plurality of
cores and causes a computer to function as the system, the
system including:

[0221] an accumulative response time calculating unit that
calculates aresponse time of each of a plurality of tasks which
are core allocation decision targets, and outputs an accumu-

Dec. 27,2012

lative value of the calculated response time as an evaluation
function value which is an index representing excellence of a
task allocation;

[0222] a searching unit that searches for a task allocation
from which a good evaluation function value is calculated
based on the evaluation function value; and

[0223] ahigh evaluation candidate holding unit that holds a
candidate having a good evaluation function value among a
plurality of task allocation candidates searched by the search-
ing unit.

[0224] (Additional Note 16) The task allocation optimiza-
tion program according to Additional Note 15, wherein the
searching unit includes

[0225] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0226] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0227] wherein the bounding unit causes a computer to
function as the task allocation optimization system including
a fixed task accumulative response time calculation instruct-
ing unit that calculates the bound value using the evaluation
function value calculated using a task already allocated to a
core.

[0228] (Additional Note 17) The task allocation optimiza-
tion program according to Additional Note 15, wherein the
searching unit includes

[0229] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0230] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0231] the bounding unit includes a shortest non-fixed task
response time integrating unit that calculates a bound value
by comparing a response time of a fixed task which is a task
with a lowest priority already allocated to a core in each core
on each core and multiplying a shortest response time deter-
mined as aresult of the comparison by the number of remain-
ing tasks.

[0232] (Additional Note 18) The task allocation optimiza-
tion program according to Additional Note 15, wherein the
searching unit includes

[0233] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0234] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0235] wherein the bounding unit includes a non-fixed task
execution time summing unit that calculates a bound value by
summing all of execution times of non-fixed tasks which are
tasks in which allocation is not fixed yet.

US 2012/0331474 Al

[0236] (Additional Note 19) The task allocation optimiza-
tion program according to Additional Note 15, wherein the
searching unit includes

[0237] a branching unit that generates a sub problem by
allocating a task to a core in order of from a task with a high
priority to a task with a low priority, and

[0238] a bounding unit that calculates a bound value of the
evaluation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary core
allocation candidate search using the calculated bound value
of the evaluation function value, and

[0239] wherein the bounding unit includes a non-fixed task
execution time integrating unit that calculates a bound value
by repeating, on all of non-fixed tasks, operations of sorting
execution times of non-fixed tasks which are tasks in which
allocation is not fixed yet in ascending order, integrating a
value obtained by multiplying the execution time of the non-
fixed task sorted in ascending order by a value obtained by
rounding off or rounding up or down a number after a decimal
point of (the number of non-fixed tasks+the number of cores)
for each non-fixed task, and reducing the number of non-fixed
tasks by one.

[0240] (Additional Note 20) The task allocation optimiza-
tion program according to any one of Additional Notes 16 to
19, wherein the searching unit further includes a bounding
deterring unit that deters the bounding unit from performing
the bounding operation when the number of tasks in which
allocation is already fixed is smaller than a specified value.
[0241] (Additional Note 21) The task allocation optimiza-
tion program according to any one of Additional Notes 15 to
20, wherein the task allocation optimization system further
includes an approximate solution searching unit that finds a
task allocation candidate faster than the searching unit by
performing an approximate solution search in advance, and
register the found task allocation candidate to the high evalu-
ation candidate holding unit.

INDUSTRIAL APPLICABILITY

[0242] The present invention can be appropriate, for
example, to a developing tool for a device using hardware
with a multi-core configuration.

1. A task allocation optimization system for a multi-core

processor including a plurality of cores, comprising:

an accumulative response time calculating unit that calcu-
lates a response time of each of a plurality of tasks which
are core allocation decision targets, and outputs an accu-
mulative value of the calculated response time as an
evaluation function value which is an index representing
excellence of a task allocation;

a searching unit that searches for a task allocation from
which a good evaluation function value is calculated
based on the evaluation function value; and

a high evaluation candidate holding unit that holds a can-
didate having a good evaluation function value among a
plurality of task allocation candidates searched by the
searching unit.

2. The task allocation optimization system according to

claim 1,

wherein the searching unit includes

a branching unit that generates a sub problem by allocating
atask to a corein order of from a task with a high priority
to a task with a low priority, and

a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and

Dec. 27,2012

performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and
the bounding unit includes a fixed task accumulative
response time calculation instructing unit that calculates
the bound value using the evaluation function value cal-
culated using a task already allocated to a core.
3. The task allocation optimization system according to
claim1,
wherein the searching unit includes
a branching unit that generates a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and
a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and
the bounding unit includes a shortest non-fixed task
response time integrating unit that calculates a bound
value by comparing a response time of a fixed task which
is a task with a lowest priority already allocated to a core
in each core on each core and multiplying a shortest
response time determined as a result of the comparison
by the number of remaining tasks.
4. The task allocation optimization system according to
claim 1,
wherein the searching unit includes
a branching unit that generates a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and
a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and
the bounding unit includes a non-fixed task execution time
summing unit that calculates a bound value by summing
all of execution times of non-fixed tasks which are tasks
in which allocation is not fixed yet.
5. The task allocation optimization system according to
claim 1,

wherein the searching unit includes

a branching unit that generates a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and

a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

the bounding unit includes a non-fixed task execution time
integrating unit that calculates a bound value by repeat-
ing, on all of non-fixed tasks, an operation of sorting
execution times of non-fixed tasks which are tasks in
which allocation is not fixed yet in ascending order,
integrating a value obtained by multiplying the execu-
tion time of the non-fixed task sorted in ascending order
by a value obtained by rounding off or rounding up or
down a number after a decimal point of (the number of
non-fixed tasks+ the number of cores) for each non-fixed
task, and reducing the number of non-fixed tasks by one.

US 2012/0331474 Al

6. The task allocation optimization system according to
claim 2,

wherein the searching unit further includes a bounding
deterring unit that deters the bounding unit from per-
forming the bounding operation when the number of
tasks in which allocation is already fixed is smaller than
a specified value.

7. The task allocation optimization system according to
claim 1, further comprising

an approximate solution searching unit that finds a task
allocation candidate faster than the searching unit by
performing an approximate solution search in advance,
and registers the found task allocation candidate to the
high evaluation candidate holding unit.

8. A task allocation optimization method for a multi-core
processor including a plurality of cores, comprising:

an accumulative response time calculating step of calcu-
lating a response time of each of a plurality of tasks
which are core allocation decision targets, and output-
ting an accumulative value of the calculated response
time as an evaluation function value which is an index
representing excellence of a task allocation;

a searching step of searching for a task allocation from
which a good evaluation function value is calculated
based on the evaluation function value; and

a high evaluation candidate holding step of holding a can-
didate having a good evaluation function value among a
plurality of task allocation candidates searched by the
searching step.

9. A task allocation optimization program that is incorpo-
rated in a task allocation optimization system for a multi-core
processor including a plurality of cores and causes a com-
puter to function as the system, the system including:

an accumulative response time calculating unit that calcu-
lates a response time of each of a plurality of tasks which
are core allocation decision targets, and outputs an accu-
mulative value of the calculated response time as an
evaluation function value which is an index representing
excellence of a task allocation;

a searching unit that searches for a task allocation from
which a good evaluation function value is calculated
based on the evaluation function value; and

a high evaluation candidate holding unit that holds a can-
didate having a good evaluation function value among a
plurality of task allocation candidates searched by the
searching unit.

10. The task allocation optimization method according to
claim 8,

wherein the searching step includes

a branching step of generating a sub problem by allocating
atask to a corein order of from a task with a high priority
to a task with a low priority, and

a bounding step of calculating a bound value of the evalu-
ation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

wherein the bounding step includes a fixed task accumu-
lative response time calculation instructing step of cal-
culating the bound value using the evaluation function
value calculated using a task already allocated to a core.

Dec. 27,2012

11. The task allocation optimization method according to
claim 8,

wherein the searching step includes

a branching step of generating a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and

a bounding step of calculating a bound value of the evalu-
ation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

wherein the bounding step includes a shortest non-fixed
task response time integrating step of calculating a
bound value by comparing a response time of a fixed
task which is a task with a lowest priority already allo-
cated to a core in each core on each core and multiplying
a shortest response time determined as a result of the
comparison by the number of remaining tasks.

12. The task allocation optimization method according to
claim 8,

wherein the searching step includes

a branching step of generating a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and

a bounding step of calculating a bound value of the evalu-
ation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

wherein the bounding step includes a non-fixed task execu-
tion time summing step of calculating a bound value by
summing all of execution times of non-fixed tasks which
are tasks in which allocation is not fixed yet.

13. The task allocation optimization method according to
claim 8,

wherein the searching step includes

a branching step of generating a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and

a bounding step of calculating a bound value of the evalu-
ation function value permissible to the sub problem, and
performing a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

wherein the bounding step includes a non-fixed task execu-
tion time integrating step of calculating a bound value by
repeating, on all of non-fixed tasks, operations of sorting
execution times of non-fixed tasks which are tasks in
which allocation is not fixed yet in ascending order,
integrating a value obtained by multiplying the execu-
tion time of the non-fixed task sorted in ascending order
by a value obtained by rounding off or rounding up or
down a number after a decimal point of (the number of
non-fixed tasks+the number of cores) for each non-fixed
task, and reducing the number of non-fixed tasks by one.

14. The task allocation optimization method according to
claim 10, wherein the searching step further includes a
bounding deterring step of deterring the bounding operation
in the bounding step when the number of tasks in which
allocation is already fixed is smaller than a specified value.

US 2012/0331474 Al

15. The task allocation optimization method according to
claim 8, further including an approximate solution searching
step of finding a task allocation candidate faster than in the
searching step by performing an approximate solution search
in advance, and registering the found task allocation candi-
date in the high evaluation candidate holding step.

16. The task allocation optimization program according to
claim 9,

wherein the searching unit includes

a branching unit that generates a sub problem by allocating
atask to a corein order of from a task with a high priority
to a task with a low priority, and

a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

wherein the bounding unit causes a computer to function as
the task allocation optimization system including a fixed
task accumulative response time calculation instructing
unit that calculates the bound value using the evaluation
function value calculated using a task already allocated
to a core.

17. The task allocation optimization program according to
claim 9,

wherein the searching unit includes

a branching unit that generates a sub problem by allocating
atask to a corein order of from a task with a high priority
to a task with a low priority, and

a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and

the bounding unit includes a shortest non-fixed task
response time integrating unit that calculates a bound
value by comparing a response time of a fixed task which
is atask with a lowest priority already allocated to a core
in each core on each core and multiplying a shortest
response time determined as a result of the comparison
by the number of remaining tasks.

Dec. 27,2012

18. The task allocation optimization program according to
claim 9,
wherein the searching unit includes
a branching unit that generates a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and
a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and
wherein the bounding unit includes a non-fixed task execu-
tion time summing unit that calculates a bound value by
summing all of execution times of non-fixed tasks which
are tasks in which allocation is not fixed yet.
19. The task allocation optimization program according to
claim 9,
wherein the searching unit includes
a branching unit that generates a sub problem by allocating
ataskto a corein order of from a task with a high priority
to a task with a low priority, and
a bounding unit that calculates a bound value of the evalu-
ation function value permissible to the sub problem, and
performs a bounding operation to stop an unnecessary
core allocation candidate search using the calculated
bound value of the evaluation function value, and
wherein the bounding unit includes a non-fixed task execu-
tion time integrating unit that calculates a bound value
by repeating, on all of non-fixed tasks, operations of
sorting execution times of non-fixed tasks which are
tasks in which allocation is not fixed yet in ascending
order, integrating a value obtained by multiplying the
execution time of the non-fixed task sorted in ascending
order by a value obtained by rounding off or rounding up
or down a number after a decimal point of (the number of
non-fixed tasks+ the number of cores) for each non-fixed
task, and reducing the number of non-fixed tasks by one.
20. The task allocation optimization program according to
claim 16, wherein the searching unit further includes a bound-
ing deterring unit that deters the bounding unit from perform-
ing the bounding operation when the number of tasks in
which allocation is already fixed is smaller than a specified
value.

