
THE LAST ETA ARTE MAI MULT MAI AI AI AI AI AI AIR US 20180219787A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0219787 A1

LI et al . (43) Pub . Date : Aug . 2 , 2018

(54) CONGESTION AVOIDANCE OVER A TCP
FLOW THAT INVOLVES ONE OR MORE
DEVICES USING AQM , BASED ON ONE OR
MORE TCP STATE CONDITIONS

(71) Applicant : Verizon Patent and Licensing Inc . ,
Artington , VA (US)

(72) Inventors : Feng LI , Lexington , MA (US) ; Jae
Won CHUNG , Lexington , MA (US) ;
Haim S . NER , Fair Lawn , NJ (US) ;
Eduard RUBINSHTEIN , Belmont ,
MA (US)

H04L 12 / 825 (2006 . 01)
H04L 12 / 26 (2006 . 01)

(52) U . S . CI .
CPC H04L 47 / 27 (2013 . 01) ; H04W 28 / 0289

(2013 . 01) ; H04W 28 / 0273 (2013 . 01) ; H04L
43 / 16 (2013 . 01) ; H04L 47 / 12 (2013 . 01) ;

H04L 47 / 25 (2013 . 01) ; H04L 47 / 283
(2013 . 01)

(57) ABSTRACT
A device can determine a congestion window (CWND)
value , associated with a first transmission control protocol
(TCP) state , for a TCP flow that involves one or more
devices using active queue management (AQM) . The first
TCP state to cause the CWND value to be increased at a
particular rate . The device can determine a round trip time
(RTT) value , associated with the first TCP state , for the TCP
flow . The device can determine that one or more TCP state
conditions are satisfied . The device can classify the TCP
flow into a different TCP state . The different TCP state to
cause the CWND value to be maintained , decreased , or
increased at a rate that is different than the particular rate .
The device can transmit one or more packets , associated
with the TCP flow , based on classifying the TCP flow into
the different TCP state .

(21) Appl . No . : 15 / 418 , 305
(22) Filed : Jan . 27 , 2017

Publication Classification
(51) Int . Cl .

H04L 12 / 807
H04W 28 / 02
H04L 12 / 841
H04L 12 / 801

(2006 . 01)
(2006 . 01)
(2006 . 01)
(2006 . 01)

100 -

120
CWND = 2 * MSS Apply slow start

algorithm and set slow
start threshold and
maximum CWND

threshold
110

Determine
CWND Value

120
Packet Pet

120
Packet 8 -) 0 120

ACK
120
ACK TCP Sender TCP Sender

Base Station
TCP

Receiver

130
Determine RTT value and

set RTT threshold

100

Patent Application Publication

CWND = 2 * MSS

120 Apply slow start algorithm and set slow start threshold and maximum CWND threshold

110 Determine CWND Value

120 Packet

120 Packet

120

120 ACK

Qas

TCP Sender

TCP Sender

ACK

TCP Receiver

Aug . 2 , 2018 Sheet 1 of 7

Base Station

130 Determine RTT value and
set RTT threshold

US 2018 / 0219787 A1

FIG . 1A

100 mg

TCP stable state conditions

TCP congestion avoidance state condition

CWND > SS _ thresh AND RTT not > = RTT _ thresh

Patent Application Publication

CWND > = SS _ thresh AND

OR

RTT > = RTT _ thresh

CWND limited by CWND MAX ?

V . - -

- - - -

140 TCP state conditions satisfied ?

-
-

- - - - - - weis were com -

-
- - -
i

Aug . 2 , 2018 Sheet 2 of 7

-

. -

. . - - - - - - - bene como

TCP Sender

US 2018 / 0219787 A1

FIG . 1B

100 mg

CWND > = SS _ thresh AND RTT not > = RTT thresh

Patent Application Publication

CWND > = SS _ thresh

CWND > = CWND _ Max

RTT > = RTT _ thresh
160

150
Classify the TCP flow as in

the stable state

Classify the TCP flow as in the congestion avoidance state

Aug . 2 , 2018 Sheet 3 of 7

?

TCP Sender

TCP Sender

US 2018 / 0219787 A1

FIG . 1C

100 mm

Patent Application Publication

TCP slow start state condition

RTT < RTT thresh

RTT not > = RTT thresh AND Time in CA state > M * RTT

Time in CA state > M * RTT

170 Slow start state condition satisfied ?

180
Classify the TCP flow as in

slow start state

co

Aug . 2 , 2018 Sheet 4 of 7

TCP Sender

TCP Sender

US 2018 / 0219787 A1

FIG . 1D

200 —

IMS Core

HSS / AAA 235

Patent Application Publication

Evolved Packet Core (EPC)

mm

LTE Network

MME 215

PGW 225

TCP Receiver 205

Base Station 210

Aug . 2 , 2018 Sheet 5 of 7

SGW 220

TCP Proxy Device 230

eminemineminine

????

Network 245

EPS

TCP Sender 240

US 2018 / 0219787 A1

FIG . 2

300

~

Patent Application Publication

Processor

Memory

Storage Component

320

330

340

Bus 30

??? ???
Aug . 2 , 2018 Sheet 6 of 7

Input Component

Output Component

Communication Interface

350

360

370

US 2018 / 0219787 A1

FIG . 3

400

Determine a congestion window (CWND) value , associated with a first transmission control protocol (TCP) state , for a TCP flow that involves one or more devices using active queue management (AQM)

410

Patent Application Publication

Determine a round time (RTT) value , associated with the first TCP state ,
for the TCP flow

420

No

TCP
state condition (s) satisfied ?

430

Yes Yes

Aug . 2 , 2018 Sheet 7 of 7

Classify the TCP flow into a second TCP state

Classify the TCP flow into a third TCP state

h450

No

are

400

Different TCP state condition (s) satisfied ?

Yes

US 2018 / 0219787 A1

FIG . 4

US 2018 / 0219787 A1 Aug . 2 , 2018

CONGESTION AVOIDANCE OVER A TCP
FLOW THAT INVOLVES ONE OR MORE

DEVICES USING AOM , BASED ON ONE OR
MORE TCP STATE CONDITIONS

BACKGROUND
[0001] In Transmission Control Protocol (TCP) , a conges
tion window is a flow control mechanism that is based on a
network capacity and / or a network loading condition . The
congestion window can prevent a link between a server
device and a client device from becoming overloaded with
network traffic . Additionally , the congestion window can be
calculated based on estimating congestion between the
server device and the client device .

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] FIGS . 1A - 1D are diagrams of an overview of an
example implementation described herein ;
[0003] FIG . 2 is a diagram of an example environment in
which systems and / or methods , described herein , can be
implemented ;
[0004] FIG . 3 is a diagram of example components of one
or more devices of FIG . 2 ; and
[0005] FIG . 4 is a flow chart of an example process for
managing network congestion over a TCP flow that involves
one or more network devices using active queue manage
ment (AQM) .

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0006] The following detailed description of example
implementations refers to the accompanying drawings . The
same reference numbers in different drawings can identify
the same or similar elements .
[0007] In wireless networks , particular TCP congestion
avoidance algorithms can utilize different states (e . g . , a slow
start state , a congestion avoidance state , etc .) to help manage
network congestion . For example , a TCP sender can apply a
congestion - avoidance algorithm to classify a particular TCP
flow into a particular TCP state , and can perform one or
more actions to manage network traffic based on the clas
sification . In some cases , a network device associated with
the TCP flow , such as a base station (e . g . , an eNodeB) , can
apply active queue management (AQM) to further manage
network congestion . For example , when the network is
experiencing heavy traffic , a queue associated with the base
station can fill up , causing network congestion . In this case ,
AQM can allow the base station to drop packets that have
been in the queue for longer than a threshold period of time .
[0008] . However , applying AQM in a TCP flow that also
applies a TCP congestion - avoidance algorithm can cause
unnecessary retransmission of packets and lead to a decrease
in throughput . For example , the TCP sender can apply a TCP
congestion - avoidance algorithm that involves increasing a
rate at which packets are transmitted to another device (e . g . ,
a base station , a router , etc .) . In this case , the other device
can apply AQM (which can be independent of the TCP
congestion - avoidance algorithm) . As the rate at which the
TCP sender transmits packets to the other device increases ,
a queue associated with the other device can fill up , which
can increase the time it takes the other device to process the
packets in the queue . However , if the other device is
applying AQM , the packets can be dropped from the queue

after a threshold is satisfied (e . g . , a threshold period of time
passes , a quantity of packets satisfied a queue size threshold ,
etc .) . This can cause an unnecessary retransmission of
packets and lead to a decrease in throughput .
[0009] Implementations described herein implement a
TCP congestion - avoidance algorithm over a TCP flow that
involves one or more devices using AQM , where the con
gestion - avoidance algorithm allows a device (e . g . , a TCP
sender) to intelligently transition between different states
(e . g . , a slow start state , a stable state , a congestion avoidance
state) by determining whether a congestion window
(CWND) value and a round trip time (RTT) value satisfy one
or more TCP state conditions . By intelligently transitioning
between different states based on one or more TCP state
conditions , the device is able to utilize the congestion
avoidance algorithm without causing another device (e . g . , a
base station) that uses AQM to drop packets , which
increases throughput and conserves network resources . Fur
thermore , the device is able to utilize a stable state , in
addition to the slow start state and congestion avoidance
state , which reduces instances of state oscillation where the
device oscillates between states .
[0010] FIGS . 1A - 1D are diagrams of an overview of an
example implementation 100 described herein . For FIGS .
1A - 1D , assume a TCP flow is established between a TCP
sender and a TCP receiver , using a base station as an
intermediary . Further assume that one or more devices
involved in the TCP flow use AQM , and that the TCP sender
and / or the TCP receiver manage traffic with a congestion
avoidance algorithm . The congestion - avoidance algorithm
allows the TCP sender to perform different actions based on
whether the TCP sender classifies the TCP flow into a slow
start state , a stable state , or a congestion avoidance state .
[0011] For FIG . 1A , assume the TCP sender begins trans
mitting traffic to the TCP receiver , and that the TCP sender
classifies the TCP flow into a slow start state to manage
traffic flow . As shown in FIG . 1A , and by reference number
110 , the TCP sender can determine a CWND value , and the
CWND value can indicate a quantity of packets that the TCP
sender can transmit . For example , the TCP sender can
determine the CWND value during a " three - way - hand
shake ” process with the TCP receiver (e . g . , based on com
paring timestamps associated with a synchronize (SYN)
message , a synchronize - acknowledgement (SYN - ACK)
message , and an acknowledgement (ACK) message) . The
three - way - handshake can include information indicating a
maximum segment size (MSS) , and the MSS can be used to
determine the CWND value (e . g . , the CWND value is shown
as two times the MSS) .
[0012] As shown by reference number 120 , the TCP
sender can apply a slow start algorithm , associated with the
slow start state , to increase the CWND value . For example ,
the slow start algorithm can include transmitting packets to
the TCP receiver , which can cause the TCP receiver to
transmit acknowledgement (ACK) packets to the TCP
sender . When the ACK packets are received , the TCP sender
can increase the CWND (e . g . , by a value of one) , which can
cause the TCP sender to increase a rate at which packets are
transmitted to the TCP receiver . Additionally , the TCP
sender can set a slow start threshold (a first threshold) to a
value that indicates a particular amount of network conges
tion , and the TCP sender can use the slow start threshold to
determine whether to classify the TCP flow into another
state , such as the stable state , as discussed further herein .

US 2018 / 0219787 A1 Aug . 2 , 2018

Additionally , or alternatively , the TCP sender can set a
maximum CWND threshold (a second threshold) to a value
that indicates a ceiling for the CWND value (e . g . , a value
that the CWND value cannot exceed) .
[0013] As shown by reference number 130 , the TCP
sender can determine an RTT value , based on an amount of
time for packets to be transmitted and acknowledged
between devices involved in the TCP flow . In some cases ,
the TCP sender can set an RTT threshold (a second thresh
old , or a third threshold) to a value that indicates a particular
amount of network congestion (e . g . , by using an average
RTT value) , and the TCP sender can use the RTT threshold
to classify the TCP flow into another state , such as the
congestion avoidance state , as discussed further herein .
[0014] By setting thresholds to values that indicate par
ticular amounts of network congestion , the TCP sender is
able to monitor the rate at which packets are transmitted over
the TCP flow . In this way , the TCP sender is able to manage
network congestion in a manner that prevents AQM packet
drop , as described further herein .
[0015] As shown in FIG . 1B , and by reference number
140 , the TCP sender can determine whether one or more
TCP state conditions are satisfied . For example , while in the
slow start state , the TCP sender can compare the CWND
value and the RTT value with one or more thresholds , and
can determine whether one or more TCP state conditions
(e . g . , a stable state condition , a congestion avoidance state
condition , etc .) are satisfied based on a result of comparing
the CWND value and the RTT value with the one or more
thresholds .
[0016] . In some implementations , a stable state condition
can be satisfied if the CWND value satisfies (e . g . , is greater
than or equal to) the slow start threshold and if the RTT
value does not satisfy (e . g . , is not greater than or equal to)
the RTT threshold . Additionally , or alternatively , the stable
state condition can be satisfied if the CWND value satisfies
(e . g . , is limited by the maximum CWND threshold (e . g . ,
which can be calculated by a congestion controller) . Addi
tionally , or alternatively , a congestion avoidance state con
dition can be satisfied if the CWND value satisfies (e . g . , is
greater than or equal to) the slow start threshold , and if the
RTT value satisfies (e . g . , is greater than or equal to) the RTT
threshold . If one of the TCP state conditions is satisfied , the
TCP sender can classify the TCP flow into another TCP state
(e . g . , a stable state , a congestion avoidance state , etc .) . By
intelligently transitioning between TCP states based on TCP
state conditions , the TCP sender is able to apply the par
ticular state algorithm that prevents AQM packet drop ,
which causes an increase in throughput for the TCP flow .
[0017] As shown in FIG . 1C , and by reference number
150 , the TCP sender can classify the TCP flow into the stable
state by determining that the CWND value satisfies the slow
start threshold and by determining that the RTT value does
not satisfy the RTT threshold . While in the stable state , the
TCP sender can maintain a particular CWND value , and can
continue transmitting packets to the TCP receiver . By main
taining the CWND value , despite the CWND value satisfy
ing the slow start threshold , the TCP sender conserves
processing resources by reducing unnecessary instances of
state oscillation .
[0018] As shown by reference number 160 , the TCP
sender can classify the TCP flow into a congestion avoid
ance state by determining that the CWND value satisfies the
slow start threshold and the RTT value satisfies the RTT

threshold . While in the congestion avoidance state , the TCP
sender can attempt to reduce network congestion by apply
ing a congestion avoidance algorithm . In this case , the TCP
sender can reduce network congestion by increasing the
CWND value at a slower rate than the rate used by the
previous state (e . g . , the rate used by the stable state or the
slow start state) . By increasing the CWND value at a slower
rate than the rate used by the previous state , during periods
of network congestion , the TCP sender decreases the RTT
value (e . g . , to a value that is lower than an AQM value) ,
which prevents AQM packet drop and increases throughput
by reducing a quantity of packet retransmissions .
[0019] As shown in FIG . 1D , and by reference number
170 , the TCP sender can determine whether a slow start state
condition is satisfied . For example , while in the congestion
avoidance state , the TCP sender can determine whether a
slow start state condition is satisfied by comparing the RTT
value and the RTT threshold , and by verifying whether the
TCP flow has been in the congestion avoidance state for
longer than a threshold time period (e . g . , M * RTT) . As
shown by reference number 180 , if the slow start state
condition is satisfied , the TCP sender can classify the TCP
flow into the slow start state . For example , the TCP sender
can classify the TCP flow into the slow start state if the RTT
value satisfies the RTT threshold and if the TCP flow
remains in the congestion avoidance state for longer than the
threshold time period .
[0020] By intelligently transitioning between TCP states
based on TCP state conditions , the TCP sender is able to
manage the CWND value and the RTT value in a manner
that prevents a network device (e . g . , a base station) involved
in the TCP flow from using AQM to drop packets . In this
way , the TCP sender increases throughput , and conserves
processing resources and network resources .
[0021] As indicated above , FIGS . 1A - 1D are provided
merely as an example . Other examples are possible and can
differ from what was described with regard to FIGS . 1A - 1D .
For example , while the functions performed in FIGS . 1A - 1D
are carried out by the TCP sender , the same or similar
functions can be performed by a TCP proxy device or a
network device associated with a TCP flow that involves one
or more devices using AQM .
[0022] FIG . 2 is a diagram of an example environment 200
in which systems and / or methods , described herein , can be
implemented . As shown in FIG . 2 , environment 200 can
include a TCP receiver 205 , a base station 210 , a mobility
management entity (MME) 215 , a serving gateway (SGW)
220 , a packet data network (PDN) gateway (PGW) 225 , a
TCP proxy device 230 , a home subscriber server / authenti
cation , authorization , and accounting server (HSS / AAA)
235 , a TCP sender 240 , and / or a network 245 . Devices of
environment 200 can interconnect via wired connections ,
wireless connections , or a combination of wired and wire
less connections .
[0023] Some implementations are described herein as
being performed within a fourth generation (4G) long - term
evolution (LTE) network for explanatory purposes . Some
implementations can be performed within a network that is
not an LTE network , such as a fifth generation (5G) network ,
a third generation (3G) network , or a code division multiple
access (CDMA) network .
[0024] Environment 200 can include an evolved packet
system (EPS) that includes an LTE network and / or an
evolved packet core (EPC) that operate based on a 3GPP

US 2018 / 0219787 A1 Aug . 2 , 2018

wireless communication standard . The LTE network can
include a radio access network (RAN) that includes one or
more base stations 210 that take the form of evolved Node
Bs (eNBs) via which TCP receiver 205 communicates with
the EPC . The EPC can include MME 215 , SGW 220 , and / or
PGW 225 that enable TCP receiver 205 to communicate
with network 245 and / or an Internet protocol (IP) multime
dia subsystem (IMS) core . The IMS core can include HSS /
AAA 235 , and can manage device registration and authen
tication , session initiation , etc . , associated with TCP receiver
205 . HSS / AAA 235 can reside in the EPC and / or the IMS
core .
[0025] TCP receiver 205 includes one or more devices
capable of receiving , storing , processing , and / or providing
packets . For example , TCP receiver 205 can include a
communication device , such as a mobile phone (e . g . , a smart
phone or a radiotelephone) , a tablet computer , a wearable
communication device (e . g . , a smart wristwatch or a pair of
smart eyeglasses) , a desktop computer , a server computer , or
a similar type of device . In some implementations , TCP
receiver 205 can transmit packets to and / or receive packets
from network 245 via base station 210 (e . g . , based on a radio
access bearer between TCP receiver 205 and SGW 220) . For
example , for a TCP flow , TCP receiver 205 can receive one
or more packets from TCP sender 240 , and can transmit one
or more ACK packets to TCP sender 240 . In some cases ,
TCP receiver 205 can use AQM to help manage network
congestion .
[0026] Base station 210 includes one or more devices
capable of transferring traffic (e . g . , packets) , such as audio ,
video , text , and / or other traffic , destined for and / or received
from TCP receiver 205 . In some implementations , base
station 210 can include an eNB associated with the LTE
network that receives traffic from and / or transmits traffic to
network 245 via SGW 220 and / or PGW 225 . Additionally ,
or alternatively , one or more base stations 210 can be
associated with a RAN that is not associated with an LTE
network . Base station 210 can transmit traffic to and / or
receive traffic from TCP receiver 205 via an air interface
(e . g . , a radio frequency (RF) signal) . In some implementa
tions , base station 210 can include a small cell base station ,
such as a base station of a microcell , a picocell , and / or a
femtocell . In some cases , base station 210 can use AQM to
help manage network congestion .
[0027] MME 215 includes one or more devices , such as
one or more server devices , capable of managing authenti
cation , activation , deactivation , and / or mobility functions
associated with TCP receiver 205 . In some implementations ,
MME 215 can perform operations relating to authentication
of TCP receiver 205 . Additionally , or alternatively , MME
215 can facilitate the selection of a particular SGW 220
and / or a particular PGW 225 to serve traffic to and / or from
TCP receiver 205 . MME 215 can perform operations asso
ciated with handing off TCP receiver 205 from a first base
station 210 to a second base station 210 when TCP receiver
205 is transitioning from a first cell associated with the first
base station 210 to a second cell associated with the second
base station 210 . Additionally , or alternatively , MME 215
can select another MME (not pictured) , to which TCP
receiver 205 should be handed off (e . g . , when TCP receiver
205 moves out of range of MME 215) .
[0028] SGW 220 includes one or more devices capable of
routing packets . For example , SGW 220 can include one or
more data processing and / or traffic transfer devices , such as

a gateway , a router , a modem , a switch , a firewall , a network
interface card (NIC) , a hub , a bridge , a server device , an
optical add / drop multiplexer (OADM) , or any other type of
device that processes and transfers traffic . In some imple
mentations , SGW 220 can aggregate traffic received from
one or more base stations 210 associated with the LTE
network , and can transmit the aggregated traffic to network
245 (e . g . , via PGW 225) and / or other network devices
associated with the EPC and / or the IMS core . Additionally ,
or alternatively , SGW 220 can receive traffic from network
245 and / or other network devices , and can transmit the
received traffic to TCP receiver 205 via base station 210 .
Additionally , or alternatively , SGW 220 can perform opera
tions associated with handing off TCP receiver 205 to and / or
from an LTE network .
[0029] PGW 225 includes one or more devices capable of
providing connectivity for TCP receiver 205 to external
packet data networks (e . g . , other than the depicted EPC
and / or LTE network) , such as network 245 . For example ,
PGW 225 can include one or more data processing and / or
traffic transfer devices , such as a gateway , a router , a modem ,
a switch , a firewall , a NIC , a hub , a bridge , a server device ,
an OADM , or any other type of device that processes and / or
transfers traffic . In some implementations , PGW 225 can
aggregate traffic received from one or more SGWs 220 , and
can transmit the aggregated traffic to network 245 . Addi
tionally , or alternatively , PGW 225 can receive traffic from
network 245 , and can transmit the traffic to TCP receiver 205
via SGW 220 and base station 210 . PGW 225 can record
data usage information (e . g . , byte usage) , and can provide
the data usage information to HSS / AAA 235 .
(0030) TCP proxy device 230 includes one or more
devices capable of receiving , storing , processing , and / or
providing information associated with a CWND value and /
or an RTT value . For example , TCP proxy device 230 can
include a server device (e . g . , a TCP proxy server) , a cloud
computing device , or a similar device . In some implemen
tations , TCP proxy device 230 can receive traffic from TCP
sender 240 (e . g . , via network 245) and can provide the traffic
to TCP receiver 205 (e . g . , via base station 210) . In some
cases , TCP proxy device 230 can use AQM to help manage
network congestion . Additionally , or alternatively , one or
more functions carried out by TCP sender 240 can be carried
out by TCP proxy device 230 .
[0031] HSS / AAA 235 includes one or more devices , such
as one or more server devices , capable of managing (e . g . ,
receiving , generating , storing , processing , and / or providing)
information associated with TCP receiver 205 . For example ,
HSS / AAA 235 can manage subscription information asso
ciated with TCP receiver 205 , such as information that
identifies a subscriber profile of a user associated with TCP
receiver 205 , information that identifies services and / or
applications that are accessible to TCP receiver 205 , location
information associated with TCP receiver 205 , a network
identifier (e . g . , a network address) that identifies TCP
receiver 205 , information that identifies a treatment of TCP
receiver 205 (e . g . , quality of service information , a quantity
of minutes allowed per time period , a quantity of data
consumption allowed per time period , etc .) , information that
identifies whether TCP receiver 205 is associated with an RF
access signaling usage control policy and / or an RF access
signaling usage billing policy , and / or similar information .

US 2018 / 0219787 A1 Aug . 2 , 2018

HSS / AAA 235 can provide this information to one or more
other devices of environment 200 to support the operations
performed by those devices .
[0032] Additionally , or alternatively , HSS / AAA 235 can
perform authentication operations for TCP receiver 205
and / or a user of TCP receiver 205 (e . g . , using one or more
credentials) , can control access , by TCP receiver 205 , to a
service and / or an application (e . g . , based on one or more
restrictions , such as time - of - day restrictions , location
restrictions , single or multiple access restrictions , read / write
restrictions , RF access signaling usage restrictions , etc .) , can
track resources consumed by TCP receiver 205 (e . g . , a
quantity of voice minutes consumed , a quantity of data
consumed , a quantity of RF signals transmitted , a quantity of
radio access bearers requested and / or established , etc .) ,
and / or can perform similar operations .
[0033] TCP sender 240 includes one or more devices
capable of receiving , storing , processing , and / or providing
packets . For example , TCP sender 240 can include a server
device (e . g . , a host server , a web server , an application
server , etc .) , a cloud computing device , or a similar device .
In some implementations , for a TCP flow , TCP sender 240
can use a CWND value to determine a quantity of packets
to transmit to TCP receiver 205 , and can receive ACK
packets from TCP receiver 205 . In some implementations ,
TCP sender 240 can classify a TCP flow into a particular
TCP state based on one or more TCP state conditions . In
some cases , TCP sender 240 can use AQM to help manage
network congestion .

[0034] Network 245 includes one or more wired and / or
wireless networks . For example , network 245 can include a
cellular network (e . g . , a 5G network , a 4G network , such as
a LTE network , a 3G network , a CDMA network , etc .) , a
public land mobile network (PLMN) , a local area network
(LAN) , a wide area network (WAN) , a metropolitan area
network (MAN) , a telephone network (e . g . , the Public
Switched Telephone Network (PSTN)) , a private network ,
an ad hoc network , an intranet , the Internet , a fiber optic
based network , a cloud computing network , or the like ,
and / or a combination of these or other types of networks .
[0035] The number and arrangement of devices and net
works shown in FIG . 2 are provided as an example . In
practice , there can be additional devices and / or networks ,
fewer devices and / or networks , different devices and / or
networks , or differently arranged devices and / or networks
than those shown in FIG . 2 . Furthermore , two or more
devices shown in FIG . 2 can be implemented within a single
device , or a single device shown in FIG . 2 can be imple
mented as multiple , distributed devices . Additionally , or
alternatively , a set of devices (e . g . , one or more devices) of
environment 200 can perform one or more functions
described as being performed by another set of devices of
environment 200 .
[0036] FIG . 3 is a diagram of example components of a
device 300 . Device 300 can correspond to TCP receiver 205 ,
base station 210 , MME 215 , SGW 220 , PGW 225 , TCP
proxy device 230 , HSS / AAA 235 , and / or TCP sender 240 .
In some implementations , TCP receiver 205 , base station
210 , MME 215 , SGW 220 , PGW 225 , TCP proxy device
230 , HSS / AAA 235 , and / or TCP sender 240 can include one
or more devices 300 and / or one or more components of
device 300 . As shown in FIG . 3 , device 300 can include a
bus 310 , a processor 320 , a memory 330 , a storage compo -

nent 340 , an input component 350 , an output component
360 , and a communication interface 370 .
[0037] Bus 310 includes a component that permits com
munication among the components of device 300 . Processor
320 is implemented in hardware , firmware , or a combination
of hardware and software . Processor 320 includes a central
processing unit (CPU) , a graphics processing unit (GPU) , an
accelerated processing unit (APU) , a microprocessor , a
microcontroller , a digital signal processor (DSP) , a field
programmable gate array (FPGA) , an application - specific
integrated circuit (ASIC) , or another type of processing
component . In some implementations , processor 320
includes one or more processors capable of being pro
grammed to perform a function . Memory 330 includes a
random access memory (RAM) , a read only memory
(ROM) , and / or another type of dynamic or static storage
device (e . g . , a flash memory , a magnetic memory , and / or an
optical memory) that stores information and / or instructions
for use by processor 320 .
[0038] Storage component 340 stores information and / or
software related to the operation and use of device 300 . For
example , storage component 340 can include a hard disk
(e . g . , a magnetic disk , an optical disk , a magneto - optic disk ,
and / or a solid state disk) , a compact disc (CD) , a digital
versatile disc (DVD) , a floppy disk , a cartridge , a magnetic
tape , and / or another type of non - transitory computer - read
able medium , along with a corresponding drive .
[0039] Input component 350 includes a component that
permits device 300 to receive information , such as via user
input (e . g . , a touch screen display , a keyboard , a keypad , a
mouse , a button , a switch , and / or a microphone) . Addition
ally , or alternatively , input component 350 can include a
sensor for sensing information (e . g . , a global positioning
system (GPS) component , an accelerometer , a gyroscope ,
and / or an actuator) . Output component 360 includes a com
ponent that provides output information from device 300
(e . g . , a display , a speaker , and / or one or more light - emitting
diodes (LEDs)) .
10040) Communication interface 370 includes a trans
ceiver - like component (e . g . , a transceiver and / or a separate
receiver and transmitter) that enables device 300 to com
municate with other devices , such as via a wired connection ,
a wireless connection , or a combination of wired and wire
less connections . Communication interface 370 can permit
device 300 to receive information from another device
and / or provide information to another device . For example ,
communication interface 370 can include an Ethernet inter
face , an optical interface , a coaxial interface , an infrared
interface , a radio frequency (RF) interface , a universal serial
bus (USB) interface , a Wi - Fi interface , a cellular network
interface , or the like .
10041] Device 300 can perform one or more processes
described herein . Device 300 can perform these processes in
response to processor 320 executing software instructions
stored by a non - transitory computer - readable medium , such
as memory 330 and / or storage component 340 . A computer
readable medium is defined herein as a non - transitory
memory device . A memory device includes memory space
within a single physical storage device or memory space
spread across multiple physical storage devices .
10042] Software instructions can be read into memory 330
and / or storage component 340 from another computer
readable medium or from another device via communication
interface 370 . When executed , software instructions stored

US 2018 / 0219787 A1 Aug . 2 , 2018

in memory 330 and / or storage component 340 can cause
processor 320 to perform one or more processes described
herein . Additionally , or alternatively , hardwired circuitry can
be used in place of or in combination with software instruc
tions to perform one or more processes described herein .
Thus , implementations described herein are not limited to
any specific combination of hardware circuitry and software .
[0043] The number and arrangement of components
shown in FIG . 3 are provided as an example . In practice ,
device 300 can include additional components , fewer com
ponents , different components , or differently arranged com
ponents than those shown in FIG . 3 . Additionally , or alter
natively , a set of components (e . g . , one or more components)
of device 300 can perform one or more functions described
as being performed by another set of components of device
300 .
[0044] FIG . 4 is a flow chart of an example process 400 for
managing network congestion over a TCP flow with network
devices that use AQM . In some implementations , one or
more process blocks of FIG . 4 can be performed by TCP
sender 240 . In some implementations , one or more process
blocks of FIG . 4 can be performed by another device or a
group of devices separate from or including TCP sender 240 ,
such as TCP receiver 205 , base station 210 , MME 215 , SGW
220 , PGW 225 , TCP proxy device 230 , and / or HSS / AAA
235 .
[0045] As shown in FIG . 4 , process 400 can include
determining a congestion window (CWND) value , associ
ated with a first transmission control protocol (TCP) state ,
for a TCP flow that involves one or more devices using
active queue management (AQM) (block 410) . For example ,
TCP sender 240 can determine a CWND value based on
information exchanged when a TCP flow is initially estab
lished , and TCP sender 240 can classify the TCP flow into
a first TCP state . A TCP state can be associated with one or
more algorithms , processing operations , sets of actions , or
the like . In this case , the first TCP state can be associated
with a slow start algorithm , and the slow start algorithm can
be used to determine subsequent CWND values (e . g . , by
increasing the CWND value at a particular rate) . The
CWND value can indicate a quantity of packets to transmit
to TCP receiver 205 . As used herein , a packet can refer to a
communication structure for communicating information ,
such as a protocol data unit (PDU) , a network packet , a
frame , a datagram , a segment , a message , a block , a cell , a
subframe , a slot , a symbol , a portion of any of the above ,
and / or another type of formatted or unformatted unit of data
capable of being transmitted via a network . In some imple
mentations , TCP sender 240 can implement the slow start
algorithm over a TCP flow that involves one or more devices
using AQM , such as a TCP flow that establishes a connec
tion between TCP receiver 205 and TCP sender 240 , using
base station 210 as an intermediary .
[0046] In some implementations , TCP sender 240 can
determine a CWND value based on information exchanged
when a TCP flow is initially established . For example ,
during a " three - way - handshake ” process (e . g . , which
includes a SYN message , a SYN - ACK message , and an
ACK message) , TCP sender 240 and TCP receiver 205 can
determine a maximum segment size (MSS) , and the CWND
value can be set based on the MSS , such as a multiple of the
MSS value , as a particular MSS value , as an average of
multiple received MSS values , or the like . In this case , TCP
sender 240 can use the CWND value to determine the

quantity of packets to transmit to TCP receiver 205 . In this
way , TCP sender 240 is able use information exchanged
while establishing the TCP flow to set the CWND value ,
which has the effect of improving network performance .
[0047] In some implementations , TCP sender 240 can
apply a slow start algorithm to determine subsequent
CWND values . For example , TCP sender 240 can transmit
a quantity of packets associated with the CWND value
determined during the three - way handshake , and can
increase (e . g . , by a value of one) the CWND value when an
ACK packet is received in response to TCP sender 240
sending a packet to TCP receiver 205 . By increasing the
CWND value when the ACK packet is received , TCP sender
240 increases the rate at which packets are transmitted over
the TCP flow .
10048] Additionally , or alternatively , TCP sender 240 can
increase the CWND value until a slow start threshold is
satisfied . For example , the slow start threshold can be set to
an initial value (e . g . , a fixed value , such as 65 , 535 bytes) ,
and TCP sender 240 can increase the CWND value until the
CWND value satisfies the slow start threshold . When the
CWND value satisfies the slow start threshold , TCP sender
240 can classify the TCP flow into a different state , such as
a stable state , as described further herein .
[0049] Additionally , or alternatively , TCP sender 240 can
increase the CWND value until a maximum CWND thresh
old is satisfied . For example , TCP sender 240 can set a
maximum CWND threshold , which can indicate a ceiling
for the CWND value . In this case , while applying the slow
start algorithm , TCP sender 240 can transmit no more than
a quantity of packets equal to the maximum CWND thresh
old . When the CWND value satisfies the maximum CWND
threshold , TCP sender 240 can classify the TCP flow into a
different state , such as a stable state , as described further
herein .
10050] In some implementations , the maximum CWND
threshold can be set to an advertised receive window
(RWND) value . For example , while applying the slow start
algorithm , TCP sender 240 can only transmit a quantity of
packets equal to a minimum of the CWND value and an
RWND value (e . g . , a value that indicates an amount of
buffer space available at TCP receiver 205) . In this case ,
TCP sender 240 can set the maximum CWND threshold to
the RWND value , and if the CWND value satisfies the
maximum CWND threshold , then TCP sender 240 can
classify the TCP flow into a stable state , as described further
herein .
[0051] In some implementations , TCP sender 240 can
apply the slow start algorithm to a TCP flow that involves
one or more devices using AQM , such as a TCP flow that
establishes a connection between TCP receiver 205 and TCP
sender 240 , using base station 210 (e . g . an eNodeB) as an
intermediary . For example , one or more devices associated
with the TCP flow can use AQM (e . g . , base station 210) , and
AQM can cause the one or more devices to drop packets that
remain in a queue for longer than a threshold period of time .
[0052] As further shown in FIG . 4 , process 400 can
include determining a round trip time (RTT) value , associ
ated with the first TCP state , for the TCP flow (block 420) .
For example , TCP sender 240 can , as part of the slow start
algorithm , determine an RTT value by determining an
amount of time for packets to be transmitted and acknowl
edged between devices involved in the TCP flow (e . g . ,
between TCP receiver 205 and TCP proxy device 230 ,

US 2018 / 0219787 A1 Aug . 2 , 2018

between TCP receiver 205 and TCP sender 240 , between
TCP proxy device 230 and TCP sender 240 , etc .) .
0053] In some implementations , TCP sender 240 can set
an RTT threshold . For example , TCP sender 240 can set the
RTT threshold to a value indicating an average RTT . In this
case , TCP sender 240 is able to identify when the TCP flow
has RTT values that satisfy (e . g . , are greater than or equal to)
the RTT threshold . The larger the RTT value , the longer
packets are waiting in queues of one or more devices
associated with the TCP flow . If the RTT value satisfies the
RTT threshold , as described further herein , the RTT value
can indicate to TCP sender 240 that a queue associated with
the TCP flow is filling up , prior to AQM causing packets to
drop from the queue .
[0054 In some implementations , TCP sender 240 can set
an RTT threshold to a value that is lower than an AQM value
used to drop packets from a queue . As an example , a
network device of the TCP flow (e . g . , base station 210) can
use AQM to drop packets that remain in the queue for longer
than 500 milliseconds (ms) , and TCP sender 240 can set the
RTT threshold to a value that is lower than 500 ms , such as
400 ms . In this way , TCP sender 240 is able identify that the
queue associated with the TCP flow is filling up , prior to
AQM causing packets to drop from the queue .
[0055] As further shown in FIG . 4 , process 400 can
include determining whether one or more TCP state condi
tions are satisfied , based on determining the CWND value
and the RTT value (block 430) . In some implementations ,
while in the first TCP state , TCP sender 240 can determine
whether one or more TCP state conditions , associated with
a second TCP state (e . g . , a stable state) , are satisfied , by
comparing the CWND value and / or the RTT value and one
or more thresholds . In some implementations , a TCP state
condition , of the one or more TCP state conditions , can be
satisfied if the CWND value satisfies the slow start thresh
old . In some implementations , a TCP state condition , of the
one or more TCP state conditions , can be satisfied if the RTT
value does not satisfy the RTT threshold . In some imple
mentations , a TCP state condition , of the one or more TCP
state conditions , can be satisfied if the CWND value satisfies
the slow start threshold and the RTT value does not satisfy
the RTT threshold . In some implementations , a TCP state
condition , of the one or more TCP state conditions , can be
satisfied if the CWND value satisfies the maximum CWND
value . In some implementations , a TCP state condition , of
the one or more TCP state conditions , can be satisfied based
on any combination of the above conditions .
[0056] Additionally , or alternatively , while in the first TCP
state , TCP sender 240 can determine whether the one or
more TCP state conditions , associated with a third TCP state
(e . g . , a congestion avoidance state) , are satisfied , by com
paring the CWND value and / or the RTT value and one or
more thresholds . In some implementations , a TCP state
condition , of the one or more TCP state conditions , can be
satisfied if the CWND value satisfies the slow start . In some
implementations , a TCP state condition , of the one or more
TCP state conditions , can be satisfied if the RTT value
satisfies the RTT threshold . In some implementations , a TCP
state condition , of the one or more TCP state conditions , can
be satisfied if the CWND value satisfies the slow start
threshold and the RTT value satisfies the RTT threshold . In
some implementations , a TCP state condition , of the one or
more TCP state conditions , can be satisfied based on any
combination of the above conditions .

[0057] Depending on which TCP state conditions are
satisfied , TCP sender 240 can selectively classify the TCP
flow into a different TCP state (e . g . , the second state , the
third state , etc .) and , in the different TCP state , TCP sender
240 can apply a corresponding algorithm to reduce or
eliminate AQM packet drops , which increases throughput
for the TCP flow . In some implementations , the correspond
ing algorithm can set a rate for increasing or decreasing the
CWND value based on selectively classifying the TCP flow
into the different TCP state . Additionally , or alternatively ,
TCP sender 240 can modify the CWND value , as a modified
CWND value , based on selectively classifying the TCP flow
into the different TCP state . In this case , TCP sender 240 can
transmit one or more packets , associated with the TCP flow ,
based on the modified CWND value .
[0058] In some cases , in addition to determining whether
the one or more TCP state conditions are satisfied , TCP
sender 240 can verify that the RTT value is lower than an
AQM value associated with another device associated with
the TCP flow . For example , TCP sender 240 can obtain an
AQM value , from another device associated with the TCP
flow (e . g . , base station 210) , and can compare the RTT value
and the AQM value . In this case , TCP sender 240 can verify
that the RTT value is lower than the AQM value based on
comparing the RTT value and the AQM value . This verifi
cation can improve network performance over situations
where the RTT value is not lower than the AQM value by
reducing or eliminating instances of AQM packet drops .
[00591 . If the one or more TCP state conditions , associated
with the CWND value , are not satisfied (block 430 - NO) ,
then process 400 can include returning to block 410 where
TCP sender 240 can continue to determine a CWND value
associated with the first TCP state . In this case , TCP sender
240 can continue to apply the slow start algorithm until the
one or more TCP state conditions are satisfied .
100601 If the one or more TCP state conditions , associated
with the CWND value , are satisfied (block 430 — YES) , then
process 400 can include classifying the TCP flow into a
second TCP state (block 440) . For example , if TCP sender
240 determines that the CWND value satisfies one or more
thresholds associated with the second TCP state , then TCP
sender 240 can classify the TCP flow into a second TCP
state , such as a stable state . In the stable state , TCP sender
240 can maintain the same CWND value for subsequent
packet transmissions , or increase the CWND value at a rate
that is different than the particular rate .
[0061] In some implementations , if TCP sender 240 deter
mines that the CWND value satisfies the slow start threshold
and that the RTT value does not satisfy the RTT threshold ,
then TCP sender 240 can classify the TCP flow into the
second TCP state (which is different from the first TCP
state) . For example , TCP sender 240 can classify the TCP
flow into the second TCP state , which can cause TCP sender
240 to maintain the same CWND value during subsequent
packet transmissions (e . g . , use a CWND value that is greater
than the slow start threshold) . Alternatively , TCP sender 240
can classify the TCP flow into the second TCP state , which
can cause the TCP sender 240 to increase the CWND value
at a rate (a first rate) that is different (e . g . slower) than the
particular rate associated with the first TCP state .
[0062] Additionally , or alternatively , if TCP sender 240
determines that the CWND value satisfies the maximum

C WND threshold (regardless of whether the RTT value
satisfies the RTT threshold) , then TCP sender 240 can

US 2018 / 0219787 A1 Aug . 2 , 2018

classify the TCP flow into the second TCP state . For
example , TCP sender 240 can classify the TCP flow into the
second TCP state , which can cause TCP sender 240 to
maintain the same CWND value during subsequent packet
transmissions (e . g . , use the maximum CWND threshold as
the CWND value) . By maintaining the same CWND value ,
TCP sender 240 can limit a transmit rate based on estimating
network congestion associated with the TCP flow (e . g . ,
congestion associated with base station 210) , thereby pre
venting packet loss and / or retransmission timeouts . By
preventing network devices from becoming congested , TCP
sender 240 conserves network resources .
[0063] Additionally , or alternatively , if TCP sender 240
detects packet loss over the TCP flow , then TCP sender 240
can reclassify the TCP flow into the first TCP state , and
return to block 410 where TCP sender 240 can determine a
CWND value associated with the first TCP state . In this case ,
TCP sender 240 can continue applying the slow start algo
rithm , until one or more TCP state conditions are satisfied .
[0064] If TCP sender 240 determines that the one or more
TCP state conditions , associated with the CWND value and
the RTT value , are satisfied (block 430 — YES) , then process
400 can include classifying the TCP flow into a third TCP
state (block 450) . For example , if TCP sender 240 deter
mines that the CWND value and the RTT value satisfy
thresholds associated with the third TCP state , then TCP
sender 240 can classify the TCP flow into the third TCP
state , such as a congestion avoidance state . When TCP
sender 240 classifies the TCP flow into the congestion
avoidance state , TCP sender 240 can reduce network con
gestion by applying a congestion avoidance algorithm . The
congestion avoidance algorithm can reduce network con
gestion by adjusting the CWND value at a rate (a second
rate) that is different than the particular rate used in the
previous state . In some cases , TCP sender 240 can apply a
congestion avoidance algorithm that increases the CWND
value (e . g . , at a linear rate of n packets per RTT) , that
maintains a constant CWND value , that decreases the
CWND value (e . g . , at a linear rate of n packets per RTT) , or
the like .
[0065] In some implementations , if TCP sender 240 deter
mines that the CWND value satisfies the slow start thresh
old , and that the RTT value satisfies the RTT threshold , then
TCP sender 240 can classify the TCP flow into the third TCP
state . For example , TCP sender 240 can classify the TCP
flow into the third TCP state , which can cause TCP sender
240 to increase the CWND value at a rate that is different
than the particulate rate used in the previous state (e . g . , the
rate used in the first state and the second state) . By classi
fying the TCP flow into particular states , TCP sender 240 is
able to apply the particular state algorithm that prevents
AQM packet drop , which causes an increase in throughput
for the TCP flow .
[0066 As further shown in FIG . 4 , process 400 can
include determining whether one or more different TCP state
conditions are satisfied , based on classifying the TCP flow
into the third TCP state (block 460) . For example , TCP
sender 240 can determine whether one or more different
TCP state conditions are satisfied by comparing the RTT
value and one or more thresholds . In some implementations ,
a TCP state condition , of the one or more different TCP state
conditions , can be satisfied if the RTT value does not satisfy
(e . g . , is lower than) the RTT threshold . In some implemen
tations , a TCP state condition , of the one or more different
TCP state conditions , can be satisfied if TCP sender 240 has
been applying the congestion avoidance algorithm for longer
than a threshold time period . In some implementations , a
TCP state condition , of the one or more different TCP state
conditions , can be satisfied if the RTT value does not satisfy

(e . g . , is lower than) the RTT threshold , and if TCP sender
240 has been applying the congestion avoidance algorithm
for longer than a threshold time period . In some implemen
tations , a TCP state condition , of the one or more different
TCP state conditions , can be satisfied if packet loss occurs
on the TCP flow . In some implementations , a TCP state
condition , of the one or more different TCP state conditions ,
can be satisfied based on any combination of the above
conditions .
[0067] Depending on which of the one or more different
TCP state conditions are satisfied , TCP sender 240 can
reclassify the TCP flow into the first TCP state or the second
TCP state , or remain in the third TCP state .
[0068] If TCP sender 240 determines that the one or more
different TCP state conditions are not satisfied (block 460
NO) , then process 400 can include returning to block 450
where the TCP flow remains classified into the third TCP
state (block 460) . For example , if TCP sender 240 deter
mines that the one or more different TCP state conditions are
not satisfied , then TCP sender 240 can continue applying the
congestion avoidance algorithm associated with the third
TCP state .
100691 . If TCP sender 240 determines that the one or more
different TCP state conditions are satisfied (block 460 —
YES) , then process can include returning to block 410 where
a CWND value , associated with the first TCP state , is
determined (block 410) . For example , if TCP sender 240
determines that the one or more different TCP state condi
tions are satisfied , then TCP sender 240 can reclassify the
TCP flow into the first TCP state . In this case , TCP sender
240 can reclassify the TCP flow into the first TCP state and
apply the slow start algorithm and determine the CWND
value . As an example , TCP sender 240 can determine that
the RTT value is lower than the RTT threshold , and that TCP
sender 240 has been applying the congestion avoidance
algorithm for longer than the threshold time period , which
can cause TCP sender to reclassify the TCP flow into the first
TCP state . As another example , TCP sender 240 can detect
packet loss over the TCP flow , which can cause TCP sender
240 to reclassify the TCP flow into the first TCP state . By
reclassifying the TCP flow when one or more different TCP
state conditions are satisfied , TCP sender 240 efficiently
manages network congestion without AQM causing packet
drop .
[0070] Although FIG . 4 shows example blocks of process
400 , in some implementations , process 400 can include
additional blocks , fewer blocks , different blocks , or differ
ently arranged blocks than those depicted in FIG . 4 . Addi
tionally , or alternatively , two or more of the blocks of
process 400 can be performed in parallel .
[0071] By intelligently transitioning between states based
on TCP state conditions , TCP sender 240 is able to manage
the CWND value and RTT value in a manner that prevents
(or reduces a number of instances of) a network device (e . g . ,
base station 210) , associated with the TCP flow , from using
AQM to drop packets . In this way , TCP sender 240 increases
throughput , and conserves processing resources and network
resources .
[0072] The foregoing disclosure provides illustration and
description , but is not intended to be exhaustive or to limit
the implementations to the precise form disclosed . Modifi
cations and variations are possible in light of the above
disclosure or can be acquired from practice of the imple
mentations .
[0073] . As used herein , the term component is intended to
be broadly construed as hardware , firmware , or a combina
tion of hardware and software .

US 2018 / 0219787 A1 Aug . 2 , 2018

[0074] Some implementations are described herein in con
nection with thresholds . As used herein , satisfying a thresh
old can refer to a value being greater than the threshold ,
more than the threshold , higher than the threshold , greater
than or equal to the threshold , less than the threshold , fewer
than the threshold , lower than the threshold , less than or
equal to the threshold , equal to the threshold , etc .
[0075] To the extent the aforementioned embodiments
collect , store , or employ personal information provided by
individuals , it should be understood that such information
shall be used in accordance with all applicable laws con
cerning protection of personal information . Additionally , the
collection , storage , and use of such information can be
subject to consent of the individual to such activity , for
example , through well known " opt - in ” or “ opt - out ” pro
cesses as can be appropriate for the situation and type of
information . Storage and use of personal information can be
in an appropriately secure manner reflective of the type of
information , for example , through various encryption and
anonymization techniques for particularly sensitive infor
mation .
10076] It will be apparent that systems and / or methods ,
described herein , can be implemented in different forms of
hardware , firmware , or a combination of hardware and
software . The actual specialized control hardware or soft
ware code used to implement these systems and / or methods
is not limiting of the implementations . Thus , the operation
and behavior of the systems and / or methods were described
herein without reference to specific software code it being
understood that software and hardware can be designed to
implement the systems and / or methods based on the descrip
tion herein .
10077] Even though particular combinations of features
are recited in the claims and / or disclosed in the specification ,
these combinations are not intended to limit the disclosure of
possible implementations . In fact , many of these features
can be combined in ways not specifically recited in the
claims and / or disclosed in the specification . Although each
dependent claim listed below can directly depend on only
one claim , the disclosure of possible implementations
includes each dependent claim in combination with every
other claim in the claim set .
[0078] No element , act , or instruction used herein should
be construed as critical or essential unless explicitly
described as such . Also , as used herein , the articles “ a ” and
" an " are intended to include one or more items , and can be
used interchangeably with “ one or more . ” Furthermore , as
used herein , the term “ set ” is intended to include one or more
items (e . g . , related items , unrelated items , a combination of
related and unrelated items , etc .) , and can be used inter
changeably with “ one or more . ” Where only one item is
intended , the term " one " or similar language is used . Also ,
as used herein , the terms “ has , " “ have , ” “ having , " or the like
are intended to be open - ended terms . Further , the phrase
" based on ” is intended to mean " based , at least in part , on ”
unless explicitly stated otherwise .
What is claimed is :
1 . A device , comprising :
one or more processors to :

determine a congestion window (CWND) value , asso
ciated with a first transmission control protocol
(TCP) state , for a TCP flow that involves one or more
devices using active queue management (AQM) ,
the first TCP state to cause the device to increase the
CWND value at a particular rate ;

determine a round trip time (RTT) value , associated
with the first TCP state , for the TCP flow ;

determine whether one or more TCP state conditions
are satisfied based on the CWND value and the RTT
value ;

selectively classify the TCP flow into a different TCP
state based on determining whether the one or more
TCP state conditions are satisfied ,
the different TCP state including one of :

a second TCP state to cause the device to maintain
the CWND value , or

a third TCP state to cause the device to increase
the CWND value at a rate that is different than
the particular rate ;

modify the CWND value , as a modified CWND value ,
based on selectively classifying the TCP flow into
the different TCP state ; and

transmit one or more packets , associated with the TCP
flow , based on the modified CWND value .

2 . The device of claim 1 , where the one or more proces
sors , when determining whether the one or more TCP state
conditions are satisfied , are to :

determine that the CWND value satisfies a threshold ,
determine that a TCP state condition , of the one or more

TCP state conditions , is satisfied based on determining
that the CWND value satisfies the threshold ; and

where the one or more processors , when selectively
classifying the TCP flow into the different TCP state ,
are to :
classify the TCP flow into the second TCP state based

on determining that the TCP state condition is sat
isfied .

3 . The device of claim 1 , where the one or more proces
sors , when determining whether the one or more TCP state
conditions are satisfied , are to :

determine that the CWND value satisfies a first threshold ,
determine that the RTT value satisfies a second threshold ;

and
where the one or more processors , when selectively

classifying the TCP flow into the different TCP state ,
are to :
classify the TCP flow into the third TCP state based on

determining that the CWND value satisfies the first
threshold and determining that the RTT value satis
fies the second threshold .

4 . The device of claim 1 , where the different TCP state is
the third TCP state ; and
where the one or more processors , when causing the

device to increase the CWND value at the rate that is
different than the particular rate , are to :

increase the CWND value at a rate that is slower than the
particular rate ,
the rate that is slower than the particular rate to cause

the RTT value to decrease to a value that is lower
than an AQM value associated with another device .

5 . The device of claim 1 , where the one or more proces
sors , when selectively classifying the TCP flow into the
different TCP state , are further to :

set a rate for increasing or decreasing the CWND value
based on the different TCP state .

6 . The device of claim 1 , where the one or more proces
sors are further to :

determine whether one or more different TCP state con
ditions are satisfied based on selectively classifying the
TCP flow into the different TCP state ; and

US 2018 / 0219787 A1 Aug . 2 , 2018

reclassify the TCP flow into the first TCP state , the second
TCP state , or the third TCP state based on determining
whether the one or more different TCP state conditions
are satisfied .

7 . The device of claim 6 , where the different TCP state is
the third TCP state ;
where the one or more processors , when determining

whether the one or more different TCP state conditions
are satisfied , are to :
determine that the RTT value does not satisfy a thresh

old ,
verify that the TCP flow has been in the third TCP state

for longer than a threshold period of time ; and
where the one or more processors , when reclassifying the

TCP flow , are to :
reclassify the TCP flow into the first TCP state based on

determining that the RTT value does not satisfy the
threshold and based on verifying that the TCP flow
has been in the third TCP state for longer than the
threshold period of time .

8 . A non - transitory computer - readable medium storing
instructions , the instructions comprising :
one or more instructions that , when executed by one or
more processors , cause the one or more processors to :
determine a congestion window (CWND) value , asso

ciated with a first transmission control protocol
(TCP) state , for a TCP flow that involves one or more
devices using active queue management (AQM) ,
the first TCP state to cause the CWND value to be

increased at a particular rate ;
determine a round trip time (RTT) value , associated

with the first TCP state , for the TCP flow ;
determine that one or more TCP state conditions are

satisfied based on the CWND value and the RTT
value ;

classify the TCP flow into a different TCP state based
on determining that the one or more TCP state
conditions are satisfied ,
the different TCP state to cause the CWND value to

be maintained , decreased , or increased at a rate
that is different than the particular rate ; and

transmit one or more packets , associated with the TCP
flow , based on classifying the TCP flow into the
different TCP state .

9 . The non - transitory computer - readable medium of claim
8 , where the one or more instructions , that cause the one or
more processors to determine whether the one or more TCP
state conditions are satisfied , cause the one or more proces
sors to :

determine that the CWND value satisfies a threshold ,
determine that a TCP state condition , of the one or more
TCP state conditions , is satisfied based on determining
that the CWND value satisfies the threshold ; and

where the one or more instructions , that cause the one or
more processors to classify the TCP flow into the
different TCP state , cause the one or more processors
to :
classify the TCP flow into a second TCP state , which is

different from the first TCP state , based on deter
mining that the TCP state condition is satisfied ,
the second TCP state to cause the CWND value to be

maintained .
10 . The non - transitory computer - readable medium of

claim 8 , where the one or more instructions , that cause the

one or more processors to determine that the one or more
TCP state conditions are satisfied , cause the one or more
processors to :

compare the CWND value and a first threshold ,
compare the RTT value and a second threshold ,
determine that a TCP state condition , of the one or more

TCP state conditions , is satisfied based on a result of
comparing the CWND value and the first threshold and
a result of comparing the RTT value and the second
threshold ; and

where the one or more instructions , that cause the one or
more processors to classify the TCP flow into the
different TCP state , cause the one or more processors
to :
classify the TCP flow into a second TCP state , which is

different from the first TCP state , based on deter
mining that the TCP state condition is satisfied ,
the second TCP state to cause the CWND value to be

decreased or to be increased at a rate that is
different than the particular rate .

11 . The non - transitory computer - readable medium of
claim 8 , where the one or more instructions , when executed
by the one or more processors , further cause the one or more
processors to :

determine whether one or more different TCP state con
ditions are satisfied based on classifying the TCP flow
into the different TCP state ; and

reclassify the TCP flow into the first TCP state , a second
TCP state , or a third TCP state based on determining
whether the one or more different TCP state condition
are satisfied ,
the second TCP state to cause the CWND value to be

maintained or to be increased at a first rate that is
different than the particular rate ,

the third TCP state to cause the CWND value to be
decreased or to be increased at a second rate that is
different than the particular rate .

12 . The non - transitory computer - readable medium of
claim 11 , where the different TCP state is the third TCP state ,
where the one or more instructions , that cause the one or
more processors to determine whether the one or more
different TCP state conditions are satisfied , cause the
one or more processors to :

determine that the RTT value does not satisfy a threshold ,
verify that the TCP flow has been in the third TCP state

for longer than a threshold period of time ,
determine that a TCP state condition , of the one or more

TCP state conditions , is satisfied , based on determining
that the RTT value does not satisfy the threshold and
verifying that the TCP flow has been in the third TCP
state for longer than the threshold period of time ; and

where the one or more processors , when reclassifying the
TCP flow , are to :
reclassify the TCP flow into the first TCP state .

13 . The non - transitory computer - readable medium of
claim 8 , where the one or more instructions , when executed
by the one or more processors , further cause the one or more
processors to :

increase the CWND value at a rate that is slower than the
particular rate ,
the rate that is slower than the particular rate to cause

the RTT value to decrease .

US 2018 / 0219787 A1 Aug . 2 , 2018

14 . The non - transitory computer - readable medium of
claim 8 , where the one or more instructions , when executed
by the one or more processors , further cause the one or more
processors to :

obtain an AQM value , from another device , for the TCP
flow ;

compare the RTT value and the AQM value ; and
verify that the RTT value is lower than the AQM value

based on comparing the RTT value and the AQM value .
15 . A method , comprising :
determining , by a device , a congestion window (CWND)

value , associated with a transmission control protocol
(TCP) state , for a TCP flow that involves one or more
devices using active queue management (AQM) ,
the TCP state to cause the device to increase the CWND

value at a particular rate ;
determining , by the device , a round trip time (RTT) value ,

associated with the TCP state , for the TCP flow ;
determining , by the device , whether one or more TCP

state conditions are satisfied , based on the CWND
value and the RTT value ;

classifying , by the device , the TCP flow into another TCP
state , based on determining whether the one or more
TCP state conditions are satisfied ,
the other TCP state to cause the device to increase the
CWND value at a rate that is different than the
particular rate ;

modifying , by the device , the CWND value , as a modified
CWND value , based on classifying the TCP flow into
the other TCP state ; and

transmitting , by the device , one or more packets , associ
ated with the TCP flow , based on the modified CWND
value .

16 . The method of claim 15 , further comprising :
classifying the TCP flow into a different TCP state ,

the different TCP state to cause the device to maintain
the CWND value .

17 . The method of claim 15 , where determining whether
the one or more TCP state conditions are satisfied comprises :

determining that the CWND value satisfies a maximum
CWND threshold , and

determining that a TCP state condition , of the one or more
TCP state conditions , is satisfied based on determining
that the CWND value satisfies the maximum CWND
threshold .

18 . The method of claim 15 , where determining whether
the one or more TCP state conditions are satisfied comprises :

determining that the CWND value satisfies a first thresh
old ,

determining that the RTT value satisfies a second thresh
old , and

determining that a TCP state condition , of the one or more
TCP state conditions , is satisfied , based on determining
that the CWND value satisfies the first threshold and
that the RTT value satisfies the second threshold .

19 . The method of claim 15 , further comprising :
determining whether one or more different TCP state

conditions are satisfied based on classifying the TCP
flow into the other TCP state ; and

reclassifying the TCP flow into the TCP state , or into the
other TCP state , based on determining whether the one
or more different TCP state conditions are satisfied .

20 . The method of claim 19 , where determining whether
the one or more different TCP state conditions are satisfied
comprises :

determining that the RTT value does not satisfy a thresh
old ,

verifying that the TCP flow has been in the other TCP
state for longer than a threshold period of time ,

determining that a TCP state condition , of the one or more
TCP state conditions , is satisfied , based on determining
that the RTT value does not satisfy the threshold and
verifying that the TCP flow has been in the other TCP
state for longer than the threshold period of time ; and

where reclassifying the TCP flow comprises :
reclassifying the TCP flow into the TCP state .

* * * *

